
A Deep Semi-Supervised Framework for Accurate1

Modelling of Orphan Sequences2

Lewis Moffat1 and David T. Jones1,+
3

1Department of Computer Science, University College London, Gower Street, London WC1E 6BT; and Francis4

Crick Institute, 1 Midland Road, London NW1 1AT5

+d.t.jones@ucl.ac.uk6

Abstract7

Accurate modelling of a single orphan protein sequence in the absence of homology information has remained a8

challenge for several decades. Although not as performant as their homology-based counterparts, single-sequence9

bioinformatic methods are not constrained by the requirement of evolutionary information and so have a swathe10

of applications and uses. By taking a bioinformatics approach to semi-supervised machine learning we develop11

Profile Augmentation of Single Sequences (PASS), a simple but powerful framework for developing accurate12

single-sequence methods. To demonstrate the effectiveness of PASS we apply it to the mature field of secondary13

structure prediction. In doing so we develop S4PRED, the successor to the open-source PSIPRED-Single method,14

which achieves an unprecedented Q3 score of 75.3% on the standard CB513 test. PASS provides a blueprint for15

the development of a new generation of predictive methods, advancing our ability to model individual protein16

sequences.17

Main18

Over the past two decades, sequence-based bioinformatics has made leaps and bounds towards better understanding19

the intricacies of DNA, RNA, and proteins. Large sequence databases1 have facilitated especially powerful20

modelling techniques that use homology information for a given query sequence to infer aspects of its function21

and structure2. A keen example of this progress is in current methods for protein structure prediction that utilize22

multiple sequence alignments (MSAs) to accurately infer secondary and tertiary structure3–5. Unfortunately, much23

of this progress has not extended to orphan sequences, a very important but very difficult to model class of24

sequences which have few to no known homologous sequences5–7. Also, even when homologues are available,25

multiple sequence alignment is often too slow to apply to the entirety of a large sequence data bank, and so26

improved annotation tools which can work with just a single input sequence are also vital in maintaining resources27

such as InterPro8.28

A concurrent development is the recent permeation of deep learning methods into bioinformatics; powerful29

machine learning models that are extremely data hungry but capable of highly accurate inference3. Deep learning30

approaches have seen success in bioinformatics but progress has been constrained as large labelled biological31

datasets are not always abundantly available2. In many biological settings, acquiring labeled data for even a32

single example can be very costly, although the data itself is often abundant. A clear example is determining high33

resolution protein structure data. This is evident in that, at current, there are millions of unannotated sequences in34

the UniProtKB1 but a comparatively much smaller number of structures in the PDB9.35

Here we present Profile Augmentation of Single Sequences (PASS), a general framework for mapping multiple36

sequence information to cases where rapid and accurate predictions are required for orphan sequences. This simple37

but powerful framework draws inspiration from Semi-Supervised Learning (SSL) to enable the creation of massive38

single-sequence datasets in a way that is biologically intelligent and conceptually simple. SSL methods represent39

powerful approaches for developing models that utilize both labelled and unlabelled data. Where some recent40

works10, 11 have looked to take advantage of unlabelled biological sequence data using unsupervised learning,41

borrowing from techniques in natural language processing12, 13, we instead look to modern SSL methods like42

FixMatch14 for inspiration. These methods have demonstrated that psuedo-labelling, amongst other techniques,43

can significantly improve model performance14–16. Pseudo-labelling techniques use the model being trained to44

assign artificial labels to unlabelled data, which is then incorporated into further training of the model itself16.45
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PASS uses a bioinformatics-based approach to psuedo-labelling to develop a dataset for a given prediction task46

before training a predictive single-sequence model. First, a large database of sequences is clustered into MSAs.47

Each MSA is then used as input to an accurate homology-based predictor. The predictions are then treated as48

pseudo-labels for a single sequence from the MSA. This allows a large unlabelled set of single sequences to be49

converted into a training set with biologically plausible labels, that can be combined with real labelled data, for50

training a deep learning based predictor. As an exemplar of the effectiveness of the PASS framework we apply it51

to the well explored field of single-sequence secondary structure prediction and achieve unprecedented results52

in the form of Single-Sequence Secondary Structure PREDictor (S4PRED), the next iteration of PSIPRED-Single,53

our current method. S4PRED achieves a state-of-the-art Q3 score of 75.3% on the standard CB513 test set17. This54

performance approaches the first version of the homology-based PSIPRED18 and represents a leap in performance55

for single-sequence based methods in secondary structure prediction (Figure 1).56

In the past two decades secondary structure prediction has become an invaluable tool across the cutting edge57

of protein science, particularly in areas like cryo-electron microscopy19, 20, tertiary structure prediction5, and58

protein design21. Starting from a three class accuracy (Q3) of ∼ 76%18 in the late 1990’s, our renowned secondary59

structure prediction tool, PSIPRED, has grown to a current state-of-the-art Q3 of 84.2%, and is used globally in both60

experimental and computational research22.61

PSIPRED, along with other methods, is able to produce high accuracy predictions by leveraging valuable62

homology information found in MSAs23. This is typically done by constructing a MSA for a given query sequence63

and then converting it into a PSI-BLAST24 profile to be used as features for the predictor, along with the original64

protein sequence18, 23. This approach is in stark contrast to single-sequence methods, like PSIPRED-Single22, that65

are designed to predict secondary structure based only on a single query sequence, without relying on homology66

information. Unfortunately, over the past decades, single-sequence methods have been slow to improve relative to67

homology based methods, as can be seen in Figure 1. Currently, the most performant single-sequence methods68

achieve low Q3 scores of 71-72%22, 25–27, where homology based methods are achieving scores of > 84%22, 27, 28 and69

are approaching a hypothesized theoretical maximum of 88-90%29.70

Accurate single-sequence prediction enables the modelling of any given sequence without the constraints of71

homology, which, from both a theoretical and practical perspective, represents an incredibly valuable research72

prospect with a plethora of use cases. The first and most apparent of these is being able to better model any part73

of the known protein space, especially given that a quarter of sequenced natural proteins are estimated to have74

no known homologues7 and an even larger portion are inaccessible to homology modelling5, 6, 40. For example, a75

particularly important area where this is often the case is viral sequence analysis. The structures of viral proteins76

are often attractive targets for the development of antiviral drugs or the development of vaccines41, however, viral77

sequences tend to be highly diverse and typically have no detectable homologues, making structural modelling78

difficult41–43. Another example is being able to better model the homology-poor “dark proteome”6, the contents of79

which likely holds yet to be discovered functional and structural biology5. The value of single-sequence methods80

also extends outside of natural proteins to areas like de novo protein design21, where novel sequences and structures81

typically, by their very design, have no homologues44.82

Even in the case of a sequence having known homologues, single-sequence methods have many valuable uses.83

