HOX13-mediated DBX2 regulation in limbs suggests inter-TAD sharing of enhancers

By Leonardo Beccari et al.

This document contains:
Supplementary figures 1-13, and associated references.

Supplementary Figure S1. Single-cell RNAseq analysis of $\boldsymbol{D b x} 2+$ cell populations in developing hindlimbs. UMAP representations of the scRNAseq data from mouse E11 (A) E13 (B), and E15 (C) mouse hindlimbs ${ }^{1}$ showing the expression of Dbx2, Hoxal3 and Hoxd13, as well as of different joint (Gdf5) and tendons/ligaments (Mkx, Scx) markers ${ }^{2-4}$.

Figure S2

Supplementary Figure S2. TAD organization around the Dbx2 locus. A. High resolution (5kb bin size) Hi-C map of the Dbx2 genomic region in mouse ES cells (top) and E14 embryonic cortex (bottom), and graphs showing the TAD-separation score based on the HicFindTADs algorithm using different window size values (the curve calculated using standard parameters is displayed in gray and the average in blue). Data from ${ }^{5}$. B. 40kb resolution (bin size) Hi-C map of the $D b x 2$ genomic region in E12 mouse
limb buds and graphs showing the TAD-separation score (as in \mathbf{A}). Data from ${ }^{6}$. On top, the gene loci are represented in blue (Dbx2) or gray boxes for other genes. (A,B).

Supplementary Figure S3. Characterization of $\boldsymbol{D b x} 2$ regulation in mouse developing limbs. A. zoomed-in view of the 4Cseq interaction profiles of the Dbx2 promoter (from Fig. 2A). Asterisks label the region displaying an increased contact frequency in the distal versus proximal limb bud. The TADs (data from ${ }^{5}$) are on top as light blue boxes B. ChIPseq analysis of H3K27ac and H3K27me3 marks in distal (light blue) and proximal (green) forelimbs, and HOXA13/HOXD13 binding profiles over the $D b x 2$ genomic region. Data from ${ }^{7,8}$. Profile overlap in A and B is in dark blue. C. WISH analysis of Dbx2, Nell2 and Ano6 expression at different developmental stages. D, E. Zoomed-in views of the 4Cseq profiles showing the interactions of the $D b x 2$, Ano6 and Dbx2 promoters, as well as of the DLE1 and DLE2 sequences (see Fig, 6D) in distal (light blue) and proximal (green) forelimb buds (profile overlap is in dark blue). DLE1-3 elements are depicted with red boxes. The vista mm1571 element is in blue. Probably artefactual PCR product is depicted in gray. The region displayed in E is marked by a dashed rectangle in D .

References

1. Kelly NH, Huynh NPT, Guilak F. Single cell RNA-sequencing reveals cellular heterogeneity and trajectories of lineage specification during murine embryonic limb development. Matrix Biology. 2020;89:1-10. doi:10.1016/j.matbio.2019.12.004
2. Huang B-L, Trofka A, Furusawa A, et al. An interdigit signalling centre instructs coordinate phalanxjoint formation governed by 5^{\prime} Hoxd-Gli3 antagonism. Nature Communications. 2016;7(1):12903. doi:10.1038/ncomms12903
3. Liu W, Watson SS, Lan Y, et al. The Atypical Homeodomain Transcription Factor Mohawk Controls Tendon Morphogenesis. Mol Cell Biol. 2010;30(20):4797-4807. doi:10.1128/MCB.00207-10
4. Shwartz Y, Viukov S, Krief S, Zelzer E. Joint Development Involves a Continuous Influx of Gdf5Positive Cells. Cell Rep. 2016;15(12):2577-2587. doi:10.1016/j.celrep.2016.05.055
5. Bonev B, Cohen NM, Szabo Q, et al. Multiscale 3D Genome Rewiring during Mouse Neural Development. Cell. 2017;171(3):557-572.e24. doi:10.1016/j.cell.2017.09.043
6. Rodriguez-Carballo E, Lopez-Delisle L, Zhan Y, et al. The HoxD cluster is a dynamic and resilient TAD boundary controlling the segregation of antagonistic regulatory landscapes. Genes Dev. 2017;31(22):2264-2281. doi:10.1101/gad.307769.117
7. Beccari L, Yakushiji-Kaminatsui N, Woltering JM, et al. A role for HOX13 proteins in the regulatory switch between TADs at the HoxD locus. Genes Dev. 2016;30(10):1172-1186. doi:10.1101/gad. 281055.116
8. Sheth R, Barozzi I, Langlais D, et al. Distal Limb Patterning Requires Modulation of cis-Regulatory Activities by HOX13. Cell Reports. 2016;17(11):2913-2926. doi:10.1016/j.celrep.2016.11.039
