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Abstract 

An increasing number of studies have demonstrated the regulatory importance of long non-

coding RNAs (lncRNAs), yet little is known about their transcriptional dynamics and it remains 

challenging to determine their regulatory functions. Here, we used allele-sensitive single-cell 

RNA-seq (scRNA-seq) to demonstrate that lncRNAs have lower burst frequencies with twice 

as long duration between bursts, compared to mRNAs. Additionally, we observed an increased 

cell-to-cell variability in lncRNA expression that was due to more sporadic bursting (lower 

frequency) with larger numbers of RNA molecules being produced. Exploiting heterogeneity 

in asynchronously growing cells, we identified and experimentally validated lncRNAs with cell-

state specific functions involved in cell cycle progression and apoptosis. Finally, utilizing allele-

resolved RNA expression, we identified cis functioning lncRNAs and observed that knockdown 

of these lncRNAs modulated either transcriptional burst frequency or size of the nearby 

protein-coding gene. Collectively, our results identify distinct transcriptional regulation of 

lncRNAs and we demonstrate a role for lncRNAs in the regulation of transcriptional bursting 

of mRNAs.  
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Introduction 

Mammalian genomes encode thousands of lncRNAs1, but identifying their molecular functions 

has proven difficult. Functional predictions based on primary sequence, evolutionary 

conservation2, or genomic location are often unreliable and to date we still cannot identify 

active lncRNAs and their mechanism of action without extensive experimental validation. 

Consequently, the functions of most lncRNAs remain unknown3 and new experimental and 

computational approaches are highly needed in order to efficiently identify lncRNAs for in-

depth functional validation and characterization. 

 

Numerous studies of lncRNAs have shown that their average expression levels are lower than 

those of mRNAs4–9, yet vital regulatory functions have been demonstrated for several 

lncRNAs10–12. The observed low expression of lncRNAs is generally oversimplified by assuming 

that all cells in a population have uniform expression, i.e. resulting in expression estimates 

below one RNA copy per cell13 that are not easy to functionally perceive. It has been proposed 

that averaging transcriptomes over thousands of cells could mask the presence of few cells 

with relatively high expression of specific lncRNAs14. However, comprehensive analyses of 

transcriptional dynamics and cell-to-cell variability of lncRNAs are still missing, and most 

studies to date were limited to low throughput methods covering low numbers of genes and 

cells15. With the introduction of scRNA-seq technologies16 and specifically protocols allowing 

for allele-specific quantification17, it is now feasible to characterize allele specific gene 

expression in individual cells for thousands of genes simultaneously. Although scRNA-seq is a 

powerful tool for identifying cell types18, transient cellular states19 and burst kinetics20, 

dedicated scRNA-seq studies with allelic resolution focusing on lncRNAs are so far lacking. 
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Transcription of mammalian genes typically occurs in short bursts of activity21, where burst 

frequencies are generally controlled by enhancers, whereas burst sizes are in part dependent 

upon core promoter elements20. Through recent methodological22 and computational20 

developments, it is now feasible to infer burst parameters for thousands of genes 

simultaneously. To date, analysis have mainly focused on protein-coding genes and it remains 

unknown for example whether low expression of lncRNAs is mediated by lowered burst sizes 

(fewer RNA molecules per cell) or burst frequencies (expression in fewer cells). Recent studies 

have suggested lncRNA promoters to have fewer transcription factor (TF) motifs5,23 and less 

efficient polymerase II pausing24, than those of mRNAs. How these observations effect 

transcriptional bursts of lncRNAs, and whether lncRNAs have distinct or similar burst 

characteristics to mRNAs, remains unknown. 

 

In this study, we introduce allele-sensitive scRNA-seq to investigate transcriptional dynamics 

and molecular functions of lncRNAs. We first set out to study burst kinetics of lncRNAs and 

investigate if lncRNAs have different burst kinetics compared to mRNAs. We next explore if 

the identification of transient cellular states with precise expressions of lncRNAs predicts their 

molecular functions. Using an expression-to-phenotype relationship in non-perturbed 

asynchronously growing cells, we identify several lncRNAs involved in cell cycle regulation as 

well as apoptosis. Next, we explore patterns of allelic expression of proximal lncRNA-mRNA 

gene pairs and functionally confirm that this is a powerful approach to map cis functioning 

lncRNAs. We finally provide insights into how lncRNAs modulate burst dynamics of cis-

regulated genes and show that lncRNAs can modulate both burst frequencies and burst sizes. 

In summary, our study provides novel and comprehensive insights into burst dynamics of 
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lncRNAs and demonstrates that allele-sensitive scRNA-seq is a powerful tool for in-depth 

characterization of lncRNAs. 

 

Results 

Detection of lncRNAs and mRNAs in individual cells 

We first investigated the expression patterns of lncRNAs and mRNAs in individual primary 

mouse fibroblasts derived from the cross between the distantly related CAST/EiJ and C57BL/6J 

strains. To this end, we profiled 375 individual adult tail fibroblasts with Smart-seq2 to 

leverage the methods’ high sensitivity25 and full gene body coverage enabling allele-level RNA 

profiling for more than 80% of all genes17. We also made use of a previously published data 

set consisting of additional 158 cells, generating a comprehensive data set of 533 deep-

sequenced fibroblasts (4.2 million mapped reads per cell, median, Figure S1A). For allelic 

expression estimates, the fraction of allele-informative bases in reads covering heterozygous 

single-nucleotide polymorphisms (SNP) was used. To rule out preferential mapping or 

misalignment we verified that non-imprinted autosomal genes (Supplementary Table 1) had 

similar overall expression from the CAST and C57 alleles (Figure S1B) and that we accurately 

detected monoallelic expression for non-escapee X-chromosomal genes26 (Figure S1C, 

Supplementary Table 2). A total number of 24,653 genes were detected (requiring 5 or more 

read counts in at least 2 cells), including 15,872 mRNAs and 3,314 non-coding RNAs. The 

detection of hundreds of lncRNAs in individual cells (9,174 protein-coding mRNAs and 408 

lncRNAs per cell, median, Figure 1A), motivated us to proceed with in-depth investigations of 

lncRNAs. Since lncRNAs are a diverse group of transcripts where we noticed an effect on gene 

expression levels on closely located promoters (Figure S1D), we focused our analysis on easily 

separated transcriptional units (Figure S1E). 
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lncRNAs are expressed with higher cell-to-cell variability than mRNAs 

We first investigated the patterns of expression of lncRNAs and mRNAs, and as expected4,27, 

we observed that lncRNAs were expressed at lower levels than mRNAs (Figure 1B) and 

detected in fewer cells (median 3% and 31% of cells, respectively) (Figure 1C). To further 

investigate if lncRNAs are expressed with higher variability between cells, we computed the 

squared coefficient of variation (CV2) and observed significantly higher variability for lncRNAs 

(Figure 1D, P=3.8e-293, two-sided Wilcoxon rank-sum test). Contrasting CV2 against the mean 

expression revealed that lncRNAs had higher CV2 than mRNAs across a wide range of 

expression levels (Figure 1E). To systematically account for possible confounding differences 

in mean expression of lncRNAs and mRNAs, we generated thousands of randomly drawn sets 

of mRNAs with expressions matched to lncRNAs (Figure 1F, see Methods) and also ranked the 

CV2 of each lncRNA against 100 expressions matched mRNAs (Figure 1G). Consistently, 

lncRNAs had significantly higher expression variability than expression-matched mRNAs 

(P<1e-4, permutation test) (Figures 1F-G). The increased cell-to-cell variability was also 

validated in human HEK293 cells (Figure S2A), as well as mouse embryonic stem cells (Figure 

S2B). The ability to detect the increased cell-to-cell variability was dependent on the number 

of lncRNAs analyzed, and when subsampling lncRNAs (and their expression-matched mRNAs) 

the difference declined and eventually disappeared (Figure 1H). The lack of power when 

analyzing small numbers of lncRNAs might explain why a previous study investigating 34 

lncRNAs found no difference in variability compared with mRNAs15. 

 

Low expression of lncRNAs results from longer duration between bursts 

We next sought to determine how the lowered expression level of lncRNAs is achieved in 

terms of transcriptional bursting kinetics and whether lncRNAs are intrinsically different from 
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protein-coding genes. To do this, we generated a comprehensive data set of adult tail 

fibroblast using Smart-seq322 (682 cells post quality control, 3.0 Million mapped 100bp paired-

end reads per cell, median, Figures S3A-C) which, in addition to Smart-Seq2, provides unique 

molecular identifiers (UMIs) important for accurate burst size inference20. After quality control 

of genes (Figures S3D-E), bursting kinetics parameters were successfully inferred for 10,716 

coding genes and 655 lncRNAs on at least one of the alleles (8,661 coding and 325 lncRNAs 

genes on both alleles). Reassuringly, burst parameters and expression levels correlated well 

between the CAST and C57 alleles for both coding and non-coding genes (Figures 2A-C). 