One clear example is in variant effects43, where methods like PSIPRED that use MSAs are limited because their84

predictions for a given sequence will be biased towards a family ”average”2. Single-sequence methods avoid this85

bias and have the potential to better model the changes in secondary structure across a family even for highly86

divergent members. This also extends to being able to better model large single-species insertions that intrinsically87

have no homology information. Being able to avoid the bias of homology methods could also benefit protein88

engineering tasks45, where the aim may be to generate a sequence that is highly divergent from its homologues.89

Not only do single-sequence methods aid in a variety of scientific problems, they also directly tackle research90

tasks like the protein structure prediction problem. Recent advances in tertiary structure prediction demonstrate91

highly accurate ab initio structure modelling when homologous sequences are available, but successful prediction92

without homology information remains elusive4, 46. Single-sequence methods directly address the prediction of93

protein structure sans homology information, and improved predictors have the potential to lay the groundwork94

for future steps towards the herculean task of single-sequence tertiary structure prediction.95

Results96

Generating an artificially labelled dataset97

For S4PRED, we use the PASS framework to develop a pseudo-labelling approach that is used to generate a large98

set of single sequences with highly accurate artificial labels. The first step is taking a large set of unlabelled protein99
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Figure 1. Plot showing reported test Q3 scores for a range of published secondary structure prediction methods
over the previous three decades. This includes single-sequence methods25, 26, 30–33 and homology methods18, 28, 34–39

separately to provide an illustrative view of how single-sequence methods have improved very slowly, compared
to homology methods, over time. We include this work, S4PRED, to demonstrate how it is a step upwards in
accuracy. In order to avoid conflation with Rosetta ab initio, we use the name Rosetta + Neural Network
(Rosetta+NN) in this figure to refer to the work of Meiler & Baker36.

sequences clustered as alignments and then removing the clusters containing a small number of sequences. The100

MSA-based PSIPRED V422 is then used to generate secondary structure predictions for each remaining cluster101

alignment. The representative sequence for each cluster is used as the target sequence when predicting secondary102

structure. The target sequence is then kept along with the three-class predictions, and the alignment is discarded. In103

this way, each cluster produces a single training example, constituting a single sequence and its psuedo-labels.104

This approach effectively utilizes a homology-based predictor to provide accurate pseudo-labels for individual105

unlabelled sequences. PSIPRED generates high accuracy predictions, so it can be inferred that it’s providing highly106

plausible secondary structure labels. These labels are, therefore, able to provide valuable biological information107

to the S4PRED model during training. Because each sequence is sampled from a separate cluster, there is also108

the added benefit of diversity between individual sequences in the dataset. In this work we use the Uniclust30109

database47 to generate a training set, which, after a rigorous process of benchmarking and cross-validation, contains110

1.08M sequences with pseudo-labels. To accompany the pseudo-labelled sequences, we construct a labelled dataset111

from protein structures in the PDB9. Homology with the test set is evaluated by CATH48 classification. The final112

training and validation sets contain 10143 and 534 sequences respectively.113

To train the S4PRED model using both sets of data we adapt the ‘fine-tuning’ approach from recent work of114

Devlin and collaborators13. In the context of S4PRED, fine-tuning consists of first training on the large pseudo-115

labelled dataset, after which a small amount of additional training is performed with the labelled dataset. Fine-116

tuning in this manner provides an effective and regimented training scheme that incorporates both sets of sequences.117

The S4PRED model itself uses a variant of the powerful AWD-LSTM49 model, a recurrent neural network model118

that uses a variety of regularization techniques.119

3/13

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 20, 2020. ; https://doi.org/10.1101/2020.07.13.201459doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.13.201459
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 2. (A) Table showing the difference in final accuracy (Q3 score) between the improved S4PRED, the
AWD-GRU benchmark, and the current version of PSIPRED-Single on the CB513 test set. (B) Table of classification
metrics for the S4PRED model test set predictions. These are shown for each of the three predicted class; α-helix,
β-sheet, and loop (or coil). The support is normalized across classes to 100 for clarity - there are a total of 84484
residue predictions in the test set. (C) Confusion matrix for the three classes in the S4PRED model test set
predictions.

The prediction of secondary structure from a single sequence120

The final model achieves an average test set Q3 score of 75.3%. This improves the Q3 of PSIPRED-Single by almost121

5% (Figure 2A), currently being 70.6%. This is clearly seen in Figure 3A, which shows how the distribution of test122

set Q3 scores for S4PRED has improved as a whole from PSIPRED-Single scores. In some cases, this has led to a123

large improvement in prediction accuracy, an example of which is visualized in Figure 3B. Although this represents124

a significant improvement it is not necessarily a fair comparison as PSIPRED-Single uses a much simpler multi-layer125

perceptron model18, 22.126

The most comparable method to date is SPIDER3-Single26 which uses a bidirectional LSTM50 trained in a127

supervised manner. This method predicts secondary structure and other sequence information, like solvent128

accessibility and torsion angles, from a single sequence. SPIDER3-Single uses one model to make preliminary129

predictions, which are then concatenated with the original input sequence, to be used as input to a second model130

that produces the final predictions. It reports a Q3 score of 72.5%, however, this is on a non-standard test set based131

on a less stringent definition of homology3.132

To establish an equivalent and informative comparison we provide a second benchmark by training a similar133

supervised model to SPIDER3-Single which predicts only secondary structure in a standard supervised manner,134

without a secondary network. This uses the same network architecture as our SSL method but only trains on the135

labelled sequence dataset. This achieves a Q3 score of 71.6% on CB513. This is a similar result to that achieved136

in a recent work27, which reported a single-sequence Q3 score of 69.9% and 71.3% on a validation set with a137

perceptron model and a LSTM-based model respectively. Although the second benchmark used here does not138

utilize a secondary prediction network like SPIDER3-Single, it is < 1% less performant than SPIDER3-Single’s139

reported test set performance. Importantly, it provides a direct comparison to S4PRED by using the same model and140

test set. We use the name AWD-GRU, after the AWD-LSTM variant49 used herein, to refer to this benchmark model.141

