
A computational neural model for mapping degenerate neural1

architectures2

Zulqarnain Khan1,*, Yiyu Wang2,*, Eli Z. Sennesh3, Jennifer Dy1, Sarah Ostadabbas1,3
Jan-Willem van de Meent3, J. Benjamin Hutchinson4,†, and Ajay B. Satpute2,†4

1Department of Electrical & Computer Engineering, College of Engineering, Northeastern5
University, Boston, MA 02115, USA6

2Department of Psychology, College of Science, Northeastern University, Boston, MA 02115,7
USA8

3Khoury College of Computer Sciences,Northeastern University, Boston, MA 02115, USA9
4Department of Psychology, University of Oregon, Eugene, OR 97403, USA10

*Indicates equal contributions.11
†Indicates shared senior authorship.12

*Correspondence to Zulqarnain Khan (khanzu@ece.neu.edu) or Yiyu Wang13
(wang.yiyu@northeastern.edu)14

November 13, 202015

Abstract16

Degeneracy in biological systems refers to a many-to-one mapping between physical structures and17
their functional (including psychological) outcomes. Despite the ubiquity of the phenomenon, traditional18
analytical tools for modeling degeneracy in neuroscience are extremely limited. In this study, we generated19
synthetic datasets to describe three situations of degeneracy in fMRI data to demonstrate the limitations20
of the current univariate approach. We describe a novel computational approach for the analysis referred21
to as neural topographic factor analysis (NTFA). NTFA is designed to capture variations in neural22
activity across task conditions and participants. The advantage of this discovery-oriented approach is to23
reveal whether and how experimental trials and participants cluster into task conditions and participant24
groups. We applied NTFA on simulated data, revealing the appropriate degeneracy assumption in all25
three situations and demonstrating NTFA’s utility in uncovering degeneracy. Lastly, we discussed the26
importance of testing degeneracy in fMRI and the implications of applying NTFA to do so.27
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1 Introduction29

Degeneracy refers to the capability of different structures to produce the same effects [1, 2, 3]. For example,30
different sets of codons in genetics can produce the same phenotype [4]. Different ion channels - more than are31
strictly necessary - are used to tune the firing rate of neurons [5]. Different distributions of neural modulators32
and circuit parameters nonetheless produce the same rhythmic activity in a neural circuit [6, 7]. Simple33
motor behaviors, like finger tapping, may also be produced by an abundance of distinct motor pathways34
[8, 9, 10, 11]. In functional neuroanatomy, degeneracy refers to the notion that the brain may have multiple35
solutions or a surplus of neural pathways to produce the same mental state or behavior [12, 13, 14]. Indeed,36
computational simulations show that degeneracy is high in networks with high complexity such as the brain37
[15, 16], in which multiple distinct, parallel structural pathways may lead from a source node to a destination38
node. Such an architecture enables a degree of robustness to changes in the neural environment (e.g. due to39
tissue damage) [12, 14]. 140

In cognitive neuroscience, degeneracy in functional neuroanatomy suggests there might be systematic41
sources of variance across trials or individuals that are of interest for the brain-behavior relationship. For42
example, two individuals may use different neural pathways to perform the same task, or one individual43
may use different neural pathways in different moments when performing a task. Commonly used analytical44
approaches often treat such variation across trials within a condition and across individuals within a sampled45
group of participants as error. For example, functional neuroimaging studies that examine task-dependent46
changes in functional activation often estimate parameters assuming invariance across trials or participants.47
Offering a bit more flexibility, recent machine learning approaches have also been applied to functional48
neuroimaging data (e.g. multivoxel pattern analysis)[18, 19], however, these approaches commonly rely49
on supervised analytical approaches that imply a common neural activation pattern for trials in the same50
task [20]. In both cases, summaries are calculated either across participants, trials, or both in order to51
increase signal-to-noise ratios, and residual variance is assumed to provide an estimate of error for calculating52
inferential statistics. However, in doing so, these approaches are assuming a non-degenerate functional53
architecture a priori. As a result, little is known about the extent to which these assumptions prevail vs. the54
extent to which there is degeneracy in functional neuroanatomy.55

