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Abstract 

Metaproteomics has been increasingly utilized for high-throughput molecular characterization in 
complex environments and has been demonstrated to provide insights into microbial 
composition and functional roles in soil systems. Despite its potential for the study of 
microbiomes, significant challenges remain in data analysis, including the creation of a 
sample-specific protein sequence database as the taxonomic composition of soil is often 
unknown. Almost all metaproteome analysis tools require this database and their accuracy and 
sensitivity suffer when the database is incomplete or contains extraneous sequences from 
organisms which are not present. Here, we leverage a de novo peptide sequencing approach to 
identify sample composition directly from metaproteomic data. First, we created a deep learning 
model, Kaiko, to predict the peptide sequences from mass spectrometry data, and trained it on 
5 million peptide-spectrum matches from 55 phylogenetically diverse bacteria. After training, 
Kaiko successfully identified unsequenced soil isolates directly from proteomics data. Finally, we 
created a pipeline for metaproteome database generation using Kaiko. We tested the pipeline 
on native soils collected in Kansas, showing that the de novo sequencing model can be 
employed to construct the sample-specific protein database instead of relying on (un)matched 
metagenomes. Our pipeline identified all highly abundant taxa from 16S ribosomal RNA 
sequencing of the soil samples and also uncovered several additional species which were 
strongly represented only in proteomic data. Our pipeline offers an alternative and 
complementary method for metaproteomic data analysis by creating a protein database directly 
from proteomic data, thus removing the need for metagenomic sequencing. 

Significance Statement 
Proteomic characterization of environmental samples, or metaproteomics, reveals microbial 
activity critical to our understanding of climate, nutrient cycling and human health. 
Metaproteomic samples originate from diverse environs, such as soil and oceans. One option 
for data analysis is a de novo interpretation of the mass spectra. Unfortunately, the current 
generation of de novo algorithms were primarily trained on data originating from human 
proteins. Therefore, these algorithms struggle with data from environmental samples, limiting 
our ability to analyze metaproteomics data. To address this challenge, we trained a new 
algorithm with data from dozens of diverse environmental bacteria and achieved significant 
improvements in accuracy across a broad range of organisms. This generality opens proteomics 
to the world of natural isolates and microbiomes.   
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Introduction 
The soil microbiome is responsible for carrying out many functions that are important on a 
global scale, including cycling of carbon and other nutrients and support of plant growth. Over 
the last few decades high throughput sequencing technologies have made great strides in 
revealing the soil microbial community composition in a variety of soil habitats and how those 
communities are impacted by environmental change. Amplicon sequencing has revealed that 
soil and sediment microorganisms have a very high diversity; much more so than other 
ecosystems1. In addition, metagenome sequencing has proven to be an extremely useful tool 
for not only determining the composition of soil microbiomes, but also their putative functions. 
However, not all genes detected in a metagenome survey are actively expressed and significant 
challenges remain in understanding the biological functions that are carried out by active 
members of the soil microbiome. Other meta-omics technologies, such as metatranscriptomics 
and metaproteomics, have helped to close this current knowledge gap. Metatranscriptomics 
provides information on community transcription and is often used as a proxy for assigning 
metabolically active members of a soil microbiome. However, metatranscriptomics can only 
provide a snapshot of gene expression at the moment of sampling. A significant amount of 
post-transcriptional regulation affects protein abundance and activity2. Therefore, 
metaproteomics provides an essential layer of information about microbiome activity by 
revealing which proteins are actually produced and have passed transcriptional and 
translational regulation points.  
 
Despite the promise of metaproteomics for elucidating functions of elusive soil microorganisms, 
significant challenges remain. An important assumption in most mass spectrometry proteomics 
identification algorithms is that the set of potential proteins is known, and thus a database of 
these protein sequences is a typical requirement3,4. In environmental samples, however, 
obtaining an accurate catalog of organisms and their proteins is a challenge, as it is not possible 
to know the organisms present in the sample beforehand. Amplicon and metagenome 
sequencing of a matched sample is often used to identify community membership; however, 
many species might not be observable by sequencing 5–10.  
 
Here, we present a new method to generate a protein database directly from metaproteomic 
data as an alternative and orthogonal method of identifying soil microbe composition. The 
method starts with analyzing mass spectra de novo (without a database)11, identifying species 
from the observed peptides and then gathering full proteomic databases for these species. As 
currently available software tools for de novo identification were not sufficiently accurate for 
environmental samples, we first trained a new deep learning model on spectra from 55 bacteria 
in nine phyla. After confirming that the new model could successfully identify natural soil 
isolates, we applied the model to metaproteomics samples. Using a metaproteomics dataset 
from Kansas soil, our pipeline identified all abundant taxa identified in traditional 16S data as 
well as identifying new abundant organisms in the soil. Using the identified organisms, we 
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re-analyzed the metaproteomics data and identified differential metabolic functions between 
species in the microbiome. 

Results 

A new model for de novo MS/MS identification 
Using a large and environmentally diverse set of mass spectrometry proteomics data, we sought 
to improve on peptide/spectrum identification where no protein sequence database is available. 
We adapted a deep neural network structure 12 and trained a new model called Kaiko, after the 
Japanese deep ocean submersible used to explore the Marianas Trench. For training and 
validation, we used 4,604,540 spectra and 927,316 peptides from 51 distinct bacteria (Fig. 1A, 
Supplementary Table 1). Deep neural networks, like Kaiko, require very large training datasets 
for parameter optimization. For our neural network architecture, training events with less than 3 
million spectra resulted in severely overfit models (Supplementary Figs. 1 and 2). After training 
and optimization, we evaluated the accuracy of Kaiko against spectra in the test dataset 
consisting of spectra from four additional organisms not used in model training (511,765 spectra 
and 90,048 peptides). Kaiko achieved an average accuracy of 33% over all testing files and 
organisms, a significant improvement over other de novo algorithms (Fig. 1B). When 
considering the top five spectrum annotations, average accuracy exceeded 41%.  
 
We next looked at model performance as a function of peptide length (Fig. 1C). Most algorithms 
performed well with short peptides, length < 8. Unfortunately, these peptides are infrequent in 
bottom-up proteomics data samples (Supplementary Fig 3). Kaiko exhibited significantly 
improved accuracy at all lengths, but especially for the most common peptide lengths (10-15 
residues), where it achieved an accuracy of ~30-60%. We note that Kaiko had high accuracy at 
very long peptide lengths of 15 and above. Although these peptides are extremely difficult to 
annotate de novo, they are valuable for predicting phylogeny as the long sequences are more 
likely to be uniquely mapped to a small taxonomy range. 
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Figure 1. Training, validation and testing of a new de novo  peptide identification 
algorithm.  (A) Bacteria represented in training and testing data and shown in a phylogenetic 
tree built from the multiple sequence alignment of rplB is shown for all organisms in the training 
(white nodes) and testing datasets (red nodes). The size of the node is scaled to represent the 
number of spectra used. (B) Accuracy of spectrum annotation for four de novo spectrum 
annotation tools. (C) For each peptide sequence length, the accuracy of spectrum annotation is 
shown for each of the four algorithms. (D) For each of the six natural isolates, replicate 
proteomics data was annotated with Kaiko and identified peptides are visualized on a 
phylogenetic tree. The size of the pie wedge is scaled to represent the number of spectra 
matching that taxon. For each sample, the top 5 taxa according to the number of peptide hits 
was included in the visualization. 
 

Identification of soil isolates via proteomics 
Proteomics analysis of natural bacterial isolates from soil often requires de novo spectrum 
annotation. To demonstrate the ability of our deep learning-based algorithm to annotate spectra 
from an unknown organism and also to accurately identify the unknown organism, we obtained 
bottom-up proteomics data from six microbes isolated from soil and attempted to identify the 
sample. For each sample, we annotated the proteomics data with Kaiko and used DIAMOND13 
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to identify the closest sequences in the UniProt database 14 (see Methods). We then plotted the 
organisms which had the most matching spectra and inferred the organism for the sample. 
 
For four samples, a matched proteome database became public during our investigation; 
however, this was still blinded from our analysis. In each of these cases, we identified the exact 
species as the source of the sample (Fig. 1D). This included two Verrucomicrobia for which 
Kaiko’s training data had nothing in the same phylum: Opitutus sp. GAS368 and 
Verrucomicrobium sp. GAS474. The other two isolates with a matched genome were from the 
order Rhizobiales: Afipia sp. GAS231 and Rhizobiales bacterium GAS188. The Afipia sample 
also contained spectra which mapped to neighboring Bradyrhizobium species, which could be 
from shared gene content, contamination or previously unidentified co-culturing.  
  
For two samples, there were no matched proteomes in UniProt and we attempted to derive the 
true sample identity by 16S sequencing. Isolate 02 cannot be definitively assigned to a genus 
within NCBI’s taxonomy based on 16S sequencing, but is close to multiple genera within the 
family Acidobacteriaceae. Using Kaiko’s peptide annotations, we identified two potential 
candidates for the sample: Acidobacterium capsulatum and Silvibacterium bohemicum (both 
Acidobacteriaceae). However, both species had significantly fewer peptide hits matching their 
proteome and therefore, were weaker matches than expected. This weak alignment to a single 
organism and splitting between organisms within the same family is consistent with the isolate’s 
ambiguous taxonomic assignment. The final sample, Isolate 01, was suggested to be a 
Gemmobacter species by 16S sequencing. Peptide hits from Kaiko identified this sample as 
Rhodobacter sp. 24-YEA-8, which is within the same family as Gemmobacter 
(Rhodobacteraceae). With the difficulties surrounding bacterial taxonomic classification and the 
uncertainty of species designation, this is still a close match.  

Building a protein database without metagenomics 
In metaproteomics data analysis, constructing a protein sequence database is a critical 
component for protein identification 15,16, as identification sensitivity suffers as database size 
increases17. It is therefore essential to identify organisms present in a sample with taxonomic 
precision, so that databases include as few species as possible. We present a new solution that 
derives the organisms present in a sample directly from Kaiko’s analysis of metaproteomics 
data, thus enabling metagenome-free peptide identification (Fig. 2).  
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Figure 2 . Overview of the metaproteomics data analysis leveraging de novo  spectrum 
identification based on the Kaiko model . Peptides are identified using Kaiko, and used to 
infer community composition (steps 1-3). In step 4, the spectra are re-analyzed using a 
database search algorithm, e.g. MSGF+, and the protein sequence database created in step 3. 
This yields a final list of peptide identifications which can be used for functional analysis. 
 
To demonstrate this de novo-based metaproteomics pipeline, we analyzed metaproteomic data 
acquired from pooled samples of native soils collected in three sites located in Kansas18,19. To 
identify species, the Kaiko model and DIAMOND were employed to determine the most 
dominant organisms, and whole proteomes were retrieved from UniProt (See Methods). 6,410 
unique taxa IDs were identified in total and 224 taxa had more than 5 matched peptides. These 
taxa included well-known bacterial phylotypes consistently detected as a core component of soil 
ecosystem such as Proteobacteria, Actinobacteria, Acidobacteria, Planctomycetes, Chloroflexi, 
Verrucomicrobia, Bacteroidetes, Gemmatimonadetes, Firmicutes and Armatimonadetes20,21. In 
addition, our pipeline revealed globally abundant fungal classes such as Agaricomycetes, 
Sordariomycetes, Eurotiomycetes, Leotiomycetes and Mortierellomycetes21,22.  
 
