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Abstract 

The number and distribution of recessive alleles in the population for various 

diseases are not known at genome-wide-scale. Based on 6447 exome-sequences of 

healthy, genetically-unrelated Europeans of two distinct ancestries, we estimate that 

every individual is a carrier of at least 2 pathogenic variants in currently known 

autosomal recessive (AR) genes, and that 0.8-1% of European couples are at-risk of 

having a child affected with a severe AR genetic disorder. This risk is 16.5-fold 

higher for first cousins, but is significantly more increased for skeletal disorders and 

intellectual disabilities due to their distinct genetic architecture.  
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A major public health goal is to detect at-risk couples (ARCs) for various autosomal-

recessive (AR) diseases. Detecting such couples would enable them to consider 

reproductive choices to prevent the birth of affected children, including prenatal 

diagnosis (PND) and preimplantation genetic testing (PGT). Currently, the number 

and distribution of recessive alleles in the population is not known at genome-wide 

scale. Understanding the architecture of AR pathogenic variants can contribute to 

the knowledge base for public health policies in the preconception field, and 

illuminate the evolution of disorders and phenotypes. 

Existing estimates of the number of AR alleles carried by individuals are either 

derived from comparisons of the incidence of AR disorders between offspring of 

consanguineous and non-consanguineous couples, or based on extrapolations from 

sequencing data of specific phenotypes and gene-sets. Early calculations estimated 

that each individual carries at least eight heterozygous recessive pathogenic 

variants1, while estimates based on consanguineous couples predicted 3-5 

heterozygous recessive lethal pathogenic variants per individual2. Later models 

predicted up to 100 pathogenic variants per individual3. An analysis based on gene-

dropping simulations in a well-documented isolated founder population (The 

Hutterites), estimated that each founder of this population carried 0.58 AR recessive 

lethal pathogenic variants that lead to death between birth and reproductive age or to 

complete sterility4.  

Sequencing-based studies of wider gene-sets also yielded variable results. 

Screening for 437 known AR genes related to Mendelian diseases found a carrier 

frequency of 2.8 severe pathogenic variants per individual (range 0-7)5. In another 

study that used samples of various ethnicities including Caucasians, testing for a 
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panel of 417 AR pathogenic variants found ~0.4 AR lethal pathogenic variants per 

individual, leading the authors to suggest that the number for the entire genome is 

~10 times higher6.  

None of the existing studies used direct gene-sequencing at a genome-wide scale. 

Furthermore, each study used a different methodology, cohort size and number of 

tested genes and variants. Therefore, current data do not allow an overall 

assessment of the genomic landscape of AR disease variants. 

Here, we performed an exome-sequencing based assessment of the carrier 

frequency of AR pathogenic/likely-pathogenic variants (PLPs), the total ARCs rate 

for various disorders, and the effect of different consanguinity levels on the ARCs 

rate for these disorders in two distinct European populations. We used direct gene-

sequencing and included a comprehensive set of AR genes. These analyses reveal 

the architecture and distribution of AR pathogenic variants throughout the genome 

and for different disorders. The results can inform public health policies such as 

design of preconception carrier screens and improve preconception counseling. Our 

results also provide novel insights into the population genetics of AR disorders, 

particularly regarding intellectual disabilities.  
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Results 

We gathered exome samples from two cohorts of healthy individuals of Dutch 

(n=4120) and Estonian (n=2327) populations, and filtered these for quality, kinship 

and ethnicity (Fig. 1). For these cohorts we analyzed a set of 1929 AR disease 

genes (Methods; Supplementary Table 1), including a subset of 1119 genes that 

were previously categorized as associated with severe phenotypes by manual expert 

curation as part of the development of an Australian pre-conception screening (PCS) 

panel7 (Methods). In these genes, we selected all pathogenic and likely pathogenic 

variants (PLPs) based on existing classifications from databases and ACMG 

guidelines8 (Methods). The filtering process was applied to a total of 91,341 and 

45,929 variants for the Dutch and Estonian cohorts, respectively, and excluded 

>95% of the variants as either benign/likely benign or variants of unknown 

significance (VUS), resulting in 3734 and 1664 PLPs for the Dutch and Estonian 

cohorts, respectively (Fig. 1, Supplementary Fig. 1, Methods). 

Pathogenic variants 

More than half of the PLPs (55.2%/59.1% in the Dutch/Estonian cohort) are rare 

Loss-of-Function (LoF) variants not previously described in Clinvar9 or the Dutch 

society of laboratory specialists initiative for data sharing of variant classifications 

(VKGL database10; www.molgenis.org/vkgl) (classified as PLP by tier 2 criteria) 

(Supplementary Fig. 1). About a third are known PLPs in the VKGL10 database 

and/or classified as PLP by ClinVar9 with a status review of 2 or more stars 

(34.6%/27.6% in the Dutch/Estonian cohort) (tier 1 criteria). The remaining 

10.1%/13.2% are variants classified as PLP by ≥2/3 databases (tier 3 criteria) 

(Methods, Supplementary Fig. 1).  
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Since the classification of variants as PLPs forms the basis of this study we 

performed several analyses that confirmed the validity of our classification 

methodology (See Methods, Supplementary Fig. 1). 

When comparing the two cohorts, we found that only 373 PLPs (10% of the Dutch 

PLPs and 22% of the Estonian PLPs) were shared between both cohorts (Fig. 2a). 

The 90% (n=3361) of unique Dutch PLPs had an average allele frequency of 3·10-6, 

and the 78% (n=1291) of unique Estonian PLPs had an average allele frequency of 

2·10-6 (Fig. 2a). This highlights the difference in the underlying genetic architecture 

between the two populations and suggests that results obtained for each of these 

cohorts are largely independent, in that they are not based on the same genetic 

variation. This was to be expected since the Dutch and Estonian populations are 

separated geographically with limited interaction over recent history11 

(Supplementary Fig. 2).  

