1	
2	Diel Investments in Phytoplankton Metabolite Production Influenced by
3	Associated Heterotrophic Bacteria
4	
5	
6	Mario Uchimiya ^{1,2} , William Schroer ¹ , Malin Olofsson ¹ ,
7	Arthur S. Edison ² , Mary Ann Moran ^{1,*}
8	
9	
10	¹ Department of Marine Sciences, University of Georgia, Athens, GA, 30602, US
11	² Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, US
12	
13	
14	Running Head: Phytoplankton Metabolite Production Influenced by Associated Bacteria
15	
16	[*] Corresponding Author: Mary Ann Moran, Department of Marine Sciences, University of Georgia, Athens,
17	GA 30602-3636, US, <u>mmoran@uga.edu</u> , 706-542-6481

18 Abstract

19	Organic carbon transfer between photoautotrophic and heterotrophic microbes in the surface
20	ocean mediated through metabolites dissolved in seawater is a central but poorly understood
21	process in the global carbon cycle. In a synthetic microbial community in which diatom extracellular
22	release of organic molecules sustained growth of a co-cultured bacterium, metabolite transfer was
23	assessed over two diel cycles based on per cell quantification of phytoplankton endometabolites
24	and bacterial transcripts. Of 31 phytoplankton endometabolites identified and classified into
25	temporal abundance patterns, eight could be matched to patterns of bacterial transcripts mediating
26	their uptake and catabolism. A model simulating the coupled endometabolite-transcription
27	relationships hypothesized that one category of outcomes required an increase in phytoplankton
28	metabolite synthesis in response to the presence of the bacterium. An experimental test of this
29	hypothesis confirmed higher endometabolome accumulation in the presence of bacteria for all five
30	compounds assigned to this category – leucine, glycerol-3-phosphate, glucose, and the organic
31	sulfur compounds dihydroxypropanesulfonate and dimethylsulfoniopropionate. Partitioning of
32	photosynthate into rapidly-cycling dissolved organic molecules at the expense of phytoplankton
33	biomass production has implications for carbon sequestration in the deep ocean. That heterotrophic
34	bacteria can impact this partitioning suggests a previously unrecognized influence on the ocean's
35	carbon reservoirs.

36

37 Significance Statement

Microbes living in the surface ocean are critical players in the global carbon cycle, carrying out a particularly key role in the flux of carbon between the ocean and atmosphere. The release of metabolites by marine phytoplankton and their uptake by heterotrophic bacteria is one of the major

- 41 routes of microbial carbon turnover. Yet the identity of these metabolites, their concentration in
- 42 seawater, and the factors that affect their synthesis and release are poorly known. Here we provide
- 43 experimental evidence that marine heterotrophic bacteria can affect phytoplankton production and
- 44 extracellular release of metabolites. This microbial interaction has relevance for the partitioning of
- 45 photosynthate between dissolved and particulate carbon reservoirs in the ocean, an important
- 46 factor in oceanic carbon sequestration.

47 Introduction

48 Photoautotroph-heterotroph metabolite transfer in the surface ocean is a key process in global 49 carbon cycling through which up to half of fixed carbon is transferred to bacteria in the form of 50 labile dissolved compounds¹. Phytoplankton synthesis and release of metabolites exhibit diel cycles, synchronized with the availability of light energy²⁻⁴. The observation of similar diel activity cycles in 51 co-occurring heterotrophic bacteria suggests a tight temporal linkage controlled by the timing of 52 phytoplankton extracellular release^{5,6}. Though the importance of the trophic link between marine 53 phytoplankton and bacteria in the global carbon cycle has long been recognized⁷⁻⁹, identifying the 54 55 metabolites responsible and measuring their flux is challenging. These compounds have short 56 turnover times in seawater due to rapid uptake by bacteria, have shared physical properties with salt, and are maintained at low, typically nmol L^{-1} to pmol L^{-1} , concentrations^{10,11}. 57 58 Intracellular phytoplankton metabolite pools (endometabolites) are the presumptive substrates 59 for heterotrophic bacteria, yet how faithfully phytoplankton internal concentrations predict exometabolite availability depends on the mechanism of release, of which several have been 60 recognized^{12,13}. In the simplest mechanism, differences in metabolite concentration between 61 phytoplankton intracellular pools and ambient seawater can drive diffusion¹⁴ (i.e., passive diffusion 62 63 mechanism), in which case substrate supply to heterotrophic bacteria is largely controlled by 64 endometabolite concentrations. Alternatively, active excretion of metabolites to maintain cellular balance can occur by overflow pathways¹⁵, for example to manage redox state or products of 65 66 photorespiration (i.e., physiological balance mechanism). Finally, metabolites may be synthesized and excreted in response to associated microbes, for example to sustain mutualisms or mount 67 defenses^{16,17} (i.e., interaction response mechanism). 68

69	Here we determined the correspondence between phytoplankton intracellular pools and
70	heterotrophic bacterial substrate availability by examining diel patterns of endometabolomes and
71	transcriptomes. A synthetic community was established in which marine diatom Thalassiosira
72	pseudonana CCMP1335 ¹⁸ was the only source of substrates to bacterium Ruegeria pomeroyi DSS-3 ¹⁹ .
73	As diatoms contribute up to 40% of primary production in the surface ocean ²⁰ and <i>R. pomeroyi</i>
74	belongs to a taxon that dominates diatom bloom communities ^{21,22} , this simple community
75	represents a key phytoplankton-bacteria link in the surface ocean. Over two day-night cycles, we
76	contemporaneously assayed phytoplankton endometabolite pools by nuclear magnetic resonance
77	(NMR) spectroscopy and bacterial metabolite consumption using transcriptome proxies and
78	assessed links between the two. Transcript abundance was analyzed as the number of mRNA
79	molecules per bacterial cell, enabled by the use of internal mRNA standards; this approach yields
80	the absolute number of transcripts harbored by a cell for a given gene, matching absolute
81	quantitation in the metabolite data and eliminating ambiguities inherent in proportional expression
82	data ^{23,24} . The quantitative chemical-biological analytical framework applied to this synthetic
83	community enabled us to assess mechanisms underlying temporal links between microbial
84	autotrophs and heterotroph in the production and consumption of labile metabolites.
85	

86 **Results and Discussion**

T. pseudonana cultures were grown axenically under naturally oscillating light intensity during a
16 h:8 h light:dark cycle, with maximum at noon. After 6 d, *R. pomeroyi* was inoculated into the
cultures, and a 2-day pre-incubation followed to allow the bacteria to assimilate labile metabolites
that accumulated during the axenic phase. Beginning on day 8, samples were collected every 6 h for
the next 48 h at timepoints corresponding to midnight, mid-morning, noon, and mid-afternoon.

92 *Diatom metabolome composition* – NMR characterization of the diatom endometabolome

93 during the 48 h sampling window revealed 282 major peaks absent in the blank spectrum.

Annotation by comparison to metabolomic databases and chemical standards suggested by previous
studies^{25,26} resulted in 31 compounds (156 peaks) identified with high confidence (Table 1; see Table
S1 and Fig. S1 for detailed annotation and confidence level information). The number of diatom cells
increased ~2-fold over the sampling window, from 0.87 to 1.9 × 10⁵ cells mL⁻¹ (Fig. 1a); metabolite
data were normalized to cell number at the time of sampling.

99 To group metabolite peaks that behaved similarly over the diel cycles, cell-normalized absolute abundance data were clustered by variance-sensitive clustering²⁷ which identified four patterns (Fig. 100 101 1b and 1c; Table 1). Group M-1 consisted of metabolites for which monotonic increases in intensity 102 dominated the 48 h sampling window. Twelve compounds annotated with high confidence from this 103 cluster included amino acids (asparagine, glycine, isoleucine, leucine, and lysine), amino acid 104 derivatives (glycine betaine and homarine), an amino alcohol (ethanolamine), a choline derivative 105 (phosphorylcholine), a glycerol derivative (glycerol-3-phosphate), and the sulfur-containing 106 compounds dihydroxypropanesulfonate (DHPS) and dimethylsulfoniopropionate (DMSP) (Table 1, 107 Fig. S2). Metabolite group M-2 was characterized by peaks for which decreases in concentrations 108 over time was the dominant pattern, and included two organic acids (3-hydroxybutyrate, acetate) 109 and one unidentified organic acid. The two other metabolite clusters exhibited diel concentration 110 patterns that peaked in the light and declined in the dark (Table 1, Fig. S2). Group M-3 peaks 111 reached their maximum intensities at mid-afternoon (RAIN, p < 0.001) and contained high-112 confidence annotations of the nucleoside uridine and the carbohydrates glucose and β -1,3-glucan, the latter a subunit of the major diatom polysaccharide laminarin²⁸. Group M-4 peaks exhibited diel 113 patterns with maximum intensities at mid-morning or noon (RAIN, $p \le 0.01$) and included high 114 115 confidence annotations for the amino acids aspartate, glutamine, and proline. Thus four distinct

temporal patterns of endometabolite concentrations were observed for *T. pseudonana* cells co-

117 growing with a heterotrophic bacterium under a light regime mimicking that of the surface ocean

118 (Fig. 1b).

