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ABSTRACT

Numerous applications in diffusion MRI, from multi-compartment modeling to power-law analyses, involves computing the
orientationally-averaged diffusion-weighted signal. Most approaches implicitly assume, for a given b-value, that the gradient
sampling vectors are uniformly distributed on a sphere (or ‘shell’), computing the orientationally-averaged signal through simple
arithmetic averaging. One challenge with this approach is that not all acquisition schemes have gradient sampling vectors
distributed over perfect spheres (either by design, or due to gradient non-linearities). To ameliorate this challenge, alternative
averaging methods include: weighted signal averaging; spherical harmonic representation of the signal in each shell; and using
Mean Apparent Propagator MRI (MAP-MRI) to derive a three-dimensional signal representation and estimate its ‘isotropic
part’. This latter approach can be applied to all q-space sampling schemes, making it suitable for multi-shell acquisitions when
unwanted gradient non-linearities are present.
Here, these different methods are compared under different signal-to-noise (SNR) realizations. With sufficiently dense sampling
points (61points per shell), and isotropically-distributed sampling vectors, all methods give comparable results, (accuracy
of MAP-MRI-based estimates being slightly higher albeit with slightly elevated bias as b-value increases). As the SNR and
number of data points per shell are reduced, MAP-MRI-based approaches give pronounced improvements in accuracy over the
other methods.

Introduction
Diffusion MRI is a non-invasive technique that is sensitive to differences in tissue microstructure, which comprises a combination
of micro-environments with potentially different orientational characteristics. Inherent to MRI is averaging of the magnetization
across the voxel. However, some orientational features (macroscopic or ensemble anisotropy) typically survive such averaging,
making applications like fiber-orientation mapping feasible. As far as studies aiming to understand the underlying microstructure
are concerned, the presence of such macroscopic anisotropy may introduce complications in the interpretation of the signal. In
analogy with solid-state NMR applications1, considering the “powdered” structure of the specimen that features replicas of
each and every microscopic domain oriented along all possible directions could more clearly reveal the desired microstructural
properties of the medium2, 3.

To factor out the effect of macroscopic anisotropy in diffusion MRI, i.e., to estimate the signal for the “powdered” structure,
two approaches have been proposed: (i) taking the “isotropic component” of the signal3, 4; this is typically achieved by
representing the signal with a series of spherical harmonics and keeping the leading term; and (ii) numerical computation of the
orientational average of the diffusion-weighted signal profile5, 6. Due to the emerging interest7–16 in employing the so-called
“powder-averaged signal” for tissue characterization, we consider the problem of estimating this quantity from data acquired via
common single diffusion encoding (SDE) protocols.

The accuracy of the powder-averaged signal depends on both the set of gradient directions employed in the data acquisition
and the numerical method used to estimate the average. Regarding the former, different strategies have been proposed to
optimize the sampling strategy, the most well-known and widely-used of which is the electrostatic repulsion algorithm17. In
this approach, a uniform single-shell distribution of q-space sample points is found by minimizing the electrostatic energy of a
system containing antipodal charge pairs on the surface of a sphere. Situations under which such single-shell diffusion sampling
schemes are rotationally-invariant have been discussed previously18, 19. In some applications, the sample points should be
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optimally distributed not just on a single sphere, but across three-dimensional q-space20. Knutsson et al.21 proposed a novel
framework that extends the traditional electrostatic repulsion approach to generate optimized three-dimensional q-space sample
distributions, by enabling a user-specific definition of the three-dimensional space to be sampled and associated distance metric.

The second important factor in orientational signal averaging is the method used to compute the powder-average, which
is our focus in this study. Methods that perform brute-force estimation of the signal average as well as those that take the
“isotropic component” of the signal, (derived from signal representations), are compared.

Results
Effect of noise and number of samples
Figure 1 illustrates the results obtained from 61× 8 samples for both shelled and non-shelled point sets in the presence of
Gaussian noise. We note that in this sampling scheme21, we do not have the orientationally-averaged signal from the Lebedev
method because this weighted-averaging approach requires its own point sets and weights. Figure 1(a) shows the mean and
standard deviation of the estimated signal versus b-value using the MAP-MRI method22 with Nmax = 6 for five different noise
standard deviations, σg = 0.1414, 0.0707, 0.0283, 0.0071, 0.0014, and three different dispersions, κ = 1, 9, ∞. The mean and
standard deviation of the d1 and d2 measures are illustrated as, respectively, a dot and an error bar in Figure 1(b) for each
estimation method.

