
Celda: A Bayesian model to perform bi-clustering of genes into modules and

cells into subpopulations using single-cell RNA-seq data

Zhe Wang1 *, Shiyi Yang1 *, Yusuke Koga1, Sean E. Corbett1 , Evan Johnson1, Masanao Yajima2, and
Joshua D. Campbell1

1Division of Computational Biomedicine, Department of Medicine, Boston University School of Medicine,
Boston, MA, USA.

2Department of Mathematics Statistics, Boston University, Boston, MA, USA
*These authors contributed equally to this work.

1 Abstract

Complex biological systems can be understood by dividing them into hierarchies. Each level of such a hierarchy
is composed of different subunits which cooperate to perform distinct biological functions. Single-cell RNA-seq
(scRNA-seq) has emerged as a powerful technique to quantify gene expression in individual cells and is being
used to elucidate the molecular and cellular building blocks of complex tissues. We developed a novel Bayesian
hierarchical model called Cellular Latent Dirichlet Allocation (Celda) to perform bi-clustering of co-expressed
genes into modules and cells into subpopulations. This model can also quantify the relationship between different
levels in a biological hierarchy by determining the contribution of each gene in each module, each module in
each cell population, and each cell population in each sample. We used Celda to identify transcriptional modules
and cell subpopulations in publicly-available peripheral blood mononuclear cell (PBMC) dataset. In addition to
the major classes of cell types, Celda also identified a population of proliferating T-cells and a single plasma
cell that was missed by other clustering methods in this dataset. Transcriptional modules captured consistency
in expression patterns among genes linked to same biological functions. Furthermore, transcriptional modules
provided direct insights on cell type specific marker genes, and helped understanding of subtypes of B- and T-
cells. Overall, Celda presents a novel principled approach towards characterizing transcriptional programs and
cellular and heterogeneity in single-cell data.
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2 Background

Complex biological systems can be understood by dividing them into hierarchies. Each level of such a hierarchy is
composed of different parts which perform distinct biological functions. For example, organisms can be subdivided
into a collection of complex tissues; each complex tissue is composed of different cell types; each cell population is
denoted by a unique combination of transcriptionally activated pathways (i.e. transcriptional modules); and each
transcriptional state is composed of groups of genes that are coordinately expressed to perform specific molecular
functions. By identifying the basic “building blocks” at each level of the hierarchy as well as their composition,
we can more easily conceptualize the inner workings of higher order biological systems.

Single cell RNA-seq (scRNA-seq) has emerged as a powerful technique to quantify gene expression in individual
cells, and is being used to elucidate the molecular and cellular building blocks of complex tissues. Rather than
profiling RNA from a ”bulk” sample, where only an average transcriptional signature across all the composite
cells can be derived, scRNA-seq experiments can profile the transcriptome of thousands of cells per sample. Thus,
it offers an excellent opportunity to identify novel subpopulations of cells and to characterize transcriptional
programs by examining co-variation patterns of gene expression across cells. However, analysis of scRNA-seq data
has several challenges. For example, the data tends to be sparse due to the difficulty in amplifying low amounts
of RNA in individual cells. To combat noise from the amplification process, unique molecular identifiers (UMIs)
are often incorporated. The use of these UMIs result in discrete counts of mRNA transcripts within each cell and
therefore make the approach of modeling this type of data with discrete distributions possible.

Discrete Bayesian hierarchical models have proven to be powerful tools for unsupervised modeling of discrete
data types. In the text mining field, a plethora of models have been developed that can identify hidden topics
across documents and/or cluster documents into distinct groups [1, 2, 3, 4, 5]. These models generally treat each
document as a ”bag-of-words” where each document is represented by a vector of counts or frequencies for each
word in the vocabulary. Each document cluster or hidden topic is represented by a Dirichlet distribution where
words with higher probability are observed more frequently for the document cluster or topic. Given the success
of topic models with sparse text data and the discrete nature of transcript data generated by many scRNA-seq
protocols, the application of discrete Bayesian hierarchical models represents an appealing approach to characterize
structure in scRNA-seq data.

Here, we present the details of three different models that can cluster Cells into subpopulations (celda C), cluster
Genes into transcriptional modules (celda G), or simultaneously perform co-clustering of cells into subpopulations
and genes into transcriptional modules (celda CG). While these models can perform clustering of genes and/or
cells, they also offer the ability to describe the relationship between different layers of a biological hierarchy via
probabilistic distributions. These distributions can be viewed as reduced dimensional representations of the data
which can be used for down-stream exploratory analysis.

3 Results

We developed a novel discrete Bayesian hierarchical model, called Cellular Latent Dirichlet Allocation (Celda),
to simultaneously perform bi-clustering of genes into modules and cells into subpopulations (Figure 1). Each
level in the biological hierarchy is modeled as a mixture of components using Dirichlet distributions: sample i is
a mixture of cellular subpopulations (θi), each cell subpopulation k is a mixture of transcriptional modules (φk),
and each module l is a mixture of features such as genes (ψl). θi,k is the probability of cell population k in sample
i, φk,l is the probability of module l in population k, and ψl,g is the probability of gene g in module l (Figure 1a,
1b). Each cell j in sample i has a hidden cluster label, zi,j denoting the population to which it belongs. Each
count, xi,j,t, has a hidden label, wi,j,t denoting the module to which it belongs. A similarly structured topic model
has previously been proposed called “Latent Dirichlet Co-Clustering” [5]. However, we add a unique and novel
component to our model specifically geared towards gene expression analysis. The goal of many gene-expression
clustering algorithms is to group genes into distinct, non-overlapping sets of genes (i.e. hard-clustering [6] of genes)
[7, 8, 9]. The rationale for this type of clustering is that genes that co-vary across cells and samples are likely
involved in the same biological processes and should be considered a single biological program [10]. In order to
perform “hard-clustering” of genes into modules, we modified an approach from Wang and Blei [3] regarding the
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sparse Topic Model (sparseTM) that has the capability to turn words “on” or “off” in different topics, by assigning
a non-zero or zero probability to that word in each topic, respectively. In celda CG, we leverage this technique to
turn off genes in all modules except one to enable the hard-clustering behavior.

While this model can perform clustering, it also offers probabilistic distributions which can describe the contribu-
tion of each “building block” to each layer of the biological hierarchy (Figure 1c). These distributions can also be
viewed as reduced dimensional representations of the data that can be used for downstream exploratory analyses.
For example, the φ matrix contains the probability of each module in each cell population and thus provides a
high-level view of the structure of the dataset.

a b c d

Figure 1. Celda identifies cell heterogeneity by clustering genes into modules and cells into
subpopulations. (a) Example of a biological hierarchy. One way in which we try to understand complex
biological systems is by organizing them into hierarchies. Individual organisms are composed of complex
tissues. Each complex tissue is composed of different cellular populations with distinct functions; each cellular
subpopulation contains a unique mixture of molecular pathways (i.e. modules); and each module is composed
of groups of genes that are co-expressed across cells. (b) Plate diagram of Celda CG model. We developed a
novel discrete Bayesian hierarchical model called Celda CG to characterize the molecular and cellular hierarchies
in biological systems. Celda CG performs “bi-clustering” by assigning each gene to a module and each cell to a
subpopulation. (c) In addition to clustering, Celda CG also inherently performs a form of “matrix factorization”
by deriving three distinct probability matrices: 1) a Cell Population x Sample matrix representing the probability
that each population is present in each sample, 2) a Transcriptional Module x Cell Population matrix representing
the contribution of each transcriptional state to each cellular subpopulation, and 3) a Gene x Module matrix
representing the contribution of each gene to its Module. (d) Generative process for the celda CG model.

Celda identifies immune cell subpopulations in PBMC 4K scRNA-seq dataset

To assess its ability to identify biologically meaningful cell subpopulations in real-world scRNA-seq data, we applied
Celda CG to a publicly available dataset provided by 10X Genomics (Pleasanton, CA). The dataset was generated
from peripheral blood mononuclear cells (PBMCs) collected from a healthy donor. The dataset contains 4,340
cells, referred to as the “4K” dataset. To determine the total number of modules (L) and cell populations (K), a
step-wise splitting procedure was used (Supplementary Figure S1). The rate of perplexity change (RPC) [11]
was measured at each split, with RPC closer to zero indicating that the addition of new modules or cells was not
substantially affecting the clustering solution. For the 4K dataset, we chose L = 80 and K = 20.

Celda CG was able to generate an assignment of cells to cell subpopulations (Figure 2a). We then used it to
identify broad subtypes of immune cells we expected to observe among PBMCs. We observed that, when visualizing
the expression of key immune cell subtype marker genes, cells with high expression of these genes congregated
in accordance with Celda CG’s cluster labels (Figure 2b). For example, clusters 15 to 20 show a consistently
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higher expression of the T-cell marker genes CD3D, CD3E, and CD3G relative to all other clusters. Among these
T cell subpopulations. Clusters 17, 18, and 19 show consistent expression of CD8A and CD8B, while the others
do not (Supplementary Figure S2). Within these CD8A+CD8B+ T cells, cluster 17 has high expression of
naive T cell marker CCR7, whereas cluster 18 has a consistent expression of NK cell marker GNLY, KLRG1, and
granzyme genes GZMA and GZMH, so we labeled them naive cytotoxic T cells and NK T cells. A full list of cell
cluster annotation and the markers used to identify cell types are shown in Supplementary Table 1.
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Figure 2. Celda identifies immune cell subpopulations from PBMC 4K scRNA-seq data. To
demonstrate the utility of Celda clustering model, we applied it to a scRNA-seq dataset of 4,340 peripheral blood
mononuclear cells (PBMCs) generated using 10X Chromium platform. (a) Uniform Manifold Approximation
and Projection (UMAP) dimension reduction representation of 4,340 PBMCs based on the expression of 80
gene modules. 20 cell clusters were identified. (b) Scaled normalized expressions of representative gene markers
show clustering of cell subpopulations including T-cells (CD3D), B-cells (CD19), natural killer cells (KLRD1),
FCGR3A+ monocytes (FCGR3A), CD14+ monocytes (CD14), dendritic cells (FCER1A), plasmacytoid dendritic
cells (CLEC4C), megakaryocytes (ITGA2B), and CD34+ progenitor cells (CD34).