 
Table 1 . Relative abundance of the top 20 bacterial phyla detected from 16S and Kaiko . A 
dash in the table represents the corresponding phylum was ‘not detected’. The asterisk(*) 
Indicates that some taxa in the corresponding phyla are used to construct the protein DB. 
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To evaluate the taxa annotation from the Kaiko model, we also identified taxa using 16S rRNA 
data from the same samples (See Methods). 243 unique taxa IDs were determined for 3,693 
OTUs. All of the highly abundant phyla detected by 16S were also detected by Kaiko (Table 1). 
Several phyla uniquely found by Kaiko are known to be present in environmental soils23–28. For 
example, Candidatus Rokubacteria is distributed globally in diverse terrestrial ecosystems, 
including soils and the rhizosphere 23 and Candidatus Tectomicrobia has also been detected in 
soils24.  

Phylum 

Read counts 

By 16S 

Peptide 

counts By 

Kaiko 

Relative read counts 

% total reads at the 

phylum level 

Relative Peptide counts 

% By Kaiko at the 

phylum level 

Proteobacteria* 40778 4903 34.6 38.1 

Actinobacteria* 16501 3949 14.0 30.7 

Acidobacteria* 18562 1010 15.7 7.8 

Firmicutes* 6761 634 5.7 4.9 

Chloroflexi* 767 479 0.7 3.7 

Bacteroidetes* 9712 467 8.2 3.6 

Planctomycetes* 11427 321 9.7 2.5 

Candidatus Rokubacteria * - 266 - 2.1 

Verrucomicrobia* 11841 237 10.0 1.8 

Cyanobacteria 489 162 0.4 1.3 

Gemmatimonadetes* 869 61 0.7 0.5 

Nitrospirae* 18 44 - 0.3 

Candidatus Tectomicrobia * - 43 - 0.3 

Deinococcus-Thermus - 32 - 0.2 

Spirochaetes - 32 - 0.2 

Elusimicrobia - 15 - 0.1 

Tenericutes 99 15 0.1 0.1 

Armatimonadetes 75 13 0.1 0.1 

Ignavibacteriae 16 6 0.01 0.05 

Chlamydiae 2 4 0.00 0.03 
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To construct the protein database from the identified organisms, we selected the 100 most 
abundant bacterial taxa, resulting in a protein database containing 17,448,135 protein clusters 
(UniRef sequences) from 12 bacterial phyla. We note that the 100 taxa identified by proteome 
data consist of 91 species, 1 genus, 7 strains, and the remaining 1 had no phylogenetic rank. 
Unfortunately, the 16S taxa annotations were often resolved only to a phylum or class level; 
relatively few taxa from 16S data were able to be narrowly identified at the level of genus or 
species. Creating a protein sequence database for all species within a broad taxonomic 
category, such as phylum, would dramatically increase the size of the protein sequence 
database and reduce the sensitivity of the proteomics data analysis. 

Soil metaproteomic data analysis  
Using the protein database generated by Kaiko, we re-analyzed the mass spectra from the soil 
samples using the database search tool MSGF+ and identified 30,762 unique peptides from 
31,848 PSMs with 5% peptide FDR (see Methods). We performed functional annotations with 
these identified peptides using Unipept29, and found 1,760 Enzyme Commission (EC) numbers 
matched to 11,646 peptides (42%). Functions in the top 20 EC numbers (Supplementary Table 
2) included various enzymatic functions for transcription and translation, energy production and 
signaling. 787 EC numbers were mapped to KEGG metabolic pathways, extensively covering 
carbohydrate and amino acid metabolism, as well as the metabolism of cofactors, vitamins and 
xenobiotics. 
 
Among identified peptides, 14,028 peptides were highly conserved sequences and therefore 
were assigned to bacterial phyla. 3,228 of these phyla-affiliated peptides were linked to 708 EC 
numbers (Supplementary Figure 4). These highly conserved peptides were assigned to 
ubiquitous bacterial functions commonly detected across most phyla, such as DNA-directed 
RNA polymerase (EC:2.7.7.6) and H(+)-transporting two-sector ATPase (EC:7.1.2.2), With 
NAD(+) or NADP(+) as acceptor (EC:1.2.1.-), Acting on ATP (EC:3.6.4.-), Protein-synthesizing 
GTPase (EC:3.6.4.-). In particular, EC numbers of highly-ranked peptide counts were mainly 
detected in abundant phyla (Proteobacteria, Actinobacteria, and Acidobacteria) and functional 
information was biased by the common and abundant proteins. 
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Figure 3 . Distribution of bacterial functions in the metabolic pathway map. Several metabolic 
steps are shared among multiple phyla (dark grey). Other colors indicate unique EC numbers 
and their associated metabolic function found only in a specific phylum.  
 
We next examined the mapped EC numbers to identify metabolic functions for specific taxa (Fig. 
3). By mapping the taxonomic affiliation of the enzymatic reactions within metabolic pathways it 
was possible to determine which metabolic pathways were shared or unique among the 
represented phyla. EC numbers involved in carbon metabolism were often found in organisms 
from multiple phyla, and represent basic functions from glycolysis, carbon fixation, the TCA 
cycle, etc.  Enzymes and metabolic functions for 427 EC numbers were represented by only a 
single phylum, and are shown with different colors in Figure 3. The two most abundant phyla 
detected in the metaproteomics data were Proteobacteria and Actinobacteria. It is clear from the 
functional mapping of peptides that these two phyla utilize distinct metabolic routes. For 
example, purine metabolism contains numerous enzymes which are exclusively found in either 
Actinobacteria or Proteobacteria (Supplementary Fig. 5). Significant divergence between these 
two dominant taxa was also seen in enzymes related to amino acid metabolism. Unique 
metabolic capacity is also observed for organisms with less proteomic coverage. Despite having 
relatively few identified peptides, Verrucomicrobia were the only species with enzymes for folate 
metabolism. 
 
Finally, we examined the peptides and biological functions associated with species unique to 
the Kaiko database, i.e. species not found in the 16S rRNA sequences. 266 peptides were 
identified in Candidatus Rokubacteria and mapped to EC numbers. Biological functions 
associated with six EC numbers were exclusive to Candidatus Rokubacteria; 
4-hydroxy-tetrahydrodipicolinate reductase (EC:1.17.1.8, lysine biosynthesis and monobactam 
biosynthesis), pyrroloquinoline-quinone synthase (EC:1.3.3.11), thioredoxin-disulfide reductase 
(EC:1.8.1.9, selenocompound metabolism), 3-oxoadipate enol-lactonase (EC:3.1.1.24, 
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benzoate degradation), inositol-phosphate phosphatase (EC:3.1.3.25, inositol phosphate 
metabolism and streptomycin biosynthesis), and aminopyrimidine aminohydrolase (EC:3.5.99.2, 
thiamine metabolism). 

Discussion 
Although genome and metagenome sequencing have greatly expanded the number of species 
that contain a sequenced genome and therefore an annotated proteome, there are still 
significant practical and financial barriers that prevent labs from always having an assembled 
and well-annotated genome for samples taken from nature. Yet metaproteome spectrum 
identification tools rely on a protein sequence database. Therefore tools which can create a 
proteome database for environmental samples without requiring sequencing data are a 
significant benefit to the microbiome community. One option for creating a proteome database 
without using sequencing data utilizes a de novo interpretation of metaproteomics data to 
identify organisms present in the sample. A significant drawback of current de novo tools is their 
poor performance on spectra from diverse organisms (see Figure 1).  Algorithms which are only 
exposed to a limited number of organisms11,12, or those that focus only on human data 30, will be 
inadequate when faced with the vast sequence diversity of microbial proteins found in soil and 
environmental samples. 
 
To assist in the analysis of metaproteomic data, we have created a pipeline for generating the 
proteome sequence database directly from the metaproteomic data. A key element in our 
pipeline is a new de novo spectrum annotation tool, Kaiko, which has significantly improved 
accuracy compared to other de novo algorithms. This improvement comes from a deliberate 
focus on training the algorithm with mass spectrometry data from dozens of diverse 
environmental bacteria. Moreover, our training dataset size is dramatically larger than 
comparable de novo tools in terms of the number of peptides and spectra, which was essential 
for overcoming an overfit model. We evaluated Kaiko by using it to identify the taxonomy of 
bacterial soil isolates, including samples from phyla where no training data existed. Thus, it is 
better equipped for evaluating metaproteomics data where identifying spectra from diverse 
organisms is essential.  
 
When using Kaiko as part of our database generation pipeline to identify soil community 
composition, we were able to identify all abundant species from 16S data, and also new species 
with significant proteomic evidence which were not seen in the sequencing data. Indeed, five of 
the top sixteen taxa (>30%) identified in the metaproteomics data were not identified in 
sequencing data. These ‘hidden microbes’ represent bacteria that are known to play an 
important role in community metabolism and function 23, including secondary metabolite 
biosynthesis31,32 as was seen in our Candidatus Rokubacteria data. We also note that the 
metaproteomics pipeline was able to identify fungi in the soil, which are entirely absent in 16S 
data.  
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A second significant advantage of inferring community composition directly from metaproteome 
data is the level of taxon specificity. Using metaproteome data, we could narrow taxon 
identification to species or strain (98%). However taxa identified using 16S data for these same 
samples frequently were only able to distinguish broad taxonomic levels. Unfortunately, 
spectrum identification algorithms generally suffer a significant sensitivity loss when working 
with large protein databases17. Therefore, methods which specify community composition in 
broad taxonomic terms will yield poor results, compared to a method which is able to narrowly 
define organisms present in the community.  
 
As metaproteomics data analysis continues to mature, progress will happen in multiple areas, 
e.g. more sensitive peptide ID algorithms, improved protein inference for multi-organism 
mapped peptides and functional analysis of pathways with multiple participating organisms. But 
a central feature in all of this work is the original identification of spectra, and currently the best 
algorithms require a protein database. Thus the creation of a protein sequence database is a 
pivotal step in metaproteomics data analysis. The most important future improvement in creating 
a protein sequence database will come from greater coverage and greater specificity in the 
identification of community membership. De novo proteomics offers one avenue for this, which 
is independent of advances made in sequencing technologies. Improving the accuracy of de 
novo tools, especially with regard to diverse environmental sequences, will be a significant 
benefit to metaproteomics. 
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Methods 

Data generation for Kaiko 
Cell culture and sample preparation. The growth, sample preparation and data collection was             
reported previously33. Cells were harvested by centrifuging at 3,500 x g for 5 min at room                
temperature and washed twice with 5 mL PBS by centrifuging at the same conditions. Cells               
were lysed in a Bullet Blender (Next Advance) for 4 minutes at speed 8 in 200 μL of 100 mM                    
ammonium bicarbonate (NH4HCO3) and approximately 100 μL 0.1 mm zirconia/silica beads at            
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4° C. Lysates were transferred into clean tubes and the remaining beads were washed with 200                
μL of 100 mM NH4HCO3. The supernatants from the washing step were collected and combined               
with the cell lysate. Resulting protein extract was assayed by bicinchoninic acid (BCA) assay              
(Thermo Fisher Scientific, San Jose, CA) following manufacturer instructions. Aliquots of 300 μg             
of proteins were denatured and reduced using 8M urea and 5 mM DTT, and incubated at 60° C                  
for 30 min with 850 rpm shaking. Samples were then diluted 10 fold in 100 mM NH4HCO3 and                  
CaCl 2 was added to a final concentration of 1 mM using a 1M stock. Trypsin was added at 1/50                   
of the protein concentration and the digestion was carried out for 3 h at 37° C. Digestion                 
products were desalted in 1-mL C18 cartridges (50 mg beads, Strata, Phenomenex). Cartridges             
were activated with 3 mL of methanol and equilibrated with 2 mL of 0.1% TFA before loading                 
the samples. After sample loading, the cartridges were washed with 4 mL of 5% acetonitrile               
(ACN)/0.1% TFA and peptides were eluted with 1 mL of 80% ACN/0.1% TFA. Peptides were               
dried in a vacuum centrifuge, resuspended in water and assayed using a BCA assay. Peptide               
concentrations were normalized to 0.1 μg/μL before randomization and analysis by liquid            
chromatography-tandem mass spectrometry (LC-MS/MS). 
 
