
 
 

  

Efficiency of Salicornia neei to treat aquaculture effluent 1 

from a hypersaline and artificial wetland. 2 

Mónica R. Diaz1, Javier Araneda1, Andrea Osses1, Jaime Orellana2, José A. Gallardo1* 3 
1Escuela de Ciencias del Mar, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile 4 
2Erwin Sander Elektroapparatebau GmbH, Uetze�Eltze, Germany 5 
* Correspondence: jose.gallardo@pucv.cl (José A. Gallardo); Tel.: (56 9 88542329) 6 

Abstract: In this study we evaluated the potential of Salicornia neei, a halophyte plant native to South 7 
America, to treat saline effluents with simulated concentration of ammonium-N (Amm) and nitrate-N (Nit) 8 
similar to land-based marine aquaculture effluents. Plants were cultivated for 74 days in drainage lysimeters 9 
under three treatments of seawater fertilized with: 1) Nit+Amm, 2) Nit, or 3) without fertilizer (Control). Over 10 
5 repetitions, nitrogen removal efficiency (RE) was high in both treatments (Nit + Amm = 89.6± 1,0 %; Nit 11 
88.8 ± 0.9 %). While nitrogen removal rate (RR) was non linear and concentration-dependent (RRday 1-4: Nit 12 
+Amm= 2.9 ± 0.3 mg L-1 d-1, Nit = 2.4 ± 0.5mg L-1 d-1; RRday5-8: Nit + Amm = 0.8 ± 0.2mg L-1 d-1, Nit=1.0 ± 13 
0.2mg L-1 d-1). Effluent salinity increased from 40.6 to 49.4 g L-1 during the experiment, with no observed 14 
detrimental effects on RE or RR. High nitrogen removal efficiency and significant biomass production 15 
observed, Nit+Amm = 11.3 ± 2.0 kg m-2; Nit = 10.0 ± 0.8 kg m-2; Control = 4.6 ± 0.6 kg m-2, demonstrate that 16 
artificial wetlands of S. neei can be used for wastewater treatment in saline aquaculture in South America. 17 
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1. Introduction 22 

Aquaculture provides nearly 50% of the world's fish production, and it is expected to increase to 60% by 23 
2030 due to the growing demand for marine fishery products [1]. Land-based marine aquaculture systems will 24 
play an important role in meeting this demand and will also do so in a more environmentally sustainable way 25 
regarding marine aquaculture in the ocean [2, 3]. However, the development of marine recirculating aquaculture 26 
systems (RAS) is limited by the ability to efficiently treat saline wastewater, which accumulates a large amount 27 
of nitrogen compounds derived from the metabolism of culture organisms [3-5]. In these RAS, the removal of 28 
nitrogen compounds, mainly ammonium (NH4

+) and ammonia (NH3
-), becomes a priority for elimination 29 

because they quickly deteriorate the water quality and cause negative effects on the culture [6, 7]. Biofilters that 30 
promote the conversion of ionized and deionized ammonium to nitrate (NO3

-
) are usually used for this purpose 31 

[8, 9]. NO3
- is not very toxic to most cultured organisms [10, 11], with tolerable accumulated concentrations 32 

reported between 120 mg L-1 of NO3
- and 150 mg L-1 of NO3

- in marine RASs [12]. 33 
Recent developments of integrated systems allow the use of RAS waste products as nutrients, coupling 34 

different water loops with the main fish production water system [13]. To take advantage of these waste 35 
products, such as nitrogen compounds that accumulate in marine RAS, the use of artificial wetlands with 36 
facultative or obligate halophytes has been proposed [14-16]. Halophyte plants have the ability to absorb 37 
different forms of N, depending on different environmental factors such as the availability of CO2 [17]. For 38 
example, some species of the genus Spartina show a higher affinity for NH4

+ consumption [18, 19], while 39 
others like Juncus maritimus, have a marked preference for NO3