Figure 3. (A) Histogram of Q3 scores on the CB513 test set showing the improved results of S4PRED over
PSIPRED-Single (PSIPRED-S). (B) Example of S4PRED and PSIPRED-Single secondary structure predictions
relative to the true structure for the C terminal domain of pyruvate oxidase and decarboxylase (PDB ID 1POW).
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Although they use the same architecture, S4PRED still exceeds the performance of the AWD-GRU benchmark by142

a difference in Q3 of almost 4%. Not only is this a large improvement for single-sequence prediction, it directly143

demonstrates the benefit of the SSL approach.144

To more precisely determine the benefit that fine-tuning contributes to this performance gain, we tested a model145

trained on only pseudo-labelled sequences. This achieves a test Q3 score of 74.4%. As is expected, this demonstrates146

that fine-tuning is a functional approach to combining both datasets that markedly improves prediction by ∼ 1%.147

Aside from the obvious benefit of learning from real labelled data, we speculate that part of the fine-tuning148

improvement derives from a softening of class decision boundaries. The model trained on only pseudo-labels has149

a prediction entropy of 0.325, averaged across classes, residues, and sequences. The final model shows a notably150

higher entropy of 0.548 suggesting that fine-tuning is possibly softening classification probabilities and improving151

predictions for cases that sit on those boundaries. One clear aspect of S4PRED that should be a focus of future152

improvement is β-strand prediction. Of the three classes it has the lowest F1 score by a reasonable margin, 0.66153

compared to 0.78 and 0.76 for loop and helix respectively (Figure 2B). This is likely due to a combination of being154

the least represented class in the training set and the most difficult class to predict.155

Data efficiency using the semi-supervised learning approach156

Another aspect we wished to investigate was the data efficiency of the SSL approach. We trained the AWD-GRU157

benchmark model on training sets of different sizes, randomly sampling from the 10143-sequence real-labelled158

training set. To a good degree, the test set accuracy linearly increases with the logarithm of the real-labelled training159

set size (R2 = 0.92), as can be seen in Figure 4. This trend suggests that the SSL approach simulates having trained on160

a real sequence dataset that is ∼x7.6 larger. Under the loose assumption that the ratio of PDB structures to labelled161

training set size stays the same, there would need to be greater than 1.2M structures in the PDB (as compared to the162

162816 entries available as of 04-2020) to achieve the same performance as S4PRED using only real data.163

Figure 4. Scatter plot comparing the logarithm of the number of data points compared to trained model accuracy
with real labelled sequences. A dashed linear trend line is included. The S4PRED model using real and
psuedo-labelled data (75.3%) is included as a single point for comparison.

We also looked to estimate the number of sequences that would be required in UniProt (Swiss-Prot and TrEMBL)164

and other metagenomic sequence resources51, 52 for a PASS-based model to achieve the current performance of165

the state-of-the-art homology-based PSIPRED. For each single-sequence method in Figure 1, published since the166

inception of CATH53, we find the number of CATH S35 sequence families available the year the method was167

published. This number servers as a proxy for the number of redundancy-reduced PDB chains that would have168

been available for generating a dataset. We perform exponential regression between the Q3 scores and the number of169
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CATH S35 sequence families. The S4PRED result is included however 1.08M is used for the number of families. The170

resulting regression suggests that 25B non-redundant PDBs or sequence clusters would be required for an S4PRED-171

like model to reach 84%. We then use the average UniClust30 (2016) sequence cluster depth as a multiplicative172

factor to estimate the number of raw sequences needed. This provides a soft estimate of a minimum of 160 Billion173

sequences needed for a method based on PASS, like S4PRED, to achieve similar results to current homology based174

models.175

Single-sequence prediction in context176

In this work we consider single-sequence prediction in the strictest sense. This is a model that, for a single example,177

provides predictions without using information derived from related sequences or evolutionary information. This178

is an important distinction because using even a small number of homologous sequences improves prediction by179

several percentage points33.180

The recently published SPOT-1D28 provides a clear example of this phenomenon. Hanson and collaborators28
181

show Q3 scores of several homology-based models when predicting with low diversity alignments. The criterion for182

this low diversity is having Ne f f < 2 (a measure of alignment diversity, as provided by HHblits54). This is reported183

as Ne f f = 1, however, all values are rounded down to the nearest integer. This is clearly not a single-sequence184

approach. It is also further evidenced in the reported Q3 scores. Of the methods reported, Porter 527, 55 achieves185

the highest Q3 with 78%, followed by SPOT-1D at 77%. Separate to these results, Porter 5 reports a validation set186

Q3 of 71.3% when trained on only single sequences without profiles27. Ignoring the further potential training set187

and test set overlap for the values reported in SPOT-1D, this difference in Q3 clearly demonstrates that using even188

low diversity alignments is enough to significantly improve predictive performance, over a purely single-sequence189

approach.190

Information from homologous sequences can also improve results by being present in the bias of a trained model.191