Carrier frequency in the European population 

On average, each individual carries 2.3 (range 0-11)/2.0 (range (0-9) PLPs for the 

set of 1929 AR genes, in the Dutch/Estonian cohort respectively (median 2/2; Table 

1). For the subset of 1119 recessive genes that are associated with severe 

phenotypes, the mean number of PLPs per individual is 1.5 (range 0-8)/1.1 (range 0-

6) in the Dutch/Estonian cohort (median 1/1; Table 1). In the Dutch/Estonian cohort, 

there were 397 (19.6%)/315 (13.5%) individuals with no PLPs, and 144 (3.5%)/29 

(1.2%) individuals with more than 5 PLPs (Supplementary Fig. 2). Overall, our 

results establish that on average, Europeans carry at least 1 PLP variant for a 

severe AR disorder and ≈2 PLPs for any AR disorder. 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 17, 2020. ; https://doi.org/10.1101/2020.11.16.384206doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.16.384206
http://creativecommons.org/licenses/by-nc/4.0/


 

7 

 

Frequency of PLPs per gene 

Having established the number of PLPs that an individual carries for recessive 

disorders, we wanted to investigate which genes have the highest carrier 

frequencies and have the largest effect on ARCs rates. Most variants in both cohorts 

are rare, with a carrier frequency of up to 0.05% (Supplementary Fig. 3). As a 

result, 96.6% of the 1929 genes had a total PLP carrier frequency of no more than 

0.5% in both cohorts (Supplementary Fig. 4). Of these, 589 (30.5%)/1012 (52.5%) 

were genes for which PLP carriers were not observed. At the other end of the 

distribution, there were 30 (1.6%)/24 (1.3%) genes with more than 1% PLP carrier 

frequency in the Dutch/Estonian cohort (Supplementary Fig. 4). There is an overlap 

between common genes in both populations, as 23 genes have more than 0.5% 

carrier frequency in both populations (Supplementary Table 2). 

Ranking genes by the frequency of PLP carriers demonstrated good correlation 

between the two populations (Spearman’s correlation coefficient Rho=0.69, P-

value=5.05·10-276). The exceptions were 8 genes in which recurrent PLPs are very 

common in one population and not in the other (Fig. 2b). Six genes were shared in 

the top-10 rankings of both cohorts (P-value=0.0001, permutation test; Methods).  

In conclusion, although the cohorts are independent and each cohort has its own 

unique variants, the patterns of gene carrier frequencies are similar for both cohorts 

(Fig. 2b). 

To validate our per-gene carrier frequency estimates, we compared our results to the 

published 2016-2017 data of the Dutch neonatal screening program 

(www.rivm.nl/documenten/monitor-van-neonatale-hielprikscreening-

2016;www.rivm.nl/documenten/monitor-van-neonatale-hielprikscreening-2018). We 
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compared the rankings based on the observed frequency of the tested disorders to 

our data-based estimates and found an essentially complete correlation (Fig. 2c, 

Spearman’s correlation coefficient Rho=0.99, Supplementary Table 3). 

ARCs in the European population  

To determine the rate of ARCs, we simulated all possible virtual matings among the 

Dutch cohort (n=8,485,140 matings) and among the Estonian cohort (n=2,706,301 

matings; Methods). Simulations for all 1929 AR genes resulted in 124,722 

(1.5%)/34,570 (1.3%) ARCs in the Dutch/Estonian cohort (Table 1), representing 

virtual matings in which both partners carried a PLP variant in the same gene. 

Couples in which both partners carried PLPs that are known to cause 

mild/asymptomatic phenotype in homozygotes were excluded from this analysis 

(Supplementary Table 4). Simulations of the subset of 1119 severe genes yielded 

83,878 (1%)/20,710 (0.8%) ARCs in the Dutch/Estonian cohort (Table 1). Therefore, 

we estimate that 0.8%-1% of European couples are at risk for a child with a severe 

AR condition, and at least 1.3%-1.5% of couples are at-risk for any AR condition.  

Considering all 1929 genes, 90% of the ARCs are explained by the 115/84 most 

frequent genes in the Dutch/Estonian cohort. For the 1119 genes that are associated 

with severe disease, 90% of the ARCs are explained by the 70/57 most frequent 

genes in the Dutch/Estonian cohort (Supplementary Fig. 9; Supplementary Table 

5). Since most ARCs are explained by a limited number of genes, adding more 

genes to existing PCS panels for non-consanguineous couples is not expected to 

substantially increase the PCS yield, due to diminishing marginal returns. 

Effect of consanguinity on ARCs in the European population 
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Consanguineous unions are not common in European populations, but are common 

worldwide and are increasing in Europe due to immigration. Previously, 

consanguinity has been estimated to occur in ~0.06% of couples of Dutch descent12, 

similar to other European countries13,14. Consanguineous couples are typically the 

first to be referred for preconception screening, because of their increased risk for 

recessive disease. However, the precise magnitude of this increased risk is unclear, 

and it is unknown whether it is the same for different disorders.  

We simulated consanguineous matings based on the Hardy-Weinberg principles and 

calculated the expected risks for different degrees of consanguinity, relying on the 

count of shared alleles that is expected by the relationship (Methods).  

We estimate that for any AR disorder, the rate of ARCs is 20.9%-24.9% for first-

cousins, 10.4%-12.4% for first cousins once-removed and 5.2-6.2% for second 

cousins. The ARCs rate for third cousins is 1.3%-1.6%. i.e. not different from that of 

non-consanguineous unions (Supplementary Table 6). 

For first-cousins unions, considering all 1929 genes, 90% of the ARCs are explained 

by the 749/540 most frequent genes in the Dutch/Estonian cohort (Supplementary 

Table 5). This shows that diminishing marginal returns effect is not seen in 

consanguineous couples, and therefore these couples are expected to derive a 

greater yield from an exome-based PCS, in comparison to non-consanguineous 

couples. 