-, even in substrates that contained high 40 
availability of NH4

+
 [20]. Also, if the plants are grown in lysimeters or wetland, the interaction with soil, 41 

microorganism and plant have a higher potential to remove nitrogen compounds and produce biomass, which 42 
can be used as animal feed or human food [21, 22], and in the production of biofuels or by-products of interest to 43 
the pharmaceutical industry [2, 5, 15, 23, 24], among others. Additionally, it has been demonstrated that these 44 
systems are also efficient in removing residual phosphates from RASs [2, 15, 23, 25-27]. 45 
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Salicornia neei is a succulent hydrohalophyte of herbaceous habit, native to South America and 46 
abundantly distributed on the South Pacific coast, where much of the marine aquaculture production in South 47 
America is concentrated [28]. S. neei is used as a gourmet food and is a type of emerging crop in the coastal 48 
zone of Chile. This plant has been described as containing high amounts of nutrients and important functional 49 
metabolites [22]. Additionally, physiological studies have been performed to observe germination patterns [29] 50 
and changes in the concentration of metabolites and antioxidants when exposed to different salinity gradients 51 
[30]. 52 

The objective of this study was to evaluate the capacity of the halophyte S. neei for use as a sink for 53 
dissolved nitrogen compounds in effluent from land-based marine aquaculture systems and to simultaneously 54 
evaluate the resulting biomass production. The data obtained in this study will allow us to establish whether S. 55 
neei is a plant suitable for treating land-based marine aquaculture effluent with the potential for use in marine 56 
recirculating aquaculture systems.  57 

2. Materials and Methods  58 

2.1. Collection of plant material and acclimatization 59 

In July 2014, 100 Salicornia neei plants with fully developed roots and shoots were collected in the 60 
“Salinas de Puyalli” wetland, located in the commune of Papudo, Valparaíso Region, Chile (32° 24′ 54″ S, 71° 61 
22′ 43″ W) and subsequently transferred to the “Laboratorio Experimental de Acuicultura” of the Pontificia 62 
Universidad Católica de Valparaíso, in Valparaíso, Chile (33° 1′ 21″ S, 71° 37′ 57″ W). Plants were sown in 63 
sand beds and irrigated with Hoagland solution once a week for 10 weeks. Once the plants adapted and 64 
recovered their vigour, they were transferred to the experimental unit. 65 

2.2. Experimental unit 66 

The experimental unit consisted of three RAS separated to each other, each one composed of three drainage 67 
lysimeters (replicates). Each lysimeter was housed in a polyethylene container measuring 0.5 m x 0.6 m x 0.6 m 68 
(length × width × depth) with a surface area of 0.3 m2 and a total area per RAS of 0.9 m2. In each lysimeter, four 69 
S. neei plants were planted until reaching a biomass of approximately 1 kg per lysimeter or 3 kg m-2. A 70 
leachate collection system was installed in each lysimeter, consisting of a perforated pipe at the bottom to 71 
collect the water, followed by a layer of gravel with a diameter of 0.5 cm and height of 15 cm and polyethylene 72 
mesh with 0.3 mm pore size to cover the gravel. For the substrate, coarse sand was used until reaching 35 cm 73 
high (Figure 1). Each RAS was connected to a nutrient storage, which in turn was fed by a main tank that 74 
contained filtered seawater. Each nutrient storage tank was equipped with an aeration pump to promote 75 
biological nitrification processes. The irrigation water supply (influent) was performed with a 0.5 HP 76 
centrifugal pump (Humboldt, TPM60). Each RAS was supplied daily with 30 litres m-2 d-1 of water through a 77 
drip irrigation system, programmed to run for 15 minutes at 09:00 and at 17:00 hrs. This guaranteed that a large 78 
proportion of the irrigation water will penetrate and be collected to the bottom of the lysimeter. Drainage water 79 
(effluent) was returned to the respective collection tanks of each system to close the recirculating water loop. 80 
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 81 

Figure 1. The diagram shows the design of one lysimeter, depicting the overall construction, water inlet and 82 
outlet, substrate (sand and gravel separated by a mesh), and irrigation micro-sprinklers. 83 

 84 

2.3. Experimental design 85 
The S. neei performance regarding removal of nitrogen compounds and biomass production was evaluated 86 

for 74 days under three irrigation treatments: 1) seawater fertilized with nitrate-N + ammonium-N (Nit+Amm); 87 
2) seawater fertilized with nitrate-N (Nit); and 3) seawater without fertilizer that was used as a control group 88 
(Control). The nutrient concentrations in each irrigation water supply were designed according to the typical 89 
average concentrations of ammonium-N (NH4