119 Bacterial transcription patterns – We next examined concurrent bacterial transcript inventories 120 indicative of metabolite consumption, normalized to cell counts at the time of sampling (Fig. 1a). The total number of transcripts cell⁻¹ varied significantly over the diel cycle (ANOVA; n = 26, p < 0.01), 121 with ~ 2.5 -fold more mRNAs in the mid-morning and noon cells (95 ± 49 and 114 ± 53 mRNAs cell⁻¹) 122 relative to mid-afternoon and night (42 \pm 11 and 58 \pm 25 mRNAs cell⁻¹). Correspondingly, the 123 124 majority of genes had higher transcripts per cell at mid-morning and noon relative to mid-afternoon 125 and night (Fig. S3). This transcript inventory is low compared to exponentially growing Escherichia *coli* (1.350 mRNAs cell⁻¹; ref²⁹) but comparable to previous measures for marine bacteria in ocean 126 environments²⁴. 127

128 To identify genes that behaved similarly over time, the per cell transcript inventories for each of 129 the 4,278 protein-encoding genes in the *R. pomeroyi* genome were clustered by variance-sensitive 130 clustering (Fig. 1b and c). Among the genes encoding substrate transporters, the majority (87%) 131 were classified into Group G-1 (3,294 total genes, 539 transporter genes), for which the 132 transcription pattern was a diel cycle with a maximum value at noon (Fig. 2). G-1 transporters 133 showing the largest diel shifts in expression encoded the uptake of sugars (e.g., ribose), amino acid 134 derivatives (ectoine and 5-hydroxyectoine), amines (trimethylamine, trimethylamine-N-oxide, and 135 spermidine), an organic acid (glycolate), a purine (xanthine), phosphonates, and organic sulfur 136 compounds (DHPS, isethionate, cysteate, *N*-acetyltaurine, choline-O-sulfate, and DMSP); for these 137 compounds, bacteria expressed 13- to 58-fold more transcripts per cell at noon relative to night 138 (mean ratio: 33.5 ± 11.7 , n = 50) (Fig. 2). Transporters with less extreme diel swings in expression but 139 still biased toward noon encoded uptake of taurine, glucose, and *sn*-glycerol-3-phosphate, with

140	noon-night expression ratios an order of magnitude lower (mean ratio: 3.3 ± 1.3 , $n = 11$). For these,
141	the dampened diel expression dynamics were due to high night transcript inventories rather than
142	low noon inventories (Fig. 2), suggesting their targets were among the more available substrates at
143	night. Group G-2, for which the temporal transcription pattern was similar to G-1 but with higher
144	values at the first night and mid-morning time points, contained 11% of transporter genes (756 total
145	genes, 68 transporter genes) (Fig. 1c). Group G-3, for which diel patterns were not dominant but,
146	similar to G-2, the first night and mid-morning values were high (Fig. 1c), contained 2% of
147	transporter genes (271 total genes, 10 transporter genes). Putrescine, glycine betaine/proline, and
148	choline transporter proteins were classified in G-2 or G-3. Higher transcript inventories at initial time
149	points could reflect incomplete bacterial drawdown of an accumulated metabolite during the pre-
150	incubation.
130	
150	Bacterial transporter expression was also calculated as a percent of the total transcriptome (Fig.
151	Bacterial transporter expression was also calculated as a percent of the total transcriptome (Fig.
151 152	Bacterial transporter expression was also calculated as a percent of the total transcriptome (Fig. S4), the prevailing analysis approach for RNAseq data ³⁰ when internal standards are not available.
151 152 153	Bacterial transporter expression was also calculated as a percent of the total transcriptome (Fig. S4), the prevailing analysis approach for RNAseq data ³⁰ when internal standards are not available. Relative investment calculations categorized 51% of transporter genes as significantly enriched in
151 152 153 154	Bacterial transporter expression was also calculated as a percent of the total transcriptome (Fig. S4), the prevailing analysis approach for RNAseq data ³⁰ when internal standards are not available. Relative investment calculations categorized 51% of transporter genes as significantly enriched in the noon transcriptome relative to night, compared to 81% significantly higher per cell transcript
151 152 153 154 155	Bacterial transporter expression was also calculated as a percent of the total transcriptome (Fig. S4), the prevailing analysis approach for RNAseq data ³⁰ when internal standards are not available. Relative investment calculations categorized 51% of transporter genes as significantly enriched in the noon transcriptome relative to night, compared to 81% significantly higher per cell transcript inventories at noon relative to night for the internal standard-based approach (Fig. S4). These
151 152 153 154 155 156	Bacterial transporter expression was also calculated as a percent of the total transcriptome (Fig. S4), the prevailing analysis approach for RNAseq data ³⁰ when internal standards are not available. Relative investment calculations categorized 51% of transporter genes as significantly enriched in the noon transcriptome relative to night, compared to 81% significantly higher per cell transcript inventories at noon relative to night for the internal standard-based approach (Fig. S4). These analyses emphasize, on the one hand, the bacterium's investment in expression of a transporter

fold fewer transcripts for substrate acquisition in the mid-afternoon compared to mid-morning (Fig.
2), despite the fact that illumination was identical. Indeed, >75% of the bacterium's transporter

162 genes had transcript inventories that were statistically indistinguishable between mid-afternoon and

163 night (Fig. S3). Diel oscillations in the relationship between carbon fixation rate and irradiance have

164	been broadly documented for marine phytoplankton in laboratory and field studies, characterized
165	by pre-noon maxima in photosynthesis rates ^{31,32} . Thus the rapid decrease in expression of most
166	bacterial transporters by mid-afternoon suggests that periodicity in carbon fixation-irradiance
167	relationships are manifested in phytoplankton extracellular release as well. One feature of diel
168	photosynthesis oscillation, the E_k -dependent variability in photosynthesis parameters, is
169	hypothesized to result from a metabolic shift by phytoplankton from pre-noon synthesis of amino
170	acid and lipids to post-noon synthesis of storage carbohydrates and nucleic acids ^{33,34} . The <i>T</i> .
171	pseudonana endometabolome concentrations were fully consistent with this hypothesis; high
172	confidence metabolites assigned to group M-4 (maximum concentrations at mid-morning or noon)
173	are proline, aspartate, and glutamine, and to group M-3 (maximum concentrations at mid-
174	afternoon) are glucose, eta (1,3)-glucan storage molecules, and uridine (Fig. S2 and S5). Previously
175	observed offsets in diel timing of maximum transcription by distinct surface ocean bacterial taxa 5
176	could thus reflect changes in the composition of phytoplankton extracellular release.
176 177	could thus reflect changes in the composition of phytoplankton extracellular release. Control for direct effects of light – Although no light-sensing proteins have been definitively
177	Control for direct effects of light – Although no light-sensing proteins have been definitively
177 178	<i>Control for direct effects of light</i> – Although no light-sensing proteins have been definitively identified in the <i>R. pomeroyi</i> genome, we assessed whether light could be directly responsible for
177 178 179	<i>Control for direct effects of light</i> – Although no light-sensing proteins have been definitively identified in the <i>R. pomeroyi</i> genome, we assessed whether light could be directly responsible for changes in gene expression. The bacterium was inoculated into spent medium from axenic <i>T.</i>
177 178 179 180	<i>Control for direct effects of light</i> – Although no light-sensing proteins have been definitively identified in the <i>R. pomeroyi</i> genome, we assessed whether light could be directly responsible for changes in gene expression. The bacterium was inoculated into spent medium from axenic <i>T. pseudonana</i> and exposed in triplicate to one of three light levels matching co-culture irradiance at
177 178 179 180 181	<i>Control for direct effects of light</i> – Although no light-sensing proteins have been definitively identified in the <i>R. pomeroyi</i> genome, we assessed whether light could be directly responsible for changes in gene expression. The bacterium was inoculated into spent medium from axenic <i>T. pseudonana</i> and exposed in triplicate to one of three light levels matching co-culture irradiance at noon, mid-morning/mid-afternoon, and night for 4 h. Only 61 genes in the bacterial culture (1.4% of
177 178 179 180 181 182	<i>Control for direct effects of light</i> – Although no light-sensing proteins have been definitively identified in the <i>R. pomeroyi</i> genome, we assessed whether light could be directly responsible for changes in gene expression. The bacterium was inoculated into spent medium from axenic <i>T. pseudonana</i> and exposed in triplicate to one of three light levels matching co-culture irradiance at noon, mid-morning/mid-afternoon, and night for 4 h. Only 61 genes in the bacterial culture (1.4% of the <i>R. pomeroyi</i> genome) were significantly enriched by one or both light levels (Fig. S6), indicating
177 178 179 180 181 182 183	<i>Control for direct effects of light</i> – Although no light-sensing proteins have been definitively identified in the <i>R. pomeroyi</i> genome, we assessed whether light could be directly responsible for changes in gene expression. The bacterium was inoculated into spent medium from axenic <i>T. pseudonana</i> and exposed in triplicate to one of three light levels matching co-culture irradiance at noon, mid-morning/mid-afternoon, and night for 4 h. Only 61 genes in the bacterial culture (1.4% of the <i>R. pomeroyi</i> genome) were significantly enriched by one or both light levels (Fig. S6), indicating that diel differential expression in the co-cultures was primarily mediated indirectly through
177 178 179 180 181 182 183 184	<i>Control for direct effects of light</i> – Although no light-sensing proteins have been definitively identified in the <i>R. pomeroyi</i> genome, we assessed whether light could be directly responsible for changes in gene expression. The bacterium was inoculated into spent medium from axenic <i>T. pseudonana</i> and exposed in triplicate to one of three light levels matching co-culture irradiance at noon, mid-morning/mid-afternoon, and night for 4 h. Only 61 genes in the bacterial culture (1.4% of the <i>R. pomeroyi</i> genome) were significantly enriched by one or both light levels (Fig. S6), indicating that diel differential expression in the co-cultures was primarily mediated indirectly through phytoplankton activities. One group of 10 light-enriched genes function in protection against