The error, quantified by d1, is small for all methods. Under noisy conditions, MAP-based methods outperform the shell-by-
shell estimates, and the regularization employed in MAPL method evidently yields a further reduction in d1. At very low noise
levels, for σg ≤ 0.0071, d1 is very small for all methods, though slightly elevated for MAP and MAPL methods with Nmax = 6.
The b-dependent bias is quantified through d2. The mean d2 values are generally better in shell-by-shell estimates. However,
the standard deviation of d2 is large in almost all the shell-based methods even for very low noise levels (σg = 0.0014), which
is likely a side-effect of treating shells independently in the averaging schemes. However, the standard deviation of d2 is
substantially reduced in MAP-based methods as the noise level decreases. As far as bias is concerned, MAP performs better
than MAPL in most cases.

Figure 2 shows the results of 344 (43×8) samples in the presence of Gaussian noise while Figure 3 illustrates the same for
the sampling schemes with 152 (19×8) samples in the presence of Gaussian noise. Comparing the results from 488 (61×8)
samples as shown in Figure 1, 344 (43×8) samples in Figure 2, and 152 (19×8) samples in Figure 3, the errors and biases
(and their spreads) increase as the number of samples is decreased as expected. In the case of 152 samples and at the lowest
level of noise (σg = 0.0014, Lebedev, Knutsson, SH (L = 4 and 6), MAPL for shelled and non-shelled samplings with Nmax = 6
lead to significant biases.

Figure 4 shows the results obtained from the 344 (43×8) sample scenario in the presence of Rician signal. Clearly, when
magnitude data is used and no bias correction scheme is employed, the noise will create a very significant bias (d2) in the signal
that needs to be corrected23. Doing so would also help one obtain a reduction in the error, d1, in the estimation of powder
average signal. Thus, we based our conclusions on the results obtained from simulated data assuming that the magnitude signal
is transformed into Gaussian prior to the estimation of the orientational averages24.

Effect of dispersion
In Figure 5, we assessed the effect of dispersion on the estimates. We used the set of 344 (43×8) points and estimated d1
and d2 measures for Knutsson, MAP and MAPL (N = 6 and 8). When κ is large, there is little dispersion while decreasing κ

increases the dispersion. For different κ values, the error (d1) and bias (d2) are about the same with slight improvement in d2 as
κ goes down.

Using MAP-MRI for interpolation
Figure 6 illustrates the results of MAP-based interpolation. We used both shelled (43× 8) and non-shelled 344 point sets.
To generate the ‘MAP, Knutsson, s8’ and ‘MAP, Knutsson, s43’, we utilized the shelled point sets. First, the signal was
orientationally-averaged using the Knutsson method25 at b = 1.5, 3, 4.5, . . . , 12ms/µm2, then the averaged signal was used
to estimate the MAP-MRI coefficients in equation (19), i.e., we used the orientationally-averaged signal using Knutsson’s
method as Ē to estimate κ(1+N/2)00 in equation (19). Estimated coefficients (κ(1+N/2)00) are utilized to reconstruct the signal
at b = 1.5, 3, 4.5, . . . , 12ms/µm2 (‘MAP, Knutsson, s8’) and b = 1.5, 1.75, 2, . . . , 12ms/µm2 (‘MAP, Knutsson, s43’). Note
that ‘s8’ and ‘s43’ refer to the shelled point sets with 8, and 43 b-values, respectively, and number ‘43’ in ‘s43’ is independent
from the number of gradient directions in 43×8 point set.

To generate ‘MAP, s8’ and ‘MAP, s43’ the shelled point set was used similar to the previous scenario, but with the
distinction that we do not average the signal; all points are utilized to generate the MAP-MRI coefficients in equation (17)
(κ jlm). Estimated coefficients (κ jlm) are utilized to reconstruct the signal at b = 1.5, 3, 4.5, . . . , 12ms/µm2 (‘MAP, s8’) and
b = 1.5, 1.75, 2, . . . , 12ms/µm2 (‘MAP, s43’). The same scheme is used to generate the results of ‘MAP, ns8’ and ‘MAP, ns43’
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for the non-shelled set of 344 samples. The Nmax used in all the experiments of this section (MAP-based interpolation) was
taken to be 6.