+-N) and nitrate (NO3
�N) reported in land-based marine 90 

aquaculture effluent [31, 32]. The following concentrations were used: Nit+Amm = 1 mg L-1 of TAN (total 91 
ammonia nitrogen) and 100 mg L-1 of NO3

�N; Nit = 100 mg L-1 of NO3
�N; and Control = no fertilizer. The 92 

nutrient solution for each RAS was prepared directly in each collection tank and was completely renewed every 93 
14-15 days. Five repetitions or Inputs were performed during the 74 days of culture.  94 

 95 
The physico-chemical parameters of water quality were recorded directly from the drainage water during 96 

the first eight consecutive days after nutrient addition. The estimation of NO3
�N concentration was performed 97 

using the cadmium reduction method. NO3
�N removal efficiency (RE) was calculated as: RE = (Ci − Co) / Ci � 98 

100 where: Ci = concentration of NO3
�N in the influent water at day 1 ; Co = concentration of NO3

�N in the 99 
effluent water at day 8 from each input. Additionally, temperature, oxygen, conductivity, salinity and pH were 100 
measured as water quality indicators. These parameters were measured using a HACH multiparameter probe 101 
(HQ40). Biomass (fresh weight) was recorded at the beginning and at the end of the experiment using a scale 102 
(Jadever, JWE-6K). The data on ambient temperature, rainfall and relative humidity were sourced from climate 103 
records of the Chilean Meteorological Office (Torquemada-Viña del Mar Station).  104 

 105 

2.4. Statistical analysis 106 

Biomass was compared using a two-way ANOVA in R Statistical Software [33], with interaction between 107 
nitrogen simulated concentrations (3 levels: Nit + Amm, Nit and Control) and days of culture (two levels: 0 and 108 
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74 days)(Supplementary table S1). To compare groups means we performed post hoc Tukey tests 109 
(Supplementary table S2) in R Statistical Software [33]. The change in Nitrate-nitrogen (NO3

�N) concentration 110 
showed a negative non linear relationship through the crop, therefore the linear removal rate (RR) was 111 
calculated separately for days 1 to 4 and days 5 to 8 of each Input, when linearility was observed. Linear 112 
regression models with respond (dependent) variable Nitrate-nitrogen (NO3

�N) concentration and predictor 113 
variables days of culture and nitrogen simulated concentrations were performed using the “lm” function in R 114 
Statistical Software [33]. Probabilities of p<0.05 were considered significant.  115 

3. Results 116 

3.1. Environmental conditions and RAS parameters 117 
During the 74 days of culture, the ambient temperature and relative humidity conditions and the 118 

temperature, pH and salinity of the cultivation system showed different levels of variability, and no rainfall was 119 
recorded during the experiment. The ambient temperature had a mean of 16 ± 4 °C but was highly variable 120 
during the day with extreme values of 9 and 31 °C, while the relative humidity was 77.8 ± 8.7%, with extreme 121 
values of 60% and 95% (Supplementary figure S1). The temperature in the culture systems was usually higher 122 
than the ambient temperature, with a mean of 20.5 ± 1.24 °C and a range of 19.1 to 21.7 °C, with no observed 123 
differences between treatments (Table 1). The pH remained relatively constant and without differences between 124 
treatments, while the salinity had a noticeable increase from a mean of 40 g L-1 of NaCl on day 1 to a mean of 125 
51.5 ± 0.19 g L-1 of NaCl at the end of the experiment (Table 1). No significant differences in salinity between 126 
treatments were observed (p<0.05). 127 

 128 
  129 
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Table 1. RAS physicochemical parameters measured on the effluent. Temperature, pH, and salinity (mean ± SE) 130 
recorded at the effluent of the culture systems with Salicornia neei. Salinity is expressed as gram of natrium 131 
chloride per liter (g L

-1
). Treatments were irrigated with nitrate-N and ammonium-N (Nit + Amm), nitrate-N 132 

(Nit) or with sea water only (Control group). Mean values of 3 lysimeters per treatment are displayed (± EE). 133 

 134 

Input Treatment  Temperature 

(°C) 

 pH  Salinity 

(g L-1) 