Celda recognizes co-expressed genes associated with cell subpopulations

Beyond individual marker genes, Celda’s ability to identify modules of co-expressed genes enabled us to find
gene modules with patterns of expression associated with cell subpopulation labels (Figure 3). As mentioned
previously, an overview of the relationships between modules and cell subpopulations can be explored with the φ
probability matrix which contains the probability of each module within each cell subpopulation (Supplementary
Figure S3). This matrix can give insights into absolute abundance of each module compared to other modules
in the same cell subpopulation. A relative probability heatmap is produced by taking the z-score of the module
probabilities across cell subpopulations (Figure 3a). This matrix displays relative abundance of each module
across cell populations and can be useful for examining modules with overall lower absolute probability. Celda’s
unique ability to cluster genes into mutually exclusive gene modules amplifies cell type identification beyond the
limit of prior knowledge on marker genes. For example, modules L5-L13 are highly associated with cell clusters
2, 3, and 4. Given that B lymphocyte antigen receptor genes CD79A, CD79B, and B lymphocyte cell surface
antigens MS4A1, CD19 are grouped in module 10, we can infer that the cells in cell cluster 2, 3, and 4 are B
cells (Figure 3b). Modules L18-L26 are associated with cell cluster 7. We found that plasmacytoid dendritic cell
(pDC) marker genes ITM2C, IRF7, LILRA4, and CLEC4C are highly expressed in module 21, indicating that
cells in cell cluster 7 are pDCs (Figure 3c). Gene modules L33-L41 are highly expressed in cell cluster 9. Natural
killer (NK) cell markers NKG7, GZMA, CST7, KLRD1, and GZMH are categorized in module 40, suggesting
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that cells in cell cluster 9 are NK cells (Figure 3d). Modules L60-L80 are associated with cell clusters 15 to 20.
Module 74 contains T cell receptor genes including TRAC, CD3D, TRBC1, and CD3G, which indicates cells from
cell clusters 15 to 20 are T cells (Figure 3e). UMAPs colored by module probabilities confirmed the specificity
of association between these gene modules and cell clusters (Figure 3f-i).
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Figure 3. Probability matrix generated by Celda helps identify the relationship between gene
modules and cell populations. (a) Row-scaled probability φ matrix between gene modules and cell clusters
showing the contribution of each module to each cellular subpopulation. Each row of the matrix is a gene module
containing co-expressed genes. Each column is an identified cell subpopulation. (b-e) Module heatmaps showing
the gene expression profile in gene modules 10, 21, 40, and 74. Top annotation row shows 100 cells with the
highest and the lowest probabilities in each gene module and are colored by their cell cluster labels. Selected
marker genes for B cells (CD79A, CD79B, MS4A1, CD19), plasmacytoid dendritic cells (ITM2C, IRF7, LILRA4,
CLEC4C), natural killer cells (NKG7, GZMA, CST7, KLRD1, GZMH), and T cells (TRAC, CD3D, TRBC1,
CD3G) are highlighted on the right. (f-i) UMAPs colored by absolute module probabilities.
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Celda identifies biologically relevant genes as gene modules

Celda groups genes into mutually exclusive modules based on their consistent expression patterns. Examples
of modules of co-expressed genes are shown in heatmaps (Figure 4a-c). Genes with relatively high expression
level clustered in a Celda gene module are often marker genes for a specific cell type. For example, the top
5 genes in module 43 are monocyte genes S100A9, S100A8, S100A12, VCAN, and CD14 (Figure 4b). These
genes are highly expressed in cell cluster 11, one of the CD14+ monocyte cell subpopulations. Some scRNA-seq
clustering methods, including ascend[11], Seurat[12], and TSCAN[13], allow initial reduction of data dimension
using principal component analysis (PCA) before clustering. We found that Celda gene modules outperform
principal components (PCs) on categorizing co-expressed genes (Figure 4d-f). In PCA, genes important in one
PC can be markers for differing cell types makes it difficult to associate PCs with cell types. For example, T
cell markers CD3D, TRAC and NK cell markers CST7, NKG7 are both positively correlated with PC 2 (Figure
4d). FCGR3A+ monocyte marker FCGR3A and pDC marker LILRA4 are both negatively correlated with PC
7 (Figure 4f). Since PCA finds orthogonal linear combinations of all genes for its components, one gene can be
positively associated with multiple PCs. For example, NK cell markers CST7 and NKG7 are positively correlated
with both PC 2 and PC 3.
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Figure 4. Comparison of Celda modules and PCs for identifying gene co-varying across cell
subpopulations. (a-c) Examples of gene modules 40, 43, and 21 of co-expressed genes are shown in heatmaps.
Heatmaps are colored by scaled gene expressions. Red shows relatively higher gene expression and blue shows
relatively lower gene expression. Celda can cluster genes into mutually exclusive modules. Top annotation row
indicates a total of 100 cells with the highest and lowest probabilities and are colored by their cell cluster labels.
Genes are ranked by their contributions to each gene module. (a) Gene module enriched with natural killer cell
markers. (b) Gene module enriched with CD14+ monocyte markers. (c) Gene module enriched with plasmacytoid
dendritic cell markers. The top 30 genes are shown. (d-f) Heatmaps showing scaled expression of top and bottom
15 genes ordered increasingly by loading scores for principal components (PCs) 2, 3, and 7. Top annotation row
shows 100 cells with the highest and lowest PC scores and are colored by their cell cluster labels. The marker
genes for differing cell types are shown in the same PC makes it difficult to associate PCs with cell types. The
same goes for genes showing up in multiple PCs. For example, CD3D, TRAC (T cell markers) and CST7, NKG7
(natural killer cell markers) are both positively correlated with PC 2. FCGR3A (FCGR3A+ monocyte marker)
and LILRA4 (plasmacytoid dendritic cell marker) are both negatively correlated with PC 7. CST7 and NKG7
are positively correlated with both PC 2 and PC 3.

4 Discussion

We developed a novel discrete Bayesian hierarchical method Celda to simultaneously cluster similar cells and
identify co-expressed genes for scRNA-seq data. We used PBMC 4K data to demonstrate Celda was able to
not only identify major cell types, but also the subtypes of B- and T-cells that have not been identified by the
applications of other clustering methods. Celda’s ability to group co-varying genes helps the understanding and
exploration of gene functions. Its specialty in assigning genes into mutually exclusive gene modules helps interpret
co-expressed genes associated with specific cell types.
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5 Methods

5.1 Availability

The source code, in the form of an installable R package, is available on the Bioconductor repository at https:

//www.bioconductor.org/packages/celda. The development version is located on GitHub at https://github.
com/campbio/celda.

5.2 Analysis of PBMCs

Data collection and preprocessing

PMBC 4K dataset was downloaded using R/Bioconductor package TENxPBMCData v1.8.0. It contains 4340 cells,
and 33694 genes. We applied DecontX [14] to remove contamination using default settings. 17039 genes detected
in fewer than 3 cells were excluded. We applied NormalizeData and FindVariableFeatures functions from Seurat
v3.2.2 using default settings and identified a set of 2000 most variable genes for clustering. PCA was performed
on scaled normalized gene expressions using RunPCA function from Seurat v3.2.2 in default settings. For coloring
of UMAPs and module heatmaps with gene expressions, the decontaminated counts were normalized by library
size, square-root transformed, centered, and scaled. Values greater than 2 or less than -2 were trimmed.

Identifying the number of gene modules (L) and cell clusters (K)

The 2000 most variable genes were used for Celda CG clustering. We applied two stepwise splitting procedures
as implemented in the recursiveSplitModule and recursiveSplitCell functions in Celda to determine the optimal
number of L and K. recursiveSplitModule uses the celda G model to cluster genes into modules for a range of
possible L values. The module labels of the previous model with L−1 modules are used as the initial values in the
current model with L modules. The best split of an existing module, evaluated by best overall likelihood, is found
to create the L-th module. The rate of perplexity change (RPC) [15] was calculated at each split, with RPC closer
to zero indicating that the addition of new modules or cells was not substantially affecting the clustering solution.
We applied the recursiveSplitModule function to test a range of L values from 10 to 200 and settled at L = 80. The
module labels of genes were then used to estimate cell clusters with function recursiveSplitCell. recursiveSplitCell
uses the celda CG model to cluster cells into cell clusters for a range of possible K values. We tested a range of
K values from 3 to 30 and settled at K = 20 (Supplementary Figure S1). The final Celda CG model used
in this paper for PBMC 4K dataset was extracted from the stepwise splitting results using the subsetCeldaList
function.

UMAP based on Celda gene modules

UMAP was run on the 80 module probabilities to reduce the number of features instead of PCA. The module
probability of a module in a cell is the proportion of all counts for that module divided by cell library size. Module
probabilities were square-root transformed before applying UMAP [16]. UMAP dimension reduction coordinates
for cells were generated using the umap function from uwot R package with n neighbors = 10, min dist = 0.5, and
default settings.