The mean and std of the d1 and d2 measures for different methods (‘MAP, Knutsson, s8’, ‘MAP, Knutsson, s43’, ‘MAP,
s8’, ‘MAP, s43’, ‘MAP, ns8’, and ‘MAP, ns43’) are illustrated in Figure 6. Note that when the MAP-MRI coefficients were
used to estimate the powder-averaged signal of b = 1.5, 3, 4.5, . . . , 12ms/µm2 the results were the same as those reported
in Figure 2. Using MAP-MRI for interpolation (b = 1.5, 1.75, 2, . . . , 12ms/µm2) provided similar d1 and d2 compared to
b = 1.5, 3, 4.5, . . . , 12ms/µm2.

Discussion
Our analyses demonstrate that both the q-space sampling scheme and the numerical method for powder-averaging affect the
estimated orientationally-averaged signal.

Our comparisons illustrated the relative performance of various methods subject to different noise levels and sampling
schemes. Although our simulations are limited in terms of the complexity of the signal, we believe the simulated scenario is
representative of the commonly encountered signal profiles. The analyses can be repeated in a manner similar to our approach
for investigations targeting specific features (e.g. power laws) in the signal.

Our description of the methods for averaging the signal on a single shell illustrated that methods based on taking the
‘isotropic component’ of the signal yield weighted-averages of the original signal samples. The corresponding weights are
given through equations (8)-(9) and (13). Among the methods that can be performed on a shell-by-shell basis, the Lebedev
quadrature26 and Knutsson’s approach27 both show improved accuracy in the powder-averaged signal when compared to more
simple arithmetic averaging approach, especially when there is a low number of point sets and the noise level is high.

The magnitude-valued MRI data is Rician distributed and our simulations show that without correcting for Rician noise, the
powder-averaged signal is far from the ground truth especially when signal-to-noise ratio (SNR) is low. The SH and trace(M)/3
approaches lead to similar results as arithmetic averaging, with the difference that the SH approach outperforms arithmetic
averaging when L = 4 or L = 6, especially for the scenario involving 19 directions.

We also investigated the bias introduced in the powder-average estimates, which can be relevant even in very high SNR
scenarios. Various works in the literature, fitting multi-compartment models to derive microstructural parameters, have relied
on information captured in the powder-averaged signal (e.g.16, 28). Employing an optimal q-space sampling scheme and proper
direction-averaging method could significantly reduce the bias in parameters estimated from these models.

As gradient strengths are pushed higher and higher29, 30 maintaining gradient linearity becomes more and more challenging31,
and truly multi-shell acquisitions become infeasible. In these situations, a representation of the diffusion MRI signal over
the three-dimensional gradient sampling space becomes helpful. MAP-MRI is particularly well-suited to this situation as it
provides a straightforward means of estimating the orientationally-averaged signal.

Here, we demonstrated that MAP-MRI-derived estimates can be used reliably, as they are more robust against noise
compared to the shell-by-shell estimates of the orientational-average. The MAPL technique, which introduces regularization in
lieu of constrained estimation, is preferred over the original MAP only when bias with b-values is not a concern. We note that
the very recent formulation32 of the MAP method with hard constraints on the positivity of the estimated propagator (MAP+)
could further improve the accuracy of the estimates.

Methods
In this Section, we review the details of six different approaches to estimating the powder-averaged diffusion-weighted MRI
signal.

Arithmetic averaging
The simplest technique for powder-averaging is to distribute the samples as uniformly as possible over a sphere, and then
compute the arithmetic mean of those measurements on that particular sphere6. In this scheme, the powder averaged signal for
a given b-value (S̄) is estimated through

S̄ =
1

ndir

ndir

∑
i=1

Si , (1)

where ndir is the number of gradient directions and Si is the signal along the ith gradient direction. However, perfectly
uniformly-distributed sets of directions are not readily attainable and therefore other methods have been proposed to overcome
this problem.
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Weighted averaging
In most diffusion-weighted sampling schemes, weighted averaging can be used to account for the non-uniformity of the gradient
directions. For each b-value, the powder averaged signal (S̄) is

S̄ =
∑

ndir
i=1 wi Si

∑
ndir
i=1 wi

(2)

where wi are the weights corresponding to the signal along the ith gradient direction. We considered four techniques that enable
the determination of an optimal set of weights, wi, for the estimation of the orientationally-averaged signal.

