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Supplementary figures 1 

 2 

 3 
Supplementary Figure 1. Overview of the workflow to partition the genomic and metagenomic 4 
coding sequence space between known and unknown. The workflow performs gene prediction, gene 5 
clustering, gene clustering validation and refinement, GCC inference, and partitions the coding 6 
sequence space in the different known and unknown categories.  7 
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 9 
Supplementary Figure 2. The diagram shows a schematic description of the number of genes and 10 
GCs that have been kept or discarded. (A) We analyzed a dataset of 1,749 metagenomes from 11 
marine and human environments and 28,941 genomes from the GTDB_r86 summing up to 12 
415,971,742 genes. The composition of the genomic box “Other” is described in supplementary Note 13 
5. (B) GC overlap between the environmental and genomic datasets.  14 
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 17 

 18 
Supplementary Figure 3. Proportion of complete genes per cluster. Distribution of observed 19 

values compared with those generated by the Broken-stick model. The cut-off was 20 

determined at 34% complete genes per cluster. 21 

 22 
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 24 
Supplementary Figure 4:  Collector curves for the known and unknown coding sequence 25 

space. (A) Collector curves at the gene cluster level, for the TARA metagenomes, including 26 

the viral fraction (left) and excluding it (right) from the analysis. (B) Collector curves at gene 27 

cluster community level for the metagenomes from TARA, MALASPINA, and HMP-I/II 28 

projects (left) and the 28,941 GTDB genomes (right). 29 
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 31 

 32 
Supplementary Figure 5:  Collector curves for the known and unknown coding sequence 33 

space at the gene cluster communities level for (A) the metagenomes from TARA, 34 

MALASPINA and HMP-I/II projects, and for (B) the 28,941 GTDB genomes. Singletons were 35 

excluded from the calculations. 36 
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 39 

 40 
Supplementary Figure 6. Proportion of gene cluster categories per biome. On the y-axis 41 

are reported the 11 main biome categories indicated by MGnify and in parenthesis the total 42 

number of genes in each biome. The gray fraction represents the pool of genes from MGnify 43 

that were not found in our dataset. 44 
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 46 
Supplementary Figure 7. HMP outlier samples enriched in (A) crAssphages, and (B) 47 

papillomaviruses (HPV). 48 
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Supplementary Tables 51 

 52 
Supplementary Table 1. Number of metagenomic clusters and genes after the validation 53 

and refinement steps. 54 

 Good-quality Bad-quality Total 

Clusters 2,940,257 63,640 32,465,074 

Genes 260,142,354 8,325,409 322,248,552 

  55 
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Supplementary Table 2. MG + GTDB high quality (HQ) subset of gene clusters (GCs). 56 

Category HQ GCs HQ genes pHQ GCs pHQ genes 

K 76,718 40,710,936 0.0145 0.120 

KWP 16,922 1,733,599 0.00320 0.005132 

GU 95,370 9,908,630 0.0180 0.0293 

EU 14,207 477,625 0.00269 0.00141 

Total 203,217 52,830,790 0.0384 0.1562 
 57 
  58 
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Supplementary Table 3. Mean proportion of complete genes per cluster in the four 59 
functional categories. 60 

 K KWP GU EU 

Mean percentage of complete genes 0.50 0.22 0.68 0.70 
 61 
  62 
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Supplementary Table 4. KWP high-quality gene clusters (GCs) distribution in the COG 63 
groups. (Full table in Supplementary_tables_1.xlsx) 64 

COG group Number of GCs Proportion of GCs 

CELLULAR PROCESSES AND SIGNALING 2,292 0.135 

INFORMATION STORAGE AND PROCESSING 1,582 0.0935 

METABOLISM 1,679  0.0992 

POORLY CHARACTERIZED 2,899 0.171 

NC 8,470 0.501 
 65 
  66 
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Supplementary Table 5. MG + GTDB gene clusters summary statistics. 67 
(Supplementary_tables_2.xlsx) 68 
 69 
  70 
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Supplementary Table 6. Environmental (metagenomic) dataset description.  71 
(A) Number of samples and sites per metagenomic project. 72 

Dataset Reference Samples Sites Contigs 

TARA  Sunagawa et al. 242 141 62,404,654 

Malaspina  Duarte et al. 116 30 9,330,293 

OSD   Kopf et al.3 145 139 4,127,095 

HMP  Lloyd-Price et al.4 1,246 18 80,560,927 

 73 

Dataset Reference Samples Sites Reads 

GOS  Rush et al.5 80 70 12,672,518 

(B) Number of predicted genes per completeness category. 74 

Total "00" "10" "01" "11" 

322,248,552 118,717,690 106,031,163 102,966,482 75,694,123 
Note: "00"=complete, both start and stop codon identified. "01"=right boundary incomplete. 75 
"10"=left boundary incomplete. "11"=both left and right edges incomplete. 76 
 77 
  78 
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Supplementary Table 7. Proportion of genes in each cluster category, and Pfam amino 79 
acids coverage per cluster category. (Supplementary_tables_1.xlsx) 80 
  81 
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Supplementary Table 8. List of HMP outlier samples (Supplementary_tables_1.xlsx). 82 

 83 

  84 
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Supplementary Table 9. Summary of the number of EU clusters based on their presence in 85 
MAGs and their environmental distribution, obtained with the Levin’s Niche Breadth index. 86 

 Total clusters Broad Narrow Non-significant 

Total EU 204,031 471 8,421 195,079 

EU in MAGs 55,520 88 316 55,116 

EU not in MAGs 148,511 (73%) 383 (81%) 8,105 (96%) 140,023 (72%) 
 87 
  88 
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Supplementary Table 10. Number of phylogenetic conserved and lineage-specific gene 89 
clusters (GCs) in the GTDB bacterial phylogeny. (Supplementary_tables_1.xlsx). 90 
 91 
  92 
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Supplementary Table 11. Clusters in the GU community GU_c_21103 93 
(Supplementary_tables_1.xlsx).  94 



19 

Supplementary Table 12. Number of lineage-specific gene clusters of unknown function at 95 

different taxonomic levels within the Cand. Patescibacteria phylum. 96 
 97 

Taxonomic level Number of clusters 

Phylum 2 

Class 6 

Order 104 

Family 1,456 

Genus 6,987 

Species 45,788 

 98 
 99 
  100 
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Supplementary Table 13. List of filtered samples used for the metagenomic analyses. 101 
(Supplementary_tables_1.xlsx) 102 
 103 
  104 
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 105 
Supplementary Table 14. List of terms commonly used to define proteins of unknown 106 
function in public databases. (Supplementary_tables_1.xlsx) 107 
 108 
  109 
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Supplementary Notes 110 

Supplementary Note 1 - Metagenomic singletons and small 111 

gene clusters 112 

Analysis of metagenomic singletons and gene clusters with less than ten genes.  113 

The singletons represent 60% of the gene clusters (GCs) and 6% of the total genes. The 114 

GCs with less than ten genes, here referred to as small GCs for simplicity, represent 29% of 115 

the GCs and 10.5% of the gene dataset (Supp. Figure 2A). Although we discarded these two 116 

sets from the main study, we investigated them to obtain a complete analysis of the initial 117 

dataset. Both sets were first searched against the Pfam database of protein domain 118 

families6, and subsequently classified following the steps described in Supplementary Note 119 