5.3 celda C: Clustering cells into subpopulations across samples

Background

The overall goal of the celda C is to cluster cells with similar count distributions into the same cell population
and is similar to previous document clustering models such as the Dirichlet Multinomial Mixture Model [4] or
the single-cell clustering method DIMM-SC [17]. However, celda C also allows for cells from multiple samples
to be clustered together and assume that each sample may contain different proportions of each cell population.
Celda C will detemine the hidden label for each cell (i.e. cluster assignment to a population), estimate the
contribution of each gene in each cell population, and quantify the distrubiton of each cell population for each
sample (if multiple samples are available).
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We breifly review several properties of the Dirchlet-multinomial distribution used throughout the collapsed Gibbs
samplers. Let θ follow a symmetric Dirichlet distribution of length K parameterized by α, that is θ ∼ DirK(α).
Here, α is used as a single scalar value that is repeated K times for form the vector α, the parameter for the
symmetric Dirichlet distribution. The probability density function for this distribution is defined as:

p(θ|α) =
Γ(
∑K

k=1 αk)∏K
k=1 Γ(αk)

K∏
k=1

θαk−1
k . (1)

Since we will utilize a symmetric Dirichlet distribution where all values of αk are identical, we can simplify this
to:

p(θ|α) =
Γ(Kα)

Γ(α)K

K∏
k=1

θα−1
k . (2)

Let Z be a vector representing a series of M independent draws from a multinomial distribution parameterized
by θ, that is zi ∼ Mult(θ) for i = 1..M . The joint probability distribution of Z is:

M∏
i=1

p(zi|θ) =
K∏
k=1

θmk
k , (3)

where mk represents the number of items in Z that are assigned to component k, that is the number of times
zi = k in vector Z. Using the Dirichlet distribution as the prior for the series of multinomial random variables,
we can write the joint distribution as:

p(θ,Z|α) = p(θ|α)

M∏
i=1

p(zi|θ)

=
Γ(Kα)

Γ(α)K

K∏
k=1

θα−1
k

K∏
k=1

θmk
k

=
Γ(Kα)

Γ(α)K

K∏
k=1

θmk+α−1
k .

(4)

To build a collapsed Gibbs sampler, we can integrate out θ as follows:

p(Z|α) =

∫
θ
p(θ,Z|α)dθ

=

∫
θ
p(θ|α)

M∏
i=1

p(zi|θ)dθ

=

∫
θ

Γ(Kα)

Γ(α)K

K∏
k=1

θmk+α−1
k dθ

=
Γ(Kα)

Γ(α)K

∏K
k=1 Γ(mk + α)

Γ(
∑K

k=1(mk + α))

∫
θ

Γ(
∑K

k=1mk + α)∏K
k=1 Γ(mk + α)

K∏
k=1

θmk+α−1
k dθ

=
Γ(Kα)

Γ(α)K

∏K
k=1 Γ(mk + α)

Γ(
∑K

k=1(mk + α))
.

(5)
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Notice that the part on the right side of the equation on line 4 is a Dirichlet distribution which integrates to 1.
Gibbs sampling can be used to approximate the distribution p(Z|α). Let Z−(i) denote the set of hidden labels
excluding zi. The probability of zi can be written as:

P (zi|Z−(i), α) =
P (zi,Z−(i)|α)

P (Z−(i)|α)
. (6)

To sample zi, we do not need the exact probability of this equation, but only need to sample from the ratio of the
probabilities for each possible value of zi. That is:

P (zi = k|Z−(i), α) ∝ P (zi = k,Z−(i)|α). (7)

Note that the equation on the right takes the form of equation (5) with zi set equal to k which can be further
simplified as follows:

P (zi = k,Z−(i)|α) =
Γ(Kα)

Γ(α)K

∏K
k=1 Γ(mk + α)

Γ(
∑K

k=1(mk + α))

∝
K∏
k=1

Γ(mk + α),

(8)

since the values Γ(Kα), Γ(α)K , and Γ(
∑K

k=1mk + α) are all invariant with choice of zi. This equation can be
further simplified by using properties of the gamma function and recognizing that the number of items assigned
to k will increase by 1 when zi is set to k. We define mk−(i) to be the number of items assigned to k excluding
the current zi that is under investigation.

P (zi = k,Z−(i)|α) ∝
K∏
k=1

Γ(mk + α)

= Γ(mk−(i) + α+ 1)
∏
v 6=k

Γ(mv−(i) + α)

= (mk−(i) + α)Γ(mk−(i) + α)
∏
v 6=k

Γ(mv−(i) + α)

= (mk−(i) + α)
K∏
v=1

Γ(mv−(i) + α)

∝ (mk−(i) + α).

(9)

Therefore, the probability that item zi belongs to component k is proportional to the number of items already
assigned to component k plus the concentration parameter α (while excluding zi in the counts). These properties
will be used to build collapsed Gibbs samplers for celda C, celda G, and celda CG. We next outline celda C,
the model to cluster cells into populations and estimates the proportions of each population within each sample.
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Generative process

1. For each sample i ∈ {1..S}, draw θi ∼ DirK(α)

2. ϕk ∼ DirG(β) for k = 1..K

3. For each cell j ∈ {1..Mi} in sample i:
(a) Draw zi,j ∼ Mult(θi) for j = 1..Mi

(b) For each transcript t ∈ {1..Ni,j} in cell j in sample i, draw xi,j,t ∼ Mult(ϕzi,j )

Description of parameters:
S is the number of samples.
K is the number of cell subpopulations.
G is the number of genes.
Mi is the number of cells for sample i.
Ni,j is the number of transcripts for cell j in sample i.
zi,j is the hidden population for cell j in sample i xi,j,t is the tth transcript for cell j in sample i

We refer to θ as the ”Sample Probability (SP)” matrix as it defines the probability of each cell population
in each sample and ϕ as the ”Population Probability (PP)” matrix as it defines the probability of each gene
being observed in each cell population. The complete likelihood function is below followed by the plate diagram
(Figure 1):

p(X,θ,Z,ϕ|α, β) =

S∏
i=1

p(θi|α)

Mi∏
j=1

p(zi,j |θi)
K∏
k=1

p(ϕk|β)

Ni,j∏
t=1

p(xi,j,t|ϕzi,j ). (10)

Figure 1: Plate diagram for the cell clustering model, celda C. Bold circles indicate given prior parameters and
shaded circles indicate observed data.

θ
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z
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K N
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Inference using collapsed Gibbs sampling

To build a collapsed Gibbs sampler, θ and ϕ will be integrated out. As θ and ϕ are independent, terms dependent
on these variables can be grouped and considered separately:

p(X,Z|α, β) =

∫
θ

∫
ϕ
p(X,θ,Z,ϕ|α, β)dϕdθ

=

∫
θ

∫
ϕ

S∏
i=1

p(θi|α)

Mi∏
j=1

p(zi,j |θi)
K∏
k=1

p(ϕk|β)

Ni,j∏
t=1

p(xi,j,t|ϕzi,j )dϕdθ

=

∫
θ

S∏
i=1

p(θi|α)

Mi∏
j=1

p(zi,j |θi)dθ
∫
ϕ

K∏
k=1

p(ϕk|β)

S∏
i=1

Mi∏
j=1

Ni,j∏
t=1

p(xi,j,t|ϕzi,j )dϕ

=
S∏
i=1

∫
θi

p(θi|α)

Mi∏
j=1

p(zi,j |θi)dθi
K∏
k=1

∫
ϕk

p(ϕk|β)
S∏
i=1

∏
j∈Ci

k

Ni,j∏
t=1

p(xi,j,t|ϕk)dϕk,

(11)

where Ck is defined to be the set of cells assigned to subpopulation k and Cik is defined to be the set of cells
assigned to population k in sample i. Note that in the last step, the index for ϕ has been changed from zi,j to k
in P (wi,j,t = yg|ϕk) because we have grouped all cells that have the same k rather than ordering them by their

index in sample i (i.e.
∏Mi
j=1). The reording in the last step allows us to focus on the integration for each θi and

a ϕk separately.

Let θi,k be the probability of observing cell population k in sample i and mi,k be the number of cells in sample i
that have zi,j = k, then the probabilities for cell counts in sample i can be rewritten as:

Mi∏
j=1

p(zi,j |θi) =
K∏
k=1

θ
mi,k

i,k . (12)

The procedure outlined by equation (5) can be followed to integrate out each θi:

∫
θi

p(θi|α)

Mi∏
j=1

p(zi,j |θi)dθi =

∫
θi

Γ(Kα)

Γ(α)K

K∏
k=1

θα−1
i,k

K∏
k=1

θ
mi,k

i,k dθi

=
Γ(Kα)

Γ(α)K

∏K
k=1 Γ(mi,k + α)

Γ(
∑K

k=1(mi,k + α))
.

(13)

We can use a similar process to integrate out ϕk. Let ϕk,g be the probability of observing gene g in population k
and ni,j,g be the number of counts in sample i in cell j for gene g, and n(.),(k),g be the sum of all counts across all
samples across the subset of cells belonging to population k for gene g. The probablity for observed gene counts
in population k can be rewritten as:

S∏
i=1

∏
j∈Ci

k

Ni,j∏
t=1

p(xi,j,t|ϕk) =

G∏
g=1

ϕ
n(.),(k),g

k,g . (14)

Now, we can use the procedure outlined in equation (5) to integrate out ϕk:
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∫
ϕk

p(ϕk|β)
S∏
i=1

Mi∏
j=1

Ni,j∏
t=1

p(xi,j,t|ϕzi,j )dϕk =

∫
ϕk

Γ(Gβ)

Γ(β)G

G∏
g=1

ϕβ−1
k,g

G∏
g=1

ϕ
n(.),(k),g

k,g dϕk

=
Γ(Gβ)

Γ(β)G

∏G
g=1 Γ(n(.),(k),g + β)

Γ(
∑G

g=1(n(.),(k),g + β))
.

(15)

For completeness, the collapsed likelihood with θ and ϕ integrated out is as follows:

p(X,Z|α, β) =
S∏
i=1

Γ(Kα)

Γ(α)K

∏K
k=1 Γ(mi,k + α)

Γ(
∑K

k=1(mi,k + α))
×

K∏
k=1

Γ(Gβ)

Γ(β)G

∏G
g=1 Γ(n(.),(k),g + β)

Γ(
∑G

g=1(n(.),(k),g + β))
. (16)

The distribution p(Z|X, α, β) can be approximated with Gibbs sampling. Let zi,j be the hidden subpopulation
for cell j in sample i, and let Z−(i,j) denote the set of hidden populations for all other cells. We therefore want
to derive the following probability:

p(zi,j = k|Z−(i,j),X, α, β) =
P (zi,j = k,Z−(i,j),X|α, β)

P (Z−(i,j),X|α, β)

∝ P (zi,j = k,Z−(i,j),X|α, β).