were likely under the control of the similarly enriched *phoB* regulatory protein³⁸⁻⁴⁰. Phosphorus
 acquisition transcript enrichment was surprising, since phosphorus availability was identical at all
 light levels, and phosphate concentrations remain non-limiting for many weeks in this synthetic
 culture system (>10 µmol L⁻¹)²⁶. This raises the possibility of light-dependent stimulation of
 phosphorus acquisition by bacteria that compete with phytoplankton for nutrients⁴¹, consistent with
 temporal partitioning of nutrient uptake observed in ocean data⁴², and potentially triggered by
 seawater ROS concentrations.

195 Coincidence of diatom metabolite accumulation and bacterial transcription – Eight metabolites 196 that were represented in the diatom endometabolome dataset had genes recognized to mediate 197 their uptake or catabolism in the bacterial transcriptome dataset (Table 2). For four of these (leucine, 198 glycerol-3-phosphate, DHPS, and DMSP), an increasing endometabolome concentration was paired 199 with a diel gene expression pattern (Figs. 3a, S8). One (proline) exhibited a noon peak in both 200 endometabolome concentration and gene expression; two (glucose and uridine) exhibited mid-201 afternoon peaks in endometabolome concentration that lagged noon peaks in gene expression by 6 202 h; and one (acetate) exhibited a decreasing endometabolome concentration paired with diel gene 203 expression (Fig. 3a).

204 We asked whether the observed paired data patterns could occur under a null model of 205 changing phytoplankton exometabolite release following bacterial inoculation; that is, with no 206 mechanism for increased phytoplankton excretion in response to neighboring microbes. A 207 simulation model was used to compute phytoplankton exometabolite release using functions 208 representing two of the proposed mechanisms of extracellular release, passive diffusion and 209 physiological balance, but not the interaction response mechanism (Fig. 3d). To simulate 210 transcription, the model assumed that *R. pomeroyi* transporter systems are regulated by the availability of their substrate, which has been supported in previous studies⁴³⁻⁴⁷. Thus bacterial 211

212	transcript inventories were taken as the simulated exometabolite uptake rate, according to
213	Michaelis-Menten kinetics. The model successfully recapitulated three of the four experimental
214	patterns of paired metabolome concentration and transporter expression data (Fig. 3b left; Table
215	S3). The pattern that could not be generated with the base model was that of increasing
216	endometabolome concentrations (M-1) paired with diel gene expression (G-1), which was observed
217	for leucine, glycerol-3-phosphate, DHPS, and DMSP (Fig. 3b left) (Pearson's $r = -0.41$ to -0.10).
218	However, addition of a phytoplankton interaction response mechanism that increased
219	endometabolite production rate upon bacterial inoculation enabled the model output to mimic the
220	M-1, G-1 pattern (Fig. 3b right). We noticed that output for glucose (M-3, G-1) insufficiently
221	captured the temporal trend of endometabolome concentration (Fig. 3b left; Table S3), and further
222	analysis identified a significant linear increase in glucose concentrations ($p \leq 0.001$) embedded
223	within a significant diel pattern (RAIN, $p \le 0.01$). Implementation of a phytoplankton interaction
225	
224	response also improved simulation of the glucose data (Fig. 3b right).
	response also improved simulation of the glucose data (Fig. 3b right). The simulation modeling generated a hypothesis that diatoms accumulate higher concentrations
224	
224 225	The simulation modeling generated a hypothesis that diatoms accumulate higher concentrations
224 225 226	The simulation modeling generated a hypothesis that diatoms accumulate higher concentrations of certain endometabolites in the presence of heterotrophic bacteria. This was tested using an
224 225 226 227	The simulation modeling generated a hypothesis that diatoms accumulate higher concentrations of certain endometabolites in the presence of heterotrophic bacteria. This was tested using an available independent dataset in which <i>T. pseudonana</i> was grown in co-culture with bacteria (<i>R</i> .
224 225 226 227 228	The simulation modeling generated a hypothesis that diatoms accumulate higher concentrations of certain endometabolites in the presence of heterotrophic bacteria. This was tested using an available independent dataset in which <i>T. pseudonana</i> was grown in co-culture with bacteria (<i>R. pomeroyi</i> and two other heterotrophic bacteria) for 15 d, after which endometabolites were
224 225 226 227 228 229	The simulation modeling generated a hypothesis that diatoms accumulate higher concentrations of certain endometabolites in the presence of heterotrophic bacteria. This was tested using an available independent dataset in which <i>T. pseudonana</i> was grown in co-culture with bacteria (<i>R. pomeroyi</i> and two other heterotrophic bacteria) for 15 d, after which endometabolites were compared with those in axenic controls. Consistent with model predictions, all five endometabolites
224 225 226 227 228 229 230	The simulation modeling generated a hypothesis that diatoms accumulate higher concentrations of certain endometabolites in the presence of heterotrophic bacteria. This was tested using an available independent dataset in which <i>T. pseudonana</i> was grown in co-culture with bacteria (<i>R. pomeroyi</i> and two other heterotrophic bacteria) for 15 d, after which endometabolites were compared with those in axenic controls. Consistent with model predictions, all five endometabolites that increased in concentration in the diel study also had higher concentrations in co-culture
224 225 226 227 228 229 230 231	The simulation modeling generated a hypothesis that diatoms accumulate higher concentrations of certain endometabolites in the presence of heterotrophic bacteria. This was tested using an available independent dataset in which <i>T. pseudonana</i> was grown in co-culture with bacteria (<i>R. pomeroyi</i> and two other heterotrophic bacteria) for 15 d, after which endometabolites were compared with those in axenic controls. Consistent with model predictions, all five endometabolites that increased in concentration in the diel study also had higher concentrations in co-culture endometabolites that did
224 225 226 227 228 229 230 231 232	The simulation modeling generated a hypothesis that diatoms accumulate higher concentrations of certain endometabolites in the presence of heterotrophic bacteria. This was tested using an available independent dataset in which <i>T. pseudonana</i> was grown in co-culture with bacteria (<i>R. pomeroyi</i> and two other heterotrophic bacteria) for 15 d, after which endometabolites were compared with those in axenic controls. Consistent with model predictions, all five endometabolites that increased in concentration in the diel study also had higher concentrations in co-culture endometabolites that did not increase in concentration during the diel study (acetate, uridine, and proline) there was no
224 225 226 227 228 229 230 231 231 232 233	The simulation modeling generated a hypothesis that diatoms accumulate higher concentrations of certain endometabolites in the presence of heterotrophic bacteria. This was tested using an available independent dataset in which <i>T. pseudonana</i> was grown in co-culture with bacteria (<i>R. pomeroyi</i> and two other heterotrophic bacteria) for 15 d, after which endometabolites were compared with those in axenic controls. Consistent with model predictions, all five endometabolites that increased in concentration in the diel study also had higher concentrations in co-culture endometabolomes compared to axenic in the 15 d study (Fig. 3c). For the three metabolites that did not increase in concentration during the diel study (acetate, uridine, and proline) there was no difference in endometabolite concentrations in the 15 d study (Fig. 3c; see also Fig. S9 for other

236	such as nutrient pools. Previous research uncovered a phytoplankton-bacteria signaling system in
237	which a marine diatom (Pseudo-nitzchia multiseries) released tryptophan extracellularly, and a co-
238	cultured marine bacterium (Sulfitobacter sp. S11) converted it to the plant hormone indole-3-acetic
239	acid. In our model system, bacterium <i>R. pomeroyi</i> (a relative of <i>Sulfitobacter</i> sp. S11, both members
240	of the Roseobacter group) maintained 7- to 36-fold higher transcript inventories of IAA synthesis
241	genes at noon relative to night (Fig. 4a). Further, expression of these same IAA genes was positively
242	correlated with diatom biomass when <i>R. pomeroyi</i> was introduced at intervals into a natural
243	phytoplankton bloom ⁴⁸ (Fig. 4b). These suggest both that IAA may play a role in a <i>T. pseudonana - R.</i>
244	pomeroyi interaction, and that IAA signaling may broadly underlie marine diatom-bacteria
245	interactions in the surface ocean ¹⁶ . Our observation that concentrations increase only for certain
246	components of the diatom exometabolome is consistent with evolutionary tuning through selection.
247	A major fraction of the ocean's annual net primary production is processed through the labile
248	dissolved organic carbon pool, driven by the production, release, and consumption of microbial
249	metabolites ⁹ . In agreement with previous field observations of coincident diel patterns of
250	phytoplankton and bacterial activity ^{5,42,49} , we find coupling of phytoplankton endometabolite
251	dynamics with bacterial exometabolite uptake transcription in a model system representative of
252	diatom-dominated surface ocean ecosystems. The quantitative importance of marine
253	phytoplankton-bacteria carbon flux has motivated inquiries into the physical and chemical factors
254	that regulate phytoplankton extracellular release, such as light, temperature, and nutrient
255	limitation ³³ . This study suggests that heterotrophic bacteria also influence this process, with
256	implications for ocean carbon sequestration via allocation of photosynthate between dissolved and
257	particulate organic carbon reservoirs.