ARCs per phenotype in consanguineous and non-consanguineous matings 

We compared ARCs rates for consanguineous vs. non-consanguineous matings for 

all genes (1929 genes) and for the sub-group of severe genes (1119 genes). We 
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also performed this comparison for gene-groups based on diagnostic gene panels 

corresponding to 12 different types of disorders (Supplementary Table 1).  

We first investigated the allele-counts for PLPs per gene per panel. We found 

striking differences in the distribution of allele-counts between the different disorders 

(Supplementary Fig. 5). For example, only a small fraction of the genes for ID have 

high (>10) allele-counts (8%/1% in the Dutch/Estonian cohort), compared to other 

panels. For example, many more deafness genes have high allele-counts (24%/11% 

in the Dutch/Estonian cohort). Next, we calculated the expected number of ARCs per 

panel for first-cousins vs. non-consanguineous couples. For each disorder, the fold-

increase in ARCs due to consanguinity (first-cousins) is indicated as the 

Consanguinity Ratio (CR). The CR was 16 for all genes combined, indicating a 16-

fold higher risk for first-cousins than for unrelated couples across the entire dataset 

(Fig. 3c). The CR for different phenotypic groups of disorders is consistent between 

the two populations (Spearman correlation 0.5; rising to 0.75 when excluding two 

common Estonian variants in CLCN1 and GJB2) (Fig. 3d). Notably, we find that the 

CR is significantly higher for ID and skeletal disorders compared to the average of all 

genes, in both cohorts (Fig. 3, Supplementary Fig. 6, Supplementary Table 12). 

Thus, while consanguinity generally elevates the risk for an affected child with all AR 

conditions, this elevated risk is not the same for different disorders (Fig. 3c). 

Based on the allele-counts and CR scores, we calculated the expected distribution of 

disorders among affected children (Fig. 4). In the Dutch cohort, Metabolic disorders 

and blindness constitute 79% of expected disorders for affected children to non-

consanguineous parents, while they only constitute 55% for affected children to 

parents who are first-cousins. Other phenotypes like ID and skeletal disorders are 
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expected to be very rare in affected children to non-consanguineous parents, but 

much more common in children to parents who are first-cousins (Fig. 4).   

Heterozygote selection as a possible cause for the differences of PLPs patterns 

among disorders 

A possible reason for the difference in the genetic architecture of ID and skeletal 

disorders compared to other disorders might be a fitness effect for heterozygous 

carriers of pathogenic variants in ID/skeletal genes. It is well-known that in some AR 

diseases there is indeed a phenotypic manifestation in heterozygotes15,16. 

Simulations show that even if heterozygosity for deleterious AR alleles reduces 

fitness only mildly, this would greatly reduce the frequency of variants in recessive 

genes for ID and skeletal disorders. In particular, if heterozygotes for a PLP variant 

have 0.5% less offspring (reduced fitness), in a large population this PLP variant will 

not have a frequency higher than 0.09% (Supplementary Fig. 7)17. Based on this 

hypothesis, we investigated the density of coding singleton variants (i.e. coding 

variants reported in only one individual) for the different gene panels in the 1000 

Genomes dataset18 (Fig. 5). This dataset contains genome-sequences samples from 

5 different European populations (GBR, TSI, FIN, IBS and CEU). We found that 

among these various European populations, the ID and skeletal disorders genes 

show a decreased number of coding singletons compared to the other gene sets, 

and are more similar to a set of essential genes that includes genes that are more 

likely to be under selection (Fig. 5). Similar patterns were observed for the singleton 

density across the entire gene, and for the RVIS (Residual Variation Intolerance 

Score) that is based on the number of functional variants in a gene (Supplementary 
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Fig. 8). In conclusion, these results suggest that genes in the ID and skeletal panels 

are subject to increased selection pressures in the European population.  
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Discussion 

We found that almost all individuals (>85%) carry at least one PLP variant, with an 

average of at least 1.3 PLPs for a severe AR disorder. Analysis of virtual matings for 

each population shows that in the absence of consanguinity, the rate of ARCs is 0.8-

1% for a severe AR disorder. This translates to ~225 newborns with a severe AR 

disorder per 100,000 births. We believe these should be considered as minimal 

estimates. Firstly, we analyzed only the genes that are currently known as AR 

disease genes, while many new AR genes are still being discovered. Secondly, we 

took great care to avoid (likely) benign variants and VUS in our analysis, with the 

likely result of having excluded some variants that are actually pathogenic. This 

applies mainly to missense variants for which it is most challenging to predict their 

phenotypic effect and to hypomorphic variants. Lastly, in our analysis we did not 

consider variants in regions that are poorly covered by exome-sequencing, and other 

types of variation that are difficult to identify using exome-sequencing, such as 

intronic variants and copy number variation. Notably, the common SMN1 exon 7 and 

8 deletion variant is not present in our data. Future analyses of whole genome 

sequencing data may give us the opportunity to obtain even more comprehensive 

estimates, although the systematic interpretation for these other types of variation 

will pose a significant challenge.  

Crucial to our approach is the fact that we employed expert manual revision of 

classified variants. The current ACMG-based variant classification scheme is 

focused on pathogenicity, but does not consider the degree of pathogenic effect. 

Thus, two variants classified as “pathogenic” in the same gene, may have very 

different phenotypic effects. For example, in the CFTR gene, both deltaF508 and 
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R117H are classified as pathogenic, but, whereas deltaF508 will result in classic 

cystic fibrosis, R117H may remain undetected or lead to mild disease. To avoid such 

problems, expert manual revision of classified variants cannot be spared from the 

classification process in individual cases.  