A subtle example of this is in the recent DeepSeqVec model11, which trained an unsupervised neural network to192

produce learned representations of individual sequences from UniRef5056. The unsupervised model is subsequently193

used to generate features which are used to train a second model that predicts secondary structure. This second194

model achieves a Q3 score of 76.9% on CB51311. Although this two model approach is providing secondary structure195

predictions for individual sequences, it is not a single-sequence method because the unsupervised model has access196

to implicit evolutionary information for both the training set and test set sequences. This is partly due to being197

improperly validated, a split was not performed between the training and test sets. With no split the model is198

able to learn relationships between test set and training set sequences. It is also due to the training objective of the199

underlying ELMo language model57. The model is able to learn relationships between homologous sequences in a200

shared latent space, especially given that residue representations are optimized by trying to predict what residue is201

likely to be found at each position in a given input sequence.202

Even if the model uses a small amount of evolutionary information, it still precludes it from being a single-203

sequence method. The predictions from such a model still benefit from evolutionary information. This not only204

highlights the difficulty in developing accurate methods that are strictly single-sequence, it also highlights how205

achieving a Q3 score of 75.3% with S4PRED represents a step up in performance for single-sequence methods.206

Discussion207

Secondary structure prediction from the typical homology-based perspective has improved year-on-year and208

published Q3 scores are beginning to rise above 85%. Looking at the history of approaches in the field, the general209

pattern of methods has remained largely the same; that is, it remains a standard supervised prediction task23. In210

this context, it is easy to assume that the steady rise in model performance seen over the past two decades has211

resulted from some combination of more powerful classifiers and larger databases. There is a strong argument that212

a significant majority of the improvements have come from the increase in data available. Model performance is213

generally a monotonically increasing function of the amount of data and the number of structures in the PDB has214

increased by an order of magnitude since the turn of the millennium9.215

It is non-trivial to disentangle the exact relationship between the amount of data available and model per-216

formance but the different versions of PSIPRED provide a valuable insight. From an architecture and training217

perspective, the current version22 (V4) remains mostly similar to the original first published model18, yet the current218

version is a state-of-the-art model under strict testing criteria22. The primary difference between versions is the219

much larger available pool of training examples. This suggests strongly that the primary bottleneck on performance220

has been data availability.221
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Looking to single-sequence prediction, it stands to reason that methods have improved relatively little over222

time. Data availability, or more generally the amount of information available to a classifier, appears to be a driving223

force in performance, and by their very nature single-sequence methods have much less available information. This224

is likely applicable across many orphan sequence modelling tasks, not just secondary structure prediction5, 6. In this225

work we developed and applied the PASS framework to directly tackle this issue of data availability. This led to226

the development of S4PRED which, in achieving a leap in single-sequence performance, stands as an exemplar227

to the effectiveness of the PASS approach. PASS, and S4PRED, leverages a semi-supervised approach to provide228

a neural network classifier with information from over a million sequences. Not only is this successful, it is also229

a conceptually simple approach. A homology based method (in this case PSIPRED) is used to generate accurate230

labels for unlabelled examples. The new example and label pairs are then combined with real-labelled data and231

used to train a single-sequence based predictor.232

S4PRED has achieved significant progress in improving single-sequence secondary structure prediction, but233

there is still much work to be done. There remains an 8-9% performance gap between S4PRED and current state-of-234

the-art homology-based methods23. Given the importance of data availability, an immediate question that arises is235

whether the best approach to closing the gap is to simply wait for larger sequence databases to be available in the236

near future. To an extent, this appears to be a feasible approach. The number of entries in UniProt grows every year1
237

and a massive amount of data is available from clustered metagenomic sequences in databases like the BFD58, 59.238

It is likely that increasing the training set every year will improve performance but to what extent is unknown239

and the computational cost will correspondingly increase. An increase in training set size will also be dictated by240

an increase in the number of new families in a database (a sequence cluster being a proxy for a family) and not241

the number of new sequences. Our estimations suggest that 160 Billion sequences would be required to match242

homology levels of performance with a PASS method. Given the speed at which sequence databases are growing1, 59
243

this is not unreasonable, but unlikely to be within reach in the near future. In short, there is no clear indication that244

waiting for larger databases will bring single-sequence performance to the level of homology-based prediction,245

although it will bring some improvement. Instead, a focus on methodological improvements stands to yield the246

best results.247

Looking forward, it is always difficult to speculate what specific methods will result in further improvements.248

Continuing from the perspective of secondary structure prediction, the field has, in recent years, focused on249

developing larger and more complex neural networks23. There is certainly a benefit to this approach. Prototyping250

tends to be quick so any improvements found can be shared with the scientific community quickly. For many novel251

architectures, code is often available and straightforward to adapt into pre-existing secondary structure pipelines252

due to the pervasive use of auto-differentiation packages like Pytorch60 and Tensorflow61. A concrete example of253

this approach would be to adapt multi-headed self-attention to secondary structure prediction and other single254

sequence prediction fields, having shown significant success in natural language processing13.255

Unfortunately, there is limited novelty in this overall approach and, most importantly, the results of applying256

the PASS framework suggest that there are only small gains to be had. Waiting for databases to grow in size, and257

for the development of more complex network architectures, is unlikely to be the answer. Instead, focusing on258

developing methods that provide pre-existing models with more prediction-relevant information will likely result259

in the most significant progress. Admittedly this is an easy concept to pose, and more difficult to execute, but PASS260

and S4PRED demonstrates that it is possible.261

The most obvious approach to this kind of development is to explore further techniques from semi-supervised262

learning. Methods like data augmentation, that have shown success with image data14, 15, would be ideal in getting263

the most out of the data that is available. Unfortunately, it is nontrivial to augment biological sequences even when264

the structure or function is known which makes data augmentation a difficult approach to pursue46. That being265

said, homologues of a given sequence in the training set can loosely be viewed as biologically valid augmentations266

of the original target sequence. From this perspective, including multiple pseudo-labelled sequences from each267

cluster as separate examples, instead of the current method which only includes a single target sequence from each268

cluster, could be viewed as a proxy for data augmentation. Another approach to improving results may be to train269

models like S4PRED to predict the class probabilities outputted by the label-providing homology model, instead of270

predicting the hard class assignments, in a manner similar to Knowledge Distillation62. The soft-label information271