Focusing the analysis on separated transcriptional units (Figure S1E) we found that lncRNAs 

have a four-fold lower burst frequency compared to mRNAs (Figures 2D and S4A), and only a 

two-fold decrease in burst size (Figures 2E and S4B). Thus, the decreased expression of 

lncRNAs (Figures 2F and S4C) is mainly achieved through longer duration between bursts of 

expression, possibly regulated by enhancer activities20,28–30. 

 

Since the inferred parameters for burst frequencies are on the time-scale of RNA 

degradation20, we next sought to derive burst frequencies on an absolute time-scale, which 

requires information of RNA decay rates. To address this, we measured RNA half-lives in 

primary fibroblasts upon transcriptional inhibition with actinomycin D and fit the normalized 

expression of each gene to a first order exponential decay curve (see Methods). The estimates 

were in agreement with previous measurements (Figure S4D)31, with an average half-life 

slightly below four hours (Figure S4E). Furthermore, our data do not support any systematic 

difference in half-lives (Figure S4E) or decay rates (Figure S4F) between mRNAs and lncRNAs, 

thus in line with previous findings23. We subsequently used the estimated decay rates and 

transformed burst frequencies into hours and found the duration between two bursts of 
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lncRNAs from one allele to be more than twice as long compared to mRNAs (15.9 and 6.9 

hours, respectively, median) (Figures 2G and S4G). Notably, over 30% of lncRNAs were found 

to burst less than once every 24 hours on each individual allele. 

 

Having determined that lncRNAs show increased cell-to-cell variability compared to 

expression matched mRNAs (Figures 1D-G and S2A-B), we next explored if this observation 

was associated with a systematic pattern of bursting parameters. To this end, we identified 

the 50 most variable lncRNAs on each allele (ranked CV2) (Figures S4H-I) and generated 

thousands of sets of randomly drawn expression-matched mRNAs (similar as in Figure 1F). 

Strikingly, we observed that the lncRNAs with highest CV2 had decreased burst frequencies 

(Figures 2H and S4J, P < 1e-4, permutation test), and increased burst sizes (Figures 2I and S4K, 

P=0.015, permutation test) compared to expression matched mRNAs. These data suggest 

more sporadic expression of lncRNAs (due to lowered burst frequency), although with 

increased number of RNA molecules produced per burst (due to increased burst size) and link 

the increased cell-to-cell variability of lncRNAs to a shift in transcriptional bursts. 

 

Many lncRNAs are transcribed in the antisense direction of protein-coding (sense) genes32 and 

we next investigated if such genomic organizations could result in altered transcriptional 

kinetics. We identified loci with divergent (here referred to the presence of a stable annotated 

transcript in both sense and antisense direction) mRNA-mRNA pairs (n=1,282), divergent 

mRNA-lncRNA pairs (n=465) and unidirectional mRNA (n=6,276) transcribed promoters 

(Figure S4L). In line with previous studies5,33, we observed increased expression of divergently 

transcribing promoters (Figure 2J), an observation that was consistent for mRNA-mRNA as 

well as mRNA-lncRNA promoters, compared to unidirectional transcribing promoters (Figure 
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2K). Using the inferred transcriptional kinetics, we next tested whether the increase in 

expression (Figure S4M) was related to an alteration in bursting. We observed a consistent 

increase in burst frequency for divergently mRNA-mRNA and lncRNA-mRNA transcribing 

promoters (Figures 2L and S4N, two-sided Wilcoxon rank-sum test), with no consistent 

increase in burst size (Figures 2L and S4N, two-sided Wilcoxon rank-sum test). The fact that 

divergent transcription units tend to burst more frequently - although without increased RNA 

production per burst - likely suggests that two closely situated promoters facilitate 

recruitment of the required transcriptional machineries. In support of this, previous reports 

have suggested that divergent promoters harbor increased number of TF motifs compared to 

nondivergent promoters5. 

 

Precise expression of lncRNAs in transient cellular phenotypes reveals molecular functions 

We next explored if scRNA-seq could serve as a tool for functional annotation of lncRNAs. 

More specifically, we hypothesized that dynamic expression of lncRNAs in transient cellular 

states carries information to their function, thus applying a revised ‘guilt-by-association’34 

principle where lncRNA expression is linked to a cellular state. To evaluate this approach, we 

first sought to identify lncRNAs involved in cell cycle progression. Asynchronously growing 

mouse fibroblasts (Figures S1A-C) were projected into low-dimensional PCA space using the 

most variable35 cell cycle genes36 (Figures S5A-B, Supplementary Table 3), clustered, and the 

PCA coordinates were used to fit a principal curve37. Cells were aligned to the fit and cell cycle 

progression was confirmed by comparing the relative expression of a subset of well-

established cell cycle genes marking cells in G0, G1, G1S and G2M (Figure 3A, Figure S5C). To 

identify lncRNAs with high expression within specific phases of the cell cycle, we next applied 

an ANOVA test (FDR < 0.01, Benjamini-Hochberg adjusted) on gene expression over the 
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individual cell cycle phases. The P-values were contrasted against the fold induction in the 

particular cell cycle phase (Figure 3B), revealing a total of 128 lncRNAs with a cell cycle specific 

expression pattern (fold change > 1.5, adjusted p < 0.01) (Figure 3B), of which we selected 

seven highly ranked candidates for further characterization. 

 

To functionally evaluate the selected lncRNA candidates’ potential involvement in cell cycle 

progression, we used the immortalized mouse embryonic fibroblast NIH3T3 cell line. NIH3T3  

was found to express similar cell cycle genes36 as primary fibroblasts (Supplementary Table 3) 

and also correlate well in expression levels (Figure S5D). Next, cell cycle progression of NIH3T3 

cells was synchronized by serum starvation (G0/G1), thymidine block (G1S) or nocodazole 

treatment (G2M), and the synchronization was validated by flow cytometry (Figure S5E) and 

qRTPCR for two cell cycle marker genes (Figure S5F, Supplementary Table 4). As expected, we 

found all seven lncRNAs to have peak expression in the predicted phases of the cell cycle by 

qRTPCR validation (Figure S5G). Having validated cell cycle specific expression of these lncRNA 

transcripts, we next generated individual lentiviral transduced NIH3T3 cell lines with stable 

shRNA-induced knockdown for three of the candidates (Wincr1, Lockd and A730056A06Rik) 

in order to perform in-depth functional investigation (Figure 3C). Although no clear phenotype 

was observed for these cells under normal growth conditions, striking effects were observed 

in colony formation assays (Figure 3D), which provide a moderate stress on cells. While the 

knockdown of A730056A06Rik (expressed upon serum starvation, Figure S5G) resulted in the 

formation of more colonies, the knockdown of Wincr1 and Lockd (expressed in proliferating 

cells, Figure S5G) reduced the numbers of colonies formed (Figure 3D). Together, this showed 

that lncRNAs selected with our new screening paradigm could be efficiently related to their 

cellular function. 
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Functional investigation of the lncRNA Lockd  

We were intrigued by a previous report38 suggesting that transcription of the Lockd gene 

functions in cis by promoting expression of the cell cycle regulator Cdkn1b (10kb upstream of 

the Lockd locus, Figure S6A) whereas the Lockd transcript was found dispensable for this 

mechanism. Although no function was reported for the Lockd transcript in that study38, our 

colony formation experiment showed that reduction of the Lockd transcript through shRNA 

knockdown had a clear functional consequence – by reducing the colony formation capacity 

of the cells (Figure 3D). To complement the stable Lockd knockdown, we designed two siRNAs 

(Supplementary Table 5) against the Lockd transcript which both achieved good knockdown 

efficiency with less than 10% Lockd expression in the NIH3T3 cell line as well as in primary 

fibroblasts (Figure S6B). In agreement with the NIH3T3-shLockd stable cell line (Figure 3D), a 

consistent decrease in colony forming cells was observed upon siRNA-induced Lockd depletion 

(Figure 4A). In line with the previous report38, no consistent change in RNA expression was 

observed for Cdkn1b upon knockdown of the Lockd transcript in NIH3T3 or primary fibroblast 

cells (Figure 4B). However, the allele-resolved scRNA-seq data suggested co-expression of 

Lockd and Cdkn1b (tended to be expressed in the same cells and from the same allele) on both 

the CAST (Fisher’s exact test, P=0.013) and C57 (Fisher’s exact test, P=0.00032) alleles (Figure 

S6C). 