Our results also underline the importance of population-specific databases. As seen 

in Supplementary Table 7, up to 30% of PLPs in 4 major gene-panels (deafness, 

blindness, ID, and metabolic disease), largely rare missense variants, were 

recognized only when we included information from the Dutch VKGL10 database. As 

expected, the number of PLPs added based on this part of the selection process was 

higher for the Dutch population than for the Estonian population (Supplementary 

Table 8). General worldwide databases currently do not include population-specific, 

unique, rare missense variants and thus, local databases are required for accurate 

classification of a significant proportion of PLPs. 

Based on our results, we expect first cousins consanguineous couples to be at 16 

times higher risk for a child with an AR disorder compared to non-consanguineous 

couples. This translates to ~3400 newborns with a severe AR disorder per 100,000 

births for first cousins. As expected, the risks gradually decreased for more distant 

relationships and the risk for third cousins was similar to that for non-

consanguineous couples at ~0.9%/1.4% for a severe/any AR disorder 

(Supplementary Table 6). These results provide empirical evidence for the common 

assumption that a third-degree cousin relationship is similar in risk of AR diseases to 

random mating within an outbred population  

For couples in an outbred population, expanding the scope of PCS to wider 

panels/exome-sequencing is not expected to raise the number of ARCs significantly, 
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due to diminishing marginal returns. A modest number of genes accounts for the 

majority of ARCs (Supplementary Fig. 9, Supplementary Table 5), while genes 

with rare PLPs hardly impact the ARCs rate. This assessment includes ARCs for 

variable severity phenotypes. In contrast, consanguineous couples will benefit from a 

wider scope of PCS due to the significant influence of genes with rare PLPs on the 

ARCs rate for these couples (Supplementary Fig. 9, Supplementary Table 5). 

Therefore, PCS by extensive gene-panel or exome-sequencing is especially relevant 

to consanguineous couples. 

To assess the effects of consanguinity we devised the CR score, which indicates the 

increased risk for an AR disorder due to consanguinity. We found that while 

consanguinity generally increases the risk for an affected child with an AR condition 

by about 16-fold, this additional risk is not the same for different disorders. Our data 

show that for consanguineous couples the relative risk for AR-ID and AR skeletal 

disorders is significantly higher than for other disorders. Whereas about 1 in 3 Dutch 

individuals carries a PLP variant in a gene for ID, we calculate an expected 

incidence of only 19 per 100,000 (0.02%) AR ID in offspring of unrelated parents 

because couples who are both carriers for PLPs in the same gene are rare. For 

consanguineous couples this rises more than 45-fold to 901 per 100,000 (0.9%). In 

contrast, for other disorders such as metabolic disorders, the expected incidence is 

134 per 100,000 (0.13%) in offspring of unrelated parents, and 1280 per 100,000 

(1.3%) in offspring of consanguineous couples. We find that these striking 

differences are due to differences in the distribution and frequencies of PLPs among 

different disorders, i.e. differences in their genetic architecture. While in non-

consanguineous couples only frequent variants have a strong impact on the ARCs 
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rate, in consanguineous couples even rare variants can have a strong impact on the 

ARCs rate. 

The results in both the Dutch and Estonian cohorts show that ~25% carries a PLP 

variant in an ID gene, almost all of these variants being rare. There is a single 

common allele (0.5%) in the Estonian cohort in the CRADD gene which is a well-

known cause of AR syndromic ID, and likely represents a Northern Scandinavian 

(Finnish) founder mutation19. These observations are in line with previous studies on 

individuals with ID and other neurodevelopmental disorders (NDD) from outbred 

populations, which showed a very small (2-3%) contribution of AR variants to ID, with 

de novo pathogenic variants explaining the majority of patients20,21,22. In 

consanguineous couples, a much higher proportion of NDD patients is explained by 

AR inheritance20. 

The unique genetic architecture observed for the ID and skeletal disorders compared 

to other disorders could be explained by a small negative effect on fitness for 

heterozygous carriers of PLPs in these genes. Our results suggest that there is 

indeed stronger purifying selection on the ID and skeletal disorders genes with 

respect to other groups of genes, with selection patterns which are more similar to 

those of essential genes (Fig. 5, Supplementary Fig. 8). Elucidation of the 

magnitude and mechanisms of such negative fitness effects will require analysis of 

large population samples with relevant phenotypic read-outs. 

We analyzed two distinct Northern European populations, with no geographical 

relation between them, and found remarkably consistent results. Although these 

populations have distinct PLPs and common alleles, our estimates of the overall 

carrier frequency per sample, the most frequently mutated genes, ARCs rates and 
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CRs are very similar. This resemblance may in part be due to shared or similar 

selection pressures. 

This study provides an estimate for the overall burden of AR PLP variants in two 

European populations. Our approaches can be applied to other populations, in order 

to establish their specific AR architecture. Such results can be used by clinicians for 

baseline risk calculations and be incorporated in PCS guidelines. Given that the 

majority (>85%) of the population carries at least 1 disease allele for any AR 

disorder, and that 1 in ~4 carries an allele for AR ID, it should now be feasible to 

study the aggregate effects of these PLPs in terms of development, health, and 

disease at the population level.  
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Methods 

Cohorts 

We analysed two European cohorts based on Dutch and Estonian samples. For the 

purpose of this study, exome data were anonymized. Both populations are from 

Northern Europe, yet they are distant enough geographically that they can be treated 

as two distinct European cohorts11,23. The Dutch cohort included 4780 unaffected 

parents of children with intellectual disability (ID), tested by patient-parents trio 

exome-sequencing. At the time of the analysis, none of the patients was diagnosed 

with an AR-ID. The exomes were sequenced using DNA isolated from blood, at BGI 

in Copenhagen, Denmark. Exome capture was performed using Agilent SureSelect 

v4/v5 and samples were sequenced on an Illumina HiSeq instrument with 101-bp 

paired-end reads to a median coverage of 75x. Sequence reads were aligned to the 

GRCh37/hg19 reference genome using BWA version 0.5.9-r16. Variants were 

subsequently called by the GATK haplotyper (version 3.2-2) and annotated using a 

custom diagnostic annotation pipeline24. The Estonian cohort included 2356 healthy 

individuals, sequenced as a part of the Estonian Biobank of the Estonian Genome 

Center, University of Tartu (EGCUT), which is a population-based biobank, 

containing almost 52,000 samples of the adult population (aged ≥18 years), which 

closely reflects the age, sex and geographical distribution of the Estonian population. 