3. For the small GCs classification, we used the cluster consensus sequence, which we 120 

extracted using the hhconsensus program of the HH-SUITE7, from the GC multiple 121 

sequence alignments (MSAs), generated with FAMSA8.  122 

We could not find any homologous in the Pfam database for the large majority of both 123 

singletons and small GCs, 95%, and 89%, respectively (Supp. Table 1-1). After the 124 

classification, the large majority of the singletons remained completely uncharacterized, 125 

(64% was identified as EU) (Supp. Table 1-2). Similarly, the small GCs were also found 126 

dominated by GCs of unknowns, with 38% of the clusters classified as EU and 29% as GU 127 

(Supp. Table 1-2). 128 

 129 

Supplementary Table 1-1. Singletons and small GCs Pfam annotations. 130 

 Total Annotated Not annotated 

Singletons 19,911,324 934,548 18,976,776 

Small GCs 9,549,853 1,028,076 8,521,777 
 131 

Supplementary Table 1-2. Number of singletons and small GCs per functional category. 132 

 K KWP GU EU 

Singletons 852,413 3,505,161 2,763,476 12,790,274 

Small GCs 946,112 2,213,654 2,744,262 3,645,825 
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Supplementary Note 2 - Metagenomic gene cluster validation 133 

and refinement 134 

To obtain a set of gene clusters characterized by a high intra-cluster homogeneity, we 135 

identified spurious, shadow and outlier genes, and we removed them from the clusters. 136 

 137 

Identification of spurious genes. We identified spurious genes by screening our gene data 138 

set against the AntiFam database 9. 139 

Identification of shadow genes. We identified shadow genes using the procedure described 140 

in Yooseph et al. 10. (1) Two genes on the same strand are considered overlapping if their 141 

intervals overlap by at least 60 bps; (2) genes that are on the opposite strands are 142 

considered overlapping if their intervals overlap by at least 50 bps, and their 3' ends are 143 

within each other's intervals, or if their intervals overlap by at least 120 bps and the 5' end of 144 

one is in the interval of the other. 145 

Identification of outlier genes. Outlier genes are sequences inside a cluster non-homologous 146 

to the other cluster genes and were identified during the cluster validation step (see Methods 147 

- Gene cluster validation).  148 

The number of spurious, shadow and outlier genes identified in the data set is reported in 149 

Supplementary Table 2-1. 150 

Cluster refinement. After the validation, we proceeded with the retrieval of the subset of 151 

"good" clusters. Clusters with ≥ 30% shadow genes were identified as shadow-clusters, as 152 

proposed in Yooseph et al. 10. During the cluster validation, we identified a minimum of 10% 153 

outlier genes as the threshold to classify a cluster as "bad-quality" (Supp. Fig. 2-2; Suppl. 154 

Table 2-2A). We combined this threshold with a Jaccard similarity index < 1, indicating a low 155 

intra-cluster Pfam domain architecture (DA) homogeneity, for the Pfam annotated clusters 156 

(Supp. Table 2-2B). We performed the cluster refinement in three consecutive steps: 157 

I. Discard the "bad" clusters (≥ 10% outliers & Jaccard similarity index <1) 158 

II. Discard the "shadow" clusters (≥ 30% shadow genes) 159 

III. Remove the single shadow, spurious and outlier genes from the remaining clusters. 160 

The results for each step are shown in Supplementary Table 2-3. From the initial set of ~3M 161 

clusters with more than ten genes, we identified 57,052 GCs as "bad" and 6,261 as 162 

"shadow". From the remaining set of 2,940,593 clusters, we removed a total of 2,708,994 163 

shadow, spurious and outlier genes. During this last step, we discarded 336 more clusters: 164 

244 resulted being composed only of spurious and outlier genes (one in the Pfam annotated 165 

set of clusters and 243 in the non-annotated set), and 92 clusters were discarded since they 166 

were left as singletons after refinement. Besides, we moved 1,190 Pfam annotated clusters 167 
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to the non-annotated set since they were left without any annotated gene. In summary, we 168 

removed 63,640 GCs and a total of 8,325,409 genes, respectively, 2% and 3% of the initial 169 

data set. The refined set contains 2,940,592 GCs and 260,142,354 genes (Supp. Table 3).  170 

Supplementary Table 2-1. Number of spurious, shadow and outlier genes in the 171 

metagenomic clusters. 172 

Gene category Clusters ≥ 10 genes Clusters < 10 genes Singletons 

Spurious 44,205  6,784 2,335 

Shadow 289,258 144,571 177,126 

Outliers 3,118,850 - - 
 173 

 174 
Supplementary Figure 2-1. Proportion of outlier genes detected within each cluster MSA. 175 

Distribution of observed values compared with those generated by the Broken-stick model. 176 

The cut-off was determined at 10% outlier genes per cluster. 177 

 178 

Supplementary Table 2-2. Metagenomic gene cluster validation results. 179 

(A) Evaluation of cluster sequence composition. 180 

 Pre-Compos. validation good quality bad quality 

Clusters 3,003,897 2,958,266 45,631 

Genes 268,467,763 266,268,638 2,199,125 

(B) Evaluation of cluster Pfam functional annotations. 181 
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Clusters 1,015,924 1,004,166 11,758 

Genes 181,433,541 178,167,583 3,246,002 

 182 

Supplementary Table 2-3 183 

Steps:  184 

Step I - Removing of the "bad clusters" 185 

Step II - Removing of the "shadow clusters" 186 

Step III - Removing single spurious, shadow or outlier genes 187 

 188 

(A) Number of clusters in each step of the cluster refinement. 189 

 Step I Step II Step III Refined 

Clusters 3,003,897 2,946,845 2,940,593 2,940,257 

Removed -57,052 -6,252 -336  

 190 

(B) Number of genes in each step of the cluster refinement. 191 

 Step I Step II Step III Refined 

Genes 268,467,763 263,022,636 262,851,348 260,142,354 

Removed -5,445,127 -171,288 -2,708,994  

 192 

 193 

  194 
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Supplementary Note 3 - Metagenomic gene cluster 195 

classification and remote homology refinement 196 

Classification of the refined subset of gene clusters and remote homology refinement. 197 

 198 

Methods 199 

We searched the gene clusters (GCs) without any Pfam annotated gene against two 200 

functional databases, the UniRef90, from UniProt11, and the NCBI nr database 12. We 201 

screened the two databases using the cluster consensus sequences, obtained by applying 202 

the hhconsensus program of the HH-SUITE7 on the clusters multiple sequence alignments 203 

(MSAs) generated with the FAMSA program8. We performed two nested searches using the 204 

MMSeqs213 program and following a similar workflow as the ''2bLCA'' described in 205 

Hinghamp et al. 14. The search-workflow consisted of five steps: First, we searched the 206 

consensus sequences against the functional database, with -e 1e-05 --cov-mode 2 -c 0.6. 207 

Second, we extracted the high scoring pairs (HSP) of the best hits and we searched them 208 

again using the same parameters. Third, we merged the top hits from the first with the 209 

second search results. Fourth, we filtered out the second search hits with a bigger e-value 210 

than the first search top hits. And fifth, we selected the hits that were found in 60% of the 211 

log10(best-e-value). We first applied this search-workflow to screen the UniRef90 database 212 