258

259 Materials and Methods

260	<i>Diel experiment –</i> An axenic strain of marine diatom <i>Thalassiosira pseudonana</i> CCMP1335
261	was cultured at 18 °C in three replicate 15-L polycarbonate bottles containing 10 L of L1 medium 50 in
262	which NaH 13 CO $_3$ (Cambridge Isotope Laboratories, CLM-441) was used as the source of inorganic
263	carbon. The light cycle consisted of 16 h light, during which light intensity varied gradually between
264	0 and 150 μ mol photon m ⁻² s ⁻¹ with a maximum intensity at noon, followed by 8 h of dark. Bacterial
265	strain <i>Ruegeria pomeroyi</i> DSS-3 was grown at 30 $^\circ$ C on ½ YTSS agar and transferred to ½ YTSS liquid
266	medium for overnight growth. Axenic <i>T. pseudonana</i> cultures grown for 6 days were inoculated with
267	bacterial cells washed in L1 medium three times (final concentration, 10^6 bacterial cells mL $^{-1}$). Co-
268	cultures were pre-incubated for two days to allow time for accumulated labile phytoplankton
269	metabolites to be consumed by the bacteria and thus emphasize synchronized production and
270	consumption dynamics during diel cycles. After the pre-incubation period, samples were collected
271	every 6 h over the next 48 h for bacterial mRNA sequencing, phytoplankton and bacterial cell counts,
272	and phytoplankton endometabolome analysis.
273	Direct light effects experiment – T. pseudonana CCMP1335 was axenically cultured in 10 L of
274	L1 medium in a 15-L polycarbonate bottle with incubation conditions as described above except that
275	an intensity of 150 μ mol photon m ⁻² s- ¹ was used throughout the light period. After one week, the
276	diatom cultures were sequentially filtered through GF/F filters (Whatman) and 0.2- μ m-pore-size
277	PCTE membrane filters (Poretics), and the cell-free filtrate was used as the substrate for a bacterial
278	monoculture experiment. <i>R. pomeroyi</i> DSS-3 cells were prepared and added to the filtrate as
279	described above. Cells were incubated for 4 h at 18° C under light intensities of 150 (100%
280	treatment), 75 (50% treatment), or 0 μ mol photon m ⁻² s ⁻¹ (0% treatment), corresponding to light
	treatment), 75 (50% treatment), or 0 µmor photon m s (0% treatment), corresponding to light

replicates of each treatment. A minor temperature increase of 0.5 °C occurred in the 100%

treatment relative to 50% and 0% treatments. After 4 h, samples for bacterial RNA analysis and cell
counts were collected.

285	Diatom endometabolome analysis – Diatom cells were collected by filtering 500 mL of
286	culture onto 2.0- μ m-pore-size PCTE membrane filters (MilliporeSigma Isopore) and stored at -80°C
287	until processing. Endometabolites were extracted by sonication in ultra-pure water (Millipore),
288	concentrated by freeze-drying, and dissolved in 600 μL of sodium phosphate butter (pH 7.4) with an
289	internal standard of 2,2-dimethyl-2-silapentane-5-sulfonate-d ₆ (1 mmol L ⁻¹) ⁵¹ . Metabolites were
290	analyzed by nuclear magnetic resonance (NMR) spectroscopy using a Bruker AVANCE $ { m I\!I}$ 800 MHz 5
291	mm TCl cryoprobe, 800 MHz 1.7 mm TCl cryoprobe, and 600 MHz 5 mm TXl probe. Pulse programs
292	of 1 H- 13 C heteronuclear single quantum correlation (HSQC; Bruker program hsqcetgpprsisp2.2), 1 H-
293	¹³ C HSQC-total correlation spectroscopy (HSQC-TOCSY; hsqcdietgpsisp.2), and ¹ H- ¹³ C heteronuclear
294	multiple bound correlation (HMBC; hmbcetgpl2nd) were used. Data were processed using TopSpin
295	4.0.3 (Bruker), and peak intensity was extracted using rNMR 1.1.9 ⁵² . Metabolites were annotated
296	based on chemical shift (HSQC) and coupling information (HSQC-TOCSY and HMBC). HMDB 53 and
297	$BMRB^{54}$ were used as reference databases, and additionally $CSDB^{55}$ for polysaccharides. Three
298	compounds of interest which are not in these databases were annotated either by obtaining original
299	spectra from chemical standards (DHPS and DMSP) 56 or based on literature values 57 . Confidence
300	level of annotation ranging from 1 (lowest) to 5 (highest) was assigned to each metabolite (Table S1)
301	according to Walejko et al ⁵⁸ with a slight modification, where $1 = putative compounds with$
302	functional group information; 2 = partially matched to HSQC chemical shift information in the
303	databases or literature; 3 = matched to HSQC chemical shift; 4 = matched to HSQC chemical shift
304	and validated by HSQC-TOCSY or HMBC; 5 = validated by original spectra from chemical standards.
305	Detailed parameter settings are presented in Table S4, with additional information in Metabolomics
306	Workbench (ID PR001019, dx.doi.org/10.21228/M80408). Temporal variations in metabolites were

307	analyzed by extracting peaks behaving similarly during the incubation period using variance-
308	sensitive clustering ²⁷ after normalization by the internal standard and cell counts, and scaling to Z-
309	scores. Background signals originating from filters and solvent were also corrected. The optimal
310	cluster number was selected based on minimum centroid distance and Xie-Beni index, and only
311	membership values of <0.5 were accepted ²⁷ . Periodicity of the temporal patterns for compounds was
312	analyzed using a rhythmicity analysis package RAIN (1.18.0) ⁵⁹ in R software (version 3.6.1).
313	Heatmaps were created using the CirHeatmap function (version 1.7) in MATLAB (Mathworks) 60 .
314	mRNA analysis – For the direct light experiment, bacterial cells were collected by filtering
315	500 mL of culture through 0.2- μ m pore-size PES membrane filters (Pall Supor) and immediately
316	freezing the filters in liquid nitrogen. For the diel experiment, samples were pre-filtered through 2.0-
317	μ m-pore-size PCTE membrane filters (MilliporeSigma Isopore) to retain diatom cells prior to
318	capturing bacterial cells on 0.2- μ m pore-size filters. This process was completed within 15 min of
319	collection. The filters were stored at -80 $^{\circ}$ C until processing. To extract RNA, filters were cut into
320	pieces under sterile conditions and shaken with 0.5 mL of 0.1-mm zirconia/silica beads (BioSpec
321	Products) in 1 mL of Denaturation/Lysis Solution (Life Technologies) for 15 min. RNA was extracted
322	from this lysate using the RNeasy Mini Kit (QIAGEN).
323	For the diel experiment, we used a phenol-chloroform-isoamyl extraction ²⁶ after confirming

323 For the diel experiment, we used a phenol-chloroform-isoamyl extraction²⁴ after confirming 324 good mRNA recovery from both diatom and bacterial samples. To determine the absolute number 325 of transcripts, two internal mRNA standards (size, 1,000 nt) were added to each sample before 326 extraction and the recovery of the standards was determined following Satinsky et al.²³. After the 327 extraction, DNA was removed by the Turbo DNA-free Kit (Ambion), rRNA was depleted by Ribo-Zero 328 rRNA Removal Kit (Illumina), and mRNA was purified by RNA Clean & Concentrator-5 (Zymo 329 Research) following the manufacturer's protocols.