Uncovering degeneracy requires analytical tools that are explicitly designed for this purpose. If the brain56
provides multiple solutions to complete a given task, then functional activation patterns in a given study may57
depend on the participant and moment in time (i.e. by stimulus or trial) in ways that are unbeknownst to58
investigators. Thus, it is important to develop an analytical approach that can identify sources of structure59
in signal with minimal supervision - that is, without relying on strong a priori assumptions of investigators60
of how functional activity ought to relate with task performance. Here, we propose a novel computational61
model, referred to as Neural Topographic Factor Analysis (NTFA), to examine degeneracy in functional62
neuroanatomy. Our model is built off of earlier topographic factor analysis approaches [21] and takes as63
input individuated segments of 4D fMRI timeseries data with labels for participant and trial. It does not64
require knowledge about the attributes of participants (demographic, personality, genetic, etc.), nor does it65
require knowledge about how trials sort into conditions. NTFA learns a low-dimensional representation - or66
an embedding - of functional activity for each participant and trial on the basis of shared patterns of neural67
activation from segments of data. The embeddings provide a simple, readily visualizable depiction of whether68
and how neural responses during a task vary across participants, trials, and participant by trial combinations.69

In this paper, our goal is to validate NTFA using a simulation approach. Computational simulations70
are critical to test whether novel computational models are capable of performing as expected in principle,71
that is, under conditions with a known ground truth. In practice, the data generating mechanisms for72
functional neuroanatomy are rarely, if ever, known. That is why it is of particular importance in cognitive73
neuroscience to develop modeling approaches that are capable of providing insight as to whether there is74
likely to be degeneracy in functional neuroanatomy from the data alone and with minimal supervision. Using75
computational simulations, we first demonstrate the considerable shortcomings of applying the most commonly76
used "univariate" activation-based analytical approach in fMRI data analysis when there is degeneracy. In77
the typical form of this analysis, a general linear model is used to determine whether functional activity in a78

1The concept of degeneracy may overlap with redundancy because they both suggest there are multiple solutions that can
produce the same output, however they differ in the flexibility for the system to choose which solution to produce the outcome.
See discussion in [1, 13, 17, 14].
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given voxel or brain region (i.e. set of voxels) is greater during trials from one experimental condition relative79
to a baseline condition. We then implement NTFA on simulated datasets with minimal assumptions about80
whether trials ought to be nested into particular task conditions, or participants into particular groups. Our81
deliverable is a demonstration of the ability of NTFA to recover embeddings that reveal degeneracy, and82
non-degeneracy, in simulated 4D timeseries data with topological structure (e.g. as in fMRI data).83

2 Methods84

Before discussing the model design in NTFA we begin by considering the consequences of applying widely85
used univariate analyses [22] to synthetic data that exhibit degeneracy. This approach serves two purposes.86
First, using synthetic data illustrates the pitfalls of using traditional univariate analyses in terms of capturing87
degeneracy. Second, this synthetic data provides a known ground truth to validate NTFA’s performance.88
Rather than extensively review the various forms of degeneracy that can occur in the brain, we decided89
to demonstrate two aspects of degeneracy that could occur in fMRI data. We generated the synthetic90
datasets to reflect a generic experimental framework in which participants undergo a baseline condition and91
an experimental condition. For example, in a study on fear, the baseline condition may consist of multiple92
trials that maintain a neutral affective state, and multiple trials that induce fear. In a study on working93
memory, there may be trials that involve low capacity demand in the baseline condition, and trials that involve94
high capacity demand in the experimental condition. We used the term, trial, to broadly represent trials in95
sequence (e.g. the first, second, ..., trial of the task), or the specific contents of a trial in a task (e.g. trials96
that present stimulus A, stimulus B, ..., in which each stimulus is a sampled instance from the same task).97
Degeneracy may occur in either case. For simplicity, each synthetic dataset consisted of two participants,98
and we assumed a single baseline state. We simulated multivariate patterns of neural activity throughout99
the brain by sampling from a prespecified underlying distribution. We then modeled three hypothetical100
situations to reflect different assumptions of degeneracy, which are described in more detail in the subsequent101
section(Figure 1). To demonstrate that standard neuroimaging analysis is limited in capturing degeneracy, we102
applied a standard univariate General Linear Model (GLM) to calculate a contrast between the experimental103
conditions and the baseline condition.104