WES samples DNA was enriched for target sequences (Agilent Technologies, Santa 

Clara, CA, USA; Human All Exon V5+UTRs) according to manufacturer’s 

recommendations. Sequenced reads were aligned to the GRCh37/hg19 human 

reference genome using BWA-MEM (version 0.7.7). SAMtools (version 1.2) was 

applied to compress SAM to BAM (samtools view), sort (samtools sort) and index 
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BAM (samtools index) files. PCR duplicates were then marked using Picard 

(http://broadinstitute.github.io/picard) (version 1.136) MarkDuplicates.jar. For further 

BAM improvements, including realignment around known indels and base quality 

score recalibration, we applied GATK (version 3.4). Single sample genotypes were 

called by the GATK HaplotypeCaller algorithm (-ERC GVCF). 

Relatedness analysis 

We used KING25 version 2.2 to calculate kinship coefficients and infer relationships 

within the cohort. For this analysis, we used 14,643 autosomal variants with a quality 

score of ≥1000 located in regions covered ≥20x in all samples. KING25 inferred 30/52 

Dutch/Estonians samples to be related by second degree or closer. Blinded analysis 

in the Dutch cohort confirmed known relationships in 26 of 30 samples. There was 

insufficient information to determine relatedness for the other 4 samples, yet they 

were removed from the analysis since KING25 indicated them as having multiple 

second and third-degree relatives within the cohort. 

Overall, we excluded 17 samples from the Dutch cohort and 26 samples from the 

Estonian cohort by removing one individual from each pair inferred by KING25 to have 

a relationship of second degree or closer.  

Ancestry analysis 

a. Dutch population 

We performed ancestry analysis for the Dutch cohort by LASER26 version 

2.04, using a reference set of genotyping data from 9,608 loci on 

chromosome 22 of 700 samples from the Human Genome Diversity Project 

(HGDP)27. The reference samples are subdivided into 7 worldwide 
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populations (Africa, America, Central/South Asia, Europe, Middle East, 

Oceania, East Asia) and 53 subpopulations. Based on this analysis we 

excluded 643 samples of non-European descent. 

Additionally, we analysed the remaining 4120 samples with the 

ADMIXTURE28 tool (version 1.3.0). We used data from the 1000 Genomes 

Project18 to help identify the genetic ancestry of our samples, by using 

samples from 5 super-populations (Africa, America, Europe, South Asia and 

East Asia) and running a supervised analysis with K=5. Next, we used the 

alleles frequencies as an input to a projection analysis for the samples of the 

cohort. ~97% of the samples had a European component of >0.75, indicating 

the cohort has homogeneous European ancestry (Supplementary Fig. 10a) 

and confirming the LASER26 results. 

b. Estonian cohort 

For the Estonian samples only VCF files were available and therefore we 

could not run LASER26 on this cohort. We ran ancestry analysis by 

ADMIXTURE28, with the same parameters and reference samples as 

described for the Dutch cohort. Approximately 98% of the samples had a 

European component of >0.75, indicating the cohort has homogenous 

European ancestry (Supplementary Fig. 10b). Three samples were excluded 

from the analysis. 

After filtering the samples based on ancestry and relatedness, we had 4120 Dutch 

samples and 2327 Estonian samples of unaffected, European-descent, unrelated 

individuals that were used for all subsequent analyses in this study.  

Assessing Loss-of-function variants (LoF) 
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Variants were annotated using the Ensembl Variant Effect Predictor (VEP)29 and 

LOFTEE30 tool (Loss-Of-Function Transcript Effect Estimator; Installed at 5th of 

January 2018, VEP version 91) with the default parameters as a part of the indels 

filtering process. Indels with Low-confidence score (LC) by LOFTEE30 were filtered-

out. 

Selection of genes 

Genes indicated in OMIM (www.omim.org/) as having both AR and AD phenotypes 

(AD-AR genes) were assessed by their gnomAD pLI score. This score indicates the 

probability that a gene is intolerant to a loss of function (LoF) variant. The higher the 

score the more likely the gene is involved in a dominant disease, and the lower the 

pLI score, the more likely it is to indicate a recessive disease gene. To determine the 

appropriate pLI threshold for determining which AD-AR genes are more likely to be 

AR genes, we generated a reference list of pLI scores for manually curated 930 AR-

only genes causing severe phenotypes7,31. The 95th percentile score for these genes 

was 0.86. Therefore, AD-AR genes with a pLI score ≤0.86 were considered as AR 

and included in subsequent analyses (324 genes).  

The final list of AR genes included 1929 genes (6011 transcripts). Of these, OMIM 

(www.omim.org/) classifies 1605 genes as AR-only phenotypes, and 324 genes as 

underlying both AR and AD phenotypes. In addition, 1119/1929 genes of the list 

were manually curated as a part of the development of an Australian PCS panel 

(Mackenzie's mission project), and deemed to be associated with severe 

phenotypes7 (Supplementary Table 1). Severe was defined in the Australian PCS 

panel design as: “The condition is one for which an “average” couple would take 
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steps to avoid the birth of a child with that condition”7. The Australian PCS project 

also includes X-linked genes that were not analysed in this study. 