(release 2017_11)11. We classified the GCs as GU if their consensus sequences were found 213 

annotated to proteins labeled with any of the terms commonly used to define proteins of 214 

unknown function in public databases (Supp. Table 14). WE classified, instead, as KWP, the 215 

clusters with consensus annotated to functionally characterized proteins. Secondly, we 216 

applied the same search-workflow to search the consensus sequences with no homologs in 217 

the UniRef90 database, against the NCBI nr database (release 2017_12)12. We used the 218 

same criteria to classify a GC as GU or KWP. Ultimately, we classified as EU the GCs 219 

whose consensus sequences did not align with any of the NCBI nr entries.  220 

We processed the Pfam annotated GCs to retrieve a GC consensus domain architecture 221 

(DA). We classified as GU the GCs with a consensus DA composed only of Pfam domain of 222 

unknown function (DUFs) and as K the rest. The methods for this step are described in 223 

Methods - Remote homology classification of gene clusters. 224 

We refined the classified GCs to account for remote homologies. A detailed description of 225 

this process can be found in Methods - Gene cluster remote homology refinement. 226 

 227 

Results 228 
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From the 1,946,737 non-annotated clusters, 1,581,115 were found homologous to UniRef90 229 

entries. Of these hits, more than 50% were found homologous to "hypothetical" proteins and 230 

classified as GU, and the other hits were labeled as KWP. The remaining 365,622 clusters, 231 

with no homologs to UniRef90, were screened against the NCBI nr database. We found 232 

20,277 clusters in the NCBI nr, of them, 15,998 clusters were homologous to "hypothetical" 233 

proteins, and 4,279 clusters to characterized proteins and were classified respectively as GU 234 

and KWP. The remaining 345,345 clusters were not found in the NCBI nr database and 235 

therefore identified as EU. After the cascaded profile search against UniRef90 and NCBI nr, 236 

and the analysis of the GC consensus DAs, we classified the GCs into 912,551 K, 753,718 237 

KWP, 928,643 GU, and 345,345 EU. Detailed results for each search are reported in 238 

Supplementary Table 3-1. 239 

 240 

Supplementary Table 3-1. Metagenomic gene clusters classification steps. 241 

(A) Results from the search against the UniRef90 database 242 

Search vs UniRef90 Hits  No-hits 

Initial clusters:1,946,737 1,581,115 365,622 

 Characterized Hypothetical  

 749,439 831,676 
 243 

(B) Results from the search against the and the NCBI nr databases 244 

 Search vs NCBI nr Hits  No-hits 

Initial clusters: 365,622 20,277 345,345 

 Characterized Hypothetical  

 4,279 15,998 
 245 

(C) Classification of the Pfam annotated GCs based on the consensus DAs. 246 

Consensus DA analysis Annotated to DKF DAs Annotated to DUF DAs 

Initial clusters: 993,520 912,551 80,969 
 247 

Supplementary Table 3-2. Metagenomic GC remote homology refinement steps. 248 

 K KWP GU EU 

Initial GCs 912,551 753,718 928,643 345,345 

EU refinement - +38,333 +171,183 -209,516 
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Post-EU refinement 912,551  792,051  1,099,826  135,829  

KWP refinement +137,615 -159,598 +21,983 - 

Refined GCs 1,050,166 632,453 1,121,809  135,829 
 249 

 250 

  251 
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Supplementary Note 4 - GTDB integration 252 

Results from the integration of the Genome Taxonomy Database15 into the metagenomic 253 

dataset. 254 

 255 

We integrated the metagenomic GCs with the 93,723,190 genes from the archaeal and 256 

bacterial GTDB genomes (release 86)15. A total of 67,446,376 genomic genes, 72% of the 257 

whole dataset, were found in the metagenomic GCs. The remaining 26,276,814 (28% of the 258 

initial dataset) genes were then clustered separately into 7,958,475 genomic GCs (Supp. 259 

Table 4-1). This set of GCs was processed through our workflow steps to be validated, 260 

classified and refined. 261 

Within the set of genomic GCs, we identified 5,558,438 singletons and 2,400,037 GCs with 262 

more than one gene. We were able to annotate to Pfam protein domain families 41% of the 263 

genomic genes. The annotation led to 556,834 annotated GCs and 1,843,203 non-annotated 264 

GCs. The validation step determined the minimum proportion of outlier genes per cluster at 265 

11% (Supp. Fig. 4-1). The majority of the genomic GCs showed high intra-cluster 266 

homogeneity, both in terms of sequence composition and functional annotations (Supp. 267 

Table 4-2). 268 

After the validation, we refined the GCs removing the GCs identified as "bad" and the 269 

detected outliers’ genes (see Supp. Table 4-3). We classified the refined subset of 2,347,502 270 

GCs into the four functional categories via the same protocol applied for the metagenomic 271 

data set. The results of the GC classification are reported in Supplementary Table 4-4. After 272 

the classification steps, we refined the EU and KWP GCs searching their HMMs profiles for 273 

remote homologies in the Uniclust (release 30_2017_10)16 and the Pfam (v. 31.0)6 274 

databases, respectively, using HHblits 17. An overview of the results step-by-step can be 275 

found in Supplementary Table 4-5A. In the end, we obtained 617,344 GCs classified as 276 

Known, 136,406 as KWP, 1,525,550 as GU and 68,202 as EU (Supp. Table 4-5B). The 277 

genomic dataset appeared highly dominated by the GU, which accounts for 65% of the GCs. 278 

In the end, we retrieved a subset of genomic "High Quality" (mostly complete) GCs (Supp. 279 

Table 4-6). The numbers of genes and GCs for the integrated (MG+GTDB) dataset are 280 

reported in Supplementary Table 4-7. 281 

 282 
Supplementary Table 4-1. GTDB integration in the metagenomic dataset. 283 

 Metagenomic Shared Genomic Total 

GCs 30,301,693 2,163,381 7,958,475  40,423,549 

Genes 199,693,614 190,001,314 26,276,814 415,971,742 
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 284 

 285 
Supplementary Figure 4-1. Proportion of outlier genomic genes identified within each 286 

cluster MSA. Distribution of observed values compared with those of the Broken-stick model.  287 

 288 

Supplementary Table 4-2. Genomic GC validation results. 289 

(A) Evaluation of cluster sequence composition. 290 

 Pre-Compos. validation good quality bad quality 

GCs 2,400,037 2,361,585 38,452 

Genes 20,718,376 20,364,454 353,922 
(B) Evaluation of Pfam functional annotations. 291 

 Pre-Funct. validation good quality bad quality 

GCs 556,834 542,410 14,424 

Genes 10,091,203 9,865,550 225,653 

(C) Combined cluster validation results. 292 

 Pre-validation good quality bad quality 

GCs 2,400,037 2,347,502  52,535 

Genes 20,718,376 20,141,636 576,740 

 293 

Supplementary Table 4-3. Spurious, shadow and outlier genes in the genomic GCs. 294 
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Gene category GCs >= 2 genes Singletons 

Spurious 3,252 1,312 

Shadow 223,535 125,262 

Outliers 449,080 - 

 295 

Supplementary Table 4-4. Non-annotated genomic GC classification. 296 

(A) Results from the search against the UniRef90 database. 297 

Search vs UniRef90 Hits  No-hits 

Initial GCs: 1,816,999 1,570,094 246,905 

 Characterized Hypothetical  

 304,004 1,266,090 

 298 

(B) Results from the search against the NCBI nr database. 299 

Search vs NCBI nr Hits  No-hits 

Initial GCs: 246,905 28,704 218,201 

 Characterized Hypothetical  

 1,280 27,424 
(C) Classification of the Pfam annotated GCs based on the consensus DAs. 300 