2.1 Non-degeneracy105

The non-degenerate functional neuroarchitecture stipulates that experimental trials evoking a common106
psychological state or process share a common underlying pattern of activation. We generated simulated107
data to fit this assumption. We started by selecting three brain areas randomly to create a pattern of108
activation during experimental condition trials (Figure 1A). We chose three areas arbitrarily to reflect the109
fact that the assumptions of a non-degenerate functional neuroanatomy have little to do whether the pattern110
of activation is localized to one area or distributed across many areas. What is important is that the same111
pattern of activation is assumed to occur consistently across trials and participants, and that a non-degenerate112
model treats variation as residual error. To capture this assumption in our synthetic data, we specified the113
data generating process as a unimodal distribution. This refers to one pattern of neural activity with some114
Gaussian distributed noise across trials and participants. The synthetic data from individual trials A, B, and115
C, as shown in (Figure 1A), were sampled from this distribution. This model suggests there is a common116
pattern of activation across all trials that evoke fear, for example.117

We then evaluate how a standard univariate analysis using a GLM performs on this data. The GLM118
resembles a supervised analytical approach insofar as experimenters must specify beforehand the regressors119
in the model. In so doing, experimenters must make assumptions about how trials are nested into conditions.120
In our example experiment, Trials A, B, and C, would all be modeled with a single regressor since they121
belong to the same experimental condition. In that sense, the GLM shares the same assumptions as the data122
generating process. As shown in Figure 1D (top), applying the GLM to our synthetic data shows that it123
perfectly suits the non-degenerate functional neuroanatomy.124
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2.2 Degeneracy by Condition125

Degeneracy by condition refers to the existence of multiple distinct patterns of neural activation that occur126
across trials of the same experimental condition. Using fear as our running example, different fear induction127
trials may involve different patterns of brain activation (Figure 1B). To simulate data corresponding to a128
degeneracy by condition model, our data generating process involved sampling from one of three different129
distributions. Each of the three distributions gave rise to distinct activation patterns from the others, while130
maintaining similar activation patterns within the distribution. In Figure 1B, Trials A, B, and C are exemplars,131
with each one sampled from a different distribution. Thus, degeneracy by condition suggests that multiple132
distinct activation patterns may occur during trials within the same experimental condition. There could133
be many reasons for degeneracy, as noted in the introduction and as we speculate upon in the discussion.134
However, the purpose of the synthetic dataset is to illustrate how well certain models would perform when135
the assumption of degeneracy by condition holds.136

A standard univariate analysis does not perform well in this situation. Without knowledge of the actual137
data generating process, experimenters would again model the data using a single regressor for Trials A, B, and138
C – even though the underlying distributions are heterogeneous. In other words, the standard GLM requires139
the experimenter to make assumptions about how trials are organized into experimental conditions, with one of140
those assumptions being the absence of degeneracy. As a result, the GLM precludes the ability to test whether141
there is, or is not, a degenerate relationship. To illustrate the consequences, we fit a GLM to our simulated142
data. As shown in Figure 1D (middle), the univariate activation map appears as an amalgam of the three143
data generating distributions. Even when the ground truth (i.e. the underlying generative process) exhibits144
degeneracy by condition, a standard univariate analysis may still produce seemingly “reliable” findings (i.e.145
significant and reproducible findings with enough participants). However, the resulting pattern of activation146
in Figure 1D (middle) would not accurately capture the actual data generating process. Consequently, it147
could lead to a mistaken, but statistically “reliable”, conclusion about the relationship between neural activity148
and the experimental condition.149

2.3 Degeneracy by Participant and Condition150

For our third situation, we examined degeneracy with respect to both condition and participant. Similar to151
the example in the degeneracy by condition scenario, a participant would have different patterns of activation152
during different trials of the same experimental condition. In addition, however, the participant would also153
have a different pattern of neural activation than other participants, even during the same trial. For example,154
both participants may report experiencing the same level of fear when shown the same fear-inducing stimulus,155
but nevertheless show differential activation patterns.156

This situation is illustrated in Figure 1C. Two participants may be presented with the same set of trial157
stimuli and even have the same behavioral responses, but the underlying neural patterns may nonetheless158
vary. For example, in Trial A, the exemplar data from two participants share activity in dorsal areas, but159
one participant also shows activity in ventral areas. In Trial B, they show similar patterns of activation. In160
contrast, in Trial C, there are again differences between participants. Thus, our data generating procedure161
was designed to capture: (i) degeneracy across participants by including both participant-specific activation162
patterns (e.g. Trials A and C), (ii) degeneracy by condition by including variation in activation patterns across163
Trials A-C within a participant, and also (iii) activation patterns that are also shared across participants (e.g.164
Trial B). We purposefully designed the synthetic data in this way to test the utility of NTFA in addressing165
this complexity.166