may assist the classifier, although in classification tasks with a small number of classes this information may not272

contribute significantly. A more general method like MixUp63, that is application domain agnostic, might also273

improve classification by improving the classifiers overall generalizability. Suffice it to say, the semi-supervised274

approach of PASS brings with it a variety of potential ways to improve performance by directly providing more275

information to the classifier.276
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Given the unprecedented success of S4PRED, PASS provides a simple blueprint from which further methods277

can be developed for modelling orphan sequences. An obvious first step with protein sequences is looking to278

predict other residue level labels like solvent accessibility64 and torsion angle prediction26. This could be taken279

even further and be applied to the nefariously difficult task of protein contact prediction2. PASS could also be280

applied to other biological sequences, such as in the prediction of RNA annotations65. Extending PASS to other281

prediction tasks in the future will also likely be aided by recent efforts to consolidate databases of sequences with282

pre-calculated predictions of various attributes from a range of tools. One such example being the residue-level283

predictions provided in DescribePROT66. As more of the protein universe is discovered the need for methods284

that are independent of homology only grows. Methods like S4PRED will hopefully come to represent a growing285

response to this need, the PASS framework providing a path forward. With this in mind we provide S4PRED as an286

open source tool and as an option on the PSIPRED web service.287

Methods288

Labelled dataset construction289

The first stage in our construction of a labelled dataset is generating a non-redundant set of PDB chains using the290

PISCES server67 with a maximum identity between structures of 70% and a maximum resolution of 2.6Å. This291

produces a list of 30630 chains, all with a length of 40 residues or more. At the cost of introducing some noise but292

retaining more examples we do not remove any chains with unlabelled residues.293

From this list we then remove any chains that share homology with the test set. We use the standard test set for294

secondary structure prediction, CB513. Homology is assessed and qualified as having any overlapping CATH48
295

domains at the Superfamily level with any of the sequences in the test set3. This removes approximately 2⁄3 of the296

chains leaving a total of 10677 from which to generate training and validation sets.297

The remaining chains are clustered at 25% identity using MMseqs268. From the resulting 6369 clusters, a subset298

is randomly sampled such that the total sum of their sequences makes up ∼ 5% of the 10677 chains. This is to create299

a validation set that achieves a 95%/5% split between training and validation sets, as well as keeping the validation300

and test sets similarly sized. This leaves a final split of 10143/534/513 examples for the training, validation, and301

test sets respectively.302

Secondary structures are specified using DSSP69. For each residue in each sequence the eight states (H, I, G,303

E, B, S, T, -) are converted to the standard 3 classes (Q3) of strand for E & B, helix for H & G, and loop (coil) for304

the remainder. Protein sequences are represented as a sequence of amino acids, where each residue is represented305

by one of 21 integers; twenty for the canonical amino acids and one for ”X” corresponding to unknown and306

non-canonical amino acids. Each integer represents an index to an embedding that is learned during the training of307

the neural network models.308

Pseudo-labelled dataset generation309

To assemble a dataset of psuedo-labelled sequences we start with Uniclust30 (Januray 2020 release)47. This consists310

of UniProtKB1 sequences clustered to 30% identity, making up 23.8M clusters. Each cluster is then considered as a311

single potential example for the pseudo-labelled training set. Any cluster can be converted into a target sequence312

and alignment which can then be passed to PSIPRED to generate high accuracy predictions of secondary structure.313

These predictions are then one-hot encoded and treated as pseudo-labels with the target sequence providing a314

single example.315

Clusters are filtered from the initial 23.8M Uniclust30 set by removing clusters that are either too short or have316

too few sequence members. If a cluster has a representative sequence with a length of less than 20 residues or317

contains less than 10 non-redundant sequences in its alignment it is removed. Applying these restrictions leaves318

a much smaller set of 1.41M clusters. These are the candidate clusters for generating a training set from which319

homology with the validation and test sets is to be removed.320

Removal of test set homology from the pseudo-labelled dataset321

Models trained on labelled and pseudo-labelled data use the same CB51317 test set. This consistency provides a322

means of directly comparing S4PRED with models trained separately on only labelled data, namely, PSIPRED-Single323

and the AWD-GRU. The same real-labelled validation set is also used, ensuring that all validation sequences used324

in this work are structurally non-homologous with the test set.325

For the vast majority of clusters, solved structures are not available. This leaves sequence-based approaches to326

identify and eliminate clusters that share any homology with the test set. It is widely known that using a simple327
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percent identity (e.g. 30%) as a homology threshold between two sequences is inadequate and leads to data leakage3.328

As such we employ a rigorous and multifaceted approach to removing clusters that are homologous to the test set.329

The first step is performing HMM-HMM homology searching for each member of CB513 with HHblits54 using330

one iteration and an E-value of 10 against the remaining clusters. An accurate means of homology detection, using331

a high E-value also provides an aggressive sweep to capture any positive matches at the expense of a small number332

of false hits. One iteration was performed as this was broadly found to return more hits. For the validation set, the333

same procedure is followed, however the default E-value (1× 10−3) is used with two iterations. All clusters that are334

matches to the test and validation sets are then removed.335

The remaining clusters are copied and combined to create a single large sequence database which is processed336

with pFilt70 to mask regions of low amino acid complexity. The test set alignments produced by HHblits are337

used to construct HMMER71 HMMs which are then used to perform HMM-sequence homology searches against the338

sequence database using hmmsearch. The ‘–max’ flag is used to improve sensitivity and the default e-value is used.339

All sequences that are positive hits, along with their respective clusters, are removed from the remaining set.340

A secondary and overlapping procedure is also performed. Each member of the test set is mapped to one341

or more Pfam72 families by pre-existing annotations. These are found by a combination of SIFTS73 and manual342

searching. From the test set, 17 structures were not found to belong to any Pfam family. For each Pfam family343

linked to the remaining members of the test set, a list of UniProt sequence IDs is generated. This is extracted from344

the family’s current UniProt-based Pfam alignment (01-2020) and is used to remove clusters following the same345

procedure as positive hits from the HMM-sequence search.346

In total these methods remove approximately a quarter of the initial 1.41M clusters, leaving a final 1.08M clusters347

to construct a pseudo-labelled training set. While the fear of data leakage remains ever present, we believe that in348

the absence of structures this process constitutes a rigorous and exhaustive approach to homology removal.349