Quadratures on the sphere (Lebedev)
Lebedev quadrature evaluates integrals over the unit sphere, i.e.,

I =
∫ 2π

0

∫
π

0
f (θ ,φ) sinθ dθ dφ (3)

as an approximation

I ≈
N

∑
i=1

f (θi,φi)wi ≡ Q[ f ] (4)

where the points (θi, φi) and weights wi are estimated for different N using the algorithm in26. Q[f] is the quadrature of the
exact integral. Similar to the one-dimensional Gauss quadratures, the nodes, (θi, φi), and the weights can be determined
simultaneously. A constraint is imposed to integrate all spherical harmonics up to degree p. This leads to a system of nonlinear
equations, which can be solved to provide the optimal nodes and weights. This idea stems from the work by Sobolev33.

Lebedev built a set of quadratures and the set of non-linear equations are solved for degrees up to p = 13134–38, yielding
one of the most commonly-used quadratures for integration over the sphere.

In this study, we employ this technique by setting f (θ ,φ) to be the signal profile at a particular b-value. As this technique
requires the value of the function to be evaluated along specific directions, the set of gradient directions has to be chosen
accordingly, i.e., the technique cannot be readily employed with commonly-available diffusion MRI sampling protocols.

Representation of the single-shell signal in a series of spherical harmonics
Any square-integrable function, F(x̂), defined over the unit sphere, can be represented in a spherical harmonic basis through the
expansion

F(x̂) =
∞

∑
k=0

k

∑
m=−k

fkm Y m
k (x̂) , (5)

where k and m indicate the order of the spherical harmonics function denoted by Y m
k (x̂). The coefficients are given by

fkm =
∫

F(x̂)Y m
k (x̂)∗ dx̂ . (6)

If F(x̂) is rotationally-invariant, i.e., independent of x̂, all coefficients except f00 vanish.
Spherical harmonics can be used to represent the diffusion signal profile at a fixed b-value39 by terminating the series at a

finite value kmax = L. In matrix form, such a representation can be written as

s = Ya , (7)

where sndir×1 is the vector of diffusion-weighted signals, Yndir×ncoeff is the matrix of spherical harmonics for ncoeff = (L+1)(L+
2)/2 number of coefficients, and ancoeff×1 is the vector of coefficients, which can be estimated using

a = (YᵀY)−1Yᵀs . (8)

As mentioned earlier, an estimate of the powder-averaged signal is obtained by taking the signal’s “isotropic component” in
its irreducible representation3. When adopted to SDE acquisitions on a single shell, the orientationally-averaged signal is given
simply by the coefficient corresponding to the k = m = 0 term of the series, or more explicitly,

S̄ = a0Y 0
0 = a0/

√
4π , (9)

where we employ the convention that Y 0
0 = 1/

√
4π40.

Note that equations (8) and (9) suggest that the powder-average estimate using this scheme is also a weighted average of the
signal values, albeit without any constraint on the selection of gradient directions.
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Representation of the single-shell signal using Cartesian tensors
The diffusion-weighted signal profile at a fixed b-value can also be represented by the following equation:

S(û) = ûᵀMû , (10)

where û is the unit vector denoting the gradient direction and M is a 3× 3 symmetric positive definite matrix. In this
representation, the orientationally-averaged signal is given by

S̄ = Tr(M)/3 . (11)

Considering that M is symmetric, we can cast the problem in the matrix form

s = Um , (12)

where Undir×6 is the matrix whose each row is given in terms of the corresponding gradient direction [u2
x ,u

2
y ,u

2
z ,uxuy,uxuz,uyuz],

and m = [Mxx,Myy,Mzz,Mxy,Mxz,Myz]
ᵀ.

The powder-averaged signal (11) can thus be estimated via

S̄ = hᵀm = hᵀ(UᵀU)−1Uᵀs , (13)

where h = [1/3,1/3,1/3,0,0,0]ᵀ.
As discussed in the context of representing the apparent diffusivity profiles41, 42, from a conceptual point-of-view, the

representation (10) is equivalent to the representation of the signal in terms of a series of spherical harmonics terminated at
k = 2. However, we include it here as a separate scheme to assess potential numerical differences between the methods. We also
note that representations in terms of higher order Cartesian tensors equivalent to the series of spherical harmonics terminated at
higher orders can be formulated41, but excluded here for brevity.