1 

Nit + Amm  18.2 ± 4.2  8.2 ± 0.1  40.6 ± 2.2 

Nit  19.5 ± 4.7  8.2 ± 0.1  41.3 ± 1.9 

Control  19.1 ± 4.3  8.2 ± 0.1  40.0 ± 0.0  

2 

Nit + Amm  18.8 ± 1.6  8.1 ± 0.1  44.9 ± 2.3 

Nit  21.7 ± 3.3  8.1 ± 0.1  48.4 ± 2.2 

Control  18.6 ± 1.5  8.0 ± 0.1  43.6 ± 2.1 

3 

Nit + Amm  20.8 ± 0.6  7.9 ± 0.1  48.5 ± 2.5 

Nit  21.2 ± 0.8   7.9 ± 0.1  48.8 ± 3.2 

Control  20.8 ± 0.5  8.0 ± 0.1  43.6 ± 2.1 

4 

Nit + Amm  20.2 ± 1.2  8.0 ± 0.1  47.5 ± 1.9 

Nit  20.6 ± 1.4  8.0 ± 0.1  47.5 ± 2.1 

Control  20.3 ± 1.2  8.2 ± 0.1  46.5 ± 2.6 

5 

Nit + Amm  20.6 ± 0.6  8.0 ± 0.1  48.0 ± 2.2 

Nit  20.9 ± 0.7  7.9 ± 0.1  47.7 ± 2.4 

Control  20.7 ± 0.5  8.2 ± 0.1  46.5 ± 1.6 

 135 

3.2 Growth and biomass formation 136 

Regarding biomass production, the treatments with Nit+Amm and Nit showed a significant increase in fresh 137 
weight from 3.0 ± 0.6 g to 11.3 ± 2.0 kg m-2 and from 3.4 ± 0.1 g to 10.0 ± 0.8 kg m-2, respectively (Figure 2). 138 
Although the plants grew in the control group, this increase in biomass was not significant (P= 0.61).” Plants 139 
irrigated with seawater presented chlorosis and accumulation of pigment in leaf tissue, probably anthocyanin, 140 
which indicated moderate stress on the plant, however, this phenomenon was not observed in either of the two 141 
nitrogen treatments (Figure 3). 142 
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 143 

 144 

Figure 2. Production of biomass of Salicornia neei by treatment expressed as yield of fresh weight per area unit 145 
(kg m-2). Nit + Amm: corresponds to the treatments irrigated with nitrate-N and ammonium-N, Nit: irrigated 146 
with nitrate-N, Control: treatment irrigated with sea water only. Lower-case letters represents significant 147 
differences between treatments. Mean values of 3 lysimeters per treatment are displayed (± EE). 148 

 149 

 150 

Figure 3. Picture of two lysimeters with Salicornia neei at the end of the experiment (day 74). Picture (a) plants 151 
irrigated with nitrate and ammonium (Nit + Amm). Picture (b) plants irrigated with sea-water (control).  152 
 153 

3.3 Efficiency of Salicornia neei to treat saline effluent 154 

a b 
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Nitrate-N removal was non linear and concentration-dependent for treatments Nit + Ammand Nit (Figure 155 
4). Thus, Nitrate-N removal rates (RR) were reducing when reducing nitrogen loading from 2.9 ± 0.3 mg L-1 d-1 156 
(RRday 1-4) to 0.8 ± 0.2mg L-1 d-1 (RRday5-8) in the treatment Nit +Amm, and from 2.4 ± 0.5 mg L-1 d-1 (RRday 1-4) 157 
to 1.0 ± 0.2mg L-1 d-1 (RRday5-8) in the treatment Nit (Table 2). On the other hand, Nitrate-N removal rates 158 
measured between days 1 to 4 (RRday 1-4) had a clear tendency to increase as biomass production increased at the 159 
treatment Nit but not in the treatment Nit + Amm (Table 2), which is perhaps explained by the greater 160 
availability of nitrogen in this last treatment. Without considering these differences in both treatments, the 161 
nitrogen removal efficiency was high in each treatment, in and throughout the crop, and varied between 87% 162 
and 92% (Table 2). Effluent salinity increased from 40.6 to 49.4 g L-1 during the experiment, with no observed 163 
detrimental effects on the Nitrate-N removal rates or on the nitrogen removal efficiency. 164 