330	Sequencing was carried out on an Illumina NextSeq 550 (Table S5). rRNA reads were
331	identified by blast+ (NCBI 2.7.1 and 2.8.1 for the direct light experiment and the diel experiment,
332	respectively) against an rRNA sequence database and removed. Remaining reads were mapped
333	to the <i>R. pomeroyi</i> genome and quantified using HTSeq ⁶¹ . Differentially expressed genes were
334	identified in pairwise comparisons of sampling times (diel experiment) or light levels (direct light
335	experiment) using MATLAB for absolute analysis, and DESeq2 ⁶² for relative transcript analysis. One
336	of the replicate samples from the initial time point of the experiment was lost; otherwise, n = 3 for
337	all analyses. The number of reads per library averaged 19.2 x 10^6 (range, 13.3–31.9 x 10^6) and the
338	percentage of rRNA contamination averaged 17.5% (range, 4.1–38.8%). Recovery of the two internal
339	standards was highly consistent (Pearson's $r = 0.96$; $p \le 0.001$; $n = 26$), accounting for 2.2% of mRNA
340	reads recovered per library. All other statistical analyses were conducted using MATLAB. Fold-
341	change values and temporal pattern categories for all the genes are reported in Table S6.
342	<i>Cell counts</i> - A 0.5 mL aliquot of culture was fixed with glutaraldehyde (final concentration,
343	1%) and kept at -80°C until analysis. Samples were thawed, stained with SYBR Green $ { m I}$ (Thermo
344	Fisher Scientific; final concentration, 5 x 10^{-4} of commercial stock), and injected into a CytoFLEX flow
345	cytometer (Beckman Coulter). For phytoplankton counts, samples were analyzed without staining.
346	Data were analyzed using CytExpert (Beckman Coulter), and cell density was calculated based on a
347	separate run of a known concentration of bead standards (Beckman Coulter).
348	<i>Model development</i> – The extracellular release model was written in R version 3.6.1 with
349	three state variables, representing the phytoplankton endometabolome (P), the exometabolome (E),

and the bacterial endometabolome (*B*). The time evolution of these pools was calculated at 0.1 h

351 intervals using the following differential equations.

$$\delta_t P = N X - T - R$$

$$\delta_t E = R - U$$
$$\delta_t B = U - C$$

	$\delta_t B = 0 - C$
352	N is the metabolite biosynthesis rate, derived from light intensity but allowing for C fixation-
353	irradiance oscillation around the peak in light intensity ³² . T is the rate at which endometabolites are
354	allocated for biomass and energy generation by phytoplankton cells, calculated as a constant
355	fraction of <i>P</i> at each interval. <i>R</i> is release rate of endometabolites from the phytoplankton cell with
356	parameters for both diffusive and physiological balance mechanisms. U represents bacterial uptake
357	from the exometabolome following Michaelis-Menten kinetics. X is the bacterial response
358	mechanism that increases metabolite biosynthesis rate in the presence of bacteria by 1.5- or 2-fold.
359	C represents catabolism of the metabolite within the bacterial endometabolome, with a constant
360	fraction lost each interval. See Supplemental Methods for information on how variables N, R, T, U,
361	and C were calculated.
362	To simulate experimental conditions, <i>B</i> and <i>U</i> were set to zero for 6 d of 'axenic growth'
363	followed by 'inoculation' with addition of B and U functions for the final 4 d of the modeled
364	experiment. Values for <i>P</i> and <i>U</i> from the final 2 d of model output were used to compare to
365	experimentally measured endometabolome and transcriptome data, respectively.
366	Experimental test of model predictions – T. pseudonana CCMP1335 was inoculated into L1
367	medium with NaH 13 CO $_3$ labeling as described above. Triplicate samples were inoculated with three
368	heterotrophic bacteria (Ruegeria pomeroyi DSS-3, Stenotrophomonas sp. SKA-14, and Polaribacter
369	dokdonensis MED-152). Another set of triplicate samples was kept axenic (diatom only). The cultures
370	were maintained at 160 μ mol photons m ⁻² s ⁻¹ at 18°C in a 16:8 h light:dark cycle. After 15 d (late
371	stationary phase) diatom cells were filtered from 700 mL of culture, frozen and processed for NMR
372	analysis as described above.

373 Data Availability Statement

- 374 Data that support the findings of this study have been deposited in NCBI SRA with BioProject
- accession number PRJNA649292 (sequencing data), and Metabolomics Workbench with Project ID
- 376 PR001019, dx.doi.org/10.21228/M80408 (metabolome data).

377 Acknowledgements

- 378 C. Smith and S. Sharma provided sequencing and bioinformatic assistance, J. Gluhska and C.
- Panagos offered expertise on NMR analysis, M. Landa and B. Nowinski provided valuable comments
- 380 on experimental design, F. Ferrer-González and J. Schreier assisted with sampling, and the University
- of Georgia Genomics and Bioinformatics Core (GGBC) provided sequencing services. This work was
- supported by The Gordon and Betty Moore Foundation (5503), NSF (IOS-1656311), The Simons
- Foundation (grant 542391 to MAM) within the Principles of Microbial Ecosystems (PriME)
- 384 Collaborative, JSPS (Research Fellowship for Young Scientists and Grant-in-Aid for JSPS Fellows to
- 385 MU), and the Swedish Research Council (2018-06571 to MO).
- 386

387 Author Contributions

- 388 MU and MAM conceived of the study, MU and MO collected the data, MU, WS, MO, ASE,
- and MAM analyzed data, and MU and MAM wrote the paper with input from all authors.
- 390 Conflict of Interest Statement
- 391 The authors declare no conflicts of interest.

References

- 1 Williams, P. J. l. in *Microbial Ecology of the Oceans* (ed D. L. Kirchman) 153–200. (Wiley-Liss, 2000).
- 2 Becker, K. W. *et al.* Daily changes in phytoplankton lipidomes reveal mechanisms of energy storage in the open ocean. *Nature Comm* **9** (2018).
- Boysen, A. K. *et al.* Diel oscillations of particulate metabolites reflect synchronized microbial activity in the North Pacific Subtropical Gyre. *bioRxiv*, 2020.2005.2009.086173 (2020).
- 4 Durham, B. P. *et al.* Sulfonate-based networks between eukaryotic phytoplankton and heterotrophic bacteria in the surface ocean. *Nat Microbiol* **4**, 1706-1715 (2019).
- 5 Aylward, F. O. *et al.* Microbial community transcriptional networks are conserved in three domains at ocean basin scales. *Proc Nat Acad Sci* **112**, 5443-5448 (2015).
- 6 Gasol, J. M. *et al.* Diel variations in bacterial heterotrophic activity and growth in the northwestern Mediterranean Sea. *Mar Ecol Prog Ser* **164**, 107-124 (1998).
- 7 Azam, F. *et al.* The ecological role of water-column microbes in the sea. *Mar Ecol Prog Ser* **10**, 257-263 (1983).
- 8 Cole, J. J., Findlay, S. & Pace, M. L. Bacterial production in fresh and saltwater ecosystems - a cross-system overview. *Mar Ecol Prog Ser* **43**, 1-10 (1988).
- 9 Moran, M. A. *et al.* Deciphering ocean carbon in a changing world. *Proc Nat Acad Sci* **113**, 3143-3151 (2016).
- 10 Nagata, T. in *Microbial Ecology of the Oceans* (ed D. L. Kirchman) 207–241 (John Wiley and Sons, Inc., 2008).
- 11 Kujawinski, E. B. The impact of microbial metabolism on marine dissolved organic matter. *Ann Rev Mar Sci* **3**, 567-599 (2011).
- 12 Seymour, J. R., Amin, S. A., Raina, J. B. & Stocker, R. Zooming in on the phycosphere: the ecological interface for phytoplankton-bacteria relationships. *Nat Microbiol* **2** (2017).
- 13 Thornton, D. C. O. Dissolved organic matter (DOM) release by phytoplankton in the contemporary and future ocean. *Eur J Phycol* **49**, 20-46 (2014).
- 14 Bjornsen, P. K. Phytoplankton exudation of organic-matter why do healthy cells do it. *Limnol Oceanogr* **33**, 151-154 (1988).
- 15 Fogg, G. E. The ecological significance of extracellular products of phytoplankton photosynthesis. *Bot Mar* **26**, 3-14 (1983).
- 16 Amin, S. A. *et al.* Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. *Nature* **522**, 98-101 (2015).
- 17 Durham, B. P. *et al.* Recognition cascade and metabolite transfer in a marine bacteriaphytoplankton model system. *Environ Microbiol* **19**, 3500-3513 (2017).
- 18 Armbrust, E. V. *et al.* The genome of the diatom *Thalassiosira pseudonana*: ecology, evolution, and metabolism. *Science* **306**, 79-86 (2004).
- 19 Moran, M. A. *et al.* Genome sequence of *Silicibacter pomeroyi* reveals adaptations to the marine environment. *Nature* **432**, 910-913 (2004).