Variant selection and determining variant outcome 

We extracted variants located in the exons and flanking 10bp regions of the selected 

genes, in regions covered ≥20x in ≥90% of the samples. Based on exon positions 

extracted from Ensembl29 (GRCh 37) for the selected genes- 94.3% of the coding 

region±10bp and 58.1% of the exonic regions±10bp (including UTRs) were covered 

≥20x in ≥90% of the samples. 

We used the list of transcripts from the HGMD database (version 2018.3) 

(www.hgmd.cf.ac.uk/) as a reference. If a gene had only one transcript described in 

the HGMD database (www.hgmd.cf.ac.uk/), the outcome of the variant was defined 

based on this transcript. For genes with several transcripts described in the HGMD 

(www.hgmd.cf.ac.uk/) database, if >50% of the variant outcomes were 

LoF/missense/other, this outcome was chosen. All other cases (1777/861 variants in 

the Dutch/Estonian cohort) were considered as the most severe outcome, and 

evaluated manually if they passed the selection process. 

Indels filtering 

While SNV calling tools generally have good performance, the accuracy of indel 

calling is relatively low and prone to errors32. In order to prevent a high incidence of 

false positive indels, we adjusted the selection process by using indels in autosomal-

dominant genes associated with intellectual disability (AD-ID) (Supplementary 

Table 9) as a proxy for false positives. Since our cohort includes unaffected 

individuals, indels found in those genes are most probably either not PLPs or false 
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positives. In our Dutch cohort of 4120 samples, there were 1039 indels with ≥500 

GATK quality score in 371 AD-ID genes. Raising the quality threshold to ≥1000, 

removing non-LoF, common (>5% heterozygotes/>1% homozygotes in our cohort; 

>1% allele-frequency in gnomAD33, longer than 10bp, scored LC by LOFTEE30, and 

adjacent indels within 10bp range, decreased the number of AD-ID indels to 46 

(4.4%). Of these remaining indels, 12 (26.1%) were in genes with non-LoF 

pathogenicity mechanism such as known dominant negative/activating PLPs, 20 

(43.5%) were in genes with known partial penetrance or variable expression, nine 

(19.5%) were in genes lacking information about inheritance and pathogenicity 

mechanism, and five (10.9%) were in genes expected to be affected by LoF variants. 

Our filtering process thus significantly reduced the number of likely false-positive 

indels, and was therefore applied to indels in the analysed gene-set. 

Variant selection process 

For each cohort, we created a list of presumable PLPs. We included variants with 

≥500/1000 GATK quality score for substitutions/indels (respectively), and excluded 

variants with ≥5% heterozygotes or ≥1% homozygotes frequency within each cohort 

(Supplementary Fig. 1). After manual curation of the frequency drop-outs, we re-

included three known pathogenic variants with >5% carrier frequency in at least one 

of the cohorts (Dutch/Estonian, respectively): HFE p.Cys282Tyr (10.7%/7.6%); BTD 

p.Asp444His (7.1%/8.1%) and SERPINA1 p.Glu288Val (6.4%/3.2%). This gave rise 

to 91,341/45,929 variants in total in the Dutch/Estonian cohort, respectively. 

We then selected only variants that met at least one of three criteria: (1) Classified 

as PLP by ClinVar9 with a review status of ≥2 stars or classified as PLP by the 

VKGL10 database. This curated database is publicly available and comprises DNA 
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variant classifications established based on (former) diagnostic reports of all 9 Dutch 

accredited laboratories (www.molgenis.org/vkgl); (2) Loss-of-function (LoF) variants 

(nonsense, frameshift, canonical splicing) with <1% or unknown frequency in 

GnomAD33. Indels were filtered as described above; (3) Classified as PLP by ≥2/3 

databases: InterVar34 (an automated ACMG classifier), ClinVar9  with a review status 

of <2 stars, and HGMD (www.hgmd.cf.ac.uk/) (indicated as disease causing variant 

by the DM flag), and does not contradict the first criterion, i.e. not classified as 

benign/likely-benign by Clinvar9 with a review status of ≥2 stars or by the Dutch 

database (Supplementary Fig. 1). 

For the AD-AR genes, only LoF variants were included in the final PLPs list.  

In total, the selection process filtered out >95% of the initial number of variants in the 

selected regions (Fig. 1; Supplementary Fig. 1). 

Validation of the PLP classification process 

Although we used stringent quality scores for the selection of PLPs, we performed 

several analyses to confirm the validity of our PLP classification process: 

1. Manual classification 

Manual classification was performed in 3 groups of PLP variants: 

a. PLP Variants with high allele frequency (>1%).  

Within the list of 3734/1664 PLPs in the Dutch/Estonian cohort, the 

majority of variants (3686;98.7%/1613;96.9%), had a carrier frequency 

of up to 0.05%. There were 16 (0.5%)/18 (1.1%) PLPs with more than 

1% carrier frequency in the Dutch/Estonian cohort (Supplementary 

Fig. 3). Amongst these frequent variants, 7 variants were seen with 

>1% carrier frequency in both cohorts (Supplementary Table 10). 
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Manual curation of these variants showed that all common variants 

were previously described in European populations and/or are known 

to cause a mild phenotype. The observed frequency was also 

compared to the frequency reported in the GONL project 

(http://www.nlgenome.nl/), which is based on sequencing of a different 

cohort of 498 healthy Dutch individuals (Supplementary Table 10). All 

the variants that were seen at a >1% frequency in the Dutch cohort 

were also reported in the GONL database, with 0.2-5.4% allele 

frequency (mean 1.6%). 

b. PLP variants in a homozygous state 

For both the Dutch/Estonian cohorts, only 42/11 (1%/0.5%) of the 

samples were homozygous for any of the PLPs. This percentage was 

even lower for the set of severe recessive genes (12/4; 0.3%/0.2%). 