Critically, degeneracy with respect to participants highlights another important assumption of standard167
univariate analyses. The analytical procedure of a GLM involves stages such that the outputs of the trial- and168
subject-level analyses are inputs to the group-level analyses. This sequence of analyses assumes a nested data169
structure in which trials of an experimental condition within one participant’s data and each participant from170
their group are from one normal distribution. This assumption is valid under a non-degeneracy functional171
neuroanatomy (shown in Figure 1A), but could preclude the ability to examine degeneracy in the functional172
neuroanatomy. Instead of applying the same first level model to all participants, a more appropriate model173
would fit the run and participant level simultaneously without assuming this nested structure.174

Ultimately, the standard univariate approach are insensitive to variations across trials, compounded by175
degeneracy across individuals. It treats the systematic variation in activation patterns across trials and176
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participants as error. Though it may produce reliable findings with sufficient power, it would result in a177
diffuse pattern of activation that is not representative of the data generating process. This is shown in178
Figure 1D (bottom) as applied to our synthetic data.179

3 Neural Topographic Factor Analysis (NTFA)180

In light of the shortcomings of the standard univariate analysis discussed in the previous section, there is181
a need for models that can uncover degeneracy when it is present in the data. We propose NTFA [23] for182
this purpose. NTFA is a generative model 2 built off of earlier topographic factor approaches for fMRI data183
[21] that is designed to learn low-dimensional, visualizable embeddings from segments of data for different184
participant-task combinations. The spatial positions of these embeddings can reveal different aspects of the185
data, including degeneracy. Moreover, NTFA is primarily unsupervised, requiring only the participant and186
trial identities 3. We provide an overview of NTFA’s generative model and training mechanism in Figures 2187
and 3 respectively. A comprehensive explanation of these can be found in the supplement 5.188

NTFA is designed to enable systematic comparison of functional neuroanatomy across individuals and189
task conditions by mapping fMRI data to low-dimensional (and visualizable) embeddings. We achieve this190
goal by formalizing three assumptions:191

• First, we assume voxel-level data can be parsimoniously expressed as a much smaller set of functional192
units, which we refer to as spatial factors. We model these spatial factors as radial basis functions,193
and the activation at a given voxel as a sum of weighted contributions from these factors.194

• Second, we assume that the same spatial factors exist in all participants, but their precise spatial location195
may vary across individuals. A set of low dimensional participant dependent spatial embeddings196
(zpf) capture this variation. A neural network maps these embeddings to the centers (location) and197
widths (extent) of the spatial factors. This neural network is shared across participants. The neural198
network allows us to learn a possibly nonlinear mapping from the space of spatial embeddings to that of199
spatial factors. This is important, as the anatomical alignment literature [24, 25] makes it implausible200
that this relationship can be captured with a linear transformation. Similarly, sharing a single neural201
network among all factors and all participants allows the spatial embeddings to be commensurable202
between participants. A Gaussian prior on the spatial embeddings encourages them to be close to each203
other.204

• Third, we assume that degeneracy or non-degeneracy is effectively revealed as a combination of how a205
single participant’s brain responds to the various trials in a task condition (i.e. participant dependent206
activity) and how multiple individuals might respond to a the same trial in a task condition (i.e.207
trial dependent activity). By combining estimates of these sources of variation, we are able to detect208
whether neural activity in response to the same trial varies systematically across individuals, which209
we refer to as participant task combinations. Similar to the approach used for the spatial embeddings,210
participant dependent (p) and trial dependent (s) activity is estimated across the spatial factors211
(through embeddings zpw and zs respectively) and combined through a neural network to generate212
(p⇥ s)activation embeddings (zc). The use of shared neural networks here once again ensures213
that the low dimensional embeddings can capture non-linear effects and make these embeddings214
commensurable between different participant-task combinations.215