 

To characterize the molecular function of Lockd further, we used scRNA-seq on the shControl 

(n=147 cells) and shLockd stable cell lines (n=144 cells). We observed that 752 genes had 

significantly altered expression in the Lockd reduced cell line (SCDE39, adjusted p<0.05) (Figure 

S6D), likely including both direct effects and indirect effects of impaired cell cycle progression 

and possible shRNA-induced off-target effects. Next, we calculated Spearman pairwise 
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correlations of expression levels from the shControl treated stable cell line and hypothesized 

that the most relevant targets for Lockd would have a positive correlation with Lockd and 

concurrent reduced expression in the shLockd cells or alternatively, negative correlation with 

increased expression upon knockdown (Figure S6E). This approach strongly reduced the 

number of candidate genes (752 to 138 genes) and revealed several well-established cell cycle 

regulators. Particularly, three members of the kinesin superfamily (Kif4, Kif11 and Kif14), a 

group of proteins known to be involved in mitosis, appeared as main candidates (Figure 4C). 

Notably, a link between these genes and Cdkn1b has been suggested. While Cdkn1b acts as a 

transcriptional suppressor of Kif11 by binding to the Kif11 promoter through a p130-E2F4 

dependent mechanism40, Kif14 regulates protein levels of Cdkn1b through a proteasome-

dependent pathway41. Based on these previous findings, we set out to directly confirm the 

effect on Kif4, Kif11 and Kif14 by measuring the expression levels on qRTPCR upon siRNA 

induced knockdown of Lockd in NIH3T3 and primary fibroblast cells. The effect on Kif11 and 

Kif14 was seen in both cell lines while the effect on Kif4 could only be observed in the primary 

fibroblasts (Figures 4D-E). However, this is consistent with the scRNA-seq data (Figure 4C) 

where Kif4 was more modestly affected compared to Kif11 and Kif14. In summary, our data 

suggest Lockd to function through trans regulatory mechanisms, in addition to its previously 

reported cis-function38. While transcription of the Lockd gene functions in cis to promote 

transcription of Cdkn1b38, the Lockd transcript appears to function in the same pathway as 

Cdkn1b and enhances the negative effects on cell cycle progression. 

 

Functional investigation of the lncRNA Wincr1  

We next sought to investigate the molecular function of Wincr1 in greater detail. To this end, 

two siRNAs were first designed against the Wincr1 transcript and knockdown confirmed by 
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qRTPCR (Figure S7A). In line with the NIH3T3-shWincr1 stable cell line, a decrease in colony 

forming cells - which scaled with the degree of knockdown in NIH3T3 cells - was observed 

upon siRNA-induced depletion of Wincr1 (Figure 4F). We next turned to our scRNA-seq data 

(Figures S1A-C) and observed that several genes at this locus, Cdkn2a (p16Ink4a and p19Arf), 

Gm12602 and Mtap, presented coordinated expression with Wincr1 (Figure S7B). Intriguingly, 

the homologous region in human has been reported to regulate the expression of CDKN2A 

(p16INK4A) in a mechanism where the microRNA-31 host gene (MIR31HG) recruits chromatin 

remodeling factors to the promoter of p16INK4A, 42. However, Mir31hg has a different genomic 

structure in mouse while Wincr1 is absent in human cells (Figures S7C-D). We therefore sought 

to investigate if Wincr1 had similar functions as human MIR31HG. Indeed, siRNA-induced 

knockdown of Wincr1 in primary fibroblasts showed a significant increase in the expression of 

Cdkn2a (p16Ink4a and p19Arf) as well as Cdkn2b (p15Ink4b) and Mtap (Figure 4G), suggesting 

Wincr1 functions in cis. Finally, we also noted that Wincr1 has been proposed to be involved 

in Wnt/β-catenin signaling and to attenuate cell migration through trans-acting 

mechansisms43. Since Cdkn2a (p16Ink4a and p19Arf )44 as well as Cdkn2b (p15Ink4b)44 are 

inactivated in NIH3T3 cells due to homozygous deletions of their chromosomal regions, our 

data support that Wincr1 also maintains other trans-acting functions (Figure 4F). 

 

Functional annotation of lncRNAs can be generalized to several phenotypes 

We next evaluated if the presented approaches are applicable to other cellular states and set 

out to investigate whether lncRNAs involved in apoptotic signaling could be identified. Since 

apoptotic signaling is linked to proliferation, we limited the analysis to cells in the G1 phase 

(Figure 3A) and repeated the low-dimensional projection, now using the most variable genes 

related to apoptotic signaling (Figure S8A). We identified three clusters of cells (Figure 5A) 
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and focused specifically on one cluster of cells that expressed genes involved in stress 

signaling, namely Gadd45b45 (Growth arrest and DNA-damage-inducible, beta) and the p53 

target gene Cdkn1a (Figures 5B and S8B). Single-cell differential expression (SCDE)39 was 

applied to find lncRNAs with increased expression in this cluster of cells and a total of five 

highly ranked lncRNAs, towards which siRNAs could be designed, were selected for further 

validation (Figure 5C). To validate these candidates, DNA damage induced apoptosis was 

triggered in the NIH3T3 cell line by treating cells with the chemotherapeutic and DNA 

crosslinking reagent Mitomycin C (MMC). DNA damage was validated using qRTPCR by 

measuring the expression levels of Cdkn1a (induced by p53) and Gadd45b (Figure S8C) and, 

in line with the prediction, expression of all five candidate lncRNAs were induced upon MMC 

treatment and scaled with the concentration of MMC (Figure 5D). To further investigate the 

regulatory effects these lncRNA candidates might have on apoptosis, three of the candidates 

were suppressed by two siRNAs each (Figure S8D). The levels of apoptosis in lncRNA 

suppressed NIH3T3 cells was measured by AnnexinV on flow cytometry after treatment with 

MMC (Figure 5E). Notably, apoptosis was repeatedly induced when exposed to MMC, thus 

suggesting that knockdown of these lncRNAs sensitize cells to undergo apoptosis. In summary, 

our data support that the effect of lncRNAs on more subtle cellular states, such as pro-

apoptotic signaling, are also captured by scRNA-seq and serves as a profound tool to link 

lncRNAs to function. 

 

Allele-sensitive expression reveals lncRNA-mRNA interacting gene pairs 

Previous bulk RNA-seq studies identified pervasive allelic imbalance of gene expression across 

heterozygous F1 hybrid mice46. We next asked if allelic imbalance of lncRNAs could reveal 

information about cis regulatory mechanisms and gene-gene interactions (Figure 6A). To 
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improve the power to detect gene-gene interactions, we profiled additional 218 mouse adult 

tail fibroblasts of the reciprocal cross (CASTxC57), resulting in a comprehensive Smart-seq2 

dataset of 751 cells (post quality control, ~4 Million mapped reads per cell, median) containing 

multiple independent mouse explant cultures (Figures S9A-C and S1A-C). We calculated allelic 

distributions by counting allele sensitive read counts over both genomes and quantified the 

allelic imbalance as (CASTallelicCounts /(CASTallelicCounts + C57allelicCounts) - 0.5) where a positive score 

reflects increased RNA expression towards the CAST genome. Consistent with previous bulk 

RNA-seq studies46, we confirmed ~75% of mouse genes (8,981 of 11,377) to have RNA 

expression levels dependent on the genetic background (Figure S9D, binomial test, Benjamini-

Hochberg adjusted p<0.01) and found lncRNAs to have greater allelic imbalance than mRNAs 

(Figure S9E) across a wide range of expression levels (Figure S9F). To identify cis-functioning 

lncRNAs, we first retrieved all lncRNA-mRNA gene pairs within +/- 500 kb of the lncRNA 

transcript start site (TSS) (5,824 pairs in total, Figure 6B) and calculated a score for allelic 

imbalance for each lncRNA-mRNA gene pair (see Methods). Next, a permutation test was 

applied, where each lncRNA was moved to 1,000 randomly selected gene locations and the 

score for in silico sampled gene pairs recomputed (+/- 500 kb of the lncRNA TSS, 6.75e6 

random gene pairs in total, Figure 6C). In total, 90 significant lncRNA-mRNA interactions were 

identified (p<0.05, permutation test, Supplementary Table 6) and significant gene pairs found 

to be enriched at closer distance (within 25 kb, Figures 6D-E). We then sorted the significant 

interactions using the score of allelic imbalances where allelic imbalance towards the same 

allele was assigned a positive score, and allelic imbalance on opposite alleles a negative score 

(Figure 6F). Four highly ranked lncRNA-mRNA interactions, all accessible to siRNA depletion 

and with diverse genomic organization (Figure S9G), were examined more deeply. Upon 

evaluation of allele-informative reads for all genes within 500 kb of the lncRNA TSSs, few other 
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genes (only one) were found to have any pronounced allelic imbalance (Figure S9H and 

Supplementary Table 6), therefore suggesting these lncRNAs predominantly interact with 

only individual mRNAs at their loci. 