Overall, 19 PLPs were seen in a homozygous state in one sample or 

more. Manual curation of these variants showed that 11 of these have 

been reported to cause only a mild phenotype or even appear 

asymptomatic when seen in a homozygous state, and 6 have 

conflicting evidence about their pathogenicity. 

c. Curation of the 214 PLPs in genes underlying deafness 

All PLPs found in deafness genes were manually classified by an 

expert who used, among other databases, the Deafness Variation 

Database (DVD), a comprehensive, open-access resource that 

integrates all available genetic and clinical data together with expert 

curation35. Of the 214 variants our selection process classified as PLP, 
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expert manual curation classified one variant as likely-benign, 6 

variants were as VUS, 174 variants as LP and 33 variants as P. 

Overall, 96.7% (207/214) of the variants were correctly classified as 

PLPs. 

2. Assessing selection process performance for PLP variants in CFTR 

We extracted the list of variants that are classified as PLP in the CFTR2 

database (cftr2.org; version Jan10-2020) and ran it through the selection 

process. The selection process classified correctly as PLP 347/414 (83.8%) 

variants, including 113 missense variants. Most of the variants that were not 

classified as PLP (59/67; 88%) were missense variants. Six variants were 

non-coding non-canonical splice site region variants, one variant was an in-

frame insertion, and one variant was an intronic variant. 

3. Analysis of selected missense variants 

In order to assess the pathogenicity of missense variants classified as PLP 

based on tier 3 criteria of the selection process, we compared CADD scores 

of missense variants from tier 1 and tier 3 with the CADD scores of those 

which failed to pass the selection process (non-PLP). The CADD scores of 

missense variants classified as PLPs based on tier 3 criteria are similar to 

those of missense variants classified as PLPs based on tier 1 criteria, and are 

significantly higher than those of missense non-PLPs (Supplementary Fig. 

11). 

Virtual matings 

We simulated all possible matings within the 4120 samples of the Dutch cohort 

(8,485,140 theoretical couples), and the 2327 samples of the Estonian cohort 
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(2,706,301 theoretical couples), irrespective of gender. Variants that were manually 

classified for high frequency/homozygosity, and were proven to be asymptomatic or 

cause a very mild phenotype in the homozygous state, were excluded if the virtual 

mating was predicted to be at-risk for a homozygous offspring, yet included if the 

virtual mating was predicted to be at-risk for a compound heterozygous offspring 

(Supplementary Table 4). 

The ARCs rates were computed by simulations rather than using allele frequencies. 

This method is the most accurate way to assess ARCs rates since it is based on 

actual genotypes from the population, whereas the calculation using allele 

frequencies necessarily needs to assume linkage equilibrium between all variants. 

Pathogenic variants simulations 

The number of shared PLPs between the Dutch and Estonian cohorts was 373 (10% 

of the Dutch PLPs and 22% of the Estonians PLPs) (Fig. 2a). In order to determine 

whether this proportion of shared variants is significantly less than expected, we ran 

10000 simulations in which we randomly created two groups of PLPs chosen from 

the list of 3734 Dutch PLPs. The sizes of the groups were 2582 and 1152, keeping 

the ratio of 2.24 that was seen for the Dutch vs Estonian PLPs (3734/1664). For 

each simulation we checked the proportion of shared PLPs between the two random 

groups. The mean number of shared variants was 799 (21.4%). 

Gene rankings  

Genes in which PLPs were observed were ranked by the frequency of PLPs 

observed. Six genes were included in the top-10 rankings of PLPs per gene in both 

cohorts (Fig. 2b). In order to check whether this number of genes in the top-10 

rankings is statistically significant, we used Fisher exact test (P-value= 1·10-5). 
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Consanguinity analysis 

For the consanguinity calculations, we verified that variant frequencies in the two 

populations adhere to the Hardy-Weinberg equilibrium. We compared the observed 

number of WT (AA), heterozygotes (Aa), and homozygotes (aa) to the expected 

numbers (pp,2pq,qq) using a chi-squared test, showing that variants in both 

populations adhere to the Hardy-Weinberg equilibrium and there is no significant 

difference between observed and expected with a P-value of 0.4 for the Dutch cohort 

and 0.1 for the Estonian cohort. Next, we calculated the expected risk for different 

degrees of consanguinity, relying on the expected proportion of shared alleles in 

each relationship: 1/8 for first cousins, 1/16 for first cousins once removed, 1/32 for 

second cousins, and 1/128 for third cousins. Therefore, the probability of a couple to 

be at risk in a given gene was calculated as 2pq*<expected proportion of shared 

alleles>*cohort size, where q is the sum of allele frequencies of PLP variants in a 

given gene, and p=1-q. 

Gene panels 

All 1929 genes were divided into panels based on their related disorders 

(Supplementary Table 1). The ID-related genes were divided into two panels- ID 

and Metabolic-ID. The ID panel includes genes that are related to syndromic and 

non-syndromic ID, but does not include metabolic genes. All genes that are related 

to metabolic disorders with or without phenotypes other than ID were included in the 

metabolic panel. An additional gene group, multisystem disorders, comprised all 

genes underlying more than one phenotype, excluding intellectual-disability (ID) and 

metabolic disorders (Supplementary Table 1).  

Consanguinity ratio (CR) 
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In order to examine whether the differences between the CR scores are statistically 

significant, we ran 5000 simulations per panel for each cohort. In each simulation, 

we randomly assigned genes into panels of same total bp length as the original 

panels (Supplementary Fig. 6). We computed the P-values based on how many 

times the simulated CR was different from the actual CR for each panel using a two-

tailed test with a Bonferroni correction (Supplementary Fig. 6; Supplementary 

Table 12).   

Analysis for genetic selection 

To determine whether groups of genes show different patterns of selection we used 

three different scores that serve as a proxy of purifying selection. We calculated the 

normalized gene singleton density, the coding regions singleton density (coding 

singleton density)36, and the Residual Variation Intolerance Score (RVIS)37 for 

Europeans samples on the 1000 genomes data18 (Supplementary Table 13).  