Taken together, these spatial and activation embeddings respectively provide a low-dimensional summary216
of where and how individuals’ brains respond to an experiment. Critically, the activation embeddings217
also summarize whether such responses are shared or diverge across individuals, hereby revealing potential218
degeneracy. For the simulated data from the three models discussed above, we can expect these activation219
embeddings to arrange in the following clearly different ways:220

2A generative model here refers to a probabilistic model that characterizes a probability distribution from which new data
could be generated in order to resemble the observed data

3NTFA is flexible in the sense that users can incorporate supervision by specifying a priori groups of participants or trials.
This can be done by providing the same identity to participants (or trials) belonging to the same group
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• Non-degenerate: For the non-degenerate scenario discussed in Section 2.1, we would expect the221
participant-trial activation embeddings to broadly fall in just two clusters: one for baseline and the222
other for the experimental condition. Figure 4(A) shows that the embeddings learned from NTFA223
indeed fall into two clusters.224

• Degeneracy by condition: In the scenario discussed in Section 2.2, the activation embeddings are225
expected to fall in four distinct clusters: one for the baseline, and one each for the three underlying226
degeneracy modes. These will correspond to the differences in the three trials. Figure 4(B) shows that227
is indeed the case for the learned embeddings on this data.228

• Degeneracy by condition and participant: In the scenario discussed in Section 2.3, the activation229
embeddings can be expected not only to group by trial, but also to split up by participants, with trials230
A and C revealing the degeneracy by condition and participants. Figure 4(C) shows precisely this231
expected behaviour.232

4 Discussion233

Recent work in computational biology and functional neuroanatomy suggests that the brain may have multiple234
solutions, or degenerate neural pathways, when trying to solve a given task. However, current analytical235
methods are not optimized to capture such degeneracy. Here, we advanced a novel computational approach,236
NTFA, to address this issue. NTFA is a generative model that learns a low-dimensional space of embeddings237
from the temporal and spatial variation of fMRI data. The embeddings yield a visualizable representation of238
the latent variations in functional activity across trials and participants. The distribution of these embeddings239
can provide useful information for researchers to assess whether the data generating mechanism is degenerate240
or non-degenerate with respect to trial conditions and participants.241

Related to NTFA, there are other models that also use latent factorization methods to analyze fMRI242
data, however, they are not currently equipped for modeling degeneracy with respect to task conditions and243
participants. These include topographic latent factorization models, such as topographic factor analysis and244
hierarchical topographic factor analysis [26, 21, 27], and non-topographic models such as principal component245
analysis [28], independent component analysis [29], the shared response model [30], hyper alignment [24], and246
dictionary learning methods [31]. These approaches are designed to address variation in functional alignment247
(e.g. individual differences in precise locations of the so-called fusiform face area [32, 25]). However, none of248
these methods explicitly model variation in functional activity across both participants and task conditions.249
Of note, NTFA is flexible in its implementation. If researchers preferred to label their trials as belonging250
to specific task conditions, or participants as belonging to specific groups, NTFA can accommodate these251
assumptions and develop a generative model with these assumptions built in (e.g. for more direct comparison252
with other approaches). NTFA’s other features may also be useful to the community. For example, NTFA253
explicitly models variation in the locations, sizes, and magnitudes of activation, whereas the vast majority of254
studies using univariate analysis of fMRI data focus only on activation magnitudes.255

NTFA is, of course, not without some limitations, one of which is determining whether learned embeddings256
are modeling functionally meaningful signal or simply noise. Although much variation in fMRI data across257
time/trials (and across participants) is noise and should be discarded, that does not mean that all (or even258
most) variation unaccounted for by standard modeling approaches is necessarily noise. Here, we suggest259
that there is good reason to think that such variation might be structured and functionally meaningful (as260
described next), that historical approaches are insensitive to such variation unless it aligns with a narrow261
range of a priori hypotheses, and that NTFA is a technique that is designed to sift potentially interpretable,262
structured variation from random noise.263