Knutsson
Following from spherical harmonic representation of the signal, the rotational variance of a set of unit vectors ûi, with
i = 1 . . .ndir, can be analyzed using spherical harmonics in the following way25, 27. Consider a weighted sampling function of
the form

G(x̂) =
ndir

∑
i=1

wi δ (x̂− ûi) . (14)

The coefficients of this function in the spherical harmonic basis is given by

gkm =
ndir

∑
i=1

wi Y m
k (ûi)

∗ . (15)

For rotationally-invariant sampling, these coefficients would obey gkm ∝ δk0δm0. Let us denote by g0 the vector of coefficients
having non-zero value only when k = m = 0. An optimal vector of weights, w0, can be obtained using the expression25

w0 = argmin[(Bw−g0)
ᵀV(Bw−g0)] = (BᵀVB)−1(VB)ᵀg0 , (16)

where B is the matrix of the spherical harmonics basis sampled at the orientation ûi, and V is a diagonal matrix containing
the weights for each spherical harmonic25. V, which corresponds to W2

k in equation (4) in25, is used to set the importance of
obtaining the specified response for different spherical harmonic basis functions which relate to the expected signal content of
different spherical harmonics in the measurement. This depends on the tissue as well as on the b-value. We found that taking V
to be a diagonal matrix with diagonal elements given by (1+ k2/36)−1 provides adequate distribution of weights to respective
terms of the series for typical signal decay profiles within the brain parenchyma. The size of the matrices depended on the
number of directions. In the implementation, the maximum order k was taken to be 18, 14, and 10 for 61, 43, and 19 directions,
respectively.

We note that using this procedure, arithmetic averaging could be justified only for those sets of unit vectors that lead to
equal weights, wi. Such sets of unit vectors are not attainable for all but a few very special cases of ndir. Equation (16) and the
result of spherical harmonic representation are the same (with B = Yᵀ) if the weighting function V in equation (16) is unity for
degree 1 to L and zero for higher L.
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MAP-MRI
Above, we described several techniques with which the orientationally-averaged signal can be estimated from single-shell data
wherein the data points are collected by repeatedly applying gradients along different directions while keeping the b-value
fixed. In most applications involving the powder-averaged signal (S̄), one is interested in characterizing the dependence of
the signal on the b-value. This can be accomplished by acquiring data on multiple shells and repeatedly applying one of the
above methods on each shell. Alternatively, one can employ a representation of the signal on the entire three-dimensional
space sampled by the gradient vector and compute its “isotropic component” similar to what was done above for the spherical
harmonics representation.

MAP-MRI22 is a powerful representation, which was shown to not only reproduce the diffusion-weighted signal over
the three-dimensional space (see the result of ISBI challenge 2020 as an example,43, 44 but also provide accurate estimates
of scalar measures from datasets including heavily diffusion-weighted acquisitions45. One scalar index derived from such
sampling is the propagator anisotropy (PA) whose formulation involves the estimation of the isotropic component of the
propagator22, which can be adopted for estimating the orientationally-averaged signal as indicated before. This is accomplished
by using the formulation of MAP-MRI in spherical coordinates22, 46. In Cartesian coordinates, the formulation of MAP-MRI
follows, in a straightforward manner, from its one-dimensional version47 that features Hermite polynomials and allows for
anisotropic scaling of the basis functions. When expressed in spherical coordinates, the following equation is used for this
purpose (equation (58) in22):

S(q, q̂) =
Nmax

∑
N=0

∑
j,l

l

∑
m=−l

κ jlmΞ jlm(u0,q, q̂) , (17)

where j ≥ 1, l ≥ 0 and 2 j+ l = N +2, u0 is a scalar related to the width of the basis functions, and q and q̂ are the magnitude
and direction of the wavevector, which is proportional to the gradient vector. The basis function Ξ jlm(u0,q, q̂) is given by

Ξ jlm(u0,q, q̂) =
√

4πi−1(2π
2u2

0q2)l/2e−2π2u2
0q2

Ll+1/2
j−1 (4π

2u2
0q2)Y m

l (q̂) , (18)

where Lα
k (.) is the associated Laguerre polynomial and Y m

l (q̂) is the spherical harmonic.
The isotropic part of the diffusion-weighted signal is the powder-averaged signal, which is obtained by setting l = m = 0

and j = 1+N/2:

S̄ =
Nmax

∑
N=0

κ(1+N/2)00 Ξ(1+N/2)00(u0,q) . (19)

In this study, we employed two versions of the MAP-MRI technique: (i) its original formulation by Özarslan et al., in which the
positivity of the propagator is enforced over a large domain in displacement space22; and (ii) a later formulation called MAPL
introduced by Fick et al.48 in which a Laplacian regularization is employed instead of the constraints, similar to what was done
in the corresponding one-dimensional problem49.