Consensus DA analysis DKF DAs DUF DAs 

Initial GCs: 993,520 912,551 65,688 
 301 

Supplementary Table 4-5. Genomic GC remote homology refinement and final genomic 302 

GC dataset. 303 

    (A) Remote-homology refinement steps. 304 

 K KWP GU EU 

Initial GCs 464,815 305,284 1,359,202 218,201 

EU refinement - +5,704 +144,295 -149,999 

Post-EU refinement 464,815 310,988 1,503,497 68,202 

KWP refinement +152,529 -174,582 +22,053 - 

Refined GCs 617,344  136,406  1,525,550  68,202  
    (B) Genomic GC refined dataset. 305 
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 K KWP GU EU Total 

Genes 9,997,529 663,107 9,305,621 175,379 20,141,636 

GCs 617,344 136,406 1,525,550 68,202 2,347,502 
 306 

Supplementary Table 4-6. Genomic high quality (HQ) GCs. 307 

Category HQ GCs HQ genes pHQ GCs pHQ genes 

K 12,202 25,105,156 0.0198 0.0096 

KWP 4,019 1,349,165 0.0295 0.0214 

GU 12,699 8,403,393 0.0083 0.0062 

EU 438 471,820 0.0064 0.0074 
 308 

Supplementary Table 4-7. MG + GTDB seed database. Integrated number of genes and 309 
GCs per category. 310 

 K KWP GU EU Total 

Genes 230,641,76 32,754,365 68,509,335 3,534,207 335,439,673 

GCs 1,667,510  768,859 2,647,359 204,031 5,287,759 
 311 

  312 
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Supplementary Note 5 – Summary of the post-genomic 313 

integration dataset 314 

In-detail description of the integrated metagenomic-genomic dataset. 315 

 316 

The integration of 93,723,190 genomic genes into the metagenomic dataset (322,248,552 317 

genes, 32,465,074 GCs) resulted into a dataset of 415,971,742 genes and 40,423,549 GCs 318 

(Supp. Fig. 2A and Supp. table 4-1). As shown in Supp. Figure 2A, the integrated dataset is 319 

divided into: (1) “kept” GCs and (2) “discarded” GCs. 320 

1. The “kept” GCs. 321 

The “kept” GC dataset contains the 2,940,257 metagenomic “kept” GCs with 260,142,354 322 

genes (Supp. Fig. 2A), the genomic “kept” 2,347,502 GCs with 20,141,636 genes (Supp. 323 

Table 4-5B), plus 55,155,683 genomic genes found in the metagenomic set of “kept” GCs 324 

(Supp. Table 5-1), for a total of 5,287,759 GCs and 335,439,673 genes. A description of the 325 

integrated “kept” dataset numbers of GCs and genes, and their distribution in the different 326 

categories can be found in Supp. Figure 2A and Supp. Table 4-7. 327 

2. The “discarded” GCs.  328 

The metagenomic “discarded” set includes 8,325,409 genes and 63,640 GCs classified as 329 

“bad” during the validation and refinement processes (Supp. Note 2), 19,911,324 singletons 330 

and 33,869,465 genes in 9,549,853 small GCs, i.e. clusters with less than 10 genes (Supp. 331 

Note 1), for a total of 62,106,198 genes and 29,524,817 GCs. 332 

The genomic “discarded” dataset consists of 576,740 genes and 52,535 GCs classified as 333 

“bad”, 5,558,438 singletons (Supp. Note 4) and 12,290,693 genomic genes found in 334 

1,223,730 metagenomic discarded clusters. This last set of genes, labeled as “Other” in 335 

Supp. Figure 2A, includes 1,578,862 genomic genes found in the set of metagenomic “bad” 336 

clusters, 7,010,987 genomic genes found in the metagenomic small GCs and 3,700,844 337 

genomic genes homologous to metagenomic singletons (Supp. Table 5-1).  338 

The integration of the metagenomic and genomic “discarded” sets resulted in 80,532,069 339 

genes and 35,135,790 GCs. 340 

As described above, with the integration of genomic data we enriched metagenomic 341 

singletons and small GCs. This addition resulted in a set of 52,758 metagenomic singletons 342 

and 187,953 metagenomic small GCs becoming GCs with more than ten genes. We 343 

validated and classified the 240,711 GCs in this set. We obtained 223,229 good-quality GCs, 344 

divided into 17,383 K, 89,205 KWP, 109,636 GU and 7,005 EU.  345 

 346 
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Supplementary Table 5-1. Overview of genomic genes found homologous to metagenomic 347 

genes. 348 

  Total In MG good-
quality GCs 

In MG  
small GCs 

In MG 
singletons 

In MG bad-
quality GCs 

Genes 67,446,376 55,155,683 7,010,987 3,700,844 1,578,862 

 349 

 350 

  351 
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Supplementary Note 6 - Gene cluster additional information 352 

Additional information on the metagenomic and genomic (MG + GTDB) gene cluster dataset. 353 

 354 

We retrieved a set of statistics for the MG + GTDB GC dataset, including the proportion of 355 

complete genes per cluster, the average gene length, the cluster level of darkness and 356 

disorder, and a cluster consensus taxonomic affiliation. The methods we applied to obtain 357 

these statistics are described in the Methods-Gene cluster characterization paragraph. 358 

Overall the K category has the largest average GC size, 139.6 genes (and a max of 168,822 359 

genes). The average GC size is then decreasing from the known to the unknown categories, 360 

with the EU presenting the smallest average size, with 17.36 genes per GC. Similarly, the K 361 

GCs have, on average, the longest genes (258.55 aa), followed by the GU (177.16 aa), the 362 

KWP (133.22 aa) and the EU (130.65 aa). The unknown categories (GU and EU) have the 363 

highest level of completion, i.e., the proportion of complete genes per GC. The KWP GCs 364 

contain the smallest percentage of complete genes. We evaluated the levels of darkness 365 

and disorder of the GCs using the information on the DPD18 annotations (Supp. Table 6-1). 366 

The categories K, KWP and GU showed a degree of darkness inversely proportional to their 367 

functional characterization. Interestingly the KWP presented the highest level of disorder 368 

(Supp. Table 6, Supp Fig 3), while the proper characterization of these proteins is beyond 369 

the scope of this paper, our preliminary analyses suggest that KWP are enriched in 370 

intrinsically disordered proteins19 (Supp. Table 6-1). These proteins, usually involved in 371 

signaling and regulatory functions, don't have a well-defined 3-D structure and they can 372 

adopt many different conformations. 373 

We used the taxonomy of 214,392,608 genes to evaluate the taxonomic variation within a 374 

GC and generated consensus taxonomic annotations for 2,630,338 GCs. The GCs 375 

taxonomic variation is low at higher taxonomic levels and it steadily increases towards 376 

Genus and Species (Supp. Table 5).  377 

A general overview of the MG + GTDB main properties for the whole GCs dataset can be 378 

found in Supplementary Table 5 (Supplementary_tables_2.xlsx).  379 

 380 

Supplementary Table 6-1. Number of MG + GTDB GCs annotated to the DPD per 381 

functional category. 382 

K KWP GU EU 

374,555 8,874 22,135 0 
 383 

  384 
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Supplementary Note 7 - Gene cluster communities 385 