While our primary aim is constrained to establishing and validating our model using simulations, high-264
lighting some relevant research findings may point to useful future directions in which to develop applications265
for NTFA. In general, it is well-known that psychological tasks are not "process pure" [33, 34]. A given task266
may involve a variety of different cognitive processes, neural pathways and/or strategies, which may shift267
and change over time and trials. Indeed, carefully constructed experiments have found results consistent268
with degeneracy even when using more traditional analytical tools. For example, dissociable neurocognitive269
memory systems can be used to complete the same overt memory task [35, 36, 37, 38]. When one system is270
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compromised due to brain damage, other systems may be utilized to nonetheless complete the task at hand271
[39, 40, 12]. An increasing number of findings suggest that the brain is likely to offer multiple solutions in272
other domains too, such as in social cognition [41, 42] and emotion [43, 20]. NTFA may also be of particular273
relevance for translational research. Emerging work suggests that distinct neuropathologies may underlie274
a common clinical phenotype [44]. For example, research on depression suggests that there may be many275
different neuropathologies that give rise to depressive symptoms [45, 46, 47, 48]. Indeed, the call for "precision276
medicine" reflects a general failure of more traditional, non-degenerate theoretical models and rigid analytical277
approaches to account for heterogeneity in the underlying neural causes of mental health. A systematic278
evaluation of this variance is a critical step towards enabling precision medicine approaches in fMRI, in which279
neuroimaging studies have the potential to significantly advance diagnosis and treatment [49].280

Despite these notable empirical examples, more often than not researchers assume that a given task involves281
a core set of processes that are shared across trials and participants. This may be because more traditional282
theoretical models in cognitive neuroscience rarely postulate degeneracy in functional neuroanatomy. However,283
more recent, predictive processing models of the brain suggest that degeneracy is likely to be common in284
mind-brain mapping [14, 50]. Another reason that researchers tend to assume a non-degenerate functional285
neuroanatomy is because it has been analytically challenging to not make this assumption. By addressing286
this analytical gap, NTFA offers new opportunities to model structured variance in fMRI data with a degree287
of independence from our own preconceived ideas of how this variance ought to be structured, and the288
opportunity to discover and model degeneracy in functional neuroanatomy.289
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Figure 1: Standard univariate analysis applied to degenerate situations. We applied univariate
analysis (right panel) to three simulated datasets (left panels), assuming a simple experimental design with
a baseline condition and a task condition involving multiple trials. In an affective neuroscience task, for
example, the experimental condition might be a fear condition, as designated and labeled by the experimenter,
which consists of multiple trials that are thought to induce fear. (A) Non-degeneracy: We simulated
data from a situation without degeneracy, in which a consistent set of regions are more active during the
experimental condition than the baseline condition across trials (and across participants). (B) Condition
degeneracy: Simulated data included different patterns of activation associated with different trials of the
same experimental condition. (C) Degeneracy by condition and participant: Simulated data included different
patterns of activation are associated with different trials and participants. (D) A traditional univariate
analysis performs well in the situation without degeneracy. However, the analysis would be insensitive to
the variations in the two situations involving degeneracy. Critically, with sufficient statistical power, the
univariate analysis may still yield significant activations in situations B and C. However, the summary map
would grossly mischaracterize the data, and the underlying data generating distribution.
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Figure 2: NTFA Generative Model: This figure describes how NTFA generates a single segment of fMRI
data with V voxels and T TRs. NTFA treats a single participant-trial combination in the experiment as
a segment of fMRI data such that it could model the participant and trial dependent activation without
grouping participants or trials a priori. Concisely, NTFA splits this data generation into two parts, reflected
by the two pathways in this figure. The first pathway, following the blue arrows, generates a participant
dependent set of spatial factors. The second pathway, following the red arrows, generates the participant
and trial dependent activation weights for these factors. The multiplication of these spatial factors and the
factor weights gives us the generated fMRI segment. (a-c) Generating spatial factors:(a) We sample
2-dimensional spatial embeddings (zpf) from a gaussian prior, with each dot representing a participant in
the shared embedding space. For each block we only use the spatial embedding for the participant in that
block, shown here as the red dot. (b) This spatial embedding is submitted to a neural network. The same
neural network is shared by all spatial embeddings. The use of neural networks allows a potentially non-linear
mapping between the embedding space and the variations in the spatial factors.(c) The neural network
maps this embedding to the K spatial factors to represent the functional units of activation in the brain,
shown as the red circles. These spatial factors are assumed to be radial basis functions parameterized by the
centers and widths output by the network. Here we show these spatial factors as red circles covering two
widths of the radial basis function. The Spatial Factors is denoted by a matrix F of size K x V . As such,
the differences in the spatial embeddings reflects the variations in these spatial factors. (d-g) Generating