(17)

The equation on the right takes the form of the likelihood function with z(i,j) set equal to k which can be simplified
according to the procedure outlined in equations (6-9):

P (zi,j = k,Z−(i,j),X|α, β) =
S∏
i=1

Γ(Kα)

Γ(α)K

∏K
k=1 Γ(mi,k + α)

Γ(
∑K

k=1(mi,k + α))

K∏
k=1

Γ(Gβ)

Γ(β)G

∏G
g=1 Γ(n(.),(k),g + β)

Γ(
∑G

g=1(n(.),(k),g + β))

=

[
Γ(Kα)

Γ(α)K

]S S∏
i=1

∏K
k=1 Γ(mi,k + α)

Γ(
∑K

k=1(mi,k + α))

[
Γ(Gβ)

Γ(β)G

]K K∏
k=1

∏G
g=1 Γ(n(.),(k),g + β)

Γ(
∑G

g=1(n(.),(k),g + β))

∝
S∏
i=1

∏K
k=1 Γ(mi,k + α)

Γ(
∑K

k=1(mi,k + α))

K∏
k=1

∏G
g=1 Γ(n(.),(k),g + β)

Γ(
∑G

g=1(n(.),(k),g + β))

∝
K∏
k=1

Γ(mi,k + α)

K∏
k=1

∏G
g=1 Γ(n(.),(k),g + β)

Γ(
∑G

g=1(n(.),(k),g + β))

∝ (mi,k−(i,j) + α)
K∏
k=1

∏G
g=1 Γ(n(.),(k),g + β)

Γ(
∑G

g=1(n(.),(k),g + β))
,

(18)

where mi,k is the number of cells assigned to population k in sample i and mi,k−(i,j) is the number of cells assigned
to population k in sample i excluding the cell j in sample i. The left side of the equation could further simplified
in line 3 due to the fact that the label is only changing for cell j in sample i and the number of cells in each
population for all other samples will be stationary. Therefore, the part of the equation concerning the counts for
all samples other than sample i will be invariant with respect to zi,j . For clarity:

S∏
i=1

∏K
k=1 Γ(mi,k + α)

Γ(
∑K

k=1(mi,k + α))
=

∏K
k=1 Γ(mi,k + α)

Γ(
∑K

k=1(mi,k + α))

∏
v 6=i

∏K
k=1 Γ(mv,k + α)

Γ(
∑K

k=1(mv,k + α))

∝
K∏
k=1

Γ(mi,k + α),

(19)
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where v is the set of sample indices that are not equal to the current sample i. After completing Gibbs sample
and identifying the Z with the highest probability, point estimates for the Dirichlet distribution probabilities can
derived as described in the next section.

Inference using point estimates

Given sample of Z, we can derive point estimates for the Dirichlet distributions. For θ, we have:

θ̂i,k =
mi,k + α

Mi +Kα
, (20)

where mi,k is the number of cells assigned to population k in sample i and Mi is the total number of cells in sample
i. For ϕ, we have:

ϕ̂k,g =
n(·),(k),g + β

n(·),(k),(·) +Gβ
, (21)

where n(·),(k),g is the sum of counts across all samples and cells belonging to subpopulaiton k for gene g. n(·),(k),(·)
is defined as the sum of counts across all samples and across all cells in subpopulation k for all genes.

Given θ̂ and ϕ̂, we can identify the most likely cluster label for each zi,j :

ẑi,j = argmaxk

{
p(zi,j = k|Xi,j , θ̂, ϕ̂)

}
= argmaxk

θ̂i,k
g∏
g=1

ϕ̂
ni,j,g

k,g

 ,
(22)

where Xi,j is the counts for cell j in sample i. In this inference procedure, we alternate between estimating

the Dirichlet distribution probabilities (θ̂ and ϕ̂) and the cell labels (ẑi,j). Since each cell is fully assigned to a
subpopulation, this procedure is not truly expectation-maximization (EM). It more closely resembles the procedure
used in K-means clustering, which is sometimes refered to as ”hard” EM.

Perplexity

Perplexity is a measure directly related to the probability of observing cell counts given the estimated model
parameters and can be used in cross validation or subsampling to help in the choice of K. Perplexity is defined
as:

Perplexity(x) = exp

(
− log(p(x))∑S

i=1

∑Mi
j=1Ni,j

)
, (23)

where Ni,j is the number of counts within each cell j in sample i. log(p(x)) is defined as:

log(p(x)) =

S∑
i=1

Mj∑
j=1

log

 K∑
k=1

θi,k

G∏
g=1

ϕ
ni,j,g

k,g

 , (24)

where θi,k is the probabiity of a cell belonging to a cell population k in sample i, ϕk,g is the probability of gene g
in cell population k, nj,g is the count of gene g in cell j in sample i.
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5.4 celda G: Clustering genes into transcriptional modules across cells

Background

The goal of text mining models such as Latent Dirichlet Allocation (LDA) is to identify hidden components called
“topics” across a set of documents and estimate the degree to which each topic is present in each document [2].
Each topic is a distribution over words in the vocabulary and represents the degree to which the frequency of word
counts co-occur with each other across the documents. Furthuremore, each document is treated as a distribution
over the collection of topics and with each document having a different combination of topics. The goal of the
celda G model is to cluster genes into ”transcriptional modules” and estimate the degree to which each module is
present in each cell. The fundemental biological principle being leveraged is that genes which are under control of
the same transcriptional programs (i.e. transcription factors and epigenetic regulators) will co-vary in expression
across cells.

The goal of many gene expression clustering algorithms is to group genes into distinct, non-overlapping sets of
genes (i.e. hard-clustering of genes). The rationale for this type of clustering is that genes with highly similar
expression patterns will be involved in the same biological processes. In LDA and the majority of topic models,
each word has a non-zero probability in each topic and therefore every topic can emit every word. As such, topics
can be viewed as a mixture of words, a form of ”soft-clustering”. In the context of gene expression, this can lead to
difficulties in interpretation as all genes will belong to all transcriptional modules. For example it would be difficult
to interpret a transcriptional module that had a non-zero probability for ciliary- and adipose-related genes. One
could apply various post-hoc analyses to the results of LDA to find which types of genes have relatively higher
probabilities in each transcriptional module. However, this requires the choice of which additional heuristic to
use along with its various thresholds. We sought to streamline the inference by incorporating the hard-clustering
directly into the model and assigning each gene to a unique transcriptional module.

The sparse Topic Model (sparseTM) is an extension to LDA that has the capability to turn words completely ”off”
in different topics [3]. The goal of the sparseTM is to decouple sparsity and smoothness in the topic distributions.
While words still have the capability to be emitted by more than one topic, each word will not necessarily be
emitted by all topics. Here, we leverage this technique to turn off genes in all transcriptional modules except one,
thus performing ”hard-clustering”. For most topic models, the topics are drawn from an exchangeable Dirichlet
in which the components of the vector parameter are equal to the same scalar. Assume that G is the number of
genes. The exchangeable Dirichlet for a transcriptional module, ψ, can be described as:

ψ ∼ DirG(δ1), (25)

where ψ is drawn from a Dirichlet parameterized by the scalar δ multiplied by a G-length vector of 1’s. In a
Dirichlet distribution, if a parameter is set to zero instead of a positive scalar, the probability of that component
in the resulting distribution will also be zero. In the celda G model, we use different indicator vectors for each
transcriptional module to turn genes ”on” or ”off” in each module:

ψl ∼ DirG(δYl). (26)

Here Yl is a G-length vector of 0’s and 1’s for transcpriptional module ψl used to set each parameter of the Dirichlet
to 0 or δ. In contrast to sparseTM, the Yl vectors are controlled such that a gene is only turned on in a single
module which will result in distinct, non-overlapping clusters of genes. The entire generative process is outlined
in the next section.
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Generative process

1. Draw η ∼ DirL(γ)

2. For each gene g ∈ {1..G}, draw yg ∼ Mult(η)

3. For each transcriptional module distribution l ∈ {1..L} :
(a) Define Yl = [yg = l]Gg=1

(b) Draw ψl ∼ DirG(δYl)

4. For each cell j ∈ {1..M}:
(a) Draw transcriptional module proportions ϕj ∼ DirL(β)

(b) For the t-th transcript in cell j, t ∈ {1..Nj}:
i. Draw wj,t ∼ Mult(ϕj)

ii. Draw xj,t ∼ Mult(ψwj,t)

Description of parameters:
L is the number of transcriptional modules.
G is the number of genes.
yg is the hidden module for gene g
M is the number of cells.
Nj is the number of transcripts for cell j.
wj,t is the hidden module for transcript xj,t
xj,t is the tth transcript for cell j

In this model, η is a Dirichlet with length equal to the total number of transcriptional modules specified by L. yg
is a single categorical draw from η for gene g and will return a value between 1 and L. ”[]” refers to a Boolean
operator and returns 1 when the expression within the bracket is true and 0 otherwise. We use this operator in
step 3a to denote that the component in Yl corresponding to gene g will be set to 1 if yg = l and 0 otherwise.
Yl will then be used as an indicator variable in step 3b to control the genes turned on in transcriptional module
l. The combination of these variables is used to control the assignment of each gene to a single transcriptional
module.

We also note that this model has two levels of hidden variables, one for the overall gene, yg, and one for each
individual transcript t in each cell j, wj,t. Another interesting property of this framework is that the posterior will
have a probability of 0 anywhere the hidden variable for an individual count of a gene does not equal the hidden
variable for the overall gene. This property will be utilized to marginalize out the set of W as decribed in the
inference section.