Metagenomic and genomic gene cluster community inference detailed results. 386 

 387 
We aggregated the gene clusters (GCs) into gene cluster communities (GCCs) based on 388 

their shared distant homologies, which couldn’t be detected with the sequence similarity 389 

approach. The GCC inference, described in the Methods-Cluster communities inference 390 

section, was implemented and tuned on the known coding sequence space (CDS-space), 391 

which is constrained by the domain architectures (DAs). Then, we used the information 392 

retrieved for the known CDS-space to aggregate the unknown GCs. Since the number of 393 

DAs in the known GCs may be inflated due to the fragmented nature of metagenomic genes, 394 

a key step for the inference process was the retrieval of a set of non-redundant DAs 395 

(Methods - A set of non-redundant domain architectures section). 396 

We reduced the complete set of 29,341 Pfam DAs found in the metagenomic dataset, to 397 

23,681 non-redundant DAs, and the 38,765 Pfam DAs found in the genomic dataset to 398 

38,060 non-redundant DAs. 399 

To find how the different clusters aggregate at the DA level, we then applied a combination 400 

of HMM-HMM searches and community identification using the Markov Cluster Algorithm 401 

(MCL) 20 (see Methods - Cluster communities inference). MCL is very sensitive to the 402 

inflation value, which determines the granularity of the partitioning. The results of our 403 

iterative approach are summarized in the radar plots of Supplementary Figure 7-1. We 404 

determined the best inflation value at 2.2 for the metagenomic dataset, value corresponding 405 

to the radar plot with the largest area (Supp. Fig. 7-1A). This value is in agreement with the 406 

value empirically determined to be the optimal20. The inference led to a set of 283,314 407 

metagenomic GCCs out of ~2.9M GCs, with a reduction rate of 90% (Supp. Table 7-1A).  408 

For the genomic dataset, we first identified the GCs with remote homologies to the 409 

metagenomic GCCs. To do this, we searched the genomic GC HMM profiles against the 410 

metagenomic ones, using HHblits17 (-n 2 -Z 10000000 -B 10000000 -e 1). We assigned the 411 

genomic GCs sharing a HHblits probability ≥ 50% and a bidirectional coverage > 60% to the 412 

respective metagenomic GCCs. We processed the remaining genomic GCs through the 413 

GCC inference workflow. We determined the best inflation value at 2.5 (Supp. Fig. 7-1B), 414 

which led to the inference of a total of 496,930 GCCs, with a reduction rate of 79% (Supp 415 

Table 7-1B). The numbers of identified cluster GCCs for each category are shown in 416 

Supplementary Table 7-1. 417 

 418 
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419 
Supplementary Figure 7-1. Radar plots used to determine the best MCL inflation value for 420 

the partitioning of the K into cluster components. The plots were built using a combination of 421 

five variables: 1=proportion of clusters with one component and 2=proportion of clusters with 422 

more than one member, 3=clan entropy (proportion of clusters with entropy = 0), 4=intra 423 

HHblits-Score/Aligned-columns (normalized by the maximum value), and 5=number of 424 

clusters (related to the non-redundant set of DAs). (A) Metagenomic dataset. (B) Genomic 425 

dataset. 426 

Supplementary Table 7-1. Number of gene clusters, cluster communities and reduction rate 427 

shown by functional category. 428 

(A) Metagenomic dataset (MG) 429 

 K KWP GU EU Total 

Clusters 1,050,166 632,453 1,121,809 135,829 2,940,257 

Communities 24,181 64,938 146,100 48,095  283,314 

Reduction (%) 97.7 89.73 86.98 64.59 90.36 

(B) Genomic dataset (GTDB) 430 

  K KWP GU EU Total 

Clusters 617,344 136,406 1,525,550 68,202 2,347,502 

Communities 52,360 47,203 339,468 57,899 496,930 

Reduction (%) 91.52 65.39 77.75 15.11 79.30 
 431 
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Supplementary Note 8 - Gene cluster community validation 434 

The biological significance of the gene cluster communities (GCC) was tested by exploring 435 

their distribution within the phylogeny of proteorhodopsin and a set of ribosomal protein 436 

families.  437 

Methods 438 

 439 

Analysis of the GCC distribution within the proteorhodopsin phylogeny. 440 

We searched the proteorhodopsin (PR) HMM profiles from Olson et al.21 against the K and 441 

KWP cluster consensus sequences, using the hmmsearch program of the HMMER software 442 

(version 3.1b2)22. We filtered the results for alignment coverage > 0.4 and e-value ≥ 1e-5. 443 

The filtered results were placed in the MicRhoDE PR tree23 using pplacer24.  Then we placed 444 

the query PR sequences into the MicRhode23 PR tree. We de-duplicated the placed queries 445 

with CD-HIT (v4.6)25 and we cleaned them from sequences with less than 100 amino acids 446 

using SEQKIT (v0.10.1) (Shen et al. 2016). Next, we calculated the best substitution model 447 

using the EPA-NG modeltest-ng (v0.3.5)26 and we optimized the MicRhoDE PR tree initial 448 

parameters and branch lengths using RAxML (v8.2.12)27. Afterward, we incrementally 449 

aligned the query PR sequences against the PR tree reference alignment using the PaPaRA 450 

(v2.5) software28. We divided the query alignment and the reference alignment using EPA-451 

NG –split v0.3.5. We combined the PR tree with the related contextual data and the tree 452 

alignment, into a phylogenetic reference package using Taxtastic (v0.8.9), and we placed 453 

the PR query sequences in the tree using pplacer (v1.1.alpha19-0-g807f6f3)24 with the 454 

option -p (–keep-at-most) set to 20. We grafted the PR tree with the query sequences using 455 

Guppy, a tool part of pplacer. 3. As the last step, we assigned the PR Supercluster affiliation 456 

to the query sequence, transferring the annotation of its closest relative in the MicRhoDE 457 

tree23 the R packages APE v5.3 and phanghorn v2.5.329.  458 

Furthermore, we aligned the query sequences annotated as viral to the six viral PRs from 459 

Needham et al. 201930, using Parasail31 (-a sg_stats_scan_sse2_128_16 -t 8 -c 1 -x). We 460 

then built a sequence similarity network (SSN) using the sequence similarity values to weight 461 

the graph edges.  462 

 463 

Analysis of standard and high-quality GCCs distribution within ribosomal protein families. 464 

As an additional evaluation, the distributions of standard GCCs and HQ GCCs within 465 

ribosomal protein families were investigated and compared. The ribosomal proteins used for 466 

the analysis were obtained combining the set of 16 ribosomal proteins from Méheust et al.32 467 

and those contained in the collection of bacterial single-copy genes of Anvi'o33, that can be 468 
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downloaded from 469 

(https://github.com/merenlab/anvio/blob/master/anvio/data/hmm/Bacteria_71/genes.txt).  470 

 471 

Results 472 

 473 

The results of both distribution analyses are shown in Figure 2D and 2C, respectively, and 474 

described in the main text.  475 

We found 63 of the viral genes placed in the PR tree showing an average similarity of 50% 476 

with the viral PR of Needham et al. 30 (Suppl. Table 8-1). Additionally, we found two genes 477 