Generating pseudo-labels with PSIPRED350

A given cluster can provide a sequence with pseudo-labels by first taking its representative sequence as the target351

sequence and splitting off the remainder of the cluster alignment. This is treated as if it was the target sequence352

alignment. Both sequence and alignment are then processed using the standard PSIPRED procedure. The three-class353

secondary structure labels predicted by PSIPRED V422 are then kept along with the target sequence as a single354

example for the training set. The version of PSIPRED used to generate labels is trained on a set of sequences that are355

structurally non-homologous with the CB513 test set. This ensures that the pseudo-labels contain no information356

derived from the test set implicitly through PSIPRED. This procedure is repeated to generate a training set of 1.08M357

sequences each paired with a sequence of pseudo-labels.358

Model architecture359

We use a state-of-the-art recurrent neural network (RNN) from the language modelling domain as a classification360

model. More specifically we adapt the AWD-LSTM49 for secondary structure prediction. The first portion of361

our model takes a sequence of amino acids encoded as integers and replaces them with corresponding 128-d362

embeddings that are learned during training and are initialized from N (0,1). During training a 10% dropout is363

applied to the embeddings.364

The embeddings are fed into a bidirectional gated recurrent unit (GRU)74 model with 1024 hidden dimensions365

in each direction. Here the model differs from the AWD-LSTM which utilizes a long short term memory (LSTM)366

model with DropConnect75 applied to the hidden-to-hidden weight matrices. Our model does the same but utilizes367

a GRU which we refer to as an AWD-GRU. Unless specified, the weight dropping is set to 50% during training.368

This model utilizes three layers of AWD-GRUs with 10% dropout applied between each layer during training.369

The output of the final recurrent layer is a 2048-d vector at each time step. This is fed into a final linear layer with370

a log softmax operation to produce the 3-class probabilities at each residue position. These are then used to calculate371

a negative log likelihood loss using the corresponding one-hot encoded labels. Unlike the original AWD-LSTM we372

use another popular stochastic gradient descent (SGD) variant, Adam76, as an optimizer to minimize the loss and373

train model parameters.374

S4PRED training with pseudo-labelled data375

The first stage in training the S4PRED model is training on the 1.08M pseudo-labelled sequences. For optimization376

the Adam beta terms are set to β1,β2 = {0.9,0.999} with an initial learning rate of 1× 10−4 and a mini-batch size of377

256. We also perform gradient clipping with a maximum norm of 0.25. To utilize a batch size of greater than 1 all378

batches are padded on the fly to the length of the longest sequence in a given batch. The padding symbol has a379

corresponding embedding and the loss is masked at positions that are padded. Training occurs for up to 10 epochs380
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which typically takes between 48 to 72 hours in total. The performance on the validation set is tested every 100381

batches and it is used to perform early stopping.382

Fine-tuning with labelled data383

We adapt the methodology presented by Devlin and collaborators13 for S4PRED by taking the model trained on384

pseudo-labelled sequences and performing 1 epoch of training on the 10K labelled sequences. Unlike their method,385

however, we do not need an additional output layer, having already trained on the semi-supervised secondary386

structure prediction objective with the psuedo-labelled sequences. For fine-tuning, the batch size is lowered to 32387

and the weight drop is set to 0%. All other hyper-parameters are kept the same and the Adam optimizer is reset.388

The final model is a an ensemble of 5 models fine-tuned with different random seeds, all starting from the same389

model. Using an ensemble improves prediction by ∼ 0.1%.390

Performance benchmarking391

Two methods are used to benchmark the results of S4PRED. The first method is the original PSIPRED-Single. Its392

predictions are generated using the pipeline included with PSIPRED V4. PSIPRED-Single achieves a Q3 score of393

70.6% on CB513. The AWD-GRU model is the second model used for benchmarking. It is trained with the same394

model architecture and hyper-parameters as S4PRED when it is being trained on the psuedo-labelled set before395

fine-tuning. However, it only trains on the 10143-sequence set with real labels. This achieves a Q3 score of 71.6%396

also on CB513.397

The data efficiency of the S4PRED method was investigated to estimate the value of training with pseudo-398

labelled data. This was done by training five versions of the AWD-GRU model, each with a different random seed,399

on different sized subsets of the 10143 real labelled data. Models were trained with 100, 500, 1000, 2500, 5000, 7500,400

& 10143 examples (a total of 35 models). Each model is tested against CB513 and a linear regression model is fit401

between the logarithm of the number of points and model Q3 score (R2 = 0.92). This is visualized in Figure S4. By402

the linear model, a Q3 score of 75.3% would require 77K real labelled sequences in the dataset.403

Software implementation404

All analysis was performed using Python and all neural network models were built and trained using Pytorch60.405

During training, all models used mixed precision which was implemented using the NVIDIA Apex package with406

the -O2 flag. This was found to improve training speeds with a negligible effect on results. Individual models407

were trained on a single compute cluster node using an NVIDIA V100 32GB GPU. Upon publication, the S4PRED408

model and AWD-GRU model with their weights will be released as open source software on the PSIPRED GitHub409

repository (https://github.com/psipred/) along with documentation. It will also be provided as a part of410

the PSIPRED web service (http://bioinf.cs.ucl.ac.uk/psipred/).411

Acknowledgements412

We thank members of the group for valuable discussions and comments. This work was supported by the European413

Research Council Advanced Grant ‘ProCovar’ (project ID 695558) and by the Francis Crick Institute which receives414

its core funding from Cancer Research UK (FC001002), the UK Medical Research Council (FC001002), and the415