We also implement a similar nuance introduced in the sparseTM by Wang and Blei et al (2009). When a tran-
scriptional module does not have any genes assigned to it, the likelihood is undefined. To overcome this problem,
an additional ”auxiliary” gene is introduced as the ”G + 1”-th term in the matrix and assigned to the module
with no genes. Otherwise, the indicator variable for the auxiliary gene will be set to 0 in all modules. Note that
the auxiliary genes do not have any observed counts in the dataset. We allow for multiple auxiliary genes to be
instantiated if multiple transcriptional modules do not have any genes assigned to them.

We refer to ϕ as the ”Cell Probability (CP)” matrix as it defines the probablity of each transcriptional module
within each cell and ψ as the ”Gene Probability (GP)” matrix as it defines the probability of each gene within
each transcriptional module. The complete likelihood function is below followed by the plate diagram (Figure
2):

P (η,ϕ,ψ,Y ,W ,X|β, δ, γ) = P (η|γ)
G∏
g=1

P (yg|η)
M∏
j=1

P (ϕj |β)
L∏
l=1

P (ψl|δ, Yl)
Nj∏
t=1

P (wj,t|ϕj)P (xj,t|ψwj,t). (27)
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Figure 2: Plate diagram for gene clustering model, celda G. Bold circles indicate given prior parameters and
shaded circles indicate observed data.
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Inference using collapsed Gibbs sampling

To build a collapsed Gibbs sampler, we will integrate out η, ϕ, ψ, and W :

P (Y ,X|β, δ, γ) =

∫
η

∫
ϕ

∫
ψ
P (η|γ)

G∏
g=1

P (yg|η)
M∏
j=1

P (ϕj |β)
L∏
l=1

P (ψl|δ, Yl)

×
Nj∏
t=1

(
L∑
v=1

P (wj,t = v|ϕj)P (xj,t = g|ψv)

)
dψdϕdη.

(28)

We will first simplify the marginalization over the hidden state for each count, wj,t. This sum can be subdivived into
two components. The first component corresponds to part of the summation where the hidden state assignment
for an individual count within a gene (denoted by wj,t) is the same as the overall hidden gene label (denoted by yg).
The second part corresponds to summation over the remaining components where the hidden state assignment for
the count is not equal to the overall gene label yg:

L∑
v=1

P (wj,t = v|ϕj)P (xj,t = g|ψv) = P (wj,t = yg|ϕj)P (xj,t = g|ψyg)

+
∑
v′ 6=yg

P (wj,t = v′|ϕj)P (xj,t = g|ψv′).
(29)

In LDA, all of the components in this marginalization would be nonzero. However, in this model, genes have been
assigned to a single transcriptional module based on the set of Y indicator variables. That is, P (xj,t = g|ψv) = 0
when v is not equal to yg for gene g. In other words, since each gene can only be assigned to a single transcriptional
module, according to yg, the probability of a count being assigned to that gene in another transcriptional module
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(i.e. when wj,t 6= yg) is zero. In fact, the only nonzero component in the sum will occur when wj,t = yg. The
combination of the Y indicator variables and the marginalization of the W allows us to simultaneously estimate
the same hidden state for all counts in a gene rather than sampling different states for each individual count and
thus provides the ”hard clustering” behavior on the genes. For clarity, the sum is simplified to:

L∑
v=1

P (wj,t = v|ϕj)P (xj,t = g|ψv) = P (wj,t = yg|ϕj)P (xj,t = g|ψyg). (30)

And the overall likelihood will ”collapse” back down to a product:

P (Y ,X|β, δ, γ) =

∫
η

∫
ϕ

∫
ψ
P (η|γ)

G∏
g=1

P (yg|η)
M∏
j=1

P (ϕj |β)
L∏
l=1

P (ψl|δ, Yl)
Nj∏
t=1

P (wj,t = yg|ϕj)P (xj,t = g|ψyg)dψdϕdη.

(31)

We can also integrate out the probabilities from the Dirichlet-multinomial distributions. First, we group terms
related to each integration:

P (Y ,X|β, δ, γ) =

∫
η
P (η|γ)

G∏
g=1

P (yg|η)dη

×
∫
ϕ

M∏
j=1

P (ϕj |β)

Nj∏
t=1

P (wj,t = yg|ϕj)dϕ

×
∫
ψ

L∏
l=1

P (ψl|δ, Yl)
M∏
j=1

Nj∏
t=1

P (xj,t = g|ψyg)dψ.

(32)

If we use the notation Vl to denote the subset of genes that are assigned to module l and |Vl| to denote the number
of genes assigned to module l, we can re-write the series of multinomial probabilties related to η:

G∏
g=1

p(yg|η) =

L∏
l=1

η
|Vl|
l , (33)

where ηl is the probability of a gene being assigned to module l. Now η can be integrated out according to equation
(5):

∫
η
P (η|γ)

G∏
g=1

P (yg|η)dη =

∫
η

Γ(Lγ)

Γ(γ)L

L∏
l=1

ηγ−1
l

L∏
l=1

η
|Vl|
l dη

=
Γ(Lγ)

Γ(γ)L

∏L
l=1 Γ(|Vl|+ γ)

Γ(
∑L

l=1(|Vl|+ γ))
.

(34)

Next, we focus on ϕ. Let nj,g be the number of counts for gene g in cell j and let (·) be used to indicate a sum
across all elements in a dimension. Also, let nj,(Vl) be the sum of counts from the set of genes assigned to module
l in cell j. We can re-write the multinomial probabilities for a single cell j as:
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Nj∏
t=1

P (wj,t = yg|ϕj) =

L∏
l=1

ϕ
nj,(Vl)

j,l , (35)

where ϕj,l is the probability of a module l in cell j. Now terms can be grouped and each ϕl can be integrated out
according to equation (5):

∫
ϕ

M∏
j=1

P (ϕj |β)

Nj∏
t=1

P (wj,t = yg|ϕj)dϕ =

∫
ϕ

M∏
j=1

Γ(Lβ)

Γ(β)L

L∏
l=1

ϕβ−1
j,l

L∏
l=1

ϕ
nj,(Vl)

j,l dϕ

=
M∏
j=1

∫
ϕj

Γ(Lβ)

Γ(β)L

L∏
l=1

ϕβ−1
j,l

L∏
l=1

ϕ
nj,(Vl)

j,l dϕj

=

M∏
j=1

Γ(Lβ)

Γ(β)L

∏L
l=1 Γ(nj,(Vl) + β)

Γ(
∑L

l=1(nj,(Vl) + β))
.

(36)

Let, n(·),g represent the sum of counts for gene g across all cells. The multinomial probabilities related to ψl can
be re-written as:

M∏
j=1

Nj∏
t=1

P (xj,t = g|ψyg) =
L∏
l=1

∏
v∈Vl

ψ
n(·),v
l,v . (37)

We use the notation
∑

v∈Vl or
∏
v∈Vl to denote the sum or product over genes assigned to module l, respectively.

That is, the sum or product over the active, nonzero components of ψl.

∫
ψ
P (ψl|δ, Yl)

M∏
j=1

Nj∏
t=1

P (xj,t = g|ψyg)dψ =

∫
ψ

L∏
l=1

Γ(|Vl|δ)
Γ(δ)|Vl|

∏
v∈Vl

ψδ−1
l,v

 L∏
l=1

∏
v∈Vl

ψ
n(·),v
l,v

 dψ

=

L∏
l=1

∫
ψl

Γ(|Vl|δ)
Γ(δ)|Vl|

∏
v∈Vl

ψδ−1
l,v

∏
v∈Vl

ψ
n(·),v
l,v dψl

=

L∏
l=1

Γ(|Vl|δ)
Γ(δ)|Vl|

∏
v∈Vl Γ(n(·),v + δ)

Γ(
∑

v∈Vl(n(·),v + δ))
.

(38)

In summary, the complete collapsed likelihood is as follows:

P (Y ,X|β, δ, γ) =
Γ(Lγ)

Γ(γ)L
×
∏L
l=1 Γ(|Vl|+ γ)

Γ(
∑L

l=1(|Vl|+ γ))

×
M∏
j=1

Γ(Lβ)

Γ(β)L
×
∏L
l=1 Γ(nj,(Vl) + β)

Γ(
∑L

l=1(nj,(Vl) + β))

×
L∏
l=1

Γ(|Vl|δ)
Γ(δ)|Vl|

×
∏
v∈Vl Γ(n(·),v + δ)

Γ(
∑

v∈Vl(n(·),v + δ))
.

(39)
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The distribution p(Y |X, β, δ, γ) can be approximated with Gibbs sampling. Let yg be the hidden state for gene
j and let Y−(g) denote the set of hidden modules for all other genes. We therefore want to derive the following
probability:

P (yg = l|Y−(g),X, β, δ, γ) =
P (yg = l,Y−(g),X|β, δ, γ)

P (Y−(g),X|β, δ, γ)

∝ P (yg = l,Y−(g),X|β, δ, γ),

(40)

which is equal to the likelihood equation listed above. The likelihood equation can be simplified by removing
elements that are invariant with different choices of yg. For the first component, we have

Γ(Lγ)

Γ(γ)L
×
∏L
l=1 Γ(|Vl|+ γ)

Γ(
∑L

l=1(|Vl|+ γ))
∝
∏L
l=1 Γ(|Vl|+ γ)

Γ(
∑L

l=1(|Vl|+ γ))
. (41)

For the second component, we have:

M∏
j=1

Γ(Lβ)

Γ(β)L
×
∏L
l=1 Γ(nj,(Vl) + β)

Γ(
∑L

l=1(nj,(Vl) + β))
=

[
Γ(Lβ)

Γ(β)L

]M
×
∏M
j=1

∏L
l=1 Γ(nj,(Vl) + β)∏M

j=1 Γ(
∑L

l=1(nj,(Vl) + β))

∝
M∏
j=1

L∏
l=1

Γ(nj,(Vl) + β).