Table 1 summarizes the different powder-averaging techniques used in this study.

Simulations
The noise-free diffusion-weighted signal at a b-value b when the gradients are applied along the unit vector û was generated
using the following equation:

S(b, û) =
∫

W (n̂)e−bûᵀ D(n̂) û dn̂ , (20)

where D(n̂) is an axisymmetric, prolate tensor oriented along n̂ with eigenvalues D|| = 1 µm2/ms, and D⊥ = 0.14 µm2/ms.
The orientation distribution function, W (n̂) is taken to be a Watson distribution function given by

W (n̂) = M(1/2,3/2/κ)−1eκ(µ̂·n̂)2
, (21)

where M is the confluent hypergeometric function, µ̂ is the mean direction, taken to be (0.4, 0.6,−0.693)ᵀ and κ is the
concentration parameter. When κ is small, for example, κ = 1 we have high orientation dispersion (i.e, we have a fat orientation
distribution function (ODF)) and when κ is large, for example, κ = 64, the orientation dispersion is small and the ODF is sharp.
In our simulation, we used κ = 1, 9, and ∞ (a signal without dispersion or Dirac delta ODF). Irrespective of the orientation
distribution function, the ground truth orientationally-averaged signal is given by12, 50

S̄gt(b) =
√

πe−bD⊥

2
erf(

√
b(D||−D⊥))√

b(D||−D⊥)
. (22)
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The multi-shell data were computed at the b-values b = 0, 1.5, 3, 4.5, 6, 7.5, 9, 10.5, and 12ms/µm2 and with ∆ = 43.1
and δ = 10.6ms. For the above parameters and with b = q2(∆−δ/3), we expect the following signal values:

Ē(b) = 1, 0.5640, 0.3541, 0.2386, 0.1682, 0.1221, 0.0903, 0.0678, 0.0514.
The noisy diffusion-weighted signal values are synthesised according to the following for Gaussian and Rician distributed

signals, respectively:

Sng = S̄gt +Nr(0,σg) (23)

Snr =
√
(S̄gt +Nr(0,σg))2 +Ni(0,σg)2 , (24)

where Nr(0,σg) and Ni(0,σg) are the normal distributed noise in, respectively, the real and imaginary images with a standard
deviation of σg. Here, we simulate the noisy signal with σg = 0.1414, 0.0707, 0.0283, 0.0071, and 0.0014.

Evaluation criteria
We utilized two measures d1 and d2 to quantify the fidelity of the orientationally-averaged signal. d1 shows the absolute error
between the estimated signal and the ground truth. For the correlation between the bias, ε j, and the b-values, the Pearson’s
correlation coefficient (d2) was used.

d1 =
1

24

8

∑
j=1

3

∑
k=1
|S̄est(b j,κk)− S̄gt(b j)| (25)

ε j =
1
3

3

∑
k=1

S̄est(b j,κk)− S̄gt(b j) (26)

d2 = Pearson’s correlation coefficient(b j,ε j) , (27)

where S̄est and S̄gt are, respectively, the estimated powder average signal and the ground truth values.

Point sets
Shelled point sets
The gradient directions were generated using Knutsson’s method to produce 61 gradient samples21 and Lebedev’s method26 to
produce sets with 43 and 19 directions. The signal values were estimated at 8 b-values along each direction. For each sampling
scheme, the same number of S(0) signal values were considered (i.e. 61 S(0) signal values for Knutsson’s method21 and 43 and
19 S(0) signal values for Lebedev’s method26).

Non-shelled point sets
The three-dimensional (non-shelled) gradient vector sets were generated using Knutsson’s method for 488, 344, and 152
gradient directions21 matching the total number of samples (61×8, 43×8, and 19×8) in the shelled point sets. For 488, 344,
and 152 sampling schemes 61, 43, and 19 S(0) signal values were considered.

Table 2 shows a summary of these point sets.

Experiments
We conducted three different experiments to investigate the effect of encoding scheme and powder-averaging technique on the
estimated orientationally-averaged signal.