We compared the scores of gene sets described in this study to reference lists of 

genes that show different signatures of purifying selection: “Essential” genes38 and 

“haploinsufficiency severe” genes39 as target of strong purifying selection, and genes 

labeled as “Non Essential”38 and “Olfactory” receptors40 as controls (no strong 

selection signatures) (Supplementary Table 13). Statistical significance of the 

differences between the medians was evaluated using the Wilcoxon-rank sum test 

for the gene panel ID/Skeletal compared to all other disorders (Fig. 5, 

Supplementary Fig. 8).  

Next, we simulated a large meta-population with ten subpopulations with an effective 

population size (Ne) of 10000 each. Each population could exchange migrants with a 

rate of 1% in each generation. We simulated the possibility of a locus to mutate and 
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its increase in frequency in different scenarios: no selection (s=0) and increased 

purifying selection against the heterozygotes (s>0), with a total negative selection 

against homozygotes (s=1). The simulated selection coefficients are linked to the 

percentage of reduction of an individual to have offspring (for s=0.05 heterozygous 

carriers have 5% less probability to mate and have offspring). The simulations were 

done using simuPOP41 version 1.1.7 (Supplementary Fig. 7). 
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Figures 

Figure 1. Overview of the selection of PLP variants.  

 

 

 

 

 

 

 

 

 

From left to right, variants were selected from two exome-sequencing cohorts of healthy individuals 

from two different European populations. Quality control: Samples and variants were subjected to 

stringent quality control. Samples were filtered for kinship and ethnicity. Variants were filtered for 

quality and selected from consistently well-covered regions. Variant classification: Variants were 

classified as PLP based on curated publicly available databases and/or on their predicted loss of 

function effect. Manual curation: We performed manual curation steps at both the gene and the 

variant level, to confirm the validity of our PLP classification selection process. Detailed information is 

in the Methods and Supplementary Fig. 1. 
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Figure 2. PLP variants in the Dutch and Estonian cohorts- robustness of 

variant classification.  

 

 

 

 

 

 

 

 

 

 

(a) The number of PLPs in each cohort and their overlap. (b) Genes ranked by PLPs frequency: 

correlation between the Dutch and the Estonian cohorts. The lower the rank number, the higher the 

number of PLPs observed in that gene (i.e., a gene ranked 1 has the largest number of PLPs); Genes 

with no PLPs in both cohorts were excluded (449 genes); Gene names are written for genes in the top 

10 ranking: blue- Estonian only top-10, orange- Dutch only top-10, purple- Dutch and Estonian top-10; 

The dots sizes represent the number of genes with this rankings combination. Spearman correlation 

coefficient: 0.69; P-value<.00001. (c) Comparison of disease carrier frequency estimates to published 

data of the Dutch neonatal screening program from 2016-2017 (www.rivm.nl/documenten/monitor-

van-neonatale-hielprikscreening-2016;www.rivm.nl/documenten/monitor-van-neonatale-

hielprikscreening-2018). Spearman correlation coefficient 0.85; P-value=0.0005; Full diseases and 

gene names are in Supplementary Table 11. 
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Figure 3. Effect of consanguinity on ARCs rates for different disease-

categories  

 

 

 

 

 

 

 

(a) Rates of ARCs per 100,000 couples (on the y-axis) for different disorders (on the x-axis) in the 

Dutch cohort (orange) and Estonian cohort (blue) for non-consanguineous couples. (b) Same as in (a) 

but for first-cousin couples. (c) Consanguinity-ratio (CR) scores. Scores in red are significantly higher 

compared to a random set of AR genes with the same coding bp length. (d) Correlation of first-

cousins CRs between the Dutch and Estonian cohorts for different disorders. X-axis shows the rank in 

the Dutch cohort; Y-axis shows the rank in the Estonian cohort. The lower the rank number, the 

higher the CR in that gene panel (i.e. a gene-panel ranked 1 has the highest CR). The size of the dots 

indicates the number of genes in the gene panel. The red color indicates gene panels with statistically 

significant higher CRs compared to a random set of AR genes with the same coding bp 

length. Rankings excluding common variants in GJB2 (deafness) and CLCN1 (neuromuscular) are 

marked with an asterisk. 
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Figure 4. Effect of consanguinity on affected offspring rates for different 

disorders 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The expected number of affected children for different disorders per 100,000 births, in non-

consanguineous and first cousins couples. The red outer arch represents disorders with significantly 

higher CR scores. 

The difference between the cohorts for the metabolic gene panel is mostly attributed to a high carrier 

frequency in two genes (CFTR and SERPINA1) in the Dutch cohort. 
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Figure 5. Coding singleton density in coding regions based on 1000 genomes 

data (European populations) for the different gene panels.  

 

 

 

 

 

 

 

 

 

 

Violin plots of the distribution of coding singleton density scores for different gene panels. Gray colors 

indicate external reference gene sets, whereas colored violin plots are gene sets as defined in this 

manuscript. Tested differences of the median are indicated by braces, giving rise to a P-value of  

1.8·10-4 for ID/skeletal gene set compared to “other disorders” gene set, using a Wilcoxon rank sum 

test with Bonferroni correction (Supplementary Table 13).  
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Tables 

Table 1. PLP variants and ARCs for AR genes in the study cohorts 

  
Mean/median  

P/LPs per 
sample 

ARCs %(N) 
(Dutch total: 8,485,140 

Estonian total: 2,706,301) 

1929 genes 

Dutch cohort 
(N=4120) 

2.3/2 1.5% (124,722) 

Estonian 
cohort 

(N=2327) 
2/2 1.3% (34,570) 

1119 severe 
genes 

Dutch cohort 
(N=4120) 

1.5/1 1% (83,878) 

Estonian 
cohort 

(N=2327) 
1.1/1 0.8% (20,710) 
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