(42)

Note that
∑L

l=1 nj,(Vl) + β = Nj +Lβ, where Nj is the total number of counts in cell j. This quantity is invariant
with respect to choice of yg and thus can be dropped. For the final component, we have:

L∏
l=1

Γ(|Vl|δ)
Γ(δ)|Vl|

×
∏
v∈Vl Γ(n(·),v + δ)

Γ(
∑

v∈Vl(n(·),v + δ))
∝

L∏
l=1

Γ(|Vl|δ)
Γ(δ)|Vl|

1

Γ(
∑

v∈Vl(n(·),v + δ))
. (43)

The full Gibbs sampling equation is as follows:

P (yg = l|X,Y−(g), β, δ, γ) ∝
∏L
l=1 Γ(|Vl|+ γ)

Γ(
∑L

l=1(|Vl|+ γ))
×

M∏
j=1

L∏
l=1

Γ(nj,(Vl) + β)×
L∏
l=1

Γ(|Vl|δ)
Γ(δ)|Vl|

1

Γ(
∑

v∈Vl(n(·),v + δ))
. (44)

This equation could be further simplified when no auxillary genes are instantiated. For example, the quantity∏L
l=1 Γ(δ)|Vl| = Γ(δ)

∑
l |Vl| = Γ(δ)G is invariant to the choice of yg when no auxillary genes are instantiated. How-

ever, when an auxillary gene is activated in a module without any real genes, the total number of genes G increases
by one. Therefore, we did not simplify components that depend on the total number of genes further.

The second and third terms of above equation can be further simplified to speed up computing time as follows,
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given that gene g is currently in module l:

M∏
j=1

L∏
l=1

Γ(nj,(Vl) + β) =
M∏
j=1

[
L∏
l=1

Γ(nj,(Vl) + β)

]

=

M∏
j=1

Γ(nj,(Vl) + β)×
∏
l′:l′ 6=l

Γ(nj,(Vl′ ) + β)


=

M∏
j=1

Γ(nj,(Vl) + β)×
∏
l′:l′ 6=l

Γ(n
−(g)
j,(Vl′ )

+ β)


=

M∏
j=1

Γ(nj,(Vl) + β)

Γ(n
−(g)
j,(Vl)

+ β)
×

L∏
l′=1

Γ(n
−(g)
j,(Vl′ )

+ β)


∝

M∏
j=1

Γ(nj,(Vl) + β)

Γ(n
−(g)
j,(Vl)

+ β)


L∏
l=1

Γ(|Vl|δ)
Γ(δ)|Vl|

1

Γ(
∑

v∈Vl(n(·),v + δ))
=

L∏
l=1

Γ(|Vl|δ)
Γ(δ)|Vl|

×
L∏
l=1

1

Γ(
∑

v∈Vl(n(·),v + δ))

=

[
L∏
l=1

Γ(|Vl|δ)
Γ(δ)|Vl|

]
×

 1

Γ(
∑

v∈Vl(n(·),v + δ))

∏
l′:l′ 6=l

1

Γ(
∑

v∈Vl′
(n(·),v + δ))


=

[
L∏
l=1

Γ(|Vl|δ)
Γ(δ)|Vl|

]
×

 1

Γ(
∑

v∈Vl(n(·),v + δ))

∏
l′:l′ 6=l

1

Γ(
∑

v∈Vl′
(n
−(g)
(·),v + δ))


=

[
L∏
l=1

Γ(|Vl|δ)
Γ(δ)|Vl|

]
×

Γ(
∑

v∈Vl(n
−(g)
(·),v + δ))

Γ(
∑

v∈Vl(n(·),v + δ))

L∏
l′=1

1

Γ(
∑

v∈Vl′
(n
−(g)
(·),v + δ))


∝

[
L∏
l=1

Γ(|Vl|δ)
Γ(δ)|Vl|

]
×

Γ(
∑

v∈Vl(n
−(g)
(·),v + δ))

Γ(
∑

v∈Vl(n(·),v + δ))

 ,

(45)

where n−(g) is the total number of transcripts leaving out those from gene g. Specifically, for example, n
−(g)
j,(Vl)

is
the total number of transcripts in cell j of all the genes in module l leaving out those from gene g. Note that when

gene g is currently not in module l′, n
−(g)
j,(V ′l )

is the same as nj,(V ′l ).

Hence the full Gibbs sampling equation is simplified as:

P (yg = l|X,Y−(g), β, δ, γ) ∝
∏L
l=1 Γ(|Vl|+ γ)

Γ(
∑L

l=1(|Vl|+ γ))
×

M∏
j=1

Γ(nj,(Vl) + β)

Γ(n
−(g)
j,(Vl)

+ β)

× [ L∏
l=1

Γ(|Vl|δ)
Γ(δ)|Vl|

]
×

Γ(
∑

v∈Vl(n
−(g)
(·),v + δ))

Γ(
∑

v∈Vl(n(·),v + δ))
.

(46)

Posterior point estimates for Dirichlet distributions

With given sample of Y , we can derive point estimates for the Dirichlet distributions. For ϕ, we have:

ϕ̂j,l =
nj,(Vl) + β

Nj + Lβ
, (47)
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where nj,(Vl) is the sum of counts across all genes belonging to module l for cell j and Nj is the total number of
counts for cell j. For ψ, we have:

ψ̂l,g =
n(·),g + δ

n(·),(Vl) + |Vl|δ
, (48)

if yg = l (i.e. if gene g is assigned to transcriptional module l). If yg 6= l, then the posterior probability is 0. n(·),g
is the sum of counts for gene g across all cells and n(·),(Vl) is the sum of counts across all genes belonging to module
l for all cells.

Perplexity

Perplexity was previously defined in equation (23). For the celda G model, we define log(p(x)) to be:

log(p(x)) =

Mj∑
j=1

G∑
g=1

nj,g log

[
L∑
l=1

ϕj,lψl,g

]
, (49)

where ϕj,l is the probabiity transcriptional module l in cell j, ψl,g is the probability of gene g in transcriptional
module l, nj,g is the number of counts in gene g for cell j, and ηl is the probability of a gene being assigned to
transcriptional module l. Note that the only non-zero ψl,g will be where yg = l for gene g and thus the sum of the
equation can be simplified to:

log(p(x)) =

Mj∑
j=1

G∑
g=1

nj,g log(ϕj,ygψyg ,g). (50)
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5.5 celda CG: Simultaneous clustering of genes into transcriptional modules and cells into
subpopulation

Background

Celda CG combines principles from both celda C and celda G models to perform co-clustering of genes into
transcriptional modules and cells into subpopulations. A co-clustering topic model was previously developed called
“Latent Dirichlet Co-Clustering” [5], in which each document is modeled as a mixture of document topics, each
topic is a distribution over some paragraphs of the text, each of paragraph in the document is a mixture of word
topics, and each word topic is a distribution over words. Here, we model each sample as a mixture of cellular
subpopulations, each subpopulation as a mixture of transcriptional modules, and each transcriptional module as
a mixture of genes. Note that we include the “hard-clustering” approach of celda G where each gene can only
belong to a single transcriptional module.

Generative process

1. Draw η ∼ DirL(γ)

2. For each gene g ∈ {1..G}, draw yg ∼ Mult(η)

3. For each transcriptional module distribution l ∈ {1..L} :
(a) Define Yl = [yg = l]Gg=1

(b) Draw ψl ∼ Dir(δYl)

4. For each sample i ∈ {1..S}, draw θi ∼ DirK(α)

5. For each cell population k ∈ {1..K}, draw ϕk ∼ DirL(β)

6. For each cell j ∈ {1..Mi} in sample i:
(a) Draw zi,j ∼ Mult(θi)

(b) For the t-th transcript in cell j in sample i, t ∈ {1..Ni,j}:
i. Draw wi,j,t ∼ Mult(ϕzi,j )

ii. Draw xi,j,t ∼ Mult(ψwi,j,t)

Description of parameters:
S is the number of samples.
Mi is the number of cells in sample i.
K is the number of cellular subpopulations
L is the number of transcriptional modules.
G is the number of genes.
yg is the hidden transcriptional module for gene g
zi,j is the hidden cell population for cell j in sample i
Ni,j is the number of transcripts for cell j in sample i.
wi,j,t is the hidden transcriptional module for transcript xi,j,t
xi,j,t is the tth transcript for cell j in sample i.

Similar to the previous models, we refer to θ as the ”Sample Probability (SP)” matrix as it defines the
probability of each cell population in each sample, ϕ as the ”Population Probability (PP)” matrix as it defines
the probability of each transcriptional module in each cell population, and ψ as the ”Gene Probability (GP)”
matrix as it defines the probability of each gene within each transcriptional module. The complete likelihood
function is below followed by the plate diagram (Figure 3):

P (η,ψ, θ,ϕ,Y ,Z,W ,X|α, β, γ, δ) =

P (η|γ)

G∏
g=1

P (yg|η)

L∏
l=1

P (ψl|δ,Y )

S∏
i=1

p(θi|α)

K∏
k=1

P (ϕk|β)

Mi∏
j=1

p(zi,j |θi)
Ni,j∏
t=1

P (wi,j,t|ϕzi,j )P (xi,j,t|ψwi,j,t).
(51)
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Figure 3: Plate diagram for cell and gene clustering model. Bold circles indicate given prior parameters and shaded
circles indicate observed data.
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Inference using collapsed Gibbs sampling

To build the collapsed Gibbs sampler, we next integrate out η, ϕ, φ, ψ, and W :

P (Y ,Z,X|α, β, γ, δ) =

∫
η

∫
ψ

∫
θ

∫
ϕ
P (η|γ)

G∏
g=1

P (yg|η)

L∏
l=1

P (ψl|δ, Yl)
S∏
i=1

p(θi|α)
K∏
k=1

P (ϕk|β)

Mi∏
j=1

p(zi,j |θi)

×
Ni,j∏
t=1

(
L∑
v=1

P (wi,j,t = v|ϕzi,j )P (xi,j,t = g|ψv)

)
dϕdθdψdη.