  
LC-MS/MS data acquisition. The data acquisition was performed as previously described in            
detail 33 using a Waters nanoEquityTM UPLC system (Millford, MA) coupled with a Q Exactive              
Plus mass spectrometer from Thermo Fisher Scientific (San Jose, CA). The LC was configured              
to load the sample first on a solid phase extraction (SPE) column followed by separation on an                 
analytical column. 500 ng of peptides were loaded into the SPE column (5 cm x 360 µm OD x                   
150 µm ID fused silica capillary tubing (Polymicro, Phoenix, AZ); packed with 3.6-µm Aeries              
C18 particles (Phenomenex, Torrance, CA) and the separation was carried out in a capillary              
column (70 cm x 360 µm OD x 75 µm ID packed with 3-µm Jupiter C18 stationary phase                  
particles (Phenomenex). The elution was performed at 300 nl/min flow rate and the following              
gradient of acetonitrile (ACN) in water, both containing 0.1% formic acid: 1-8% ACN solvent in 2                
min, 8-12% ACN in 18 min, 12-30% ACN in 55 min, 30-45% ACN in 22 min, 45-95% ACN in 3                    
min, hold for 5 min in 95% ACN and 99-1% ACN in 10 min. Eluting peptides were directly                  
analyzed in the mass spectrometer by electrospray using etched silica fused tips34. Full MS              
spectra were acquired at a scan range of 400-2000 m/z and a resolution of 35,000 at m/z 400.                  
Tandem mass spectra were collected for the top 12 most intense ions with ≥ 2 charges using                 
high-collision energy (HCD) fragmentation from collision with N2 at a normalized collision energy             
of 30% and a resolution of 17,500 at m/z 400. Each parent ion was targeted once for                 
fragmentation and then dynamically excluded for 30 s. 
  
Peptide identification for training/testing the Kaiko model.  In the training and test set, the 
true source\taxonomy of each sample is known. To create the ground truth of spectrum 
identifications, we used the correct organism’s protein sequence database and annotated 
spectra with the MSGF+ algorithm, as previously described 33. PSM results from MSGF+ were 
filtered using a q-value threshold of 0.001. The PSMs passing this filter were considered the 
ground truth for the deep neural network training and testing. Because our use of this data is for 
de novo spectrum annotation, we limited peptides/spectrum matches further to exclude peptides 
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longer than 30 residues as these were unlikely to have complete peptide fragment peaks, which 
are important for a de novo solution. We also filtered peptides with a precursor mass >3000 Da. 
After filtering, the total number of distinct peptides was 1,013,498 from 5,116,305 spectra. 
Peptide sequences are highly specific to each organism, and the overlap between organisms 
was very low. Except for the pairs of organisms within the same genus or species (i.e. the two 
different strains of B. subtilis or the two different species within Bifidobacterium), the average 
amount of shared peptides between any two organisms was ~0.17%. These arise from highly 
conserved proteins like EF-Tu or RpoC for which peptides can be found conserved across 
phyla. 

Training Kaiko 
Codebase. Kaiko is based on DeepNovo, a deep neural network algorithm for peptide/spectrum 
matching 12. We downloaded the source code for DeepNovo 
(https://github.com/nh2tran/DeepNovo) and its pre-trained model, which is publicly available at 
https://drive.google.com/open?id=0By9IxqHK5MdWalJLSGliWW1RY2c. As described below, 
we modified the original DeepNovo codebase, keeping with Python 2.7 and TensorFlow 1.2 as 
used in the original. First, we modified the codebase to accept multiple input files for training 
and testing. Our training and testing data came from over 250 mass spectrometry files, but the 
original DeepNovo was designed for only a single input file. Therefore, we added extra 
command-line options (e.g., --multi_decode and --multi_train) and the associated wrapper 
methods to allow for multi-file execution. A second change was done to avoid rebuilding the 
Cython codes on every parameter adjustment. For this, we replaced the Cython with the python 
numba package without any loss of performance and speed. Finally, we changed the code for 
spectral modeling based on domain knowledge. Specifically, we corrected the mass calculation 
of doubly charged ions and changed the bins used for isotopic profiles within the ion-CNN 
model. 
  
We trained multiple models for Kaiko, which differed primarily in the number of peptides/spectra 
used during training: ~300K spectra, 1M spectra, 2M spectra, 3M spectra and the final models 
trained with all spectra. When training the final model on the full dataset, we adjusted the 
learning rate to 10 -4 rather than using the default value (10 -3) of AdamOptimizer in DeepNovo. 
Training our final model requires very significant computational resources and time. With the 
hardware used in this project, training took ~12 hours per epoch; our final model was achieved 
after 60 epochs. All training and testing was performed on PNNL’s Marianas cluster, a machine 
learning platform that is part of PNNL’s Institutional Computing. System specifications on the 
nodes used in this training were: Dual Intel Broadwell E5-2620 v4 @ 2.10GHz CPUs (16 cores 
per node), 64 GB 2133Mhz DDR4 memory, and Dual NVIDIA P100 12GB PCI-e based GPUs. 
  
Experimental Design and Statistical Rationale 
Given that Deep Neural Networks are very sensitive to overfit during the training procedure, we 
anticipated that a very large amount of data would be required to make useful models. The 
original DeepNovo was trained on 50,000 spectra and we believed that a significantly larger 
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amount of data would be necessary. As described below in “Assessing Progress” we were able 
to quickly determine that a model with only 300,000 spectra was overfit. We therefore 
determined that we would aim for 5,000,000 spectra representing about 1,000,000 peptides in 
order to have sufficient data for training the very large neural networks that comprise Kaiko. 
During training we were able to determine that this number was more than sufficient to produce 
a generalized model that did not overfit to training data. Spectra included in the training, 
validation and testing set are assessed as described above in the “Data Generation” section. 
  
Assessing Progress. The training regimen for deep learning is pragmatically broken up into 
several rounds of iteration over the training data, called epochs. During each epoch, a 
mini-batch stochastic optimization was employed, in which each batch of 128 spectra is 
randomly chosen and training proceeds on each batch one at a time. The model is trained by 
updating the parameters within the neural network (weights and biases) after each batch is 
compared to the true labels. While training, the error associated with the model can be 
calculated as a cross-entropy loss for the probabilities of correctly predicting the amino acid 
letters on the training data. After each batch, we also randomly sample 15,000 spectra from the 
validation dataset (~1% of total testing data) and compute the loss error, which we call the 
validation error. Importantly, model performance on this validation set is not used to update the 
model parameters; we simply use it to independently evaluate model performance and make a 
checkpoint to track the best models. The training and validation error after each batch for 20 
epochs of training is shown in Supplementary Fig.2. 
  
By comparing the training and validation error, we clearly see when the model has started to 
overfit. This happens when the training error crosses over (becomes smaller than) the validation 
error and continues to decrease as the validation error levels off. This is a result of the model 
learning specific features of the training data that are not generalizable. In models built with 
more than 3 million spectra, no overfitting is seen yet; models built with less than 3 million 
spectra quickly overfit to the training data.  

Comparing Kaiko to other de novo tools 
To compare the performance of Kaiko to state-of-the-art de novo tools, we analyzed all files in 
the testing data sets using DeepNovo 12, PEAKS35 and Novor30. As mentioned above, we used a 
pre-trained model for the DeepNovo to predict peptide sequences for the test files using a 
‘decode’ option. PEAKS Studio version 8.5 was run using default data refinement options on 
mzML formatted data 36. De novo settings were as follows: precursor error tolerance - 20ppm, 
fragment ion error tolerance - 0.02 Da. Oxidation of methionine was set as a variable 
modification. For Novor the spectral files were converted from mzML to Mascot generic format 
(MGF) using MSConvert37. Novor version 1.05 was run using the following settings: 
fragmentation - HCD, massAnalyzer - FT, precursor error tolerance - 20ppm, fragment ion error 
tolerance - 0.02 Da. Oxidation of methionine was set as a variable modification. All other 
settings were left at their defaults. Only the best peptide spectrum match was used in the 
evaluation. Please refer to 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 16, 2020. ; https://doi.org/10.1101/428334doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?Il8Wts
https://www.zotero.org/google-docs/?RRQT8n
https://www.zotero.org/google-docs/?AWscil
https://www.zotero.org/google-docs/?WMZ1Wu
https://www.zotero.org/google-docs/?95w9ll
https://doi.org/10.1101/428334
http://creativecommons.org/licenses/by-nc-nd/4.0/


https://github.com/PNNL-Comp-Mass-Spec/Kaiko_Publication/analysis/for_novor and 
/for_peaks for specific implementation details. 

Assigning taxonomy to unknown samples 
Proteomics data from six bacterial soil isolates was acquired using the same sample preparation 
and LC-MS/MS method as described above. The isolates are from the natural isolate collection 
at the Kristen DeAngelis laboratory at the University of Massachusetts Amherst, and 
researchers at PNNL were blinded to the identity of these isolates until after both data 
generation and analysis were finished. Kaiko’s top-scoring peptide sequence for each spectrum 
was used for species identification. We filtered these peptide/spectrum matches to include only 
the top 25% according to Kaiko’s quality prediction score. We then exclude sequences shorter 
than 10 and longer than 17 residues. The resulting sequences were used to search the 
Uniref100 protein database [https://www.uniprot.org/uniref/] using DIAMOND13 to identify an 
organism(s) containing that peptide sequence. Only database matches of 100% were retained 
for species prediction. Taxon scoring then proceeded using a two-pass procedure. In the first 
pass, for each peptide sequence, all taxa possessing a 100% match were assigned 1 hit, such 
that multiple taxa were often assigned a hit from a single peptide sequence. Taxa were then 
ranked by the total number of hits assigned. In the second pass, hits were only assigned to the 
highest-ranking taxon with a 100% match to each predicted sequence. In this way, scoring is 
assigned to the candidate most likely to be correct. 

Metaproteomics data analysis 
Sample preparation from soils 
Kansas prairie soil was quickly thawed and weighed into 10 g aliquots in 50 mL 
methanol/chloroform compatible tubes (Genesee Scientific, San Diego, CA) along with 10 mL of 
0.9–2.0mm stainless steel beads, 0.1mm zirconia beads and 0.1mm garnet beads. All beads 
had previously been washed with chloroform and methanol and dried in a fume hood. Protein 
extraction occurred using a modified method of the Folch extraction 38 specifically for soil called 
Soil MPLex (Metabolite, protein, lipid extraction)39. Here, 4 mL of ice-cold ultrapure “Type 1” 
water (Millipore, Billerica, MA) was added to each sample and transferred to an ice bucket in a 
fume hood. Using a 25 mL glass serological pipette, −20 °C 2:1 chloroform: methanol (v/v) 
(Sigma-Aldrich, St. Louis, MO), was added to the sample in a 5:1 ratio over sample volume (20 
mL) and vigorously mixed (by vortexing). The tubes were attached to a 50 mL tube 
vortex-attachment and horizontally mixed for 10 min at 4 °C and placed inside a −80 °C freezer 
for 5 min. Using a probe sonicator (model FB505, Thermo Fisher Scientific, Waltham, MA) 
inside a fume hood, each sample was sonicated with a 6mm probe (20 kHz fixed ultrasonic 
frequency) at 60% of the maximum amplitude for 30 s on ice, allowed to cool on ice, then 
sonicated once more. Samples were allowed to cool for 5 min. at −80 °C, then mixed for 60 s 
and centrifuged at 4,500 xg for 10 min at 4 °C. The upper aqueous phase was removed and the 
interphase containing proteins that partitioned between the methanol and chloroform phases 
was collected into a separate tube and precipitated through addition of 5 mL of −20 °C 100% 
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methanol. Following methanol addition, the tube was mixed then centrifuged at 4,500 xg for 5 
min at 4 °C in order to pellet the proteins. The supernatant was decanted and the protein pellet 
dried upside down. Meanwhile, the bottom organic phase was removed, and 5 mL of −20 °C 
100% methanol was added to the bottom debris pellet, mixed and centrifuged at 4,500 xg for 5 
min at 4 °C. The supernatant was removed, and the protein pellet was dried upside down. 
Protein pellets from both the debris and interphase were frozen and lyophilized for 2 h. 
  