(from two TARA samples: TARA_093_SRF_0.22-3 and TARA_145_SRF_0.22-3) sharing a 478 

similarity of 100% with one of the Needham et al. PRs (ChoanoV2_VirRyml_1). These 479 

genes, however, were not placed in the PR tree.  480 

 481 

Supplementary Table 8-1. Sequence similarity values between viral genes and Needham 482 

et al. viral PRs.  (Supplementary_tables_1.xlsx).  483 
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Supplementary Note 9 - HMM-HMM homology network 484 

weighting metrics 485 

Validation of the edge weight metrics used for the gene cluster homology network 486 

community inference. 487 

 488 

Methods 489 

A critical step in the gene cluster community (GCC) inference relies on the determination of 490 

the edge weights for the GC HMM-HMM network. We tested two possible metrics to weight 491 

the GC homology network resulting from the all-vs-all HMM GC comparison with HHblits17: 492 

(1) the ratio between the HHblits score and the number of aligned columns (HHblits-493 

Score/Aligned-columns), metric chosen in this paper; (2) the maximum(HHblits-probability x 494 

coverage), weight used in Méheust et al. (2019) 32. In addition, we tested the two different 495 

metrics using the ribosomal protein families as reference. For this second test, we filtered 496 

the GCCs for those annotated to the 16 ribosomal proteins used in Méheust et al.32, and 497 

those contained in the collection of bacterial single-copy genes of Anvi'o33, which can be 498 

downloaded from 499 

https://github.com/merenlab/anvio/blob/master/anvio/data/hmm/Bacteria_71/genes.txt. To 500 

then compare the two metrics, we used the functions of the R package aricode 501 

(https://github.com/jchiquet/aricode)34, which allow comparisons between clustering 502 

methods. 503 

 504 

Results 505 

The results of the test of the different HHblits metrics used to weight the GC homology 506 

network are shown separately in Supplementary Figure 9-1 and the comparison in 507 

Supplementary Figure 9-2.  Both metrics present a very different behavior (Supplementary 508 

Figure 9-1), the metric used in Méheust et al. is rescaling the HHblits-probability 509 

(Supplementary Figure 9-2). While the HHblits-probability is useful for deciding if two HMMs 510 

are reliable homologs, it is not suitable for measuring similarities due to its dependence on 511 

the length of the alignment. On top of this, we can see how the HHblits-Score/Aligned-512 

columns values present a similar and more homogenous distribution in all four categories, 513 

being more suitable for the MCL clustering. 514 

Overall, our approach generated fewer GCCs, as can be observed in Supplementary Figure 515 

9-3. Our clustering was found closer to the "ground truth" represented by the ribosomal 516 

protein families compared to the partitioning proposed by Méheust et al. The results from the 517 
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comparison between the two clustering approaches and the ribosomal protein reference are 518 

reported in Supplementary Table 9-1. 519 

 520 

 521 
Supplementary Figure 9-1. Cluster pairs distribution based on the metrics used to weight 522 

the gene cluster HMM-HMM homology network. (A) HHblits-Score/Aligned-columns (Vanni 523 

et al.). (B) maximum(HHblits-probability x coverage) (Méheust et al.). 524 

 525 

526 
Supplementary Figure 9-2. Determination of the edge-weight metrics for the GC HMM-527 

HMM homology network. We tested the metrics used in Méheust et al. and this paper (Vanni 528 

et al.). The correlations between metrics are shown per functional category. The metric used 529 

by Méheust et al. corresponds to the maximum(HHblits-probability x coverage). The metric 530 

applied in this manuscript is HHblits-Score/Aligned-columns. (A) Comparison between the 531 

metric of  Méheust et al. and the HHblits-Probability. (B) Comparison between the metric 532 

used in this manuscript and the HHblits-Probability. (C) Comparison between the metric 533 

used in this manuscript and the metric of  Méheust et al. 534 
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 536 
Supplementary Figure 9-3. Agreement between the number of communities within 537 

ribosomal protein families between our approach and the one described in Méheust et al. 538 

 539 

Supplementary Table 9-1. Measures of similarity between the community inference 540 

approach proposed in this paper, the one used in Méheust et al. and the "ground truth" 541 

represented by the ribosomal protein families. 542 

  Vanni et al. vs Meheust 
et al. 

Vanni et al. vs ribosomal 
families 

Meheust et al. vs 
ribosomal families 

ARI 0.915  0.944 0.906 

AMI 0.928  0.916 0.878 

NVI 0.101  0.0858 0.124 

NID 0.0717 0.0841 0.122 

NMI 0.928  0.916 0.878 
Note: ARI=Adjusted Rand Index; AMI=Adjusted Mutual Information; NVI=Normalized Variation 543 
Information; NID=Normalized Information Distance; NMI=Normalized Mutual Information.  544 

RPL14

RPL15
RPL16

RPL18

RPL2

RPL22

RPL3

RPL4

RPL5

RPL6

RPS10

RPS17

RPS19

RPS3

RPS8

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

0

5

10

15

0 5 10 15
Number of communities (Vanni et al.!

N
um

be
ro

ff
am

ilie
s

("
#

$e
us

te
ta

l.!



44 

 545 

Supplementary Note 10 - EU gene cluster in metagenome-546 

assembled genomes 547 

Metagenome-assembled genomes (MAGs) as a resource to contextualize the environmental 548 

unknown gene clusters and cluster communities.  549 

 550 

Overall, the MG+GTDB integrated cluster dataset contains 204,031 EU gene clusters (GCs) 551 

(grouped in 103,195 cluster communities (GCCs)). The EUs are divided into 127,032 552 

metagenomic, 70,470 genomic, and 9,024, both metagenomic and genomic GCs. The last 553 

two subsets contain 52,231 (26%) EU found in GTDB metagenome-assembled genomes 554 

(MAGs). To test whether we could also place the subset of metagenomic EU in the context 555 

of MAGs, we searched the GCs of this set against the manually curated TARA Ocean MAG 556 

collection from Delmont et al. 35.  557 

In addition, we deepened the investigation of the metagenomic EU subset, focusing on the 558 

GCCs found broadly distributed in metagenomes according to the results of Levin's niche 559 

breadth analysis (Fig. 4). The details of the metagenomic EU analysis are described below. 560 

 561 

Methods 562 

We searched the metagenomic EU GCs HMM profiles, obtained from the cluster MSA using 563 

the hhmake program of the HH-SUITE7, against the set of 957 high-quality MAGs binned 564 

from the TARA Ocean prokaryotic dataset35. We performed the sequence-profile search 565 

using the MMSeqs2 search program 13, using -e 1e-20 --cov-mode 2 -c 0.6. We filtered the 566 

results to keep the hits within 90% of the log10(best-e-value). We applied a majority vote 567 

function to retrieve the consensus category for each hit. Then, we sorted the results by the 568 

smallest e-value and the largest query and target coverage to keep only the best hits. We 569 

then filtered the search results focusing on the broadly distributed EU GCs and GCCs. We 570 

retrieved MAG contigs containing the EU GCs and GCCs from the Anvi’o MAG profiles using 571 

the program anvi-export-gene-calls from Anvi’o v433. We functionally annotated the contigs 572 

searching their genes against the Pfam database (v. 31.0)6, using the hmmsearch program 573 

from the HMMER package (version: 3.1b2)22, and complementing the search using Prokka36 574 

in metagenomic mode. We then selected the contig with the lowest percentage of 575 

hypothetical proteins, and we extracted a region of 1kb surrounding the genes mapping to 576 

the EU GCCs.  577 

 578 

Results 579 
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We found a total of 5,420 EU clusters homologous to 7,661 genes in the 691 TARA MAGs. 580 