(52)

Using the procedure outlined in celda G, we can reduce the sum related to the marginalization of W by removing
all components that are zero (i.e. all components where wi,j,t 6= yg):
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P (Y ,Z,X|α, β, γ, δ) =

∫
η

∫
ψ

∫
θ

∫
ϕ
P (η|γ)

G∏
g=1

P (yg|η)

L∏
l=1

P (ψl|δ, Yl)
S∏
i=1

p(θi|α)

K∏
k=1

P (ϕk|β)

Mi∏
j=1

p(zi,j |θi)

×
Ni,j∏
t=1

P (wi,j,t = yg|ϕzi,j )P (xi,j,t = g|ψyg)dϕdθdψdη.

(53)

To integrate out the probabilities from the Dirichlet-multinomial distributions, we group terms related to η, θ, ϕ,
and ψ:

P (Y ,Z,X|α, β, γ, δ) =

∫
η
P (η|γ)

G∏
g=1

P (yg|η)dη

×
∫
θ

S∏
i=1

p(θi|α)

Mi∏
j=1

p(zi,j |θi)dθ

×
∫
ϕ

K∏
k=1

P (ϕk|β)

S∏
i=1

Mi∏
j=1

Ni,j∏
t=1

P (wi,j,t = yg|ϕzi,j )dϕ

×
∫
ψ

L∏
l=1

P (ψl|δ, Yl)
S∏
i=1

Mi∏
j=1

Ni,j∏
t=1

P (xi,j,t = g|ψyg)dψ.

(54)

The integration for θ and η and follow the same procedures described in equations (13) and (34), respectively.
Next, we can rearrange the components related to ϕ to focus on a single ϕk as they are independent of one
another. If we define Ck to be the set of cells assigned to subpopulation k and Cik to be the set of cells assigned
to population k in sample i, then we have:

∫
ϕ

K∏
k=1

P (ϕk|β)
S∏
i=1

Mi∏
j=1

Ni,j∏
t=1

P (wi,j,t = yg|ϕzi,j )dϕ =
K∏
k=1

∫
ϕk

P (ϕk|β)
S∏
i=1

∏
j∈Ci

k

Ni,j∏
t=1

P (wi,j,t = yg|ϕk)dϕk. (55)

Note that the index for ϕ has been changed from zi,j to k in P (wi,j,t = yg|ϕk) because we have grouped all cells

that have the same k rather than ordering them by their index in sample i (i.e.
∏Mi
j=1). The series of multinomial

probabilties for ϕk can be re-written as:

S∏
i=1

∏
j∈Ci

k

Ni,j∏
t=1

P (wi,j,t = yg|ϕk) =
L∏
l=1

ϕ
n(·),(k),(Vl)
k,l , (56)

where n(·),(k),(Vl) represents the sum of counts across all samples for cells assigned to subpopulation k for genes
belonging to transcriptional module l. We can then integrate out ϕk as follows according to the process described
in equation (5):

∫
ϕk

P (ϕk|β)
S∏
i=1

∏
j∈Ci

k

Ni,j∏
t=1

P (wi,j,t = yg|ϕk)dϕk =

∫
ϕk

Γ(Lβ)

Γ(β)L

L∏
l=1

ϕβ−1
k,l

L∏
l=1

ϕ
n(·),(k),(Vl)
k,l dϕk

=
Γ(Lβ)

Γ(β)L

∏L
l=1 Γ(n(·),(k),(Vl) + β)

Γ(
∑L

l=1(n(·),(k),(Vl) + β))
.

(57)
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Next, we focus on the integration of ψ. Let, n(·),(·),g represent the sum of counts for gene g across all cells from
all samples. The multinomial probabilities related to ψ can be re-written as:

S∏
i=1

Mi∏
j=1

Ni,j∏
t=1

P (xi,j,t = g|ψyg) =

L∏
l=1

∏
v∈Vl

ψ
n(·),(·),v
l,v , (58)

where
∏
v∈Vl represents a product over the set of genes assigned to transcriptional module l, similar to equation

(37). Terms related to a specific ψl can then be grouped and integreted over:

∫
ψ

L∏
l=1

P (ψl|δ, Yl)
S∏
i=1

M∏
j=1

Nj∏
t=1

P (xi,j,t = g|ψyg)dψ =

∫
ψ

L∏
l=1

Γ(|Vl|δ)
Γ(δ)|Vl|

∏
v∈Vl

ψδ−1
l,v

 L∏
l=1

∏
v∈Vl

ψ
n(·),(·),v
l,v dψ

=
L∏
l=1

∫
ψl

Γ(|Vl|δ)
Γ(δ)|Vl|

∏
v∈Vl

ψδ−1
l,v

∏
v∈Vl

ψ
n(·),(·),v
l,v dψl

=
L∏
l=1

Γ(|Vl|δ)
Γ(δ)|Vl|

∏
v∈Vl Γ(n(·),(·),v + δ)

Γ(
∑

v∈Vl(n(·),(·),v + δ))
.

(59)

For clarity, the complete collapsed likelihood is as follows:

P (Y ,Z,X|α, β, γ, δ) =
Γ(Lγ)

Γ(γ)L
×
∏L
l=1 Γ(|Vl|+ γ)

Γ(
∑L

l=1(|Vl|+ γ))

×
S∏
i=1

Γ(Kα)

Γ(α)K

∏K
k=1 Γ(mi,k + α)

Γ(
∑K

k=1(mi,k + α))

×
K∏
k=1

Γ(Lβ)

Γ(β)L

∏L
l=1 Γ(n(·),(k),(Vl) + β)

Γ(
∑L

l=1(n(·),(k),(Vl) + β))

×
L∏
l=1

Γ(|Vl|δ)
Γ(δ)|Vl|

∏
v∈Vl Γ(n(·),(·),v + δ)

Γ(
∑

v∈Vl(n(·),(·),v + δ))
.

(60)

To perform Gibbs sampling, we will estimate the conditional distributions for the Z and Y indicator variables
separately. For Z, we have:

p(zi,j = k|Z−(i,j),Y ,X, α, β, δ, γ) =
P (zi,j = k,Z−(i,j),Y ,X|α, β, δ, γ)

P (Z−(i,j),Y ,X|α, β, δ, γ)

∝ P (zi,j = k,Z−(i,j),Y ,X|α, β, δ, γ).

(61)

The first and last lines on the right side of equation (60) are invariant with respect to the configuration of cell
population hidden variables Z and can be dropped. The second component can be simplified in the same manner
as the corresponding component in the celda C model in equation (18). Therefore the final conditional distribution
can be summarized as:

P (zi,j = k,Z−(i,j),Y ,X|α, β, δ, γ) ∝ (mi,k−(i,j) + α)
K∏
k=1

Γ(Lβ)

Γ(β)L

∏L
l=1 Γ(n(·),(k),(Vl) + β)

Γ(
∑L

l=1(n(·),(k),(Vl) + β))
, (62)
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where mi,(k)−(i,j) is is the number of cells assigned to subpopulation k in sample i excluding the cell zi,j . Impor-
tantly, the form of equation (62) is similar to that of the final line in equation (18) in celda C. The only difference
is that celda C is performing the calculation over all genes whereas celda CG is performing the calculation over
transcriptional modules. This can be elucidated by the fact that celda C uses n(·),(k),g which is the sum of counts
across all samples for cells in population k for gene g, whereas celda CG uses n(·),(k),(Vl) which also sums together
counts across all genes in a transcriptional module Vl in addition to summing across all cells in subpopulation Ck.
In other words, the cell clustering occurs in a similar fashion as celda C, but on the reduced dimensional matrix
of transcriptional modules rather than on the full matrix of genes.

Next, we will derive the Gibbs sampling equation for updates to Y :

P (yg = l|Y−(g),Z,X, α, β, δ, γ) =
P (yg = l,Y−(g),Z,X|α, β, δ, γ)

P (Y−(g),Z,X|α, β, δ, γ)

∝ P (yg = l,Y−(g),Z,X|α, β, δ, γ).

(63)

Similar to celda G, several components of equation (60) are invariant with respect to the configuration of the

transcriptional module hidden variables Y and can be dropped. This includes the quantify Γ(Lγ)
Γ(γ)L

on the first

line, the complete second line, the components Γ(Lβ)
Γ(β)L

and Γ(
∑L

l=1 n(·),(k),(Vl) + β) on the third line, and finally the

quantity
∏L
l=1

∏
v∈Vl Γ(n(·),(·),v + δ) on the numerator of the last line. The final equation is as follows:

P (yg = l,Y−(g),Z,X|α, β, δ, γ) ∝
∏L
l=1 Γ(|Vl|+ γ)

Γ(
∑L

l=1(|Vl|+ γ))

×
K∏
k=1

L∏
l=1

Γ(n(·),(k),(Vl) + β)

×
L∏
l=1

Γ(|Vl|δ)
Γ(δ)|Vl|

1

Γ(
∑

v∈Vl(n(·),(·),v + δ))
.

(64)

This form of the equation is equivalent to equation (44) in celda G except for the fact that individual cells have
been replaced with cell populations. In essense, all cells from the same subpopulation are summed together and the
inference of transcriptional modules is performed on this reduced matrix. While celda C and celda G could be
run separately to cluster cells and genes, celda CG will be significantly faster than running each of the other two
models and is essential for understanding how each cell population can be described as a different combination of
transcriptional modules. After completing Gibbs sample and identifying the Z and Y with the highest probability,
point estimates for the Dirichlet distribution probabilities can derived as described in the next section.