 165 

 166 

Figure 4. Nitrogen removal by treatment and input. Nitrate-nitrogen (NO3
�

N) concentration in each treatment 167 
was expressed in mg L

-1
 and measured during 8 days from nutrient input over 74 days of experimentations. 168 

Treatments were irrigated with nitrate-N and ammonium-N (Nit + Amm), nitrate-N (Nit) or with sea water only 169 
(Control group). Mean values of 3 lysimeters per treatment are displayed (± SE). 170 

  171 
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Table 2. Nitrate-nitrogen (NO3
�N) concentration in the influent water at day 1 (Ci) and in the effluent at day 8 172 

(Co), removal efficiency (RE) and removal rate (RR) for each treatment irrigated with nitrate-N and 173 
ammonium-N (Nit + Amm) and nitrate-N (Nit). Each Input has 3 lysimeters per treatment. Treatments were 174 
irrigated with nitrate-N and ammonium-N (Nit + Amm) and nitrate-N (Nit). Mean values are displayed (± SE).  175 

Treatment 

 

Input Ci 

(mg L-1) 

Co 

(mg L-1) 

RE 

(%) 

RR 

day 1- 4 

(mg L-1 d-1) 

RR 

day 5-8 

(mg L-1 d-1) 

Nit + Amm 1 14.0 ± 4.2 1.2 ± 0.1 91.4 2.9 ± 0.5 1.2 ± 0.1 

2 17.7± 2.2 1.8 ± 0.7 89.8 2.0 ± 0.3 0.3 ± 0.1 

 3 13.5± 0.6 1.1 ± 0.05 91.9 3.1 ± 0.3 0,8 ± 0.1 

4 12.9 ± 2.1 1.7 ± 0.1 86.8 3.6 ± 0.5 0.0 ± 0.0 

 5 12.4 ± 0.1 1.5 ± 0.1 87.9 3.0 ± 0.2 0.0 ± 0.0 

  Mean  89.6 ± 1.0 2.3 ± 0.4 0.5 ± 0.2 

Nit 1 12.0 ± 1.4 1.1 ± 0.1 90.8  1.1 ± 0.5 1.4 ± 0.1 

 2 13.3 ± 0.8 1.8 ± 0.2 86.5 1.2 ± 0.3 0.6 ± 0.1 

 3 12.4 ± 1.2 1.2 ± 0.15 90.3 2.8 ± 0.3 0.7 ± 0.1 

 4 13.2 ± 1.0 1.6 ± 0.1 87.9 3.7 ± 0.5 0.2 ± 0.0 

 5 13.0 ± 1.3 1.5 ± 0.0 88.5 3.3 ± 0.2 0.0 ± 0.0 

   Mean 88.8 ± 0.9 2.9 ± 0.5 0.4 ± 0.2 

 176 

4. Discussion 177 

The integration of halophytes as a biofilter in recirculating systems in marine aquaculture has been 178 
proposed as an adequate alternative to decontaminating waters with increased nitrogen compounds [34]. In this 179 
study we evaluated if artificial wetlands of S. neei could be used to treat saline aquaculture effluent. S. neei was 180 
selected mainly due to its natural occurrence throughout much of the South Pacific coast of South America [35], 181 
which would allow its rapid adoption in the growing South American aquaculture. Nitrate-nitrogen removal rate 182 
and removal efficiency recorded in this study (Table 2) was higher or similar than those reported with other 183 
halophyte species in high salinity [14, 15]. Thus, artificial wetlands of S. neei could a good alternative to the 184 
treatment of highly concentrated wastewater released in marine RAS. 185 

Physicochemical parameters of the effluent, such as temperature and pH are especially important in the 186 
treatment of saline wastewater because they can affect the determinant processes in the removal of nitrogen 187 
compounds [36]. In this study, temperature and pH were maintained within the optimal ranges (20-21 °C and 188 
7.8-8.2) and therefore did not affect the nutrient removal processes (Table 1). This finding is consistent with Lee 189 
et al. [37], who reported that, for denitrification processes in wetland systems, the optimal temperature ranges 190 
between 20 and 40 °C and the optimal pH is approximately 8.0. Another important parameter evaluated in this 191 
study was the high effluent salinity, which reached concentrations of up to 50 g L-1 of NaCl. This increase was 192 
mainly due to the known environmental factor of evapotranspiration, consistent with a study by Freedman et al. 193 
[38], who found increased salinity of treated water in artificial wetlands despite the salt uptake by plants due to 194 
soil evaporation and plant transpiration. 195 