Effect of noise and number of directions
For designing an experiment, one of the important factors is minimizing the total acquisition time (for in vivo applications).
However, at the same time, the set of measurements should provide sufficient information for robust model fitting. The
acquisition should therefore be optimized to provide maximum information per unit time. In this work, we compared three
different sets of sampling vectors, 61×8, 43×8, and 19×8, (shelled and non-shelled) with different noise levels to investigate
the effect of encoding scheme and noise on the estimated powder-averaged signal.
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Effect of dispersion
The powder-averaged signal should provide rotationally-invariant tissue measures. In addition to the sampling scheme
mentioned in the previous section the amount of actual orientational dispersion in the underlying structure will also affect the
accuracy of the orientionally-averaged signal estimates.

Using MAP-MRI for interpolating the orientationally-averaged signal
In recently published works that employ the orientationally-averaged signal10, 13, 16, 28, the acquisition is performed using
shell-based sampling schemes, and usually restricted by acquisition time. As a result, the number of shells is not much higher
than the number of parameters in the model, which could result in inaccurate parameter estimates. The ability of MAP-MRI to
estimate the signal values across the q-space can be used to address this challenge. To illustrate this, a set of coefficients is
estimated from the measurements that can be used to provide the signal values for intermediate b-values that are not sampled.
This can be especially useful when the orientationally-averaged signal is applied in multi-compartment models.

Table 2 summarizes different experiments conducted in this study.
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Estimation method
1- Shell-by-shell estimation 1- Arithmetic averaging6

2- Quadratures on the sphere (Lebedev)26

3- Representation of signal in spherical harmonic3

4- Representation of signal in Cartesian tensors
5- Knutsson25

2- Estimation from the entire 3D data 1- MAP-MRI22

2- MAP with Laplacian regularization48

Table 1. The summary of different powder-averaging techniques used in this study.

Point sets Sampling scheme Reference
shelled 488 (61×8) samples (Knutsson) 21

344 (43×8) samples (Lebedev) 26

152 (19×8) samples (Lebedev) 26

non-shelled 488 samples (Knutsson) 21

344 samples (Knutsson) 21

152 samples (Knutsson) 21

Experiments Sampling scheme
Effect of noise and number of samples 488 (61×8) samples21 with Gaussian noise Figure 1

344 (43×8)21, 26 samples with Gaussian noise Figure 2
152 (19×8)21, 26 samples with Gaussian noise Figure 3
344 (43×8)21, 26 samples with Rician noise Figure 4

Effect of dispersion 344 (43×8) samples21, 26 with Gaussian noise Figure 5
Using MAP-MRI for interpolation 344 (43×8) samples21, 26 with Gaussian noise Figure 6