 

To fully take advantage of the allelic resolution, we next assessed allele-specific expression 

patterns on the single-cell level for the same set of lncRNA-mRNAs gene pairs as above (5,824 

gene pairs +/- 500 kb of the lncRNA TSS, Figure 6B). To identify the most significant candidates, 

a Fisher’s exact test was first applied on each gene pair (PReal, Benjamini-Hochberg adjusted) 

and also for in silico sampled gene pairs by moving each lncRNA to 1,000 randomly selected 

gene locations (PRandom, Benjamini-Hochberg adjusted, similar as in Figure 6C-E). For 

downstream analysis, we primarily considered genes with PReal < 0.01 where PRandom < PReal 

occurred in less than 1% of the permutated gene interactions (Supplementary Tables 7 and 

8). These criteria identified 457 lncRNA-mRNA gene pairs with significant coordinated 

expression on at least one of the alleles (Figures 6G). Significant interactions were again found 

to be enriched at closer distance (<25 kb, Figures 6H-I) and most lncRNAs observed to interact 

with only one mRNA (Figures J-K). Encouraged to see that several of the candidates 

overlapped between the two approaches (Figures 6E and 6G), we next sought to functionally 

dissect a subset of significant interactions. To this end, six lncRNA-mRNA gene pairs were 

selected for further validation, including two that were identified by both approaches 

(B230311B06Rik:Tmc7 and Gm16701:Fam78b), two using allelic imbalance 

(1700028I16Rik:Txnrd1 and C920006O11Rik:Gsta4) and two that were identified by our 

single-cell resolution (2610035D17Rik:Sox9 and Gm53:Hoxb13). We also noted that the 

lncRNA Gm53 showed a second significant interaction with Hoxb9 (in addition to Hoxb13) at 

a slightly lower significance threshold (PReal < 0.05) (Figure 6G). To evaluate these molecular 
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interactions, we designed at least two siRNAs against each lncRNA and measured the effects 

with qRTPCR. All candidate gene pairs were confirmed to show the expected target mRNA 

expression change (Figures S10A-F), and we also validated an increase in unspliced RNA levels 

for Gsta4 and Txnrd1, thus indicating that the regulatory interplay acts on the transcriptional 

level (Figures S10A-B). 

 

While it has been clearly established that many lncRNAs effect transcription of target mRNAs, 

it is not known if lncRNAs act by altering their burst frequencies or sizes. To address this 

question, we turned to our validated lncRNA-mRNA interactions (1700028I16Rik:Txnrd1, 

C920006O11Rik:Gsta4, Gm16701:Fam78b, B230311B06Rik:Tmc7, 2610035D17Rik:Sox9, 

Gm53:Hoxb9, Gm53:Hoxb13 (Figure S10) and Wincr1:Cdkn2a (Figure 4G)) which all had mRNA 

targets expressed in a part of the parameter space with good precision (narrow confidence 

intervals, see Methods) for burst inference (Figures S11A-B). To obtain burst parameters 

across lncRNAs perturbations, we profiled individual adult tail fibroblasts with Smart-seq322 

upon siRNA induced knockdown and generated a comprehensive data set with at least 200 

cells (post quality control) for each siRNA knockdown (Figures S11C-F). We first compared fold 

changes of the Smart-seq3 measurements (Figures S11G-L) with those of qRTPCR (Figures 

S10A-F) and found good agreement. Noteworthy, knockdown of lncRNA-Gm53 using 

siGm53_3 was found less efficient than siGm53_2 on both qRTPCR (Figures S10D) and scRNA-

seq measurements (Figure S11M) and the induction on Txnrd1 was less robust for siI16Rik_6 

compared to siI16Rik_5 (Figure S11H). We next inferred burst parameters for Txnrd1, Gsta4, 

Sox9, Cdkn2a and Hoxb13 while Tmc7 and Fam78b did not reach sufficient UMI counts and 

SNP coverage for burst inference. The inference showed a consistent effect on burst size for 

Txnrd1, Gsta4 and Hoxb13 (Figure 6L), whereas Sox9 and Cdkn2a showed an increase in burst 
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frequency (Figure 6M). Using simulations for one representative siRNA for each lncRNA, we 

demonstrated that the observed effects were in the regions of parameter space expected for 

an exclusive effect on either burst size (Figure 6N) or burst frequency (Figure 6O). Taken 

together, these observations suggest that lncRNAs can regulate both burst frequencies and 

burst sizes, possibly through independent molecular processes. 

 

Discussion 

The genomic sequences that harbor transcriptional activity and give rise to lncRNAs have been 

comprehensively mapped4. Yet it has remained hard to determine lncRNA functions, and it 

has been proposed that their low expression4–9 is one of the main challenges for functional 

characterization. Here, we detected a typical lncRNA in only 3% of cells (median, Figure 1C) 

and leveraged our single-cell approach to map lncRNA functions by systematic 

characterization of these rare cells. More precisely, we here sought to map lncRNA burst 

characteristics and functions using scRNA-seq followed by functional validation experiments.  

 

It has long been accepted that lncRNAs are expressed at lower levels than mRNAs but the 

underlying molecular causes have remained unclear4. Using allele-resolved scRNA-seq, we 

contrasted the transcriptional burst kinetics for several hundreds of lncRNA genes with those 

of mRNAs. We discovered that low expression of lncRNAs is mainly governed by lowered burst 

frequencies (Figures 2D and S4A) and found the duration between two transcriptional bursts 

of lncRNAs to be approximately twice as long compared to mRNAs (Figures 2G and S4G). 

Notably, over 30% of lncRNAs were estimated to burst less than once every 24 hours from 

each allele, suggesting that many lncRNA alleles may remain inactive throughout an entire cell 

cycle. While the lowered burst frequency of lncRNAs (four-fold decrease, Figures 2D and S4A) 
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likely represent a decrease in enhancer-mediated transcriptional initiation, the more modest 

effect on burst size (two-fold decrease, Figures 2E and S4B) could relate to differences in 

promoter features. 

 

Interestingly, loci with two genes divergently transcribed from the same promoter regions 

(lncRNA-mRNA as well as mRNA-mRNA gene pairs) had higher burst frequencies than genes 

separated by larger distances (Figures 2L and S4N). The increased burst frequency might stem 

from promiscuous interactions between regulators at the closely located promoters so that 

both promoters can more easily load the core transcriptional complexes. It is also possible 

that the presence of more TF binding sites5 at divergent promoters could result in increased 

burst frequency. 

 

We also revisited the question whether lncRNAs have increased cell-to-cell variability in 

expression compared to mRNAs of similar expression. Although lncRNA expression patterns 

are heterogeneous (Figures 1D-E), we observed in both mouse and human model systems 

that lncRNAs had generally higher cell-to-cell variability (quantified as CV2) compared to 

mRNAs of the same average expression level (Figures 1E and S2A-B). It is possible that the 

larger number of lncRNAs monitored with the scRNA-seq data presented in this study, explains 

why earlier reports with lower gene counts did not identify any increased variability of 

lncRNAs15. In line with this argument, subsampling lncRNA loci from our scRNA-seq data 

showed declining and eventually complete loss of power to detect the variability difference 

between lncRNAs and mRNAs (Figure 1H). We compared burst kinetics of lncRNAs with 

expression matched mRNAs and found that the increase in cell-to-cell variability associated 

with a shift in burst parameters where some lncRNAs burst less frequently although with 
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higher burst sizes (Figures 2H-I and S4J-K). Thus, our observations support previous models 

suggesting lncRNAs to be expressed in few cells (more sporadic expression in cells over time), 

although at slightly higher levels14, for at least a subset of lncRNAs. 

 

Analysis of scRNA-seq data also allowed us to identify cis- and trans- functions of lncRNAs. By 

assigning expression of lncRNAs to transient cellular states, such as different cell cycle stages 

and pro-apoptotic signaling, we applied a revised ‘guilt-by-association’34 principle where 

functions of lncRNAs was linked to a particular cellular condition. We revealed that this 

approach can generate hypotheses of lncRNA-functions without the need for perturbation 

experiments. Notably, knockdown of several candidate lncRNAs did not have a clear 

phenotype (data not shown) until exposed to a relevant stress stimulus (Figure 3D) and are 

therefore likely prone to be missed in large genome-wide perturbation studies carried out in 

steady-state growth conditions. Finally, we also found that overlapping of gene-gene 

expression correlations from scRNA-seq data with differential expression upon knockdown of 

lncRNAs, is a highly useful strategy for decoding lncRNA functions (Figures 4C and S6E). We 

believe this approach reduced the background significantly and exposed the most relevant 

targets for our studies on Lockd (Figure 4C). 

 

We finally explored how lncRNAs modulate burst kinetics of nearby protein-coding genes. 

Although it has been clearly recognized that many lncRNAs function as transcriptional 

regulators10,11,47, a major gap in our understanding has been how this influence transcriptional 

bursts. Regulation of burst dynamics is generally poorly understood, and we here provide 

evidence that lncRNAs can modulate both burst sizes and burst frequencies (Figures 6L-O). 