Proteins from the interphase were solubilized by addition of 10 mL of SDS-Tris buffer containing 
4% sodium dodecyl sulfate (SDS), 100mM DL-dithiothreitol (DTT) in 100mM Tris-HCl, pH 8.0, 
(Sigma-Aldrich, St Louis, MO), briefly probe sonicated at 20% amplitude, then incubated on a 
lab tube rotator for 30 min at 300 rpm, 50 °C. Proteins from the debris pellet were solubilized in 
20 mL of SDS buffer, horizontally vortexed for 10 min. to lyse any remaining intact cells, then 
combined with the interphase proteins and mixed on the rotator assembly for the time remaining 
(approximately 20 min). Following mixing, the tubes were centrifuged at 4,500 xg for 10 min., 
and the supernatant from each tube were combined into a single 50 mL tube. The proteins were 
precipitated by adding up to 25% trichloroacetic acid (TCA; Sigma-Aldrich, St. Louis, MO), 
mixed and placed at −20 °C overnight. The proteins were thawed and centrifuged at 4,500 xg at 
4 °C for 10 min to collect the precipitated proteins. The supernatant was gently decanted, and 
the protein pellet washed through addition of 2 mL of −20 °C acetone, mixed, then placed at −80 
°C for 5 min. Proteins were pelleted by centrifugation for 10 min at 4,500 xg at 4 °C. The 
acetone was removed by gently decanting, and the wash step was repeated 2 more times. The 
washed pellet was then air dried by inverting the tube. After drying, 100 μl–200 μl of SDS-Tris 
buffer was added and the solution was transferred into 1.5 mL tubes and incubated at 95 °C for 
5 min, then cooled at 4 °C for 10 min. The samples were centrifuged at 15,000 xg for 10 min to 
pellet any remaining debris and transferred into fresh 1.5 mL tubes in preparation for digestion 
using the Filter-Aided-Sample-Preparation (FASP) digestion method 40. For protein digestion, up 
to 30 μl of proteins in SDS-Tris buffer were transferred to a 30,000 Da molecular weight cut off 
(MWCO) 500 μl spin filter provided in the Expedeon FASP kit (Expedeon LTD, Cambridgeshire, 
UK) along with 400 μl of 8 M urea solution. The spin filter was centrifuged at 14,000 xg for 30 
min. The waste was removed from the collection tubes and 400 μl of 8M urea solution was 
added to each sample and centrifuged as described above, then repeated for a total of 3 urea 
additions. 400 μl of 25mM NH4HCO3, pH 8, was added and centrifuged as described above, 
then repeated for a total of 2 ammonium bicarbonate washes. The spin column was transferred 
into a fresh-labeled collection tube and 75 μl of NH4 HCO3  was added to the filter along with 4 μl 
of 1 μg/μl molecular grade trypsin (Thermo Fisher, Waltham, MA) then incubated at 37 °C for 3 
h. After digestion, 40 μl of NH4HCO3 was added to the sample and centrifuged at 14,000 xg for 
20 min. Another 40 μl of NH4HCO3 was added to the top of the filter, mixed and centrifuged 
again for 10 min. The filter was discarded, and the collected peptides were treated with 
potassium chloride (KCl) in order to ensure all the SDS was removed 41. To accomplish this, 
potassium chloride was added to the peptides in NH4HCO3 resulting in a final concentration of 
2M KCl, then mixed and allowed to rest for 10 min. at room temperature. To pellet the SDS, the 
peptide solution containing NH4HCO3 and KCl was centrifuged at 14,000 xg for 10 min. The 
supernatant was transferred to a fresh tube without disturbing the SDS pellet and salts removed 
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using a microspin C18 column according to the manufacturer's instructions (the Nest Group, 
Inc., Southborough, MA). Peptides from the aliquots of 10 g of soil were combined to generate a 
single peptide sample. A bicinchoninic acid (BCA) assay (Thermo Fisher Scientific, Waltham, 
MA) was performed to determine the peptide concentration. 
  
The peptide sample was separated with a commercial Waters (Milford, MA) XBridge 5 μm 
particle size C18 column, (4.6mm i. d. x 250mm length) with an attached 20mm long x 4.6mm i. 
d. guard column. Fractionation was performed at 0.5 mL/min using an Agilent 1100 series HPLC 
system (Agilent Technologies, Santa Clara, CA) with two mobile phases: A) 10mM NH4HCO2 
(pH 10.0), and B) 10mM NH4HCO2 (pH 10.0) with acetonitrile (10:90). A six step gradient was 
adjusted over 120 min by replacing mobile phase A with B according to: 1) 100%–95% over the 
first 10 min., 2) 95%–65% from minutes 10 to 70, 3) 65%–30% from minutes 70 to 85, 4) then 
maintained mobile phase A at 30% from minutes 85 to 95, 5) re-equilibrating with 100% mobile 
phase A from minute 95 to 105, and 6) holding mobile phase A at 100% until minute 120. 
Fractions were collected every 1.25 min (96 fractions over the entire gradient) with every 24th 
fraction combined for a total of 24 final fractions (rows of a 96 well plate were pooled by every 
other row). All fractions were dried under vacuum and suspended in 25 μl H2O. A final BCA 
assay was done on the fractions and each were diluted to 0.1 µg/µl for LC-MS/MS analysis. 
(see LC-MS/MS data acquisition methods above). 
 
Analyzing 16S rRNA amplicon sequences 
16S rRNA gene amplicon sequencing data was downloaded from https://osf.io/4uvj7/, 
performed using the protocol developed by the Earth Microbiome Project1. Please refer to the 
previous studies19,42 for 16S rRNA gene amplicon sequencing in detail. The 16S rRNA amplicon 
sequences were first re-processed by Hundo pipeline 43 (v1.2.8), a command line interface work 
comprising a set of existing software together with validated custom methods derived from 
QIIME44. In brief, the sequences were first quality filtered to remove the adaptors and 
contaminated reads from Phix genomes by BBDuk2 45. The passing reads were merged and 
checked for chimera, which were subjected to be clustered into OTUs by VSEARCH46 using the 
default parameters. The abundance of each OTU was estimated by the read coverage of the 
OTU representative sequences (VSEARCH). In comparison to the Silva database 47 
implemented in Hundo, NCBI database was reported with a higher confidence of lineage 
assignment to lower taxonomy levels48. The de-replicated representative sequences of each 
OTU were then annotated following the same workflow coded in Hundo with modifications and 
using NCBI 16S Refseq database 
(https://www.ncbi.nlm.nih.gov/refseq/targetedloci/16S_process/, accessed on Apr 9th, 2020) 
instead. The top 25 hits of each OTU representative sequence were kept and screened for ones 
with percent identity higher than 85% and bit score greater than 125. For OTUs with more than 
one qualified hits, we will perform Lowest common ancestor (LCA) algorism using a R package, 
taxize 49. OTUs with only one qualified hit adopted the lineage of the hits and the rest were left 
unclassified. 
 
Constructing protein database for metaproteomic data analysis with Kaiko 
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Raw mass spectrometry files were converted to the PSI open format mzML 36 using msConvert37, 
which were converted  to MGF files compatible with the Kaiko model. After performing Kaiko 
prediction, as used for assigning taxa to the unknown samples, we used Kaiko’s top 25% 
scoring peptide sequences predicted from e ach sample to identify the most likely candidate 
organisms using DIAMOND over the Uniref100 database. The protein database was 
constructed by aggregating all the reference sequences associated with top 100 bacterial 
organisms from the Uniref100 into a single fasta (8.2GB).  
 
Peptide identification and functional analysis with the constructed database 
Against the protein database constructed from the Kaiko prediction, MSGF+ was performed to 
identify peptide sequences with the false discovery rate (FDR) cutoff. The search parameters 
and values or settings were as follows: PrecursorMassTolerance, 20.0 ppm; IsotopeErrorRange, 
−1,1; TargetDecoyAnalysis, true; FragmentationMethod, as written in the spectrum; 
InstrumentID, 0; Enzyme, Tryp; NumTolerableTermini, 2; MinPeptideLength, 6; 
MaxPeptideLength, 50; MinCharge, 2; MaxCharge, 5; and NumMatchesPerSpec, 1. PSM 
results from MSGF+ were filtered usi ng MSnID (v1.20.0)50. Filters based on the cleavage 
patterns for the trypsin were applied, e.g., nuIrregCleavages==0 and numMissCleavages<=2. 
Optimizing the MS/MS filter was applied to achieve the maximum number of identifications 
within a given FDR upper limit threshold. Nelder-Mead method was employed for parameter 
optimization (MS-GF:SpecEValue and absParentMassErrorPPM), and for 5 % peptide FDR, 
SpecEValue≤1.0e-11, and 11 ppm mass window with the ppm offset adjustment were 
determined. For functional annotation for metaproteomics, Unipept29 (v4.3.5, 
https://unipept.ugent.be/datasets, accessed on Jun 2nd, 2020 ) was used with “Equate I and L” 
and “Filter duplicate peptides” options. 

Data Availability 
The mass spectrometry proteomics data for this benchmark set are split into two separate 
depositions, for the training and testing datasets respectively. The training dataset consists of 
spectra from 51 organisms and has been deposited to the ProteomeXchange Consortium via 
the PRIDE25 partner repository with the dataset identifier PXD010000. The testing dataset 
consists of spectra for 4 organisms and has been deposited to the ProteomeXchange 
Consortium via the PRIDE partner repository with the dataset identifier PXD010613. The 
metaproteomics dataset has been deposited to the MassIVE Repository with the accession 
identifier MSV000086336. 
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Supplementary Figures 

 
Supplementary Figure 1. Improving deep neural networks with more training data.  The 
accuracy of peptide/spectrum matching is shown for four deep neural network models. 
DeepNovo is a pre-trained publicly available model trained on 50,000 spectra. Kaiko was 
trained with varying numbers of spectra. The final model was trained with 4.5 million spectra. A 
significant improvement is seen in model performance with increased training data. 
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Supplementary Figure 2 - Training and validation error. During the epochs of learning for the 
deep neural network, progress is measured by evaluating the accuracy of spectrum annotation. 
We employ a cross-entropy loss function, which represents how well the algorithm is being 
trained, with small numbers being better. The light blue line represents the error on batches of 
training data. The dark blue lines represent the error on the random samples of the validation 
data. When the training error improves beyond the validation error, the model is likely to be 
overfitting. 
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Supplementary Figure 3 - Distribution of peptide lengths used for training and testing the 
Kaiko model. 
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Supplementary Figure 4 . Heatmap of the peptide counts for the most common functions over 
the diverse phyla. Columns and rows in the heatmap represent the phyla and EC numbers, 
respectively. Cell colors indicate the number of phyla-affiliated peptides corresponding to a 
specific phylum and function. 
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Supplementary Figure 5 . Taxa-specific peptides for enzymes in purine metabolism at the 
phylum level. Many EC numbers were uniquely detected in four phyla (Acidobacteria, 
Actinobacteria, Proteobacteria, and Verrucomicrobia).   
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Supplementary Tables 
 
Supplementary Table 1 . LC/MS data files for training and testing the Kaiko model.  