factor weights:(d,e) Similar to the spatial embeddings we also sample a participant activation embedding
for the same participant and trial activation embedding for the trials across task conditions corresponding to
the combination. These embeddings are meant to capture overall participant and trial dependent activity
respectively. (f) These two embeddings are then passed to a neural network to produce the corresponding
p ⇥ s- activation embedding. Each dot represents a unique participant and trial combination. (g) The
activation embedding is then passed through another neural network to generate the Factor Weight matrix
of W of size T ⇥K. The factor weights capture the activations of the spatial factors. The neural network
outputs the mean and a standard deviation of activation for each factor. Each factor’s activation is then
generated by sampling independently over TRs from the corresponding Gaussian distribution to create the
time varying weights W . As such, variations in locations of these activation embeddings reflects variations in
the activations of spatial factors. The embeddings provide a way to visualize high dimensional variations
between brain activations for different participant-stimulus combinations. (h) Finally, these weights and
spatial factors can be arranged in the form of two matrices W 2 RT⇥K and F 2 RK⇥V . The matrix of spatial
factors F and their activations W can be multiplied to generate data Y i.e. this segment of fMRI data. For
a comprehensive version of this figure, see Figure. 5 in Appendix.
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Figure 3: NTFA Training using variational inference: This figure shows the training procedure for
NTFA for a hypothetical dataset that includes two participants and two stimuli for a total of four combinations.
Mean brain images for the four segments can be seen in panel (d) where the preprocessed BOLD data is split
into segments of participant-trial combinations, denoted here as c1, c2, c3 and c4 for this hypothetical example.
(a) Initialization All parameters and distributions are initialized as specified in Appendix Section 5. (b)

Training (b-i) All parameters and distributions are first initialized (see Appendix Section 5.). (b-ii) The
parameters are used iteratively to calculate the reconstructions error. The loss function is defined as the sum
of reconstruction error and the regularizer (see Equation 10 in Appendix Section 5). This is a consequence
of using variational inference which aims to approximate the unknown posterior distributions of all the
hidden variables with a set of simpler distributions, Gaussian in this case. (b-iii) These parameters are
then updated in the direction of decreasing loss using stochastic gradient descent (SGD). The iterations are
repeated until convergence that is when the loss function stops decreasing. (c) Results at convergence

The learned parameters at convergence are represented by the embeddings. The embeddings provide a visual
conclusion of variances in neural activity across different participant-trial combination. (c-i) The learned
spatial embeddings encode the relative differences in the locations and widths of the spatial factors between
participants. (c-ii) The learned activation embeddings are highlighted here in yellow as they are the main
focus of this paper. These embeddings represent the differences in activation of the spatial factors among
different participant-trial combinations. For example, in this hypothetical case the combinations 1 and 2 on
the left of the plot are more similar to each other as compared to combinations 3 and 4. (c-iii) The three
trained neural networks allow us to capture potentially nonlinear relationships between different participants’
spatial factors as well as activations for different combinations. These neural networks can also be used to
generate unseen data including unseen participant-trial combinations by providing inputting appropriate
embeddings. (c-iv) Shows the learned reconstructions that should approximate the major patterns in the
input data as can be seen by side by side comparison with panel (d) with a limited number of spatial factors
K << V . For a comprehensive version of this figure see Figure 6 in the Appendix.
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Figure 4: Inferred activation embeddings: The activation embeddings learned from NTFA for the three
scenarios depicted in Figure 1 are shown here. NTFA was trained in an unsupervised manner and labels
and colors are overlaid only for visualization and interpretation purposes. Each point represents a unique
participant-trial combination. The colors correspond to trials as shown in the legend. Circles represent
participant 1 and triangles represent participant 2. (a) Non-degenerate: The embeddings suggest there is
no degeneracy, with combinations for all three experimental condition trials grouping together and away from
the baseline combinations. (b) Degeneracy by condition: The embeddings suggest degeneracy in brain
response based on trials, as the combination embeddings for each trial form a cluster of its own away from
other clusters and away from baseline. There are no participant driven differences suggesting no degeneracy by
participants. (c) Degeneracy by condition and participants: The embeddings here suggest degeneracy
by both trials as well as participants, with the combinations forming groups of their own based on not just
trials, but also splitting up by participants in case of Trial A and Trial C.
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