- 20 Uitz, J., Claustre, H., Gentili, B. & Stramski, D. Phytoplankton class-specific primary production in the world's oceans: Seasonal and interannual variability from satellite observations. *Global Biogeochem Cycles* **24** (2010).
- 21 Buchan, A., LeCleir, G. R., Gulvik, C. A. & Gonzalez, J. M. Master recyclers: features and functions of bacteria associated with phytoplankton blooms. *Nat Rev Microbiol* **12**, 686-698 (2014).
- 22 Luo, H. W. & Moran, M. A. Evolutionary ecology of the marine Roseobacter clade. *Microbiol Mol Biol R* **78**, 573-587 (2014).
- 23 Satinsky, B. M., Gifford, S. M., Crump, B. C. & Moran, M. A. in *Methods in Enzymology* (ed E. F. DeLong) 237-250 (2013).
- 24 Moran, M. A. *et al.* Sizing up metatranscriptomics. *Isme J* **7**, 237-243 (2013).
- 25 Durham, B. P. *et al.* Cryptic carbon and sulfur cycling between surface ocean plankton. *Proc Nat Acad Sci* **112**, 453-457 (2015).
- Landa, M., Burns, A. S., Roth, S. J. & Moran, M. A. Bacterial transcriptome remodeling during sequential co-culture with a marine dinoflagellate and diatom. *ISME J* **11**, 2677-2690 (2017).
- 27 Schwämmle, V. & Jensen, O. N. VSClust: feature-based variance-sensitive clustering of omics data. *Bioinformatics* **34**, 2965-2972 (2018).
- 28 Becker, S. *et al.* Laminarin is a major molecule in the marine carbon cycle. *Proc Nat Acad Sci* **117**, 6599-6607 (2020).
- 29 Neidhardt, F., Ingraham, J. & Schaechter, S. *Physiology of the bacterial cell: a molecular approach*. (Sinauer Associates Inc, 1990).
- 30 Wagner, G. P., Kin, K. & Lynch, V. J. Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. *Theory Biosci* **131**, 281-285 (2012).
- Harding, L., Meeson, B., Prézelin, B. & Sweeney, B. Diel periodicity of photosynthesis in marine phytoplankton. *Mar Biol* **61**, 95-105 (1981).
- Harding, L., Prezelin, B., Sweeney, B. & Cox, J. Diel oscillations of the photosynthesisirradiance (PI) relationship in natural assemblages of phytoplankton. *Mar Biol* **67**, 167-178 (1982).
- Behrenfeld, M. J., Halsey, K. H. & Milligan, A. J. Evolved physiological responses of phytoplankton to their integrated growth environment. *Phil Trans Royal Soc B: Biol Sci* 363, 2687-2703 (2008).
- Behrenfeld, M. J., Prasil, O., Babin, M. & Bruyant, F. In search of a physiological basis for covariations in light-limited and light-saturated photosynthesis. *J Phycol* **40**, 4-25 (2004).
- Blough, N. V. & Zepp, R. G. in *Active oxygen in chemistry* 280-333 (Springer, 1995).
- 36 Zafiriou, O. C., Joussot-Dubien, J., Zepp, R. G. & Zika, R. G. Photochemistry of natural waters. *Environ Sci Technol* **18**, 358A-371A (1984).
- 37 Ziegelhoffer, E. C. & Donohue, T. J. Bacterial responses to photo-oxidative stress. *Nat Rev Microbiol* **7**, 856-863 (2009).
- Lubin, E. A., Henry, J. T., Fiebig, A., Crosson, S. & Laub, M. T. Identification of the PhoB regulon and role of PhoU in the phosphate starvation response of *Caulobacter crescentus*. *J Bacteriol* **198**, 187-200 (2016).

- 39 Yang, C. *et al.* Genome-wide PhoB binding and gene expression profiles reveal the hierarchical gene regulatory network of phosphate starvation in *Escherichia coli*. *Plos One* **7** (2012).
- 40 Hsieh, Y. J. & Wanner, B. L. Global regulation by the seven-component Pi signaling system. *Curr Opin Microbiol* **13**, 198-203 (2010).
- 41 Kuipers, B., van Noort, G. J., Vosjan, J. & Herndl, G. J. Diel periodicity of bacterioplankton in the euphotic zone of the subtropical Atlantic Ocean. *Mar Ecol Prog Ser* **201**, 13-25 (2000).
- 42 Muratore, D. *et al.* Community-scale synchronization and temporal partitioning of gene expression, metabolism, and lipid biosynthesis in oligotrophic ocean surface waters. *bioRxiv*, 2020.2005.2015.098020 (2020).
- 43 Denger, K., Lehmann, S. & Cook, A. M. Molecular genetics and biochemistry of *N*acetyltaurine degradation by *Cupriavidus necator* H16. *Microbiol-Sgm* **157**, 2983-2991 (2011).
- 44 Lidbury, I., Murrell, J. C. & Chen, Y. Trimethylamine N-oxide metabolism by abundant marine heterotrophic bacteria. *Proc Nat Acad Sci* **111**, 2710-2715 (2014).
- 45 Mou, X. Z., Sun, S. L., Rayapati, P. & Moran, M. A. Genes for transport and metabolism of spermidine in *Ruegeria pomeroy*i DSS-3 and other marine bacteria *Aquat Micro Ecol* **59**, 102-102 (2010).
- 46 Schulz, A. *et al.* Feeding on compatible solutes: A substrate-induced pathway for uptake and catabolism of ectoines and its genetic control by EnuR. *Environ Microbiol* **19**, 926-946 (2017).
- 47 Weinitschke, S., Sharma, P. I., Stingl, U., Cook, A. M. & Smits, T. H. Gene clusters involved in isethionate degradation by terrestrial and marine bacteria. *Appl Environ Microb* **76**, 618-621 (2010).
- 48 Nowinski, B. & Moran, M. A. Identifying marine bacterial niche dimensions by an experimental invasion. *submitted* (2021).
- 49 Ottesen, E. A. *et al.* Pattern and synchrony of gene expression among sympatric marine microbial populations. *P Natl Acad Sci USA* **110**, E488-E497 (2013).
- 50 Guillard, R. R. L. & Hargraves, P. E. *Stichochrysis immobilis* is a diatom, not a chyrsophyte. *Phycologia* **32**, 234-236 (1993).
- 51 Uchimiya, M., Tsuboi, Y., Ito, K., Date, Y. & Kikuchi, J. Bacterial substrate transformation tracked by stable-isotope-guided NMR metabolomics: application in a natural aquatic microbial community. *Metabolites* **7**, 52 (2017).
- Lewis, I. A., Schommer, S. C. & Markley, J. L. rNMR: open source software for identifying and quantifying metabolites in NMR spectra. *Mag Res Chem* **47**, S123-S126 (2009).
- 53 Wishart, D. S. *et al.* HMDB 3.0-The Human Metabolome Database in 2013. *Nuc Acids Res* **41**, D801-D807 (2013).
- 54 Ulrich, E. L. *et al.* BioMagResBank. *Nuc Acids Res* **36**, D402-D408 (2008).
- 55 Toukach, P. V. & Egorova, K. S. Carbohydrate structure database merged from bacterial, archaeal, plant and fungal parts. *Nuclic Acids Res* **44**, D1229-D1236 (2016).
- 56 Landa, M. *et al.* Sulfur metabolites that facilitate oceanic phytoplankton-bacteria carbon flux. *Isme J* **13**, 2536-2550 (2019).

- 57 Boroujerdi, A. F. B. *et al.* Identification of isethionic acid and other small molecule metabolites of Fragilariopsis cylindrus with nuclear magnetic resonance. *Anal Bioanal Chem* **404**, 777-784 (2012).
- 58 Walejko, J. M., Chelliah, A., Keller-Wood, M., Gregg, A. & Edison, A. S. Global metabolomics of the placenta reveals distinct metabolic profiles between maternal and fetal placental tissues following delivery in non-labored women. *Metabolites* **8**, 10 (2018).
- 59 Thaben, P. F. & Westermark, P. O. Detecting rhythms in time series with RAIN. *J Biological Rhythms* **29**, 391-400 (2014).
- 60 Welsh, J. CirHeatmap. (2020). <<u>https://github.com/joadwe/cirheatmap</u>>.
- 61 Anders, S., Pyl, P. T. & Huber, W. HTSeq-a Python framework to work with highthroughput sequencing data. *Bioinformatics* **31**, 166-169 (2015).
- 62 Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. *Genome Biol* **15** (2014).
- 63 Schulz, A. *et al.* Feeding on compatible solutes: A substrate induced pathway for uptake and catabolism of ectoines and its genetic control by EnuR. *Environ Microbiol* **19**, 926-946 (2017).
- 64 Lidbury, I., Kimberley, G., Scanlan, D. J., Murrell, J. C. & Chen, Y. Comparative genomics and mutagenesis analyses of choline metabolism in the marine Roseobacter clade. *Environ Microbiol* **17**, 5048-5062 (2015).
- 65 Cunliffe, M. Purine catabolic pathway revealed by transcriptomics in the model marine bacterium *Ruegeria pomeroyi* DSS-3. *FEMS Microbiol Ecol* **92**, fiv150 (2016).

Table 1. Diatom endometabolites assigned with high confidence in the diel experiment. For detailed information for compound identification and confidence level information, see Table S1 and Fig. S1. Group assignments correspond to those in Figure 1. Statistical significance for temporal patterns is based on linear regression analysis for increasing or decreasing patterns, and RAIN for diel cycles. Temporal patterns: M1 = increase, M2 = decrease, M3 = diel with a peak at mid-afternoon, M4 = diel with a peak at noon. n.a., not applicable (membership value of <0.5, see text for the detail).