Clearly, more lncRNA-mRNA interactions need to be characterized in greater detail to fully 
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capture and generalize molecular mechanisms. Yet, our observations imply that lncRNAs 

modulate enhancer-controlled initiation frequencies of transcription (by modulating burst 

frequency Figure 6M) or the numbers of RNA polymerase II complexes that gets loaded during 

an active burst (by modulating burst size, Figure 6L), possibly representing distinct molecular 

pathways of lncRNA-mediated regulation. Unfortunately, several of the evaluated lncRNA-

mRNA gene pairs (two out of seven) did not provide enough precision to determine a clear 

effect on burst parameters. Notably, precision of the inferred burst parameters are gene 

specific (Figures S11A-B) and is affected by gene expression levels, SNP coverage, the number 

of cells sequenced and the sequencing depth of the experiments. The development of more 

sensitive scRNA-seq protocols, lowered cost for sequencing and a general increased 

throughput of cells, should improve the precision in burst inference and allow for analysis at 

larger scale in future studies. 

 

In summary, our study demonstrates that allele-sensitive scRNA-seq reveals functional 

signatures of lncRNAs. We here introduce computational and experimental strategies to link 

lncRNAs functions acting in trans and cis. We anticipate that the strategies presented here, 

together with the increasing amount of scRNA-seq data becoming available from different 

tissues, diseases and species, will advance and facilitate functional studies of lncRNAs. It is also 

tempting to speculate that scRNA-seq could be particular effective to identify lncRNA 

functions since the RNA itself is the molecular effector, in contrast to mRNAs, where 

translation occurs before reaching the functional entity. 
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Code availability 

Code for processing scRNA-seq data with zUMIs, kinetic inference, and plotting scripts in R is 

available upon request. 

 

Material and methods 

Cell culture 

Mouse primary fibroblasts were derived from adult CAST/EiJ x C57BL/6J or C57BL/6J x 

CAST/EiJ mice (approval by the Swedish Board of Agriculture, Jordbruksverket: N343/12) by 

skinning, mincing and culturing tail explants in DMEM high glucose (Thermo Fisher Scientific), 

10% ES cell FBS (Thermo Fisher Scientific), 1% Penicillin/Streptomycin (Thermo Fisher 

Scientific), 1% Non-essential amino acids (Thermo Fisher Scientific), 1% Sodium-Pyruvate 

(Thermo Fisher Scientific), 0.1mM bMercaptoethanol (Sigma) in culture dishes coated with 

0.2% gelatin (Sigma). NIH3T3 cells were maintained in DMEM supplemented with 10% FBS 

(Thermo Fisher Scientific) and 1% Penicillin/Streptomycin (Thermo Fisher Scientific). 

HEK293FT cells for production of viral particles were maintained in DMEM supplemented with 

10% FBS (Thermo Fisher Scientific), 1% Penicillin/Streptomycin (Thermo Fisher Scientific), 1% 

Non-essential amino acids (Thermo Fisher Scientific), 1% Sodium-Pyruvate (Thermo Fisher 

Scientific), 0.1mM NEAA (Thermo Fisher Scientific) and 2mM L-Glut (Thermo Fisher Scientific). 

All cells were cultured in 5% CO2 at 37°C. 

 

Generation of Smart-seq2 libraries 

Smart-seq2 libraries were prepared as described earlier48 using the following parameters; 1) 

20 cycles of PCR for pre-amplification, 2) a ratio of 0.8:1 for bead:sample purification of pre-

amplified cDNA (using in-house-produced 22% PEG beads), 3) tagmentation of ~1 ng of bead 
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purified cDNA using in-house-generated Tn549, 4) 10 cycles of PCR for library amplification of 

the tagmented samples using Nextera XT Index primers and 5) a ratio of 1:1 for bead 

purification of DNA sequencing libraries (using in-house-produced 22% PEG beads). 

Sequencing was carried out on an Illumina HiSeq 2000 generating 43 bp single-end reads. 

 

Generation of Smart-seq3 libraries 

Smart-seq3 libraries were generated according to previously published protocol22. Briefly, 

primary mouse fibroblasts were obtained from tail explants of CAST/EiJ × C57/Bl6J mice (>10 

weeks old) and passaged for at least ten days. For knockdown of lncRNAs, cells were seeded 

at 60,000 cells / well in 6 well plates, transfected at a final concentration of 10nM siRNAs 

(Lipofectamine RNAiMAX Transfection Reagent), and prepared for sorting 72 hours after 

transfections. For sorting, cells were stained with propidium iodide before being distributed 

(using a BD FACSMelody 100 μM nozzle, BD Biosciences) into 384 well plates containing 3 μl 

of Smart-seq3 lysis buffer (5% PEG (Sigma), 0.10% Triton X-100 (Sigma), 0.5 U μL-1 of 

recombinant RNase inhibitor, (Takara), 0.5 μM Smart-seq3 oligo-dT primer  (5ʹ-biotin-

ACGAGCATCAGCAGCATACGA T30VN-3ʹ; IDT), 0.5mM dNTP (Thermo Scientific)), spun down 

and stored at −80 °C immediately after sorting. From this point, standard protocol for Smart-

seq3 was applied, using the following parameters; 1) 20 cycles of PCR for pre-amplification of 

cDNA, 2) a ratio of 0.6:1 for bead:sample purification  of pre-amplified cDNA (using homemade 

22% PEG beads), 3) tagmentation of 150 ng bead purified cDNA using 0.1 μL of ATM and 4) 12 

cycles of PCR for library amplification of the tagmented samples using custom-designed 

Nextera index primers containing 10-bp indexes. Samples were finally pooled, bead purified 

at a ratio of 0.7:1 (using homemade 22% PEG beads) and prepared for sequencing on a 

DNBSEQ-G400RS (MGI) generating 100 bp paired-end reads. 
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Processing of RNA-seq data 

A subset of primary fibroblasts analyzed in this study (sequenced by Smart-seq2) are part of 

previously published studies and reanalyzed for consistency20,26 present in NCBI SRA 

(SRP066963). Here, the zUMIs v2.7.1b pipeline50 was used for alignment (mouse mm10 

assembly), gene quantification (Ensembl gene annotations, GRCm38.91) and allelic calling for 

primary fibroblasts data. To pass quality control, cells were required to have 1) >= 500,000 

reads, 2) 4,000 genes expressed at >= 5 read counts 3) distribution of allelic counts within 0.40 

< allelic SNPs < 0.60 on autosomes (imprinted genes and all genes on the X-chromosome 

excluded, Supplementary Table 1) and 4) no more than 20% of allelic counts mapped to the 

imprinted X-chromosome (escapee genes excluded, Supplementary Table 2). Genes with at 

least 5 read counts in 2 cells were assigned as expressed and kept for downstream analysis. 

 

Smart-seq3 libraries of HEK293 cells had previously been generated by Hagemann-Jensen et 

al22 and deposited in ArrayExpress (E-MTAB-8735). The zUMIs v2.7.0a pipeline50 was used for 

alignment (human hg38 assembly) and quantification of gene expression (Ensembl gene 

annotations, GRCh38.95). Cells were required to have; 1) >= 500,000 read counts mapped to 

exons / cell 2) >= 500,000 UMI counts / cell and 3) > = 7,500 genes / cell (>= 1 read count). 

Genes with at least 1 read count in 3 cells were considered for downstream analysis 

 

Smart-seq2 libraries of mES cells had previously been generated by Ziegenhain et al25 and is 

available at Gene expression omnibus (GSE75790). The zUMIs v2.7.2a pipeline was used for 

alignment (mouse mm10 assembly) and quantification of gene expression (Ensembl gene 

annotations, GRCm38.91). Cells were required to have; 1) >= 400,000 read counts mapped to 
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exons / cell and 2) > = 8,000 genes / cell (>= 5 read counts). Genes with at least 5 read counts 

in 2 cells were considered for downstream analysis 

 

For Smart-seq3 libraries of primary fibroblasts treated with siRNAs, the zUMIs v2.9.4b 

pipeline50 was used for alignment (human hg38 assembly) and quantification of gene 

expression (Ensembl gene annotations, GRCh38.95). Cells were required to have; 1) >= 

100,000 read counts mapped to exons / cell and 2) >= 50,000 unique UMI counts and 3) >= 

5,000 genes (>= 1 UMI counts). Genes with at least 1 UMI read count in 3 cells were considered 

for downstream analysis. 

 

Annotation of lncRNAs 

The Ensembl BioMart annotations (GRCm38.p6) were used for identification of different 

subsets of lncRNAs. The BioMart annotations were first filtered for genes passing the quality 

control thresholds (see above) and lncRNAs (according to BioMart annotations) were 

categorized as; 1) Divergent (no gene-gene overlap and TSSs not separated by more than 500 

bp), 2) Convergent (gene-gene overlap and TSSs not separated by more than 2 kb, 3) Intergenic 

(no gene-gene overlap and at least 4 kb from any other expressed gene), 4) Independent 

transcriptional units (TSSs separated with at least 4,000 bp from any other expressed gene). 