Index Files Species # PSM 

# Cumulative 

PSM 

0 

Biodiversity_A_cryptum_FeTSB_anaerobic_1_01Jun16_Pippin

_16-03-39 Acidiphilium_cryptum_JF-5 6659 6659 

1 

Biodiversity_A_cryptum_FeTSB_anaerobic_2_01Jun16_Pippin

_16-03-39 Acidiphilium_cryptum_JF-5 8532 15191 

2 

Biodiversity_A_cryptum_FeTSB_anaerobic_3_01Jun16_Pippin

_16-03-39 Acidiphilium_cryptum_JF-5 7379 22570 

3 

Biodiversity_A_faecalis_LB_aerobic_01_26Feb16_Arwen_16-0

1-01 Alcaligenes_faecalis 15496 38066 

4 

Biodiversity_A_faecalis_LB_aerobic_02_26Feb16_Arwen_16-0

1-01 Alcaligenes_faecalis 15367 53433 

5 

Biodiversity_A_faecalis_LB_aerobic_03_26Feb16_Arwen_16-0

1-01 Alcaligenes_faecalis 15035 68468 

6 

Biodiversity_A_tumefaciens_R2A_aerobic_1_23Nov16_Pippin

_16-09-11 

Agrobacterium_tumefaciens_IA

M_12048 12994 81462 

7 

Biodiversity_A_tumefaciens_R2A_aerobic_2_23Nov16_Pippin

_16-09-11 

Agrobacterium_tumefaciens_IA

M_12048 12442 93904 

8 

Biodiversity_A_tumefaciens_R2A_aerobic_3_23Nov16_Pippin

_16-09-11 

Agrobacterium_tumefaciens_IA

M_12048 11916 105820 

9 

Biodiversity_B_bifidum_CMcarb_anaerobic_01_26Feb16_Arw

en_16-01-01 

Bifidobacterium_bifidum_ATCC

29521 14409 120229 

10 

Biodiversity_B_bifidum_CMcarb_anaerobic_02_26Feb16_Arw

en_16-01-01 

Bifidobacterium_bifidum_ATCC

29521 13731 133960 

11 

Biodiversity_B_bifidum_CMcarb_anaerobic_03_26Feb16_Arw

en_16-01-01 

Bifidobacterium_bifidum_ATCC

29521 13854 147814 

12 

Biodiversity_B_cereus_ATCC14579_LB_aerobic_1_17July16_Sa

mwise_16-04-10 Bacillus_cereus_ATCC14579 23828 171642 

13 

Biodiversity_B_cereus_ATCC14579_LB_aerobic_2_17July16_Sa

mwise_16-04-10 Bacillus_cereus_ATCC14579 23693 195335 

14 

Biodiversity_B_cereus_ATCC14579_LB_aerobic_3_17July16_Sa

mwise_16-04-10 Bacillus_cereus_ATCC14579 22460 217795 

15 Biodiversity_B_cereus_PN_L_CL_1_09Oct16_Pippin_16-05-06 Bacillus_cereus_ATCC14579 22349 240144 

16 Biodiversity_B_cereus_PN_L_CL_2_09Oct16_Pippin_16-05-06 Bacillus_cereus_ATCC14579 22572 262716 

17 Biodiversity_B_cereus_PN_L_CL_3_09Oct16_Pippin_16-05-06 Bacillus_cereus_ATCC14579 23153 285869 
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18 Biodiversity_B_fragilis_01_28Jul15_Arwen_14-12-03 Bacteroides_fragilis_638R 19454 305323 

19 Biodiversity_B_fragilis_Carb_01_28Oct15_Arwen_15-07-13 Bacteroides_fragilis_638R 17656 322979 

20 

Biodiversity_B_fragilis_CMcarb_anaerobic_01_01Feb16_Arwe

n_15-07-13 Bacteroides_fragilis_638R 21410 344389 

21 

Biodiversity_B_fragilis_CMcarb_anaerobic_02_01Feb16_Arwe

n_15-07-13 Bacteroides_fragilis_638R 21703 366092 

22 

Biodiversity_B_fragilis_CMcarb_anaerobic_03_01Feb16_Arwe

n_15-07-13 Bacteroides_fragilis_638R 22366 388458 

23 

Biodiversity_B_fragilis_CMgluc_anaerobic_01_01Feb16_Arwe

n_15-07-13 Bacteroides_fragilis_638R 19770 408228 

24 

Biodiversity_B_fragilis_CMgluc_anaerobic_02_01Feb16_Arwe

n_15-07-13 Bacteroides_fragilis_638R 20803 429031 

25 

Biodiversity_B_fragilis_CMgluc_anaerobic_03_01Feb16_Arwe

n_15-07-13 Bacteroides_fragilis_638R 20515 449546 

26 

Biodiversity_B_fragilis_LB_anaerobic_01_01Feb16_Arwen_15-

07-13 Bacteroides_fragilis_638R 21122 470668 

27 

Biodiversity_B_fragilis_LB_anaerobic_02_01Feb16_Arwen_15-

07-13 Bacteroides_fragilis_638R 21756 492424 

28 

Biodiversity_B_fragilis_LB_anaerobic_03_01Feb16_Arwen_15-

07-13 Bacteroides_fragilis_638R 22228 514652 

29 

Biodiversity_B_fragilis_LIB_aerobic_01_01Feb16_Arwen_15-0

7-13 Bacteroides_fragilis_638R 20523 535175 

30 

Biodiversity_B_fragilis_LIB_aerobic_02_01Feb16_Arwen_15-0

7-13 Bacteroides_fragilis_638R 20037 555212 

31 

Biodiversity_B_fragilis_LIB_aerobic_03_01Feb16_Arwen_15-0

7-13 Bacteroides_fragilis_638R 21645 576857 

32 

Biodiversity_B_fragilis_LIB_anaerobic_01_08Feb16_Arwen_15

-07-13 Bacteroides_fragilis_638R 1055 577912 

33 

Biodiversity_B_fragilis_LIB_anaerobic_02_01Feb16_Arwen_15

-07-13 Bacteroides_fragilis_638R 22114 600026 

34 

Biodiversity_B_fragilis_LIB_anaerobic_03_01Feb16_Arwen_15

-07-13 Bacteroides_fragilis_638R 21766 621792 

35 

Biodiversity_B_infantis_CMcarb_anaerobic_01_26Feb16_Arw

en_16-01-01 

Bifidobacterium_longum_infant

is_ATCC15697 11900 633692 

36 

Biodiversity_B_infantis_CMcarb_anaerobic_02_26Feb16_Arw

en_16-01-01 

Bifidobacterium_longum_infant

is_ATCC15697 12737 646429 

37 

Biodiversity_B_infantis_CMcarb_anaerobic_03_26Feb16_Arw

en_16-01-01 

Bifidobacterium_longum_infant

is_ATCC15697 11620 658049 

38 Biodiversity_B_subtilis_NCIB3610_24h_plates_1_13Jun16_Pip Bacillus_subtilis_NCIB3610 14159 672208 
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pin_16-03-39 