Wellcome Trust (FC001002).416

Author contributions417

L.M. and D.T.J. conceived and designed the study and reviewed the manuscript. L.M. carried out the computational418

work and drafted the manuscript.419

Competing interests420

The authors declare no competing interests.421

References422

1. UniProt-Consortium. Uniprot: a worldwide hub of protein knowledge. Nucleic acids research 47, D506–D515423

(2019).424

10/13

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 20, 2020. ; https://doi.org/10.1101/2020.07.13.201459doi: bioRxiv preprint 

https://github.com/psipred/
http://bioinf.cs.ucl.ac.uk/psipred/
https://doi.org/10.1101/2020.07.13.201459
http://creativecommons.org/licenses/by-nc-nd/4.0/


2. Kandathil, S. M., Greener, J. G. & Jones, D. T. Recent developments in deep learning applied to protein structure425

prediction. Proteins: Struct. Funct. Bioinforma. 87, 1179–1189 (2019).426

3. Jones, D. T. Setting the standards for machine learning in biology. Nat. Rev. Mol. Cell Biol. 20, 659–660 (2019).427

4. Senior, A. W. et al. Improved protein structure prediction using potentials from deep learning. Nature 577,428

706–710 (2020).429

5. Greener, J. G., Kandathil, S. M. & Jones, D. T. Deep learning extends de novo protein modelling coverage of430

genomes using iteratively predicted structural constraints. Nat. communications 10, 1–13 (2019).431

6. Perdigão, N. et al. Unexpected features of the dark proteome. Proc. Natl. Acad. Sci. 112, 15898–15903 (2015).432

7. Levitt, M. Nature of the protein universe. Proc. Natl. Acad. Sci. 106, 11079–11084 (2009).433

8. Blum, M. et al. The InterPro protein families and domains database: 20 years on. Nucleic Acids Res. (2020).434

9. Burley, S. K. et al. Rcsb protein data bank: biological macromolecular structures enabling research and education435

in fundamental biology, biomedicine, biotechnology and energy. Nucleic acids research 47, D464–D474 (2019).436

10. Alley, E. C., Khimulya, G., Biswas, S., AlQuraishi, M. & Church, G. M. Unified rational protein engineering437

with sequence-based deep representation learning. Nat. methods 16, 1315–1322 (2019).438

11. Heinzinger, M. et al. Modeling aspects of the language of life through transfer-learning protein sequences. BMC439

bioinformatics 20, 723 (2019).440

12. Dai, Z. et al. Transformer-xl: Attentive language models beyond a fixed-length context. arXiv preprint441

arXiv:1901.02860 (2019).442

13. Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for443

language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for444

Computational Linguistics, 4171–4186 (2019).445

14. Sohn, K. et al. Fixmatch: Simplifying semi-supervised learning with consistency and confidence. arXiv preprint446

arXiv:2001.07685 (2020).447

15. Berthelot, D. et al. Mixmatch: A holistic approach to semi-supervised learning. In Advances in Neural Information448

Processing Systems, 5049–5059 (2019).449

16. Lee, D.-H. Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks.450

In Workshop on challenges in representation learning, ICML, vol. 3 (2013).451

17. Cuff, J. A. & Barton, G. J. Evaluation and improvement of multiple sequence methods for protein secondary452

structure prediction. Proteins: Struct. Funct. Bioinforma. 34, 508–519 (1999).453

18. Jones, D. T. Protein secondary structure prediction based on position-specific scoring matrices. J. molecular454

biology 292, 195–202 (1999).455

19. Liu, P. et al. Insights into the assembly and activation of the microtubule nucleator γ-turc. Nature 578, 467–471456

(2020).457

20. Wagner, F. R. et al. Structure of swi/snf chromatin remodeller rsc bound to a nucleosome. Nature 579, 448–451458

(2020).459

21. Marcos, E. & Silva, D.-A. Essentials of de novo protein design: Methods and applications. Wiley Interdiscip. Rev.460

Comput. Mol. Sci. 8, e1374 (2018).461

22. Buchan, D. W. & Jones, D. T. The psipred protein analysis workbench: 20 years on. Nucleic acids research 47,462

W402–W407 (2019).463

23. Yang, Y. et al. Sixty-five years of the long march in protein secondary structure prediction: the final stretch?464

Briefings bioinformatics 19, 482–494 (2018).465

24. Altschul, S. F. et al. Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic466

acids research 25, 3389–3402 (1997).467

25. Bidargaddi, N. P., Chetty, M. & Kamruzzaman, J. Combining segmental semi-markov models with neural468

networks for protein secondary structure prediction. Neurocomputing 72, 3943–3950 (2009).469

26. Heffernan, R. et al. Single-sequence-based prediction of protein secondary structures and solvent accessibility470

by deep whole-sequence learning. J. computational chemistry 39, 2210–2216 (2018).471

11/13

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 20, 2020. ; https://doi.org/10.1101/2020.07.13.201459doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.13.201459
http://creativecommons.org/licenses/by-nc-nd/4.0/


27. Torrisi, M., Kaleel, M. & Pollastri, G. Deeper profiles and cascaded recurrent and convolutional neural networks472

for state-of-the-art protein secondary structure prediction. Sci. reports 9, 1–12 (2019).473

28. Hanson, J., Paliwal, K., Litfin, T., Yang, Y. & Zhou, Y. Improving prediction of protein secondary structure,474

backbone angles, solvent accessibility and contact numbers by using predicted contact maps and an ensemble475

of recurrent and residual convolutional neural networks. Bioinformatics 35, 2403–2410 (2019).476