Compound category/ Sub-category	Compound	Function	Group, temporal pattern
Amine	Trimethylamine N-oxide		n.a.
Amino acid	Ala	Amino acid metabolism	n.a.
	Arg	Amino acid metabolism	n.a.
	Asn	Amino acid metabolism	M-1 (<i>p</i> < 0.001)
	Asp	Amino acid metabolism	M-4 (<i>p</i> < 0.01)
	Gln	Amino acid metabolism	M-4 (<i>p</i> < 0.001)
	Glu	Amino acid metabolism	n.a.
	Gly	Amino acid metabolism	M-1 (<i>p</i> < 0.01)
	Lys	Amino acid metabolism	M-1 (<i>p</i> < 0.001)
	Pro	Amino acid	M-4 (<i>p</i> < 0.001)
		metabolism/osmoregulation	
Amino acid/Branched- chain	Val	Amino acid metabolism	n.a.
	lle	Amino acid metabolism	M-1 (<i>p</i> < 0.001)
	Leu	Amino acid metabolism	M-1 (<i>p</i> < 0.001)
Amino acid derivative	Glycine betaine	Osmoregulation	M-1 (<i>p</i> < 0.05)
	Dimethylglycine		n.a.
	Homarine	Osmoregulation	M-1 (<i>p</i> < 0.05)
Amino alcohol	Ethanolamine	Lipid metabolism	M-1 (<i>p</i> < 0.01)
Choline	Choline	Lipid metabolism	n.a.
Choline derivative	Phosphorylcholine	Lipid metabolism	M-1 (<i>p</i> < 0.001)
Phosphocholine	Glycerophosphocholine	Lipid metabolism	n.a.
Glycerol derivative	Glycerol 3-phosphate	Lipid metabolism	M-1 (<i>p</i> < 0.01)
Nucleoside	Adenosine	Nucleic acids/ATP constituent	n.a.
	Guanosine	Nucleic acids/GTP constituent	M-4
	Uridine		M-3 (<i>p</i> < 0.001)
Organic acid	3-Hydroxybutyrate	Carbon metabolism	M-2 (<i>p</i> < 0.01)
	Acetate	Carbon metabolism	M-2 (<i>p</i> < 0.01)
	4-Hydroxyphenylacetate		n.a.
	Dicarboxylic acids (unidentified)	Carbon metabolism	M-2 (<i>p</i> < 0.05)
Sugar/Monosaccharide	Glucose	Carbon/central energy metabolism	M-3 (p < 0.001)
Sugar/Polysaccharide	β(1,3)-glucan	Carbon metabolism/storage	M-3 (<i>p</i> < 0.001)
Sulfur compound	DHPS	Osmoregulation	M-1 (<i>p</i> < 0.001)
	DMSP	Osmoregulation	M-1 (<i>p</i> < 0.001)

Table 2. Bacterial noon/night ratios of transcripts cell⁻¹ for genes indicative of metabolite consumption. Bold font indicates the compounds appearing in both the endometabolite and bacterial gene expression datasets. n.s., difference not statistically significant (adjusted p > 0.05).

	Compound	Gene locus tag	Gene name	Protein function	Noon/Night transcript ratio	Refer ence
Amide	Urea	SPO1707	urtD	ABC transporter, ATP-binding protein	43.0	19
		SPO1708	urtC	ABC transporter, permease	37.7	
		SPO1709	urtB	ABC transporter, permease	34.6	
		SPO1710	urtA	ABC transporter, substrate binding	0.8 (n.s.)	
Amine	ΤΜΑΟ	SPO1548	tmoX	ABC transporter, periplasmic binding	38.0	44
		SPO1550	tmoV	ABC transporter, permease protein	41.2	
		SPO1549	tmoW	ABC transporter, ATP binding	43.1	
Amine	ТМА	SPO1551	tmm	TMA monooxygenase	42.6	19
Amino acid derivative	Betaine	SPO3186	opuD	Glycine-betaine transporter	1.6 (n.s.)	19
Amino Acid	Leucine	SPO2793	ivD	isovaleryl-CoA dehydrogenase	2.6	
		SPO2789	тссА	methylcrotonyl-CoA carboxylase, alpha subunit	3.1	
		SPO2790	тссВ	methylcrotonyl-CoA carboxylase, beta subunit	3.4	
		SPO0390		glutamate/leucine/phenylalanine/val ine dehydrogenase	1.2 (n.s.)	(1)
Amino acid derivative	Ectoine/ 5- hydroxyectoine	SPO1146	uehB	TRAP transporter, small integral membrane protein	48.4	63
		SPO1147	uehA	TRAP transporter, large integral membrane protein	29.7	
		SPO1145	uehC	TRAP transporter, periplasmic binding	36.7	
Amino Acid	Proline	SPO1031		hypothetical protein	21.2	
		SPO2441		ABC transporter, periplasmic betaine/proline-binding	16.4	
		SPOA0231		ABC transporter, periplasmic substrate-binding	43.3	
Choline	Choline	SPO1087	betT	Choline transporter	0.9 (n.s.)	64
Glycerol derivative	SN-glycerol-3- phosphate	SPO0238	ugpE	ABC transporter, permease	4.3	19
		SPO0239	ugpA	ABC transporter, permease	3.3	
		SPO0237	upgC	ABC transporter, ATP-binding	3.5	
		SPO0240	иgpB	ABC transporter, periplasmic substrate-binding protein	1.3 (n.s.)	65
Nuceloside	Xanthine	SPO0654	xdhA	Xanthine dehydrogenase, A subunit	33.4	65
		SPO0653	xdhB	Xanthine dehydrogenase, B subunit	33.0	
		SPO0652	xdhC	Xanthine dehydrogenase accessory factor	25.8	
Nucleoside	Uridine	SPO2470	iunH	inosine-uridine preferring nucleoside hydrolase	9.9	
Organic Acid	Acetate	SPO1813	acs	acetyl-coenzyme A synthetase	0.9 (n.s.)	
		SPO0325	phbB	acetoacetyl-CoA reductase	1.9	
		SPO0326	phbA	acetyl-CoA acetyltransferase	1.1 (n.s.)	
Organic acid	Glycolate	SPO3478 SPO3479	glcD glcE	glycolate oxidase, GlcD subunit glycolate oxidase, GlcE subunit	18.6 19.9	19

		SPO3480	glcF	glycolate oxidase, iron-sulfur subunit	21.6	
Phosphonate	Phosphonate	SPO0780	phnC	ABC transporter, ATP-binding	32.4	
		SPO0781	phnD	ABC transporter, periplasmic phosphonate-binding	18.6	
		SPO0782	phnE-1	ABC transporter, permease	38.3	
		SPO0783	phnE-2	ABC transporter, permease	35.6	
Polyamine	Putrescine	SPO3469	potF	ABC transporter, periplasmic putrescine-binding	1.2	45
		SPO3466	potl	ABC transporter, permease	2.5	
		SPO3467	potH	ABC transporter, permease	2.6	
		SPO3468	potG	ABC transporter, ATP-binding	2.1	45
Polyamine	Spermidine	SPOA0381		ABC transporter, periplasmic substrate-binding protein	22.7	45
		SPOA0383		ABC transporter, permease protein	53.4	
		SPOA0384		ABC transporter, permease protein	42.7	
-		SPOA0382		ABC transporter, ATP-binding protein	29.2	26
Sugar	Ribose	SPOA0253		ABC transporter, periplasmic substrate-binding	30.9	20
		SPOA0254	rbsC-1	ABC transporter, permease	54.9	
		SPOA0256		ABC transporter, periplasmic substrate-binding protein	21.4	
		SPOA0257	rbsC-2	ABC transporter, permease	50.4	
		SPOA0258	rbsA	ABC transporter, ATP-binding	55.7	
Sugar	Glucose/Xylose	SPO0861	xylF	ABC transporter, periplasmic substrate-binding	2.7 (n.s.)	26
		SPO0862	xylH	ABC transporter, permease	6.2	
		SPO0863	xylG	ABC transporter, ATP-binding	4.2	
-	Choline-O-sulfate	SPO1083	betC	Choline sulfatase	15.1	64
Sulfur compound	Cysteate	SPO2658		ABC transporter, periplasmic substrate-binding	22.4	56
		SPO2659		ABC transporter, permease	38.3	
		SPO2660		ABC transporter, permease	28.0	
		SPO2661		ABC transporter, ATP-binding	32.7	
Sulfur compound	Dihydroxypropane- sulfonate (DHPS)	SPO0591	hpsK	TRAP transporter	13.0	25
		SPO0592	hpsL	TRAP transporter	32.3	
		SPO0593	hpsM	TRAP transporter	24.5	16
Sulfur compound	Dimethylsulfonio- propionate (DMSP)	SPO1913	dmdA	DMSP demethylase	15.0	56
		SPO0453	dddW	DMSP lyase	30.7	
		SPO1703	dddD	DMSP lyase	41.3	
		SPO2299	dddP	DMSP lyase	31.4	
		SPO1596	dddQ	DMSP lyase	19.2	1.4
Sulfur compound	lsethionate	SPO2358	iseK	TRAP transporter, periplasmic	30.0	56
		SPO2357	iseL	TRAP transporter, small permease	13.2	
		SPO2356	iseM	TRAP transporter, DctM	38.2	5.0
Sulfur compound	<i>N</i> -acetyltaurine	SPO0660	naaA	ABC transporter, periplasmic substrate-binding	54.3	56
		SPO0661	naaB	ABC transporter, permease	32.3	
		SPO0662	naaB'	ABC transporter, permease	42.7	