Nitrogen bioaccumulation was not determined empirically in this study, but we derived it from Riquelme 196 
et al. [22], a previous study performed by our research group. Riquelme et al. [22] show that the total of N fixed 197 
in the aerial part of S. neei corresponds to 1.76 ± 0.08 g per 100 g of fresh weight. Similar results were obtained 198 
in S. brachiata by Rathore et al. [39] from India. Thus, we estimated that the total concentration of nitrogenous 199 
nutrients fixed in S. neei at the end of the trial would be between 46 and 103.9 g for the Nit treatment. While for 200 
Amm + Nit, the oscillatory fixation between 57.8 and 130.1 g of N for the total biomass formed by this 201 
treatment, indicating that S. neei could assimilated most of the nitrogen available in this test. According to these 202 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 19, 2020. ; https://doi.org/10.1101/2020.09.06.259358doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.06.259358
http://creativecommons.org/licenses/by-nd/4.0/


 9 of 11 

 

results, it can also be suggested that S. neei could store ammonium –N, if the differences of the estimate in the 203 
two treatments are considered (approximately 20% more N with the Amm + Nit treatment). This being a 204 
reflection of the synergy produced by these two compounds when consumed at the same time [40]. However 205 
some researchers currently believe that the actual absorption may represent only a relatively small fraction of 206 
the global rate of nitrogen (N) elimination [41] and microorganisms that play the most important role in the use 207 
and transformation of nitrogen component [42].  208 

In response to this uncertainty, other researchers have studied and obtained low removal rates by plants. 209 
Specifically, Tanner et al. [43] found that of the total nitrogen removed by planted wetland systems, only 25% 210 
corresponded to fixation in plants. Likewise, Lin et al. [32] observed that of the 73% of nitrogen removed, only 211 
11% had been fixed in plants. Notwithstanding the above, Webb et al. [25] observed significant differences 212 
between the nitrogen removal capacity in beds planted with and without halophytes. In their study, they 213 
demonstrated a higher removal yield in planted beds (62.0 ± 34.6 mmol N m−2 d-1) than in unplanted beds (23.0 214 
± 26.8 mmol N m−2 d-1). And this is consistent, with our results that show a nitrogen removal proportional to 215 
biomass. Therefore, we cannot rule out that the increase in biomass exclusively explains the increase in the 216 
nitrate removal rate. In fact, it is plausible that a strong root system formed by this class of plants supports the 217 
establishment of certain microorganisms that improve the removal rate of nitrogen loads by acting 218 
synergistically. 219 

The formation of S. neei biomass during the evaluation period reached a total net weight of 7 - 8 kg m-2 220 
over a period of eleven weeks in the treatments irrigated Nit and Nit+Amm respectively. These high yields in 221 
biomass production are comparable to those obtained by Ventura et al. [44], whose yields for Salicornia persica 222 
reached 16 kg m-2 in a span of 24 weeks. On the other hand, S. neei plants remained vigorous throughout the 223 
evolution period, even at high salinity concentrations close to 50 g L-1 of NaCl. This inherent feature of 224 
halophytes highlights the powerful response mechanisms to abiotic stress triggered by S. neei, reinforcing the 225 
feasibility of including this plant for aquaculture effluent treatment. Regarding removal of the two sources of 226 
nitrogen compounds, there was a positive interaction between the ammonium/nitrate supplied for biomass 227 
formation of S. neei. This positive interaction could be caused by the contribution of the nitrate ion that would 228 
act as an important osmotic anion for expansion of the foliar cells [45].  229 

 230 

5. Conclusions 231 

Our results reveal that the integration of S. neei into artificial wetlands with recirculating aquaculture 232 
effluent would be a viable alternative for eliminating nutrient loads in saline wastewater and that this plant 233 
could be included in marine RASs in South America.  234 
 235 
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