These EU clusters belong to 4,365 GCCs. We kept only the 71 EU GCCs that showed a 581 

broad distribution in TARA samples. These GCCs contained 3,119 clusters and were found 582 

in 83 different TARA MAGs. Next, we examined the genomic neighborhood of the broad 583 

distributed EU on the MAG contigs. Investigating the genomic neighborhood can lead to the 584 

inference of a possible function of the EU. We selected the MAG most enriched with broadly 585 

distributed EU, which resulted in being the Atlantic North-West MAG 586 

"TARA_ANW_MAG_00076"  (Supp. Fig. 10-1A). This MAG contains 23 EU (0.3%) of its 587 

genes. It belongs to the bacterial order of Flavobacteriales. Of its 1,283 contigs, 317 include 588 

at least one EU. We functionally annotated these contigs with Prokka (and Pfam). Then, we 589 

sorted the contigs based on the proportion of genes annotated to hypothetical or 590 

characterized proteins, as shown in Supplementary Figure 10-1B. The presence of genes of 591 

known function around the EU contributes to prove that these unknown genes are part of a 592 

real contig, and possibly an operon. Therefore, we selected for exploration, the contigs with 593 

the highest proportion of characterized genes, "TARA_ANW_MAG_00076_000000000672", 594 

with 7 characterized genes out of a total of 13 annotated genes. The contig with the second 595 

least amount of hypothetical proteins was "TARA_ANW_MAG_00076_000000001247", 596 

which contained nine characterized genes out of 20. The contig 597 

"TARA_ANW_MAG_00076_000000000672" is shown in Supplementary Figure 10-1C and 598 

highlighted in red are the two predicted genes with significant homology to the EU GCs, 599 

members of the broadly distributed EU GCCs eu_com_769 and eu_com_5081. Within their 600 

genomic neighborhood, we observe genes relating to nucleotide metabolism, DNA repair 601 

and phosphate regulation/sensing, including dUTPase, phoH and protein RecA. Gene 602 

placement in prokaryotic genomes is not random. Genes are grouped to increase 603 

transcriptional efficiency to respond to stimuli in the environment. Therefore, we can 604 

hypothesize that these EU have functions related to their neighboring genes.  605 
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 606 
Supplementary Figure 10-1. (A) EU mapping on TARA MAGs results. Histogram of TARA 607 

MAG percent completeness (checkM). The red line represents the number of EU found in 608 

the MAGs. (B) Contigs from TARA MAGs TARA_ANW_MAG_00076 in descending order of 609 

highest proportion of non-hypothetical gene content. (C) EU communities in the context of a 610 

MAG contig. Contig genomic neighborhood around two potential EU communities. 611 

 612 
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Supplementary Note 11 - Singletons effect on the coding 614 

sequence space diversity 615 

Insights into the metagenomic and genomic singletons and their influence on the gene 616 

cluster rate of accumulation. 617 

 618 

Singletons represent a significant fraction in both the metagenomic (60%) and genomic 619 

(55%) datasets. Although we discarded them from the primary analyses presented in this 620 

paper, we analyzed their composition in terms of functional categories. The analysis steps 621 

are described for the metagenomic singletons in Supplementary Note 1, and, after the 622 

integration, we applied the same steps to the genomic singletons (Supp. Table 11-1). As 623 

shown in Supp. Note 1, the metagenomic singletons are highly represented by EU genes, 624 

while in the genomes we observed the majority of the singletons shared between GU and 625 

EU. In general, the singletons are characterized by a high percentage of genes of unknown 626 

function. 627 

We tested the singletons role in the rate of accumulation of GCs and GCCs as a function of 628 

the number of genomes and metagenomes, as shown in Figure 3C and 3D (to be compared 629 

with Supp. Fig. 5A and 5B). For the metagenomic collector curves, we included only the 630 

singletons with a sample abundance of 8.36. This value corresponds to the mode sample 631 

abundance of the set of metagenomic singletons that became clusters with more than ten 632 

genes after the integration of the genomic data. 633 

We observed that, excluding the 19,911,324 singletons from the metagenomic dataset, the 634 

accumulation curves of the GCs flatten and approach a plateau. The same effect is 635 

observed, excluding the set of 5,558,438 singletons from the genomic dataset (Supp. Fig. 636 

5B; Supp Table 11-2).  637 

 638 

Supplementary Table 11-1. Number of genomic singletons per functional category. 639 

 K KWP GU EU 

Genes 473,460 896,127 2,528,370 1,660,481 
 640 

 641 

Supplementary Table 11-2. Minimum slope values for the collector curves.  642 

(A) Excluding singletons. In parenthesis, the number of genomes or metagenomes for 643 

the first occurrence of slope < 1 644 

 Gene Clusters Gene cluster Communities 
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 metaG GTDB metaG GTDB 

Known 209.235 6.556 0.1344 (440) 0.07 (15,120) 

Unknown 374.5147 5.851 0.1375 (600) 0.621 (27,690) 

(B) Including singletons (with a mode abundance in the samples of 8.36). 645 

 Gene Clusters 

 metaG GTDB 

Known 1329.489 66.063 

Unknown 4843.570 158.891 

 646 
 647 

  648 



49 

Supplementary Note 12 - Coverage of external databases 649 

Analysis of the coverage, by our metagenomic dataset, of seven external microbial gene and 650 

gene cluster datasets. 651 

 652 

Methods 653 

We searched seven different state-of-the-art databases against our dataset of cluster HMM 654 

profiles. The different profile searches were all performed using the MMSeqs2 (version 655 

8.fac81) search program 13, setting an e-value threshold of 1e-20 and a query coverage 656 

threshold of 60% (-e 1e-20 --cov-mode 2 -c 0.6). We kept the hits within 90% of the 657 

log10(best-e-value). Then we applied a majority vote function to retrieve the consensus 658 

functional category for each search hit. In the end, the results were sorted by the lowest e-659 

value and the largest query and target coverage to keep only the best hits.  660 

We applied the described method to the following datasets: the Families of Unknown 661 

Functions (FUnkFams) (61,970 genes) 37, the Pacific Ocean Virome (POV) (4,238,638 662 

genes) 38 and the Tara Ocean Virome (TOV) (6,642,187 genes) 39. The Genome Taxonomy 663 

Database (GTDB) (93,723,190 archaeal and bacterial genes) 15. The MGnify proteins from 664 

the EBI metagenomics database (release 2018_09)40 (843,535,611 genes). The manually 665 

curated collection of 957 MAGs from TARA metagenomes 35 (TARA MAGs) (2,288,202 666 

genes), and the one made of 92 MAGs, from the fecal microbiota transplantation study (FMT 667 

MAGs) of Lee et al. 41 (188,983 genes). And also the collection of unannotated genes with 668 

mutant phenotypes identified in Price et al. 2018 42 (37,684 mutant genes). 669 

 670 

Results 671 

We found our metagenomic GCs in all the main biomes defined by EBI metagenomics 672 

(Supp. Fig. 6), with an overall coverage of 74% of the MGnify peptides (Supp. Fig. 12-1). 673 

Our GCs also covered 62% of the FUnkFam genes of Wyman et al.; 70% of the GTDB 674 

genes; and 85% of the gene tested for mutant phenotypes in Price et al.. We also covered 675 

50% of the Pacific Ocean Virome proteins, and 77% of the TARA Ocean Virome proteins, for 676 

overall coverage of 70% of the selected viral proteins. The majority of genes from both the 677 