The threshold of 4 kb was established by manual inspection of Figure S1D where the mean 

expression had been measured (median of sliding window, size = 51) against the distance 

between the two most closely located TSSs (only genes passing the quality control was 

considered for these analysis). 
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Permutation test for CV2 

For the analysis of cell-to-cell variability, only genes meeting the following criteria were 

considered; 1) Not imprinted, 2) Not encoded on the X-chromosome and 3) being classified as 

separated transcriptional units (Figure S1E).  

 

CV2: For each lncRNA meeting the criteria, 10 independently transcribed protein-coding genes 

having the most similar mean expression {min(|mean(RPKMlncRNA) – mean(RPKMmRNA|)} were 

selected. The matching allowed for the same protein-coding gene to be selected multiple 

times (sample replacement). For the permutation test (n=10,000), one expression-matched 

protein-coding gene was randomly sampled for each lncRNA and the expected CV2 (median) 

was calculated for each permutation. The P-value represents the frequency of; 

median(CV2
sampled) > median(CV2

lncRNA). 

 

For estimating the number of lncRNAs needed for detection of median(CV2
lncRNA) > 

median(CV2
mRNA), the permutation test was repeat 100 times for each size of subsampling 

(between 10 and 200 lncRNAs) of the frequency where 50% and 95% of the permutations 

reached median(CV2
lncRNA) > median(CV2

sampled) was assessed. 

 

Transcriptional inference of bursting parameters 

UMI expression values from Smart-seq3 libraries51 were used for transcriptional inference20. 

Briefly, allele-sensitive read counts were used to assign molecule counts (UMIs) to the CAST 

or C57 genome. Cells having UMIs although lacking allelic read counts for individual genes 

were assigned as missing values for the inference while cells lacking UMIs as well as allelic 

information were considered as ‘true’ zeros and included in the analysis. For quality control, 
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genes were required to meet the following criteria; 1) 1 UMI counts in at least 5 cells, 2) burst 

size within 0.2 < size < 50, 3) burst frequency 0.01 < frequency < 30, 4) UMI mean expression 

0.01 < UMImean < 100 and 5) width of confidence intervals (CIHigh / CILow) below 101.5 (for burst 

size and frequency). Only non-imprinted autosomal genes, identified as independent 

transcriptional units, were considered for downstream analysis.  

 

Identification of cell cycle stage of individual primary fibroblasts 

The most variable genes were identified using the R package ‘Seurat’35. Genes were first 

filtered for being expressed in at least 5 cells at 5 read counts. Counts were next normalized 

using ‘LogNormalize’ (setting scale.factor = 10,000) and the most variable genes were 

identified using the ‘vst’ method of ‘FindVariableFeatures’. We next extracted the cell cycle 

related genes reported by Whitfield and colleagues36 (Supplementary table 3), and used the 

top 50 ranked genes with the highest variability for PCA. The cell cycle phase of individual cells 

was identified using the first three principal components as input for the R package ‘princurve’ 

and the lambda factor used to align individual cells along the cell cycle progression. Expression 

of individual genes were illustrated using a rolling mean of 15 cells (using R package ‘zoo’). 

The assignment of cells to cell cycle phase was performed based on the expression levels of 

known cell cycle regulators (Gas1, Ccne2, Ccnb1 and Ccnd1) using rolling mean of Seurat 

normalized counts. 

 

Differential expression analysis of lncRNAs in the cell cycle 

Differential expression analysis between cell cycle phases (G0, G1, G1S and G2M) was 

performed using a one-way ANOVA test (Benjamini-Hochberg adjusted, p<0.01) with 

normalized counts (lognormalized, Seurat). 
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Correlation of cell cycle genes 

Genes were first filtered for being expressed in at least 2 cells at 5 read counts for primary tail 

fibroblasts and GFP+ shControl transduced NIH3T3 cells. The R package ‘Seurat’ was used to 

log-normalize the read counts and the normalized counts were used to calculate Spearman 

correlation of cell cycle genes36. For each pairwise comparison, cells lacking expression of both 

genes were excluded from the analysis. 

 

Cell cycle synchronization 

NIH3T3 cells (~50% confluent) were washed twice in PBS and treated either with 0.1% FBS, 

2mM Thymidine or 800nM Nocodazole for 16-24 hours. 

 

Cell cycle analysis 

Cells (including supernatants) were harvested using TrypLE Express (Thermo Fisher Scientific), 

washed once in PBS, resuspended and fixed in 70% EtOH and stored at -20°C until analysis by 

flow cytometry. Prior to analysis, cells were washed once in PBS before being resuspended in 

500 µL staining buffer (PBS containing 40 µg/ml propidium iodide, 100 µg/ml RnaseA, 0.1% 

Triton X-100), incubated on ice for ~1hr and finally analyzed on flow cytometry. 

 

Identification of apoptosis related lncRNAs 

The most variable genes related to apoptosis was identified using the approach presented by 

Brennecke et al52. A fit to the squared coefficients of variations against the means of 

normalized gene expressions (RPKM) was performed using the R function glmgam.fit(). The 

cell-to-cell variability of genes was ranked and the 75 apoptotic related genes (GO:0043065, 

positive regulation of apoptosis) with the greatest variability was used for PCA. Cell clusters 
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were identified using the pam function of the R package ‘cluster’. Only cells assigned to the 

G1 cell cycle phase was considered for these analyses. 

 

qRTPCR 

Total RNA was extracted using the Qiagen RNeasy mini kit (Qiagen cat no. 74106) followed by 

DNase treatment using the Ambion DNA-free DNA removal kit (Thermo Fisher Scientific, cat 

no. AM1906). Equal amounts of DNase treated RNA was used for preparing cDNA using 

SuperScript II (Thermo Fisher Scientific) and oligo(dT)18 primer according to the 

manufacturer's recommendations. Quantification was carried out using Power SYBR Green 

(Thermo Fisher Scientific) on a StepOnePlus or ViiA7 Real-Time PCR system (Applied 

biosystems). The delta-delta Ct method was used for quantification of relative expression 

levels. 

 

Cloning / Generation of lentiviral U6 expressed shRNAs 

Cloning of shRNAs into lentiviral vector was carried out as previously described47. Briefly, 

oligos were treated with T4 PNK (New England Biolabs), annealed and ligated into the Nhe1 

and Pac1 restriction sites of the pHIV7-IMPDH2-U6 construct47. 

 

Lentiviral production 

Lentiviral particles were produced as previously described47,53. Shortly, HEK293FT cells were 

transfected with pCHGP-2, pCVM-G pCMV-rev and pHIV7-IMPDH2-U6 at 1:0.5:0.25:1.5 ratio 

using SuperScript II and PLUS reagent (Thermo Fisher Scientific) in serum depleted DMEM 

media. Media was changed ~6 hours post transfection to DMEM collection media (10% FBS 

(Thermo Fisher Scientific), 1% Penicillin/Streptomycin (Thermo Fisher Scientific), 1% Non-
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essential amino acids (Thermo Fisher Scientific), 1% Sodium-Pyruvate (Thermo Fisher 

Scientific), 0.1mM NEAA (Thermo Fisher Scientific) and 2mM L-Glut (Thermo Fisher Scientific), 

0.37% Sodium Bicarbonate (Thermo Fisher Scientific) and 1x Viral Boost Reagent (Alstem Cell 

advancements). The viral supernatant was collected ~48 hours post transfection, passed 

through a 0.45 µm filter (Sarstedt) and concentrated using PEG-it (SBI System Biosciences) 

according to the manufacturer's recommendations.  

 

Generation of lentiviral transduced stable cell lines 

NIH3T3 cells were transduced using low titer of lentiviral particles (< 10% of transduced cells). 

GFP+ cells were sorted at the CMB core facility at Karolinska Institutet. 

 

Colony formation assay 

For stable NIH3T3 cell lines, cells were seeded at low density (500 cells / well) in 6 well plates. 

Media was changed every second to third day. After 10-14 days, cells were washed twice in 

PBS, fixed and stained for 20 minutes with 0.5% crystal violet, washed in H2O and finally let 

dry. Quantification was carried out in a two-step process by first manually counting the 

colonies and secondly measuring the crystal violet absorbance at 590nm by re-solubilize the 

stained cells in 10% acetic acid solution. 

 

For siRNAs, NIH3T3 cells were seeded at 1000-2,500 cells / well in 6 well plates. Transfections 

were carried out 24 hours after seeding and the procedure as described above repeated. 
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siRNA knockdown and mitomycin C treatment 

NIH3T3 and primary cells were transfected using Lipofectamine RNAiMAX Transfection 

Reagent (Thermo Fisher Scientific) according to the manufacturer’s protocol. A final 

concentration of 10nM siRNA was used. MMC treatment was initiated 24 hours post 

transfections. 