39 

Biodiversity_B_subtilis_NCIB3610_24h_plates_2_13Jun16_Pip

pin_16-03-39 Bacillus_subtilis_NCIB3610 12880 685088 

40 

Biodiversity_B_subtilis_NCIB3610_24h_plates_3_13Jun16_Pip

pin_16-03-39 Bacillus_subtilis_NCIB3610 12518 697606 

41 

Biodiversity_B_subtilis_NCIB3610_48h_plates_1_13Jun16_Pip

pin_16-03-39 Bacillus_subtilis_NCIB3610 9087 706693 

42 

Biodiversity_B_subtilis_NCIB3610_48h_plates_2_13Jun16_Pip

pin_16-03-39 Bacillus_subtilis_NCIB3610 8258 714951 

43 

Biodiversity_B_subtilis_NCIB3610_48h_plates_3_13Jun16_Pip

pin_16-03-39 Bacillus_subtilis_NCIB3610 5163 720114 

44 

Biodiversity_B_subtilis_NCIB3610_pellet_1_03May16_Samwis

e_16-03-32 Bacillus_subtilis_NCIB3610 20922 741036 

45 

Biodiversity_B_subtilis_NCIB3610_pellet_2_03May16_Samwis

e_16-03-32 Bacillus_subtilis_NCIB3610 21034 762070 

46 

Biodiversity_B_subtilis_NCIB3610_plates_1_03May16_Samwis

e_16-03-32 Bacillus_subtilis_NCIB3610 12240 774310 

47 

Biodiversity_B_subtilis_NCIB3610_plates_2_03May16_Samwis

e_16-03-32 Bacillus_subtilis_NCIB3610 13306 787616 

48 

Biodiversity_B_subtilis_pellet_set2_1_13Jun16_Pippin_16-03-

39 Bacillus_subtilis_NCIB3610 17709 805325 

49 

Biodiversity_B_subtilis_pellet_set2_2_13Jun16_Pippin_16-03-

39 Bacillus_subtilis_NCIB3610 17532 822857 

50 

Biodiversity_B_subtilis_pellet_set2_3_13Jun16_Pippin_16-03-

39 Bacillus_subtilis_NCIB3610 18214 841071 

51 

Biodiversity_B_thet_CMcarb_anaerobic_01_01Feb16_Arwen_

15-07-13 

Bacteroides_thetaiotaomicron_

VPI-5482 22586 863657 

52 

Biodiversity_B_thet_CMcarb_anaerobic_02_01Feb16_Arwen_

15-07-13 

Bacteroides_thetaiotaomicron_

VPI-5482 25220 888877 

53 

Biodiversity_B_thet_CMcarb_anaerobic_03_01Feb16_Arwen_

15-07-13 

Bacteroides_thetaiotaomicron_

VPI-5482 22535 911412 

54 

Biodiversity_B_thet_CMgluc_anaerobic_01_01Feb16_Arwen_

15-07-13 

Bacteroides_thetaiotaomicron_

VPI-5482 20596 932008 

55 

Biodiversity_B_thet_CMgluc_anaerobic_02_01Feb16_Arwen_

15-07-13 

Bacteroides_thetaiotaomicron_

VPI-5482 20725 952733 

56 

Biodiversity_B_thet_CMgluc_anaerobic_03_01Feb16_Arwen_

15-07-13 

Bacteroides_thetaiotaomicron_

VPI-5482 20639 973372 

57 

Biodiversity_B_thet_LB_anaerobic_01_01Feb16_Arwen_15-07

-13 

Bacteroides_thetaiotaomicron_

VPI-5482 22310 995682 
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58 

Biodiversity_B_thet_LB_anaerobic_02_01Feb16_Arwen_15-07

-13 

Bacteroides_thetaiotaomicron_

VPI-5482 20736 1016418 

59 

Biodiversity_B_thet_LB_anaerobic_03_01Feb16_Arwen_15-07

-13 

Bacteroides_thetaiotaomicron_

VPI-5482 17178 1033596 

60 

Biodiversity_B_thet_LIB_anaerobic_01_01Feb16_Arwen_15-0

7-13 

Bacteroides_thetaiotaomicron_

VPI-5482 23175 1056771 

61 

Biodiversity_B_thet_LIB_anaerobic_02_01Feb16_Arwen_15-0

7-13 

Bacteroides_thetaiotaomicron_

VPI-5482 21920 1078691 

62 

Biodiversity_B_thet_LIB_anaerobic_03_01Feb16_Arwen_15-0

7-13 

Bacteroides_thetaiotaomicron_

VPI-5482 22215 1100906 

63 

Biodiversity_B_thetaiotaomicron_Carb_01_26Aug15_Arwen_1

5-07-13 

Bacteroides_thetaiotaomicron_

VPI-5482 22781 1123687 

64 

Biodiversity_B_thetaiotaomicron_Glc_01_26Aug15_Arwen_15

-07-13 

Bacteroides_thetaiotaomicron_

VPI-5482 25625 1149312 

65 

Biodiversity_Bacillus_subtilis_LB_01_27Dec15_Arwen_15-07-1

3 Bacillus_subtilis_168 23891 1173203 

66 

Biodiversity_Bacillus_subtilis_LB_02_27Dec15_Arwen_15-07-1

3 Bacillus_subtilis_168 23513 1196716 

67 

Biodiversity_Bacillus_subtilis_LB_03_27Dec15_Arwen_15-07-1

3 Bacillus_subtilis_168 25596 1222312 

68 Biodiversity_C_Baltica_T240_R1_C_27Jan16_Arwen_15-07-13 Cellulophaga_baltica_18 23983 1246295 

69 

Biodiversity_C_Baltica_T240_R1_Inf_27Jan16_Arwen_15-07-1

3 Cellulophaga_baltica_18 26844 1273139 

70 Biodiversity_C_Baltica_T240_R2_C_27Jan16_Arwen_15-07-13 Cellulophaga_baltica_18 26240 1299379 

71 

Biodiversity_C_Baltica_T240_R2_Inf_27Jan16_Arwen_15-07-1

3 Cellulophaga_baltica_18 26536 1325915 

72 Biodiversity_C_Baltica_T240_R3_C_27Jan16_Arwen_15-07-13 Cellulophaga_baltica_18 27084 1352999 

73 

Biodiversity_C_Baltica_T240_R3_Inf_27Jan16_Arwen_15-07-1

3 Cellulophaga_baltica_18 27658 1380657 

74 Biodiversity_C_comes_Carb_01_14Sep15_Arwen_15-07-13 

Coprococcus_comes_ATCC2775

8 20528 1401185 

75 Biodiversity_C_comes_Glc_01_28Oct15_Arwen_15-07-13 

Coprococcus_comes_ATCC2775

8 21095 1422280 

76 Biodiversity_C_comes_LIB_01_28Oct15_Arwen_15-07-13 

Coprococcus_comes_ATCC2775

8 21532 1443812 

77 Biodiversity_C_freundii_LB_01_14Sep15_Arwen_15-07-13 Citrobacter_freundii 23455 1467267 

78 Biodiversity_C_freundii_LIB_01_28Oct15_Arwen_15-07-13 Citrobacter_freundii 22562 1489829 

79 Biodiversity_C_gilvus_GS2_anaerobic_01_01Feb16_Arwen_15 Cellulomonas_gilvus_ATCC1312 25544 1515373 
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-07-13 7 

80 

Biodiversity_C_gilvus_GS2_anaerobic_02_01Feb16_Arwen_15

-07-13 

Cellulomonas_gilvus_ATCC1312

7 24443 1539816 

81 

Biodiversity_C_gilvus_GS2_anaerobic_03_01Feb16_Arwen_15

-07-13 

Cellulomonas_gilvus_ATCC1312

7 24651 1564467 

82 

Biodiversity_C_indologenes_LIB_aerobic_01_03May16_Samwi

se_16-03-32 Chryseobacterium_indologenes 12314 1576781 

83 

Biodiversity_C_indologenes_LIB_aerobic_02_03May16_Samwi

se_16-03-32 Chryseobacterium_indologenes 12289 1589070 

84 

Biodiversity_C_indologenes_LIB_aerobic_03_03May16_Samwi

se_16-03-32 Chryseobacterium_indologenes 12315 1601385 

85 

Biodiversity_C_ljungdahlii_CO_anaerobic_1_04Oct16_Pippin_

16-05-06 

Clostridium_ljungdahlii_DMS_1

3528 20363 1621748 

86 

Biodiversity_C_ljungdahlii_CO_anaerobic_2_04Oct16_Pippin_

16-05-06 

Clostridium_ljungdahlii_DMS_1

3528 21268 1643016 

87 

Biodiversity_C_ljungdahlii_CO_anaerobic_3_04Oct16_Pippin_

16-05-06 

Clostridium_ljungdahlii_DMS_1

3528 20785 1663801 

88 

Biodiversity_C_ljungdahlii_Fructose_anaerobic_1_04Oct16_Pi

ppin_16-05-06 

Clostridium_ljungdahlii_DMS_1

3528 21315 1685116 

89 

Biodiversity_C_ljungdahlii_Fructose_anaerobic_2_04Oct16_Pi

ppin_16-05-06 

Clostridium_ljungdahlii_DMS_1

3528 21903 1707019 

90 

Biodiversity_C_ljungdahlii_Fructose_anaerobic_3_04Oct16_Pi

ppin_16-05-06 

Clostridium_ljungdahlii_DMS_1

3528 22204 1729223 

91 

Biodiversity_C_necator_R2A_aerobic_1_23Nov16_Pippin_16-0

9-11 Cupriavidus_necator_N-1 17734 1746957 

92 

Biodiversity_C_necator_R2A_aerobic_2_23Nov16_Pippin_16-0

9-11 Cupriavidus_necator_N-1 16630 1763587 

93 

Biodiversity_C_necator_R2A_aerobic_3_23Nov16_Pippin_16-0

9-11 Cupriavidus_necator_N-1 16005 1779592 

94 

Biodiversity_Cellulomonas_gilvus_GS2_01_27Dec15_Arwen_1

5-07-13 

Cellulomonas_gilvus_ATCC1312

7 24408 1804000 

95 

Biodiversity_Cellulomonas_gilvus_GS2_02_27Dec15_Arwen_1

5-07-13 

Cellulomonas_gilvus_ATCC1312

7 24056 1828056 

96 

Biodiversity_Cellulomonas_gilvus_GS2_03_27Dec15_Arwen_1

5-07-13 

Cellulomonas_gilvus_ATCC1312

7 23653 1851709 

97 

Biodiversity_Cibrobacter_freundii_LB_aerobic_01_01Feb16_Ar

wen_15-07-13 Citrobacter_freundii 23581 1875290 

98 

Biodiversity_Cibrobacter_freundii_LB_aerobic_02_01Feb16_Ar

wen_15-07-13 Citrobacter_freundii 22579 1897869 
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99 

Biodiversity_Cibrobacter_freundii_LB_aerobic_03_01Feb16_Ar

wen_15-07-13 Citrobacter_freundii 23273 1921142 

100 

Biodiversity_D_acidovorans_TGY_aerobic_01_29Apr16_Samwi

se_16-03-32_renamed Delftia_acidovorans_SPH1 21871 1943013 

101 

Biodiversity_D_acidovorans_TGY_aerobic_02_29Apr16_Samwi

se_16-03-32_renamed Delftia_acidovorans_SPH1 20549 1963562 

102 

Biodiversity_D_acidovorans_TGY_aerobic_03_29Apr16_Samwi

se_16-03-32_renamed Delftia_acidovorans_SPH1 19125 1982687 

103 

Biodiversity_D_longicatena_CarbI_01_26Aug15_Arwen_15-07-

13 Dorea_longicatena_DSM13814 23197 2005884 

104 

Biodiversity_D_longicatena_CarbII_01_26Aug15_Arwen_15-07

-13 Dorea_longicatena_DSM13814 22441 2028325 

105 Biodiversity_D_longicatena_Glc_01_28Oct15_Arwen_15-07-13 Dorea_longicatena_DSM13814 19551 2047876 

106 

Biodiversity_F_novicida_TSB_aerobic_01_01Feb16_Arwen_15-

07-13 Francisella_novicida_U112 25900 2073776 

107 

Biodiversity_F_novicida_TSB_aerobic_02_01Feb16_Arwen_15-

07-13 Francisella_novicida_U112 23556 2097332 

108 

Biodiversity_F_novicida_TSB_aerobic_03_01Feb16_Arwen_15-

07-13 Francisella_novicida_U112 23189 2120521 

109 Biodiversity_F_prausnitzii_Carb_01_28Oct15_Arwen_15-07-13 Faecalibacterium_prausnitzii 11204 2131725 

110 Biodiversity_F_prausnitzii_Glc_01_28Oct15_Arwen_15-07-13 Faecalibacterium_prausnitzii 13901 2145626 

111 Biodiversity_F_prausnitzii_LIB_01_28Oct15_Arwen_15-07-13 Faecalibacterium_prausnitzii 12858 2158484 

112 

Biodiversity_F_succinogenes_MDM_01_27Dec15_Arwen_15-0

7-13 Fibrobacter_succinogenes_S85 20923 2179407 

113 

Biodiversity_F_succinogenes_MDM_02_27Dec15_Arwen_15-0

7-13 Fibrobacter_succinogenes_S85 23278 2202685 

114 

Biodiversity_F_succinogenes_MDM_03_27Dec15_Arwen_15-0

7-13 Fibrobacter_succinogenes_S85 21665 2224350 

115 

Biodiversity_HL111_HLHglutamate_aerobic_1_14July16_Pippi

n_16-05-01 Erythrobacter_HL-111 16707 2241057 

116 

Biodiversity_HL111_HLHglutamate_aerobic_2_14July16_Pippi

n_16-05-01 Erythrobacter_HL-111 15709 2256766 

117 

Biodiversity_HL111_HLHglutamate_aerobic_3_14July16_Pippi

n_16-05-01 Erythrobacter_HL-111 17636 2274402 

118 

Biodiversity_HL48_HLHxylose_aerobic_1_09Jun16_Pippin_16-

03-39 Halomonas_HL-48 19564 2293966 

119 

Biodiversity_HL48_HLHxylose_aerobic_2_09Jun16_Pippin_16-

03-39 Halomonas_HL-48 11419 2305385 
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120 