FMT MAGs of Lee et al. and the TARA MAGs of Delmont et al., were found homologous to 678 

genes in our dataset (91% and 77% respectively). With the only exception of the FUnkFams, 679 

and the mutant genes, for which we did not find any homology to EU GCs, the other 680 

datasets reported homologies to clusters from all four functional categories.  681 

Moreover, we found that 20% of the Wyman et al FUnkFams and 44% of the unknowns 682 

included in the RB-TnSeq experiments by Price et al., 2018 belong to the known CDS-space 683 

(Supp. Table 12-1). 684 
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 685 

 686 
Supplementary Figure 12-1. Coverage of external datasets. The barplot is showing the 687 

proportion of covered genes in each of the seven datasets that were screened against the 688 

metagenomic set of clusters’ HMM profiles. 689 

 690 

Supplementary Table 12-1. Re-classification of the unknowns identified in Wyman et al and 691 
Price et al. 692 
Study Original 

unknown set Covered fraction Found as 
known 

Found as 
unknown 

Wyman et al.  61,970 38,174 12,366 25,808 

Price et al. 49,736 33,016 21,967 11,049 

 693 
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Supplementary Note 13 - Archaea gene cluster phylogenomic 695 

analysis 696 

Gene clusters phylogenetic analysis - results for the archaeal genomes. 697 

 698 

In the main text are shown the results for the gene clusters (GCs) phylogenetic analyses 699 

(clusters phylogenetic conservation and specificity) for the GTDB bacterial genomes. The 700 

same methods/analyses were applied for the archaeal genomes, and the results are 701 

presented here.  702 

Out of the 230,340 GCs found in GTDB archaeal genomes, we identified 48,518 lineage-703 

specific GCs (precision and sensitivity both ≥95%43). As seen for the Bacteria in Figure 5A, 704 

the number of known and unknown archaea lineage-specific GCs increases with the 705 

Relative Evolutionary Distance15, with the differences between the known and the unknown 706 

fraction starting to be evident at the Family level (Supp. Fig. 13-1A). The number of unknown 707 

lineage-specific GCs for Family, Genus and Species are 2,937, 12,966 and 21,002 708 

respectively (Supp. Tale 13-1). A total of 34,893 GCs were phylogenetically conserved (P < 709 

0.05), where 19,693 were known GCs and 15,200 were unknown GCs. Overall, the unknown 710 

GCs are more phylogenetically conserved than the known GCs (Supp. Fig. 13-1B, p < 711 

0.0001). However, considering only the lineage-specific clusters, we observe the opposite, 712 

the unknown GCs result in less phylogenetically conserved (Supp. Fig. 13-1B). The GTDB 713 

archaeal genomes were also screened for prophages. In total, we identified 2,082 lineage-714 

specific GCs in prophage genomic regions, and 86% of them resulted in clusters of unknown 715 

function (Supp. Fig. 13-1C). To identify archaeal phyla enriched in unknown GCs, we 716 

partitioned the phyla based on the ratio of known to unknown GCs and vice versa (Supp. 717 

Fig. 13-1D). We observed the same pattern found for bacterial phyla in Figure 5D, where the 718 

archaeal phyla with a larger number of MAGs are enriched in GCs of unknown function 719 

(Supp. Fig. 13-1D).  720 

 721 
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 722 
Supplementary Figure 13-1. Phylogenomic exploration of the unknown coding sequence space in 723 
Archaea. (A) Distribution of the lineage-specific gene clusters by taxonomic level. Lineage-specific 724 
unknown gene clusters are more abundant at the lower taxonomic levels (genus, species). (B) 725 
Phylogenetic conservation of the known and unknown coding sequence space in 1,569 archaeal 726 
genomes from GTDB. We calculated the mean trait depth (𝛕D) with the consenTRAIT algorithm and 727 
the lineage specificity using the F1-score approach from 43. We observe differences in the 728 
conservation between the known and the unknown coding sequence space for lineage- and non-729 
lineage-specific gene clusters (paired Wilcoxon rank-sum test; all p-values < 0.0001). (C) The majority 730 
of the lineage-specific clusters are part of the unknown coding sequence space, being a small 731 
proportion found in prophages present in the GTDB genomes. (D) Known and unknown coding 732 
sequence space of the 1,569 GTDB archaeal genomes grouped by archaeal phyla. Phyla are 733 
partitioned based on the ratio of known to unknown gene clusters and vice versa from the set of 734 
genomes. Phyla enriched in Metagenomic assembled genomes (MAGs) have a higher proportion in 735 
gene clusters of unknown function. 736 
 737 
Supplementary Table 13-1. Number of phylogenetic conserved and lineage-specific GCs in 738 

the GTDB archaeal phylogeny. (Supplementary_tables_1.xlsx). 739 
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Supplementary Note 14 - Cand. Patescibacteria lineage-743 

specific gene clusters analysis 744 

The investigation of the lineage-specific clusters was deepened, focusing on those specific 745 

to the Cand. Patescibacteria phylum (former Candidate Phyla Radiation-CPR) and analyzing 746 

their cluster distribution in both the Human and marine (TARA and Malaspina) 747 

metagenomes. 748 

 749 
We found two GU clusters phylum-specific, and a total of 54,343 clusters of unknown 750 

function, lineage-specific within the Cand. Patescibacteria phylum (Supp. Table 14-1). The 751 

majority of this phylum members are particularly poorly understood microorganisms, mostly 752 

due to undersampling and the incompleteness of the available genomes. Therefore, we 753 

decided to investigate the distribution in the human and marine (TARA and Malaspina) 754 

metagenomes of all the clusters lineage-specific inside the Cand. Patescibacteria phylum 755 

(Supp. Fig. 14-1A).  756 

We chose to have a closer look at the class of Gracilibacteria, which shows to be present in 757 

both human and marine environments. The first genome for this class was retrieved in a 758 

hydrothermal vent environment in the deep sea44. The same organisms were then also 759 

identified in an oil-degrading community 44,45 and as a part of the oral microbiome46. As 760 

shown in Supplementary Figure 14-1B, we found both known and unknown clusters lineage-761 

specific to this class, distributed in human and marine metagenomes. Among these clusters, 762 

we observed cases of environment specificity.  For instance, three clusters of unknowns 763 

were found exclusive to HMP samples. These clusters could be proposed as novel targets 764 

for human-health study since Gracilibacteria was found enriched in healthy individuals46. We 765 

also observed lineage-specific clusters of known and unknown functions specific to the 766 

marine environment.  767 

Supplementary Table 14-1. Number of lineage-specific clusters within the Cand. 768 

Patescibacteria phylum, at different taxonomic levels, subdivided by cluster categories. 769 

Taxonomic level K KWP GU EU 

Phylum 1 0 2 0 

Class 11 0 6 0 

Order 41 1 104 0 

Family 452 9 1,443 13 

Genus 625 98 6,649 338 

Species 4,116 818 42,710 3,078 
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 770 

 771 
Supplementary figure 14-1. Cand. Patescibacteria metagenomic lineage-specific clusters. 772 

(A) Phylogenetic tree of Cand. Patescibacteria genera, colored by classes. The heatmaps 773 

around the tree show the proportion of lineage-specific gene clusters of knowns and 774 

unknowns in the metagenomes from TARA, Malaspina and the HMP. (B) Metagenomic 775 

lineage-specific clusters in the class of Gracilibacteria. 776 
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