 

Functional prediction of lncRNAs using allelic imbalance 

Genes were first filtered for 1) having at least 3 allelic read counts in 20 cells, 2) not being 

imprinted (Supplementary Table 1)  3) not being encoded on the X-chromosome and 4) having 

one of the following Ensembl BioMart annotations; protein_coding (n=10,789), lncRNA 

(n=545), pseudogene (n=1), transcribed_processed_pseudogene (n=9), 

transcribed_unitary_pseudogene (n=4), unitary_pseudogene (n=1), 

transcribed_unprocessed_pseudogene (n=20), unprocessed_pseudogene (n=8). 

 

Allelic imbalance of individual genes was measured as previously defined (CASTallelicCounts 

/(CASTallelicCounts + C57allelicCounts) - 0.5) and an allelic score (allelicImbalancelncRNA + 

allelicImbalancemRNA – diff(allelicImbalancelncRNA, allelicImbalancemRNA)) was calculated for 

each lncRNA:mRNA gene pair within 500 kb of the lncRNA-TSS. The allelic score of 

lncRNA:mRNA gene-pairs was compared to a permutation test where each lncRNA (n=542) 

was moved to 1,000 randomly selected mRNA gene positions (the 1,000 genomic loci were 

kept the same for all lncRNAs and required to have at least two other genes in proximity). The 

allelic score was computed for each lncRNA:mRNA gene-pair over the randomly selected 

genomic loci (within +/- 500k bp) and p-values finally calculated as: allelicScorelncRNA:mRNA:random 

>= allelicScorelncRNA:mRNA:real / nrandomGeneInteractions. 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 20, 2020. ; https://doi.org/10.1101/2020.05.05.079251doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.05.079251
http://creativecommons.org/licenses/by-nc/4.0/


 33 

Functional prediction of lncRNAs using single-cell resolved RNA-expression 

Coordinated allelic expression of lncRNA-mRNA gene pairs (on the single-cell level) was 

addressed for all lncRNA-mRNA gene pairs within +/- 500 kb of the lncRNA TSS (n=542 

lncRNAs). The expression pattern for each gene pair (>= 3 allelic read counts) was first 

evaluated by a Fisher’s exact test (PReal, Benjamini-Hochberg adjusted). To estimate the 

background, each lncRNA was next translocated to 1,000 randomly selected gene locations 

and a Fisher’s exact test applied for all randomly generated gene pairs (PRandom, Benjamini-

Hochberg adjusted). lncRNA-mRNA gene pairs were considered significant if PReal < 0.01 where 

PRandom < PReal occurred in less than 1% of the permutated gene interactions. 

 

Estimation of RNA half-lives and decay rates 

Primary adult mouse tail fibroblasts were treated with Actinomycin D (Sigma-Aldrich cat no. 

SBR00013-1ml) at a final concentration of 5 µG/ml in quadruplicates (one female CASTxC57 

and one female C57Bl6, both in technical duplicates). RNA was extracted using the RNeasy 

mini kit (Qiagen cat no. 74106) at 0, 1, 2, 4, 7 and 10 hours of treatment and global levels of 

RNA measured by polyA+ RNA-seq. Briefly, ~60 ng of DNase treated RNA (Ambion DNA-free 

cat no. AM1906) was prepared for sequencing using the Smart-seq2 protocol (slightly 

modified for bulk RNA-seq) and sequenced on an Illumina NextSeq-500 (High output kit v2.5, 

75 cycles). Data was processed using the zUMIs v2.9.3e pipeline and genes filtered for having 

at least 10 read counts in all four samples in the untreated condition (t0). Using RPKMs, gene 

expression was first normalized to the untreated condition (setting t0 = 1) for each individual 

sample. To normalize the expression over Actinomycin D treated time points, we took 

advantage of previous estimates of RNA half-lives in mouse ES cells31. To normalize the data, 

we first identified a subset of control genes with half-life estimates 1h < t1/2 < 8h with at least 
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50 read counts at t0 in all four Actinomycin D treated samples. The expected expression level 

of the control genes was calculated (y = 1*exp(-kcontrol*t) ) and used to compute a 

‘normalization factor’ (by taking the median) for each time point and sample, to which all 

genes were normalized to reach the final relative expression levels. Genes with shorter half-

lives than 2h were excluded from the 7 and 10 hour time-points when calculating the 

‘normalization factor’.  

 

To estimate half-lives, the normalized expression was fitted to an exponential decay curve (y 

= a*exp(-kx) ) using the R package ‘drc’. Decay rates (l) was finally calculated using the 

formula: t1/2 = ln(2) / l. Genes with half-lives < 10 hours and burst duration < 72 hours were 

considered for downstream analysis. 

 

PI – AnnexinV staining 

PI-AnnexinV staining was carried out using the Annexin-V-FLUOS Staining kit (Roche, cat no. 

11858777001). Briefly, treated cells were harvested using Tryp-LE (including the cell media 

and PBS wash), washed once in PBS, and resuspended in 75-100 µL of Annexin-V labeling 

solution according to the manufacturer’s protocol. The samples were incubated for 15 

minutes at room temperature (alternatively for 45 minutes on ice) followed by adding 400 µL 

of ice-cold Annexin-V incubation buffer. The samples were subsequently analyzed on a BD 

FACSMelody Cell Sorter. 

 

Ethical compliance 

This study has been approved by the Swedish Board of Agriculture, Jordbruksverket: N343/12  
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FIGURE LEGENDS 

 

Figure 1 | Levels and variability of lncRNA and mRNA expressions. 

(A) Boxplots showing the detected numbers of protein-coding genes and subtypes of lncRNAs 

per fibroblast, based on Smart-seq2 data (n=533 cells) and requiring 3 or more read counts 

for detection. (B) Densities and boxplots of mean expression levels for lncRNAs and mRNAs 

across fibroblasts (n=533). Dashed lines denote the medians, p-value represents a two-sided 

Wilcoxon rank-sum test. (C) Violin plots showing the fraction of cells that detected individual 

lncRNAs and mRNAs (requiring 3 or more read counts for detection). (D) Violin plots showing 

the coefficient of variation (CV2) for lncRNAs and mRNAs expressions across fibroblast 
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(n=533). P-value represents two-sided Wilcoxon rank-sum test. (E) Scatter plot of mean 

expression against the CV2 for lncRNAs (blue) and mRNAs (green). Lines denote a smoothed 

fit to the rolling mean (width = 15) for lncRNAs and mRNAs. Red dotted lines denote the 

expression range for the smoothed fit. (F) Histogram showing median CV2 for sampled 

expression-matched sets of mRNAs. Each lncRNA (0.001 < lncRNAmean < 100, n=1,519) was 

matched with 10 mRNAs of similar expression followed by subsampling one expression-

matched mRNA for each lncRNA, this procedure was repeated 10,000 times. The P-value 

represent the outcome of the permutation test where the CV2
mRNA obtained from 10,000 

permutations was higher than the observed CV2
lncRNA (blue dashed line). (G) Densities of 

rankings of CV2 for lncRNAs (blue, n=1,519) and randomly sampled mRNAs (green). In blue, 

each lncRNA was matched with 100 mRNAs of similar expression followed by ranking the CV2 

to the 100 matched mRNAs (frequency CV2
lncRNA > CV2

mRNA_matched). In green, mRNAs were 

randomly sampled (n=1,519, as many as lncRNAs), expression-matched with 100 other mRNAs 

and the CV2 ranked (frequency CV2
mRNA_random > CV2

mRNA_matched). This procedure was repeated 

100 times for mRNAs. Dashed lines denote the medians of ranking for lncRNAs (blue) and 

mRNAs (green). (H) Scatter plot showing the numbers of lncRNAs required to identify 

increased CV2 compared to expression-matched mRNAs. The X-axis represents the number of 

lncRNAs used for CV2 quantification. For each number of lncRNAs analyzed, expression-

matched mRNAs were randomly selected followed by subsampling one expression-matched 

mRNA for each lncRNA (similar as in Figure 1G, 1,000 permutations). Each subsampling of 

lncRNAs was repeated 100 times. The y-axis represents p-values from the permutation test 

(median(CV2
lncRNA) > median(CV2

mRNA)). Grey points represent individual p-values for the 

permutation test. Blue points represent the 50th percentile of permutations reaching 

significance. Red points represent the 95th percentile of permutations reaching significance. 
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The black dashed line represents subsampling 34 lncRNAs. Analysis in Figures 1D-G represent 

easily separated transcriptional units of lncRNAs and mRNAs. 

 

 

Figure 2 | Transcriptional burst kinetics of lncRNAs and divergent promoters. 