	SPO0663	naaC	ABC transporter, ATP-binding	58.2	
	SPO0664	naaC'	ABC transporter, ATP-binding	28.2	
Sulfur compound Taurine	SPO0674	tauA	ABC transporter, periplasmic substrate-binding	1.8 (n.s.)	56
	SPO0675	tauB	ABC transporter, ATP-binding	3.7	
	SPO0676	tauC	ABC transporter, permease	3.1	

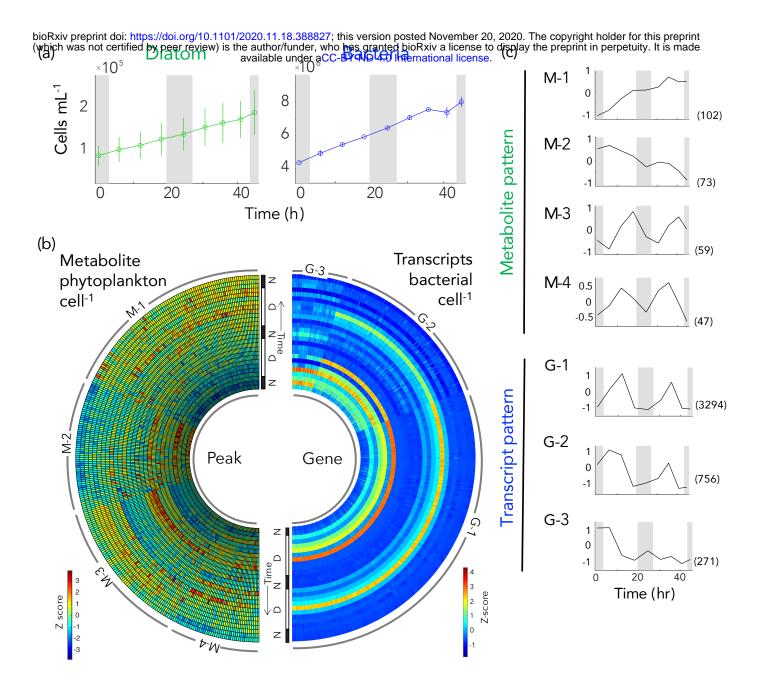


Figure 1. (a) Cell numbers of co-cultured diatoms and bacteria. (b) Temporal variations in metabolite concentration per diatom cell (left) and transcripts per bacterial cell (right) for genes differentially expressed between noon and night (\geq 2 fold-change and DESeq2 adjusted-p \leq 0.05). Values were converted to Z-scores and data from each of the three biological replicates are shown. (c) Temporal patterns identified for metabolites (M-1 through M-4) and gene transcription (G-1 through G-3). The number of metabolite peaks or genes in each cluster is given in parentheses. Grey shading in panels a and c indicates night.

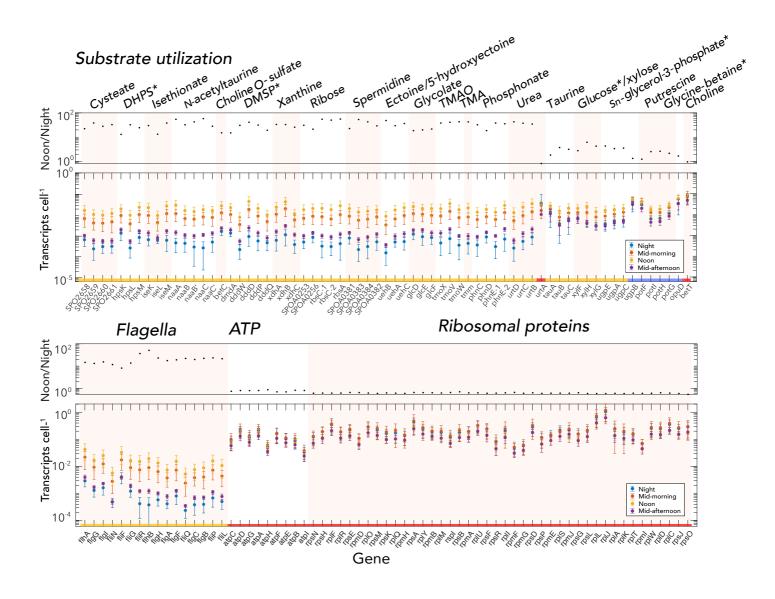


Figure 2. Expression levels of representative *R. pomeroyi* genes encoding transporters or diagnostic catabolic genes (top) and flagella, ATPases, and ribosomal proteins (bottom). For each panel, the top plot shows noon to night ratios (black circles), and the bottom plot shows average transcripts cell⁻¹ at night, mid-morning, noon, and mid-afternoon. Error bars indicate standard deviations. Categories of transcription temporal patterns (G-1, gold; G-2, blue, G-3, red) are indicated along the x-axis. Asterisks indicate transporters whose target substrate matches an endometabolite identified with high confidence.

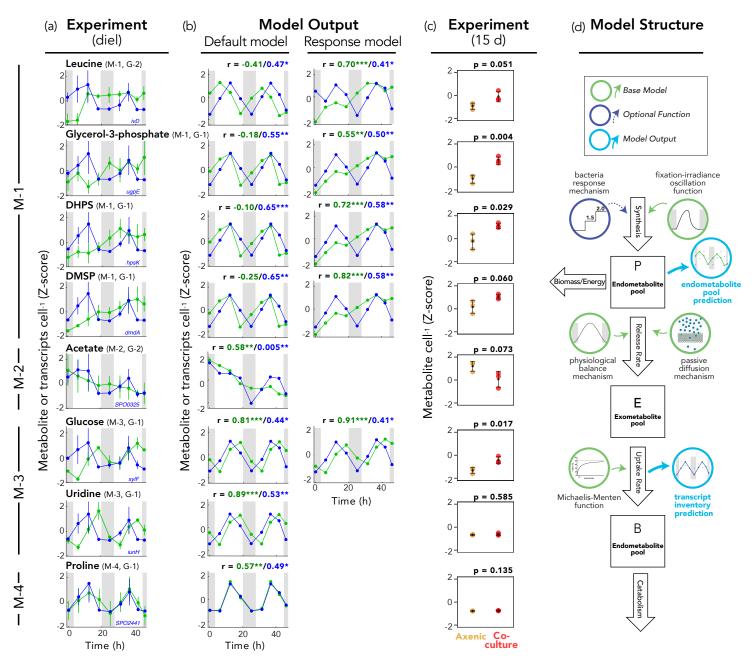


Figure 3. (a) Comparison of temporal patterns for diatom endometabolite concentration (green symbols) and bacterial transcript inventory for a representative gene encoding uptake or catabolism of the same compound (blue symbols); additional relevant genes are shown in Figure S8 (mean \pm standard deviation, n=3 except for the first night where n=2). (b) Corresponding information from the model output for default (left) and response (right) models. Numbers above the plots indicate r values for Pearson correlations between experimental and model data for metabolite concentrations (green font) and transcript inventories (blue font). *, p≤0.05; **, p≤0.01; ***p≤0.001. (c) Comparison of diatom endometabolite concentrations in axenic culture versus bacterial co-culture (mean \pm standard deviation, n=3). Numbers above the plots indicate t-test *p* values (n=3). (d) Structure of simulation model.

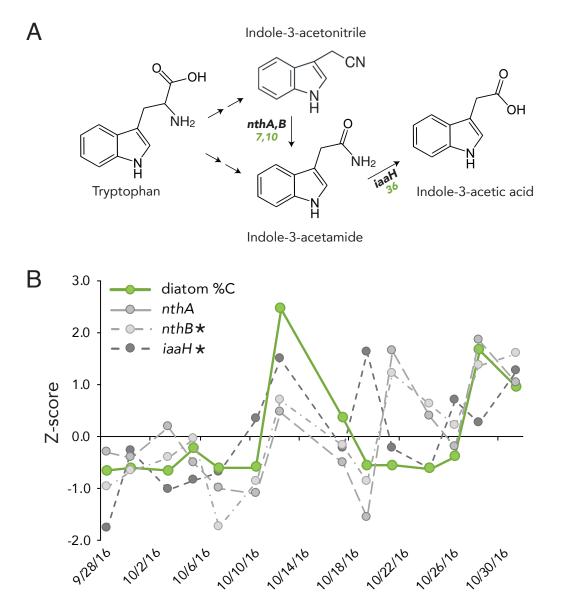


Figure 4. A) Indole-3-acetic acid (IAA) synthesis pathways in *R. pomeroyi. nthA*,*B*, nitrile hydratase; *iaaH*, IAM hydrolase; green text, noon/night per cell transcript inventories. B) Expression of *R. pomeroyi* IAA synthesis genes (gray symbols) following inoculation into natural phytoplankton bloom communities from Monterey Bay, CA, USA. Bacteria were added at 3-4 d intervals over a 1 mo period, with mRNA retrieved for transcriptome sequencing 90 min after inoculation⁴⁸. The percent of phytoplankton carbon in the bloom community contributed by diatoms (green symbols) was calculated from microscopic cell counts and taxon-specific cell volumes. Data are Z-scores of mean values for three replicates. Asterisks indicate *R. pomeroyi* genes whose expression is positively correlated with diatom % C (Pearson's R \geq 0.54; p \leq 0.05).