Inference using point estimates

With a given sample of Y and Z, we can derive point estimates for the Dirichlet distributions. For θ, we
have:

θ̂i,k =
mi,k + α

Mi +Kα
, (65)

where mi,(k) is the number of cells assigned to population k in sample i and Mi is the total number of cells in
sample i. For ϕ, we have:

ϕ̂k,l =
n(·),(k),(Vl) + β

n(·),(k),(·) + Lβ
, (66)
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where n(·),(k),(Vl) is the sum of counts across all samples across all cells belonging to subpopulaiton k across all
genes belonging to transcriptional module l . n(·),(k),(·) is the sum of counts across all samples and across all cells
belonging to subpopulation k across all genes. For ψ), we have:

ψ̂l,g =
n(·),(·),g + δ

n(·),(·),(Vl) + |Vl|δ
, (67)

if yg = l (i.e. if gene g is assigned to transcriptional module l). If yg 6= l, then the posterior probability is 0.
n(·),(·),g is the sum of counts across all samples and cells for gene g and n(·),(·),(Vl) is the sum of counts all samples
and cells across all genes belonging to module l.

Given θ̂ and ϕ̂, we can identify the most likely cluster label for each zi,j :

ẑi,j = argmaxk

{
p(zi,j = k|Xi,j , θ̂, ϕ̂)

}
= argmaxk

{
θ̂i,k

L∏
l=1

ϕ̂
ni,j,(Vl)

k,l

}
,

(68)

where Xi,j is the counts for cell j in sample i and ni,j,(Vl) is the sum of counts belonging to transcriptional module
l in cell j in sample i. Note the form of this equation is similar to the point estimate for Z in celda C, with the
exception that genes have been collapsed into transcriptional modules. In this inference procedure, we alternate
between estimating the Dirichlet distribution probabilities (θ̂ and ϕ̂), the cell labels (ẑi,j), and the gene cluster
labels Y . Y is still estimated with Gibbs sampling conditioned on the point estimates for Z as decribed in the
previous section. Since each cell is fully assigned to a subpopulation, this procedure is not truly expectation-
maximization (EM). It more closely resembles the procedure used in K-means clustering, which is sometimes
refered to as ”hard” EM.

Although not explicitly specified in this model, we can also derive a ”Cell Probability (CP)” matrix containing
the probability of each transcriptional module in each individual cell, which can be used in downstream analyses.
This is performed by dividing the number of counts assigned to transcriptional module l for cell j in sample i by
the total number of counts for cell j:

CPi,j,l =
ni,j,(Vl)

Ni,j
. (69)

Perplexity

Perplexity was previously defined in equation (23). For the celda CG model, we define log(p(x)) to be:

log(p(x)) =
S∑
i=1

Mj∑
j=1

log

 K∑
k=1

θi,k

G∏
g=1

(
L∑
l=1

ϕk,lψl,g

)ni,j,g
 , (70)

where θi,k is the probabiity of a cell belonging to a cell population k in sample i, ϕk,g is the probability of
transcriptional module l in cell population k, ψl,g is the probability of gene g in transcriptional module l, ni,j,g
is the count of gene g in cell j in sample i, and ηl is the probability of a gene being assigned to transcriptional
module l. Note that the only non-zero ψl,g will be where yg = l for gene g and thus the sum of the equation can
be simplified to:

log(p(x)) =
S∑
i=1

Mj∑
j=1

log

 K∑
k=1

θi,k

G∏
g=1

(
ϕk,ygψyg ,g

)ni,j,g

 . (71)
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7 Supplemental information

Supplementary Table

Table S1: Marker genes used to identify cell types
Cell type Celda CG cell cluster Marker genes

Plasma cell 1 IGHG1, IGHG2, IGHG3, IGLC2

B cell 2, 3, 4 CD19, MS4A1, CD79A, CD79B

Dendritic cell 5, 6
FCER1A, CLEC10A, FLT3,

HLA-DPB1, HLA-DPA1, HLA-DQA1

Plasmacytoid
dendritic cell

7
ITM2C, IRF7, IRF8, LILRA4,

CLEC4C

CD34+ progenitor cell 8 CD34, SOX4, MYB, GATA2

Natural killer cell 9 NKG7, KLRD1, CST7

Megakaryocyte 10 PPBP, ITGA2B, PF4

CD14+ monocyte 11, 12, 13 CD14, S100A9, S100A8

FCGR3A+ monocyte 14 FCGR3A, LST1, SERPINA1

Activated T cell 15 MKI67, IL2RA, CENPF, CENPM

Memory T cell 16 CCR7, SELL, CD27

Naive cytotoxic T cell 17 CCR7, CD3D, CD8A, CD8B

Natural killer T cell 18 CD3D, GNLY, KLRG1, GZMA, GZMH

Cytotixc T cell 19 CD3D, CD8A, CD8B

T helper cell 20 CD3D, CD4, IL7R
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Supplementary Figure S1. Determine the optimal number of gene modules (L) and cell clusters
(K). (a) Scatter plot showing the RPC for gene modules (i.e. change of perplexity on current model with L
modules compared to its precedent model with L− 1 modules). The solid black line represents moving average of
centered rolling windows of size 30. (b) Scatter plot showing the RPC for cell clusters (i.e. change of perplexity
on current model with K clusters compared to its precedent model with K − 1 clusters) while setting L = 80.
The module labels of genes from model L = 80 of (a) were used to initialize cell cluster splitting.
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Supplementary Figure S2. UMAPs showing T cell subpopulation marker gene expressions. (a)
UMAPs colored by scaled expressions of T cell markers CD3E, CD3G, cytotoxic T cell markers CD8A, CD8B,
näıve T cell marker CCR7, SELL, CD27, LEF1, and NK T cell markers GNLY. (b) UMAPs colored by scaled
expressions of NK T cell markers KLRG1, GZMA, GZMH, T helper cell markers CD4, IL7R, and activated T
cell markers MKI67, IL2RA, CENPF, CENPM.
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Supplementary Figure S3. Probability matrix generated by Celda CG. φ probability matrix showing
the contribution of each module to each cellular subpopulation. Each row of the matrix is a gene module
containing co-expressed genes. Each column is an identified cell subpopulation.

References

[1] David M. Blei. Probabilistic topic models. Communications of the ACM, 55(4):77, apr 2012.

[2] David M Blei, Andrew Y Ng, and Michael I Jordan. Latent Dirichlet Allocation. Journal of Machine Learning
Research, 3:993–1022, 2003.

[3] Chong Wang, Chong Wang, David M Blei, and David M Blei. Decoupling Sparsity and Smoothness in the
Discrete Hierarchical Dirichlet Process. Nips, pages 1–8, 2009.

33

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 17, 2020. ; https://doi.org/10.1101/2020.11.16.373274doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.16.373274
http://creativecommons.org/licenses/by/4.0/


[4] Jianhua Yin and Jianyong Wang. A dirichlet multinomial mixture model-based approach for short text
clustering. Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data
mining - KDD ’14, pages 233–242, 2014.

[5] M. M. Shafiei and E. E. Milios. Latent dirichlet co-clustering. Sixth International Conference on Data Mining
(ICDM’06), pages 542–551, Dec 2006.

[6] Christopher D Manning, Hinrich Schütze, and Prabhakar Raghavan. Introduction to information retrieval.
Cambridge university press, 2008.

[7] Peter Langfelder and Steve Horvath. WGCNA: An R package for weighted correlation network analysis. BMC
Bioinformatics, 2008.

[8] Ashok Sharma, Robert Podolsky, Jieping Zhao, and Richard A. Mcindoe. A modified hyperplane clustering
algorithm allows for efficient and accurate clustering of extremely large datasets. Bioinformatics, 2009.

[9] Anbupalam Thalamuthu, Indrani Mukhopadhyay, Xiaojing Zheng, and George C. Tseng. Evaluation and
comparison of gene clustering methods in microarray analysis. Bioinformatics, 2006.

[10] Petri Pehkonen, Garry Wong, and Petri Törönen. Theme discovery from gene lists for identification and
viewing of multiple functional groups. BMC Bioinformatics, 2005.

[11] Anne Senabouth, Samuel W Lukowski, Jose Alquicira Hernandez, Stacey B Andersen, Xin Mei, Quan H
Nguyen, and Joseph E Powell. ascend: R package for analysis of single-cell rna-seq data. GigaScience,
8(8):giz087, 2019.

[12] Andrew Butler, Paul Hoffman, Peter Smibert, Efthymia Papalexi, and Rahul Satija. Integrating single-cell
transcriptomic data across different conditions, technologies, and species. Nature biotechnology, 36(5):411–420,
2018.

[13] Zhicheng Ji and Hongkai Ji. Tscan: Pseudo-time reconstruction and evaluation in single-cell rna-seq analysis.
Nucleic acids research, 44(13):e117–e117, 2016.

[14] Shiyi Yang, Sean E Corbett, Yusuke Koga, Zhe Wang, W Evan Johnson, Masanao Yajima, and Joshua D
Campbell. Decontamination of ambient rna in single-cell rna-seq with decontx. Genome biology, 21(1):1–15,
2020.

[15] Weizhong Zhao, James J Chen, Roger Perkins, Zhichao Liu, Weigong Ge, Yijun Ding, and Wen Zou. A
heuristic approach to determine an appropriate number of topics in topic modeling. In BMC bioinformatics,
volume 16, page S8. Springer, 2015.

[16] Leland McInnes, John Healy, and James Melville. UMAP: Uniform manifold approximation and projection
for dimension reduction, 2018.

[17] Zhe Sun, Ting Wang, Ke Deng, Xiao Feng Wang, Robert Lafyatis, Ying Ding, Ming Hu, and Wei Chen.
DIMM-SC: A Dirichlet mixture model for clustering droplet-based single cell transcriptomic data. Bioinfor-
matics, 34(1):139–146, 2018.

34

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 17, 2020. ; https://doi.org/10.1101/2020.11.16.373274doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.16.373274
http://creativecommons.org/licenses/by/4.0/

	Abstract
	Background
	Results
	Discussion
	Methods
	Availability
	Analysis of PBMCs
	celda_C: Clustering cells into subpopulations across samples
	celda_G: Clustering genes into transcriptional modules across cells
	celda_CG: Simultaneous clustering of genes into transcriptional modules and cells into subpopulation

	Acknowledgements
	Supplemental information