(A-C) Scatter plots of (A) burst frequencies, (B) burst sizes and (C) mean expression for mRNAs 

(green) and lncRNAs (blue) comparing the parameters inferred from the CAST allele against 

the C57 allele for non-imprinted autosomal genes. Red line denotes x=y. (D-F) Density plots 

for (D) burst frequencies (E) burst sizes and (F) mean expression (allele-distributed UMIs) for 
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mRNAs and lncRNAs (showing the C57 allele). Dashed lines represent the median burst 

frequencies, sizes and mean expression for mRNAs and lncRNAs. The relative fold changes in 

burst frequencies, sizes and mean expression are annotated in grey. The p-values represent 

two-sided Wilcoxon rank-sum tests. (G) Histogram showing the duration between two bursts 

from the same allele, for mRNAs and lncRNAs. Dashed lines in green and blue represent the 

median duration between two bursts for mRNAs and lncRNAs, respectively. Dashed line in 

grey represents a duration of 24 hours between two bursts.  (H-I) Histograms showing median 

(H) burst frequencies (I) and burst sizes for sampled expression-matched sets of mRNAs. Each 

lncRNA (n=50, identified in Figure S4H) was matched with 10 mRNAs of similar expression 

followed by subsampling one expression-matched mRNA for each lncRNA. The P-value 

represent the outcome of the permutation test, where the observed burst parameters 

(lncRNAs, median) was higher (for burst frequencies) or lower (for burst sizes) than the burst 

parameters (median) obtained from 10,000 permutations. (J) Scatter plot showing the 

distance between the transcription start sites (TSS) of pairs of genes, against their mean 

expression levels (UMIs). Blue line represents a loess fit to the rolling median (width = 31). The 

dashed lines represent the distance between two TSSs for being assigned as divergent 

promoters (in green, maximum distance of 500 bp) or unidirectional promoters (in black, 

minimum distance of 10 kb). (K) Violin plots showing mean expression levels of unidirectional 

mRNAs and for mRNAs transcribed from divergent promoters (either with another mRNA or 

a lncRNA). P-values represent two-sided Wilcoxon rank-sum tests. (L) Violin plots for 

unidirectional and divergent promoters representing burst frequencies and burst sizes, for the 

C57 allele. P-values represent two-sided Wilcoxon rank-sum test. 
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Figure 3 | Identification of cell cycle regulated lncRNAs using scRNA-seq. 

(A) Boxplots showing the normalized expression levels (scale-factor and log10 normalized35) 

of cell cycle marker genes in cells classified to cell cycle phase. (B) Scatter plots showing 

lncRNAs with significant expression differences across cell cycle phases (y-axis, Benjamini-

Hochberg adjusted ANOVA test) against the fold induction compared to the other cell cycle 

phases. The top ranked candidates selected for further validation were colored red. (C) 

Relative expression levels of candidate lncRNAs in lentiviral transduced NIH3T3 cells measured 

by qRTPCR. P-values represent a two-sided student’s t-test. (D) Quantification of colony 

forming cells in sh-control cells and cells with stable shRNA-induced knockdown of lncRNAs, 

together with representative photos of staining. P-values represent a two-sided student’s t-

test. 
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Figure 4 | Functional analysis of Lockd and Wincr1 lncRNAs. 

A) Quantification of colony forming cells upon siRNA induced knockdown of Lockd in NIH3T3 

cells (n=5, p-values represent a two-sided student’s t-test, error bars represent the s.e.m.). (B) 

Relative expression of Cdkn1b upon siRNA induced knockdown of Lockd in NIH3T3 cells (n=5) 

and primary fibroblasts (n=4) measured by qRTPCR. P-values represent a two-sided student’s 

t-test, error bars represent the s.e.m. (C) Scatter plot representing magnitudes of fold changes 

of gene expression (shLockd / shControl, for significant genes with adjusted p-value < 0.05) of 
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stably transduced NIH3T3 cells (x-axis) against gene-gene correlations to Lockd in stably 

shControl-transduced NIH3T3 cells (y-axis). Genes reaching the threshold of Spearman 

correlations (denoted with red dashed lines) were considered for downstream analysis. (D) 

Relative expression of candidate genes upon siRNA induced knockdown of Lockd in NIH3T3 

cells measured by qRTPCR (n=4, p-values represent a two-sided student’s t-test, error bars 

represent the s.e.m.). (E) Relative expression of candidate genes upon siRNA induced 

knockdown of Lockd in primary fibroblast cells measured by qRTPCR (n=4, p-values represent 

a two-sided student’s t-test, error bars represent the s.e.m.). (F) Quantification of colony 

forming cells upon siRNA induced knockdown of Wincr1 in NIH3T3 cells (n=5, p-values 

represent a two-sided student’s t-test, error bars represent the s.e.m.). (G) Relative 

expression of candidate cis-interacting genes upon siRNA induced knockdown of Wincr1 in 

primary fibroblast cells measured by qRTPCR (n=5, p-values represent a two-sided student’s 

t-test, error bars represent the s.e.m.). 

 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 20, 2020. ; https://doi.org/10.1101/2020.05.05.079251doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.05.079251
http://creativecommons.org/licenses/by-nc/4.0/


 48 

 

Figure 5 | Identification of lncRNAs involved in apoptosis by single-cell profiling. 

(A) Low dimensional PCA projection of cells, based on the most variable genes annotated as 

apoptosis related. Cells are colored according to clusters (identified by the pam function of 

the R package ‘cluster’). (B) Violin plots showing the expression levels of two marker genes for 

DNA damage (P-values represent a two-sided Wilcoxon rank-sum test). (C) Scatter plot 

showing fold change magnitudes (x-axis) and significance levels (y-axis) for cluster 1 against 

clusters 2-3 identified in (A) analyzed by SCDE39. lncRNAs selected for validation are marked 

in red. (D) Relative expression measured by qRTPCR of candidate lncRNAs in NIH3T3 cells 

treated with MMC (n=4, p-values represents a two-sided student’s t-test, error bars represent 

the s.e.m.). (E) Quantification of apoptosis using AnnexinV for siRNA targeted NIH3T3 cells 
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treated with MMC (n=3, p-values represents a two-sided student’s t-test, error bars represent 

the s.e.m.). 
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Figure 6 | Identification of cis functioning lncRNAs using allele-resolved expression. 

(A) Schematic illustration of hypothetical cis-effects between lncRNAs and proximal mRNAs 

that could manifest as coordinated allelic expression dynamics across cells. (B) Histogram 

showing lncRNA-mRNA gene pairs within +/- 500 kb of lncRNA TSSs. (C) Histogram showing 

permutated lncRNA-mRNA gene pairs (where each lncRNA was moved to 1,000 randomly 

selected gene locations). (D) Histogram showing significant lncRNA-mRNA gene pairs (p < 0.05, 

permutation test). (E) Scatter plot representing p-values (permutation test) against the 

distance between lncRNA-mRNA pairs of genes. Significant gene pairs are colored in red, 

dashed red line represents p=0.05. (F) Scatter plot representing ranking of significant lncRNA-

mRNA pairs of genes. A positive value (x-axis) represents allelic bias towards the same allele 

while a negative value represents bias on opposite alleles. Highlighted lncRNA-mRNA pairs of 

genes are considered for downstream validation. (G) Scatter plot representing p-values 

(permutation test) against the distance between lncRNA-mRNA pairs of genes. Significant 

gene pairs are colored in red. Dashed red line represents p=0.01, dashed light red line 

represents p=0.05. Venn diagram represents significant lncRNA-mRNA pairs of genes for the 

C57 and CAST genomes. (H-I) Histogram showing significant lncRNA-mRNA pairs of genes for 

the (H) C57 and (I) CAST genome. (J-K) Histogram representing the number of significant 

interactions for individual lncRNAs for the (J) C57 and (K) CAST genome. (L) Scatter plots 

representing burst parameters with 95% confidence intervals for Txnrd1, Gsta4 and Hoxb13 

upon siRNA induced knockdown of lncRNAs. (M) Scatter plots representing burst parameters 

with 95% confidence intervals for Sox9 and Cdkn2a upon siRNA induced knockdown of 

lncRNAs. (N) Scatter plots representing burst parameters with 95% confidence intervals for 

Txnrd1, Gsta4 and Hoxb13 upon siRNA induced knockdown of lncRNAs for one representative 

siRNA from Figure 6L. Simulated cases when expression is modulated by burst frequency or 
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size are shown in blue and red, respectively. P-values represent a profile likelihood test. (O) 

Scatter plots representing burst parameters with 95% confidence intervals for Sox9 and 

Cdkn2a upon siRNA induced knockdown of lncRNAs for one representative siRNA from Figure 

6M. Simulated cases when expression is modulated by burst frequency or size are shown in 

blue and red, respectively. P-values represent a profile likelihood test. 
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