29. Rost, B. Protein secondary structure prediction continues to rise. J. structural biology 134, 204–218 (2001).477

30. Asai, K., Hayamizu, S. & Handa, K. Prediction of protein secondary structure by the hidden markov model.478

Bioinformatics 9, 141–146 (1993).479

31. Frishman, D. & Argos, P. Incorporation of non-local interactions in protein secondary structure prediction from480

the amino acid sequence. Protein Eng. Des. Sel. 9, 133–142 (1996).481

32. Schmidler, S. C., Liu, J. S. & Brutlag, D. L. Bayesian segmentation of protein secondary structure. J. computational482

biology 7, 233–248 (2000).483

33. Aydin, Z., Altunbasak, Y. & Borodovsky, M. Protein secondary structure prediction for a single-sequence using484

hidden semi-markov models. BMC bioinformatics 7, 178 (2006).485

34. Rost, B., Sander, C. et al. Prediction of protein secondary structure at better than 70% accuracy. J. molecular486

biology 232, 584–599 (1993).487

35. Cuff, J. A., Clamp, M. E., Siddiqui, A. S., Finlay, M. & Barton, G. J. Jpred: a consensus secondary structure488

prediction server. Bioinforma. (Oxford, England) 14, 892–893 (1998).489

36. Meiler, J. & Baker, D. Coupled prediction of protein secondary and tertiary structure. Proc. Natl. Acad. Sci. 100,490

12105–12110 (2003).491

37. Cole, C., Barber, J. D. & Barton, G. J. The jpred 3 secondary structure prediction server. Nucleic acids research 36,492

W197–W201 (2008).493

38. Mirabello, C. & Pollastri, G. Porter, paleale 4.0: high-accuracy prediction of protein secondary structure and494

relative solvent accessibility. Bioinformatics 29, 2056–2058 (2013).495

39. Li, Z. & Yu, Y. Protein secondary structure prediction using cascaded convolutional and recurrent neural496

networks. arXiv preprint arXiv:1604.07176 (2016).497

40. Ovchinnikov, S. et al. Protein structure determination using metagenome sequence data. Science 355, 294–298498

(2017).499

41. Mokili, J. L., Rohwer, F. & Dutilh, B. E. Metagenomics and future perspectives in virus discovery. Curr. opinion500

virology 2, 63–77 (2012).501

42. Edwards, R. A. & Rohwer, F. Viral metagenomics. Nat. Rev. Microbiol. 3, 504–510 (2005).502

43. Riesselman, A. J., Ingraham, J. B. & Marks, D. S. Deep generative models of genetic variation capture the effects503

of mutations. Nat. methods 15, 816–822 (2018).504

44. Koga, N. et al. Principles for designing ideal protein structures. Nature 491, 222–227 (2012).505

45. Yang, K. K., Wu, Z. & Arnold, F. H. Machine-learning-guided directed evolution for protein engineering. Nat.506

methods 16, 687–694 (2019).507

46. Kandathil, S. M., Greener, J. G. & Jones, D. T. Prediction of interresidue contacts with deepmetapsicov in casp13.508

Proteins: Struct. Funct. Bioinforma. 87, 1092–1099 (2019).509

47. Mirdita, M. et al. Uniclust databases of clustered and deeply annotated protein sequences and alignments.510

Nucleic acids research 45, D170–D176 (2017).511

48. Sillitoe, I. et al. Cath: expanding the horizons of structure-based functional annotations for genome sequences.512

Nucleic acids research 47, D280–D284 (2019).513

49. Merity, S., Keskar, N. S. & Socher, R. Regularizing and optimizing LSTM language models. In 6th International514

Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track515

Proceedings (OpenReview.net, 2018).516

50. Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural computation 9, 1735–1780 (1997).517

51. Mitchell, A. L. et al. Mgnify: the microbiome analysis resource in 2020. Nucleic acids research 48, D570–D578518

(2020).519

12/13

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 20, 2020. ; https://doi.org/10.1101/2020.07.13.201459doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.13.201459
http://creativecommons.org/licenses/by-nc-nd/4.0/


52. Carradec, Q. et al. A global ocean atlas of eukaryotic genes. Nat. communications 9, 1–13 (2018).520

53. Orengo, C. A. et al. Cath–a hierarchic classification of protein domain structures. Structure 5, 1093–1109 (1997).521

54. Remmert, M., Biegert, A., Hauser, A. & Söding, J. Hhblits: lightning-fast iterative protein sequence searching by522

hmm-hmm alignment. Nat. methods 9, 173 (2012).523

55. Torrisi, M., Kaleel, M. & Pollastri, G. Porter 5: fast, state-of-the-art ab initio prediction of protein secondary524

structure in 3 and 8 classes. bioRxiv 289033 (2018).525

56. Suzek, B. E. et al. Uniref clusters: a comprehensive and scalable alternative for improving sequence similarity526

searches. Bioinformatics 31, 926–932 (2015).527

57. Peters, M. E. et al. Deep contextualized word representations. In Proceedings of NAACL-HLT, 2227–2237 (2018).528
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68. Steinegger, M. & Söding, J. Mmseqs2 enables sensitive protein sequence searching for the analysis of massive549

data sets. Nat. biotechnology 35, 1026–1028 (2017).550

69. Kabsch, W. & Sander, C. Dssp: definition of secondary structure of proteins given a set of 3d coordinates.551

Biopolymers 22, 2577–2637 (1983).552

70. Jones, D. T. & Swindells, M. B. Getting the most from psi–blast. Trends Biochem. Sci. 27, 161–164 (2002).553

71. Eddy, S. R. Accelerated profile hmm searches. PLoS computational biology 7 (2011).554

72. El-Gebali, S. et al. The pfam protein families database in 2019. Nucleic acids research 47, D427–D432 (2019).555

73. Dana, J. M. et al. Sifts: updated structure integration with function, taxonomy and sequences resource allows556

40-fold increase in coverage of structure-based annotations for proteins. Nucleic acids research 47, D482–D489557

(2019).558

74. Cho, K. et al. Learning phrase representations using rnn encoder–decoder for statistical machine translation. In559

Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 1724–1734 (2014).560

75. Wan, L., Zeiler, M., Zhang, S., LeCun, Y. & Fergus, R. Regularization of neural networks using dropconnect. In561

30th International Conference on Machine Learning, ICML 2013, 2095–2103 (International Machine Learning Society562

(IMLS), 2013).563

76. Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization. In Bengio, Y. & LeCun, Y. (eds.) 3rd564

International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference565

Track Proceedings (2015).566

13/13

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 20, 2020. ; https://doi.org/10.1101/2020.07.13.201459doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.13.201459
http://creativecommons.org/licenses/by-nc-nd/4.0/

	References