Biodiversity_HL48_HLHxylose_aerobic_3_09Jun16_Pippin_16-

03-39 Halomonas_HL-48 19558 2324943 

121 

Biodiversity_HL49_HLHYE_aerobic_1_05Oct16_Pippin_16-05-0

6 Algoriphagus_marincola_HL-49 20745 2345688 

122 

Biodiversity_HL49_HLHYE_aerobic_2_05Oct16_Pippin_16-05-0

6 Algoriphagus_marincola_HL-49 25153 2370841 

123 

Biodiversity_HL49_HLHYE_aerobic_3_05Oct16_Pippin_16-05-0

6 Algoriphagus_marincola_HL-49 24520 2395361 

124 Biodiversity_HL69_HLA_aerobic_1_05Oct16_Pippin_16-05-06 Cyanobacterium_stanieri 15059 2410420 

125 Biodiversity_HL69_HLA_aerobic_2_05Oct16_Pippin_16-05-06 Cyanobacterium_stanieri 14529 2424949 

126 Biodiversity_HL69_HLA_aerobic_3_05Oct16_Pippin_16-05-06 Cyanobacterium_stanieri 16531 2441480 

127 

Biodiversity_HL91_HLHsucrose_aerobic_1_09Jun16_Pippin_16

-03-39 

Rhodobacteraceae_bacterium_

HL-91 18271 2459751 

128 

Biodiversity_HL91_HLHsucrose_aerobic_2_09Jun16_Pippin_16

-03-39 

Rhodobacteraceae_bacterium_

HL-91 18280 2478031 

129 

Biodiversity_HL91_HLHsucrose_aerobic_3_09Jun16_Pippin_16

-03-39 

Rhodobacteraceae_bacterium_

HL-91 19857 2497888 

130 

Biodiversity_HL93_HLHfructose_aerobic_1_09Jun16_Pippin_1

6-03-39 Halomonas_HL-93 9976 2507864 

131 

Biodiversity_HL93_HLHfructose_aerobic_2_09Jun16_Pippin_1

6-03-39 Halomonas_HL-93 9277 2517141 

132 

Biodiversity_HL93_HLHfructose_aerobic_3_09Jun16_Pippin_1

6-03-39 Halomonas_HL-93 8961 2526102 

133 

Biodiversity_L_monocytogenes_BHI_aerobic_01_27Feb17_Pip

pin_16-11-03 

Listeria_monocytogenes_10403

S 27172 2553274 

134 

Biodiversity_L_monocytogenes_BHI_aerobic_02_27Feb17_Pip

pin_16-11-03 

Listeria_monocytogenes_10403

S 25972 2579246 

135 

Biodiversity_L_monocytogenes_BHI_aerobic_03_27Feb17_Pip

pin_16-11-03 

Listeria_monocytogenes_10403

S 26591 2605837 

136 

Biodiversity_Lactobacillus_casei_MRS_01_27Dec15_Arwen_15

-07-13 Lactobacillales_casei 11555 2617392 

137 

Biodiversity_Lactobacillus_casei_MRS_02_27Dec15_Arwen_15

-07-13 Lactobacillales_casei 10984 2628376 

138 

Biodiversity_Lactobacillus_casei_MRS_03_27Dec15_Arwen_15

-07-13 Lactobacillales_casei 12133 2640509 

139 

Biodiversity_M_luteus_LIB_aerobic_01_26Feb16_Arwen_16-0

1-01 Micrococcus_luteus 14623 2655132 

140 

Biodiversity_M_luteus_LIB_aerobic_02_26Feb16_Arwen_16-0

1-01 Micrococcus_luteus 14694 2669826 
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141 

Biodiversity_M_luteus_LIB_aerobic_03_26Feb16_Arwen_16-0

1-01 Micrococcus_luteus 14865 2684691 

142 

Biodiversity_M_smegmatis_BHI_aerobic_1_05Oct16_Pippin_1

6-05-06 Mycobacterium_smegmatis 22302 2706993 

143 

Biodiversity_M_smegmatis_BHI_aerobic_2_05Oct16_Pippin_1

6-05-06 Mycobacterium_smegmatis 23937 2730930 

144 

Biodiversity_M_smegmatis_BHI_aerobic_3_05Oct16_Pippin_1

6-05-06 Mycobacterium_smegmatis 23123 2754053 

145 

Biodiversity_M_xanthus_DZ2_24h_plates_1_13Jun16_Pippin_

16-03-39 Myxococcus_xanthus_DZ2 17676 2771729 

146 

Biodiversity_M_xanthus_DZ2_24h_plates_2_13Jun16_Pippin_

16-03-39 Myxococcus_xanthus_DZ2 18291 2790020 

147 

Biodiversity_M_xanthus_DZ2_24h_plates_3_13Jun16_Pippin_

16-03-39 Myxococcus_xanthus_DZ2 17586 2807606 

148 

Biodiversity_M_xanthus_DZ2_48h_plates_1_13Jun16_Pippin_

16-03-39 Myxococcus_xanthus_DZ2 20435 2828041 

149 

Biodiversity_M_xanthus_DZ2_48h_plates_2_13Jun16_Pippin_

16-03-39 Myxococcus_xanthus_DZ2 18715 2846756 

150 

Biodiversity_M_xanthus_DZ2_48h_plates_3_13Jun16_Pippin_

16-03-39 Myxococcus_xanthus_DZ2 19998 2866754 

151 

Biodiversity_M_xanthus_DZ2_pellet_1_03May16_Samwise_16

-03-32 Myxococcus_xanthus_DZ2 24459 2891213 

152 

Biodiversity_M_xanthus_DZ2_pellet_2_03May16_Samwise_16

-03-32 Myxococcus_xanthus_DZ2 24181 2915394 

153 

Biodiversity_M_xanthus_DZ2_plates_1_03May16_Samwise_1

6-03-32 Myxococcus_xanthus_DZ2 18520 2933914 

154 

Biodiversity_M_xanthus_DZ2_plates_2_03May16_Samwise_1

6-03-32 Myxococcus_xanthus_DZ2 17909 2951823 

155 

Biodiversity_M_xanthus_pellet_set2_1_13Jun16_Pippin_16-03

-39 Myxococcus_xanthus_DZ2 23354 2975177 

156 

Biodiversity_M_xanthus_pellet_set2_2_13Jun16_Pippin_16-03

-39 Myxococcus_xanthus_DZ2 23884 2999061 

157 

Biodiversity_M_xanthus_pellet_set2_3_13Jun16_Pippin_16-03

-39 Myxococcus_xanthus_DZ2 22772 3021833 

158 

Biodiversity_P_denitrificans_LIB_aerobic_01_29Apr16_Samwis

e_16-03-32_renamed Paracoccus_denitrificans 22165 3043998 

159 

Biodiversity_P_denitrificans_LIB_aerobic_02_29Apr16_Samwis

e_16-03-32_renamed Paracoccus_denitrificans 20888 3064886 

160 

Biodiversity_P_denitrificans_LIB_aerobic_03_29Apr16_Samwis

e_16-03-32_renamed Paracoccus_denitrificans 23115 3088001 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 16, 2020. ; https://doi.org/10.1101/428334doi: bioRxiv preprint 

https://doi.org/10.1101/428334
http://creativecommons.org/licenses/by-nc-nd/4.0/


161 Biodiversity_P_hydrogenalis_01_28Jul15_Arwen_14-12-03 

Anaerococcus_hydrogenalis_DS

M_7454 18519 3106520 

162 

Biodiversity_P_hydrogenalis_CMgluc_anaerobic_01_26Feb16_

Arwen_16-01-01 

Anaerococcus_hydrogenalis_DS

M_7454 12813 3119333 

163 

Biodiversity_P_hydrogenalis_CMgluc_anaerobic_02_26Feb16_

Arwen_16-01-01 

Anaerococcus_hydrogenalis_DS

M_7454 13371 3132704 

164 

Biodiversity_P_hydrogenalis_CMgluc_anaerobic_03_26Feb16_

Arwen_16-01-01 

Anaerococcus_hydrogenalis_DS

M_7454 12649 3145353 

165 

Biodiversity_P_polymyxa_TBS_aerobic_1_17July16_Samwise_

16-04-10 

Paenibacillus_polymyxa_ATCC8

42 25623 3170976 

166 

Biodiversity_P_polymyxa_TBS_aerobic_2_17July16_Samwise_

16-04-10 

Paenibacillus_polymyxa_ATCC8

42 25057 3196033 

167 

Biodiversity_P_polymyxa_TBS_aerobic_3_17July16_Samwise_

16-04-10 

Paenibacillus_polymyxa_ATCC8

42 24268 3220301 

168 

Biodiversity_P_ruminicola_MDM_anaerobic_1_09Jun16_Pippi

n_16-03-39 

Prevotella_ruminicola_23_ATC

C_19189 17277 3237578 

169 

Biodiversity_P_ruminicola_MDM_anaerobic_2_09Jun16_Pippi

n_16-03-39 

Prevotella_ruminicola_23_ATC

C_19189 17543 3255121 

170 Biodiversity_R_gnavus_01_28Jul15_Arwen_14-12-03 Ruminococcus_gnavus 20132 3275253 

171 Biodiversity_R_gnavus_Carb_01_28Oct15_Arwen_15-07-13 Ruminococcus_gnavus 22004 3297257 

172 

Biodiversity_R_jostii_R2A_aerobic_1_23Nov16_Pippin_16-09-

11 Rhodococcus_jostii_RHA1 24374 3321631 

173 

Biodiversity_R_jostii_R2A_aerobic_2_23Nov16_Pippin_16-09-

11 Rhodococcus_jostii_RHA1 23736 3345367 

174 

Biodiversity_R_jostii_R2A_aerobic_3_23Nov16_Pippin_16-09-

11 Rhodococcus_jostii_RHA1 22296 3367663 

175 

Biodiversity_R_palustris_PM_aerobic_1_01Jun16_Pippin_16-0

3-39 Rhodopseudomonas_palustris 21988 3389651 

176 

Biodiversity_R_palustris_PM_aerobic_2_01Jun16_Pippin_16-0

3-39 Rhodopseudomonas_palustris 21998 3411649 

177 

Biodiversity_R_palustris_PM_aerobic_3_01Jun16_Pippin_16-0

3-39 Rhodopseudomonas_palustris 20740 3432389 

178 

Biodiversity_R_palustris_PMnitro_anaerobic_1_01Jun16_Pippi

n_16-03-39 Rhodopseudomonas_palustris 20820 3453209 

179 

Biodiversity_R_palustris_PMnitro_anaerobic_2_01Jun16_Pippi

n_16-03-39 Rhodopseudomonas_palustris 20800 3474009 

180 

Biodiversity_R_palustris_PMnitro_anaerobic_3_01Jun16_Pippi

n_16-03-39 Rhodopseudomonas_palustris 19401 3493410 

181 Biodiversity_R_palustris_PMnonnitro_anaerobic_1_01Jun16_P Rhodopseudomonas_palustris 21220 3514630 
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ippin_16-03-39 