Table 2. The summary of different vector sets and different experiments conducted in this study.
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Figure 1. The results from 488 samples for both shelled (61×8) and non-shelled point sets21 in the presence of Gaussian
noise. (a) the mean and std of the estimated signal versus b-value using MAP-MRI method with Nmax = 6 for five different
noise floors, σg, and three different dispersion values, κ . The thickness of the blue band is twice the standard deviation of the
signal estimates and its center is the mean. The dashed black line shows the ground truth and the red dots and bars show the
results of the SH (L = 6), spherical harmonic representation. (b) the mean and std of the d1 and d2 measures for different
methods. Arithmetic sum: simple arithmetic averaging; Lebedev: weighted averaging by26; Knutsson: weighted averaging
by27; SH: Spherical harmonic method for powder averaging by3 L = 2, 4, 6, shows the order in spherical harmonic
representation; trace(M)/3: powder average signal from equation (10); MAP: direction-averaged signal using MAP-MRI22 for
Nmax = 6 and 8; and MAPL: direction-averaged signal using MAP-MRI with Laplacian regularization48. The ‘s’ and ‘ns’
correspond to the shelled and non-shelled point sets, respectively. Different colors (blue, red, yellow, purple, green) show the
results in different noise levels (σg = 0.1414, 0.0707, 0.0283, 0.0071, 0.0014). 12/17
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Figure 2. The results of 344 samples for both shelled (43×8)26 and non-shelled21 point sets in the presence of Gaussian
noise. (a) the mean and std of the estimated signal versus b-value using MAP-MRI method with Nmax = 6 for five different
noise floors, σg, and three different dispersion values, κ . The thickness of the blue band is twice the standard deviation of the
signal estimates and its center is the mean. The dashed black line shows the ground truth and the red dots and bars show the
results of the SH (L = 6), spherical harmonic representation. (b) the mean and std of the d1 and d2 measures for different
methods. The ‘s’ and ‘ns’ correspond to the shelled and non-shelled point sets, respectively. Different colors (blue, red, yellow,
purple, green) show the results in different noise levels (σg = 0.1414, 0.0707, 0.0283, 0.0071, 0.0014).
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Figure 3. The results from 152 samples for both shelled (19×8)26 and non-shelled21 point sets in the presence of Gaussian
noise. (a) the mean and std of the estimated signal versus b-value using MAP-MRI method with Nmax = 6 for five different
noise floors, σg, and three different dispersion value, κ . The thickness of the blue band is twice the standard deviation of the
signal estimates and its center is the mean. The dashed black line shows the ground truth and the red dots and bars show the
results of the SH (L = 6), spherical harmonic representation. (b) the mean and std of the d1 and d2 measures for different
methods. The ‘s’ and ‘ns’ corresponds to the shelled and non-shelled point sets, respectively. Different colors (blue, red, yellow,
purple, green) show the results in different noise levels (σg = 0.1414, 0.0707, 0.0283, 0.0071, 0.0014).
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Figure 4. The results of 344 samples for both shelled (43×8)26 and non-shelled21 point sets for Rician signal. (a) the mean
and std of the estimated signal versus b-value using MAP-MRI method with Nmax = 6 for five different noise floors, σg, and
three different dispersion value, κ . The thickness of the blue band is twice the standard deviation of the signal estimates and its
center is the mean. The dashed black line shows the ground truth and the red dots and bars show the results of the SH (L = 6),
spherical harmonic representation. (b) the mean and std of the d1 and d2 measures for different methods. The ‘s’ and ‘ns’
correspond to the shelled and non-shelled point sets, respectively. Different colors (blue, red, yellow, purple, green) show the
results in different noise levels (σg = 0.1414, 0.0707, 0.0283, 0.0071, 0.0014).
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Figure 5. The estimated d1 and d2 for three different κ values, 344 (43×8) point sets in the presence of five different
Gaussian noise levels. Note that when κ = ∞ there is no dispersion; decreasing κ increases the dispersion. For κ = 1, the
amount of error, d1, and bias, d2 is smaller than κ = ∞ where there is no dispersion.
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Figure 6. The results of MAP-based interpolation of the orientationally-averaged data from Knutsson method on 43×8
shelled Lebedev26 and non-shelled point sets21. The mean and std of the d1 and d2 measures for different scenarios. To
generate the ‘MAP, Knutsson, s8’ and ‘MAP, Knutsson, s43’, we utilized the shelled point sets. First the signal is
orientationally-averaged using Knutsson method25 at b = 1.5, 3, 4.5, . . . , 12ms/µm2, then the averaged signal is used to
estimate the MAP-MRI coefficients in equation (19), i.e., we use the orientationally-averaged signal using Knutsson method as
Ē to estimate κ(1+N/2)00 in equation (19). Estimated coefficients (κ(1+N/2)00) are utilized to reconstruct the signal at
b = 1.5, 3, 4.5, . . . , 12ms/µm2 (‘MAP, Knutsson, s8’) and b = 1.5, 1.75, 2, . . . , 12ms/µm2 (‘MAP, Knutsson, s43’). To
generate ‘MAP, s8’ and ‘MAP, s43’ the shelled point set is used similar to the previous scenario but in this case we do not
average the signal, all points are utilized to generate the MAP-MRI coefficients in equation (17) (κ jlm). Estimated coefficients
(κ jlm) are utilized to reconstruct the signal at b = 1.5, 3, 4.5, . . . , 12ms/µm2 (‘MAP, s8’) and b = 1.5, 1.75, 2, . . . , 12ms/µm2

(‘MAP, s43’). Similar technique is used to generate the results of ‘MAP, ns8’ and ‘MAP, ns43’ for the non-shelled set of 344
directions. Note that when the MAP-MRI coefficients are used to estimate the powder average signal of
b = 1.5, 3, 4.5, . . . , 12ms/µm2 the results are the same as the ones reported in Figure 2. Using MAP-MRI for interpolation
(b = 1.5, 1.75, 2, . . . , 12ms/µm2) provides similar d1 and d2 compared to b = 1.5, 3, 4.5, . . . , 12ms/µm2. Note that the Nmax
used in all the experiments in this figure is equal to 6.
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