182 

Biodiversity_R_palustris_PMnonnitro_anaerobic_2_01Jun16_P

ippin_16-03-39 Rhodopseudomonas_palustris 21947 3536577 

183 

Biodiversity_R_palustris_PMnonnitro_anaerobic_3_01Jun16_P

ippin_16-03-39 Rhodopseudomonas_palustris 20793 3557370 

184 

Biodiversity_S_agalactiae_LIB_aerobic_01_26Feb16_Arwen_1

6-01-01 Streptococcus_agalactiae 12558 3569928 

185 

Biodiversity_S_agalactiae_LIB_aerobic_02_26Feb16_Arwen_1

6-01-01 Streptococcus_agalactiae 11366 3581294 

186 

Biodiversity_S_agalactiae_LIB_aerobic_03_26Feb16_Arwen_1

6-01-01 Streptococcus_agalactiae 11845 3593139 

187 

Biodiversity_S_aurantiaca_CYE_aerobic_1_17July16_Samwise

_16-04-10 Stigmatella_aurantiaca_DW431 26687 3619826 

188 

Biodiversity_S_aurantiaca_CYE_aerobic_2_17July16_Samwise

_16-04-10 Stigmatella_aurantiaca_DW431 25198 3645024 

189 

Biodiversity_S_aurantiaca_CYE_aerobic_3_17July16_Samwise

_16-04-10 Stigmatella_aurantiaca_DW431 28243 3673267 

190 

Biodiversity_S_elongatus_BG11_aerobic_1_14July16_Pippin_1

6-05-01 

Synechococcus_elongatus_PCC

7942 16601 3689868 

191 

Biodiversity_S_elongatus_BG11_aerobic_2_14July16_Pippin_1

6-05-01 

Synechococcus_elongatus_PCC

7942 16512 3706380 

192 

Biodiversity_S_elongatus_BG11_aerobic_3_14July16_Pippin_1

6-05-01 

Synechococcus_elongatus_PCC

7942 16383 3722763 

193 

Biodiversity_S_elongatus_BG11NaCl_aerobic_1_05Oct16_Pipp

in_16-05-06 

Synechococcus_elongatus_PCC

7942 18618 3741381 

194 

Biodiversity_S_elongatus_BG11NaCl_aerobic_2_05Oct16_Pipp

in_16-05-06 

Synechococcus_elongatus_PCC

7942 19025 3760406 

195 

Biodiversity_S_elongatus_BG11NaCl_aerobic_3_05Oct16_Pipp

in_16-05-06 

Synechococcus_elongatus_PCC

7942 18419 3778825 

196 

Biodiversity_S_griseorubens_HSM_aerobic_1_23Nov16_Pippin

_16-09-11 Streptomyces_griseorubens 7798 3786623 

197 

Biodiversity_S_griseorubens_HSM_aerobic_2_23Nov16_Pippin

_16-09-11 Streptomyces_griseorubens 7869 3794492 

198 

Biodiversity_S_griseorubens_HSM_aerobic_3_23Nov16_Pippin

_16-09-11 Streptomyces_griseorubens 5960 3800452 

199 

Biodiversity_S_thermosulf_FeYE_anaerobic_1_01Jun16_Pippin

_16-03-39 

Sulfobacillus_thermosulfidooxi

dans 14607 3815059 

200 

Biodiversity_S_thermosulf_FeYE_anaerobic_2_01Jun16_Pippin

_16-03-39 

Sulfobacillus_thermosulfidooxi

dans 14762 3829821 
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201 

Biodiversity_S_thermosulf_FeYE_anaerobic_3_01Jun16_Pippin

_16-03-39 

Sulfobacillus_thermosulfidooxi

dans 15862 3845683 

202 Cj_media_MH_R1_23Feb15_Arwen_14-12-03 Campylobacter_jejuni 24941 3870624 

203 Cj_media_MH_R2_23Feb15_Arwen_14-12-03 Campylobacter_jejuni 24931 3895555 

204 Cj_media_MH_R3_23Feb15_Arwen_14-12-03 Campylobacter_jejuni 21400 3916955 

205 Cj_media_MH_R4_23Feb15_Arwen_14-12-03 Campylobacter_jejuni 25037 3941992 

206 Cj_media_MH_R5_23Feb15_Arwen_14-12-03 Campylobacter_jejuni 20168 3962160 

207 LP_LS_Phi_Stat_R1_30Sep14_Pippin_13-04-12 Legionella_pneumophila 26779 3988939 

208 LP_LS_Phi_Stat_R2_30Sep14_Pippin_13-04-12 Legionella_pneumophila 27771 4016710 

209 LP_LS_Phi_Stat_R3_30Sep14_Pippin_13-04-12 Legionella_pneumophila 25938 4042648 

210 P_putida_01Dec15_1_21Mar16_Arwen_16-01-03 Pseudomonas_putida_KT2440 23697 4066345 

211 P_putida_01Dec15_2_21Mar16_Arwen_16-01-03 Pseudomonas_putida_KT2440 24322 4090667 

212 P_putida_17Nov15_1_21Mar16_Arwen_16-01-03 Pseudomonas_putida_KT2440 22904 4113571 

213 P_putida_17Nov15_2_21Mar16_Arwen_16-01-03 Pseudomonas_putida_KT2440 22395 4135966 

214 P_putida_18Nov15_1_21Mar16_Arwen_16-01-03 Pseudomonas_putida_KT2440 22246 4158212 

215 P_putida_18Nov15_2_21Mar16_Arwen_16-01-03 Pseudomonas_putida_KT2440 22937 4181149 

216 S_venezuelae_GYM_1_21Mar16_Arwen_16-01-03 Streptomyces_venezuelae 12030 4193179 

217 S_venezuelae_GYM_2_21Mar16_Arwen_16-01-03 Streptomyces_venezuelae 11099 4204278 

218 S_venezuelae_MYM_1_21Mar16_Arwen_16-01-03 Streptomyces_venezuelae 14276 4218554 

219 S_venezuelae_MYM_2_21Mar16_Arwen_16-01-03 Streptomyces_venezuelae 14322 4232876 

220 

QC_Shew_13_05_500ng_2_100uL_5hr_30Mar14_Samwise_13

-07-17 Shewanella_oneidensis_MR-1 49123 4281999 

221 QC_Shew_13_05_500ng_2_5hr_19Mar14_Samwise_13-07-17 Shewanella_oneidensis_MR-1 50274 4332273 

222 QC_Shew_13_05_500ng_2_5hr_24Mar14_Samwise_13-07-17 Shewanella_oneidensis_MR-1 50273 4382546 

223 M_alcali_copp_CH4_B1_T1_07_QE_23Mar18_Oak_18-01-07 

Methylomicrobium_alcaliphilu

m 21112 4403658 

224 M_alcali_copp_CH4_B1_T2_08_QE_23Mar18_Oak_18-01-07 

Methylomicrobium_alcaliphilu

m 21074 4424732 

225 M_alcali_copp_CH4_B2_T1_09_QE_23Mar18_Oak_18-01-07 

Methylomicrobium_alcaliphilu

m 18470 4443202 

226 M_alcali_copp_CH4_B2_T2_10_QE_23Mar18_Oak_18-01-07 

Methylomicrobium_alcaliphilu

m 18257 4461459 
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227 M_alcali_copp_CH4_B3_T1_11_QE_23Mar18_Oak_18-01-07 

Methylomicrobium_alcaliphilu

m 20464 4481923 

228 M_alcali_copp_CH4_B3_T2_12_QE_23Mar18_Oak_18-01-07 

Methylomicrobium_alcaliphilu

m 20368 4502291 

229 

M_alcali_copp_MeOH_B1_T1_01_QE_23Mar18_Oak_18-01-0

7 

Methylomicrobium_alcaliphilu

m 18067 4520358 

230 

M_alcali_copp_MeOH_B1_T2_02_QE_23Mar18_Oak_18-01-0

7 

Methylomicrobium_alcaliphilu

m 18229 4538587 

231 

M_alcali_copp_MeOH_B2_T1_03_QE_23Mar18_Oak_18-01-0

7 

Methylomicrobium_alcaliphilu

m 17445 4556032 

232 

M_alcali_copp_MeOH_B2_T2_04_QE_23Mar18_Oak_18-01-0

7 

Methylomicrobium_alcaliphilu

m 18191 4574223 

233 

M_alcali_copp_MeOH_B3_T1_05_QE_23Mar18_Oak_18-01-0

7 

Methylomicrobium_alcaliphilu

m 15781 4590004 

234 

M_alcali_copp_MeOH_B3_T2_06_QE_23Mar18_Oak_18-01-0

7 

Methylomicrobium_alcaliphilu

m 14536 4604540 

235 Alverdy_Efae_1A_lys_13Jul13_Pippin_12-12-39 Enterococcus_faecalis 16181 4620721 

236 Alverdy_Efae_1B_lys_13Jul13_Pippin_12-12-39 Enterococcus_faecalis 16055 4636776 

237 Alverdy_Efae_1C_lys_13Jul13_Pippin_12-12-39 Enterococcus_faecalis 15814 4652590 

238 Biodiversity_A_muciniphila_test_27Feb17_Pippin_16-11-03 

Akkermansia_muciniphila_ATC

C_BAA-835 21214 4673804 

239 Ha_150NaCl_1_13_QE_12Aug15_Arwen_14-12-03 Halanaerobium_congolense 27902 4701706 

240 Ha_150NaCl_2_14_QE_12Aug15_Arwen_14-12-03 Halanaerobium_congolense 29961 4731667 

241 Ha_150NaCl_3_15_QE_12Aug15_Arwen_14-12-03 Halanaerobium_congolense 27892 4759559 

242 Ha_200NaCl_1_22_QE_21Jan16_Arwen_15-07-13 Halanaerobium_congolense 29705 4789264 

243 Ha_200NaCl_2_23_QE_21Jan16_Arwen_15-07-13 Halanaerobium_congolense 28807 4818071 

244 Ha_200NaCl_3_24_QE_21Jan16_Arwen_15-07-13 Halanaerobium_congolense 29544 4847615 

245 Ha_250NaCl_1_16_QE_12Aug15_Arwen_14-12-03 Halanaerobium_congolense 15326 4862941 

246 Ha_250NaCl_2_17_QE_12Aug15_Arwen_14-12-03 Halanaerobium_congolense 19355 4882296 

247 Ha_250NaCl_3_18_QE_12Aug15_Arwen_14-12-03 Halanaerobium_congolense 22461 4904757 

248 YJ_Cc_WT1_C_P_9Jan17_Pippin_16-09-11 

Caulobacter_crescentus_NA10

00 22820 4927577 

249 YJ_Cc_WT1_IM_P_9Jan17_Pippin_16-09-11 

Caulobacter_crescentus_NA10

00 19081 4946658 

250 YJ_Cc_WT1_OM_P_9Jan17_Pippin_16-09-11 Caulobacter_crescentus_NA10 26060 4972718 
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Supplementary Table 2. Top 20 of EC numbers most frequently matched from the unique              
peptides using Unipept 4.3 with the identified peptide sequences. 
 

00 

251 YJ_Cc_WT1_P_Prot_9Jan17_Pippin_16-09-11 

Caulobacter_crescentus_NA10

00 21323 4994041 

252 YJ_Cc_WT1_WC_P_9Jan17_Pippin_16-09-11 

Caulobacter_crescentus_NA10

00 17975 5012016 

253 YJ_Cc_WT2_C_P_9Jan17_Pippin_16-09-11 

Caulobacter_crescentus_NA10

00 22620 5034636 

254 YJ_Cc_WT2_IM_P_9Jan17_Pippin_16-09-11 

Caulobacter_crescentus_NA10

00 19881 5054517 

255 YJ_Cc_WT2_OM_P_9Jan17_Pippin_16-09-11 

Caulobacter_crescentus_NA10

00 20632 5075149 

256 YJ_Cc_WT2_P_Prot_9Jan17_Pippin_16-09-11 

Caulobacter_crescentus_NA10

00 24577 5099726 

257 YJ_Cc_WT2_WC_P_9Jan17_Pippin_16-09-11 

Caulobacter_crescentus_NA10

00 16579 5116305 

EC number Name PepCounts 

EC:2.7.7.6 DNA-directed RNA polymerase 755 

EC:7.1.2.2 H(+)-transporting two-sector ATPase 688 

EC:3.6.5.3 Protein-synthesizing GTPase 269 

EC:2.7.13.3 Histidine kinase 263 

EC:3.6.4.12 DNA helicase 230 

EC:3.6.4.- Acting on ATP; involved in cellular and subcellular movement 208 

EC:5.2.1.8 Peptidylprolyl isomerase 208 

EC:6.3.1.2 Glutamine synthetase 200 

EC:2.7.7.7 DNA-directed DNA polymerase 198 

EC:1.2.1.- With NAD(+) or NADP(+) as acceptor 194 

EC:3.6.3.- 
Acting on acid anhydrides; catalyzing transmembrane movement of 

substances 169 

EC:2.7.7.8 Polyribonucleotide nucleotidyltransferase 158 

EC:3.1.-.- Acting on ester bonds 153 
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Supplementary Table 3. Functional distribution of the unique peptides across the phyla taxa.             
Each row and column represent the different EC numbers and phyla, respectively. The number              
in each cell indicates the number of unique peptides annotated by Unipept. This table was               
transformed from the original output file provided by Unipept. 
(It’s too big to add here so it will be attached as an Excel file) 

EC:1.1.2.- With a cytochrome as acceptor 142 

EC:3.6.3.14 Transferred entry: 7.1.2.2 140 

EC:1.1.1.100 3-oxoacyl-[acyl-carrier-protein] reductase 136 

EC:4.2.1.3 Aconitate hydratase 133 

EC:1.-.-.- Oxidoreductases 130 

EC:1.1.1.37 Malate dehydrogenase 122 

EC:2.3.1.9 Acetyl-CoA C-acetyltransferase 116 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 16, 2020. ; https://doi.org/10.1101/428334doi: bioRxiv preprint 

https://doi.org/10.1101/428334
http://creativecommons.org/licenses/by-nc-nd/4.0/

