Supplemental Materials

Diel Investments in Phytoplankton Metabolite Production Influenced by Associated Heterotrophic Bacteria

Uchimiya et al.

Supplemental Figures S1-S9

Supplemental Tables S3, S4, and S5

Supplemental Modeling Methods

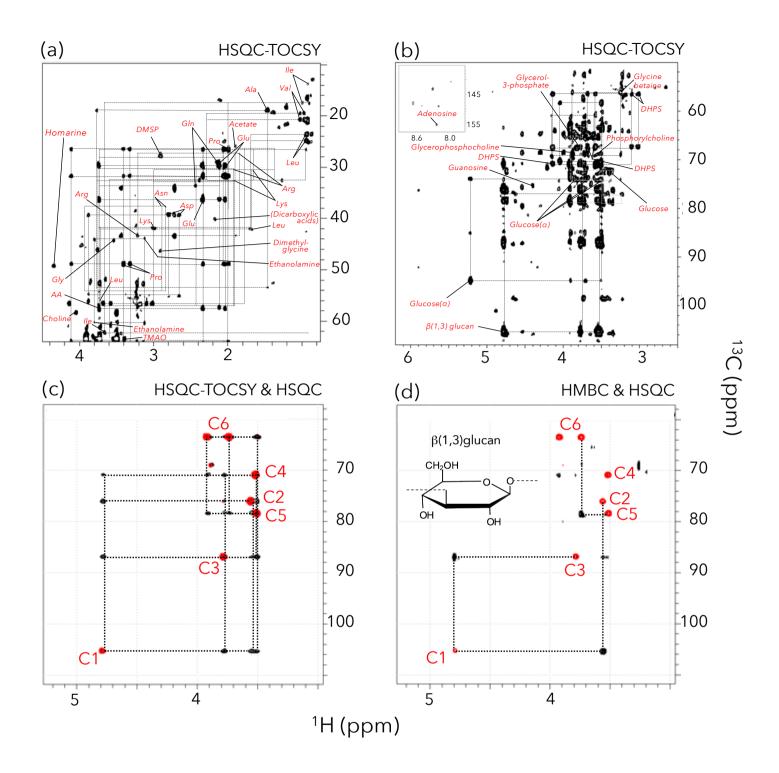


Figure S1. Diatom endometabolome annotation methods. Representative peak(s) for compounds indicated on HSQC-TOCSY spectra (a and b). Additional structural validation (e.g., for polysaccharide β -1,3-glucan) by HSQC-TOCSY (c) and HMBC experiments (d). Peaks from HSQC experiments are overlaid and colored in red. A complete compound list is provided in Table 1, and chemical shift information used for annotation is provided in Table S1. 3-Hydroxybutyrate, 4-hydroxyphenylacetate, and uridine are not visible in a and b due to relatively low intensities. AA, amino acid alpha carbon.

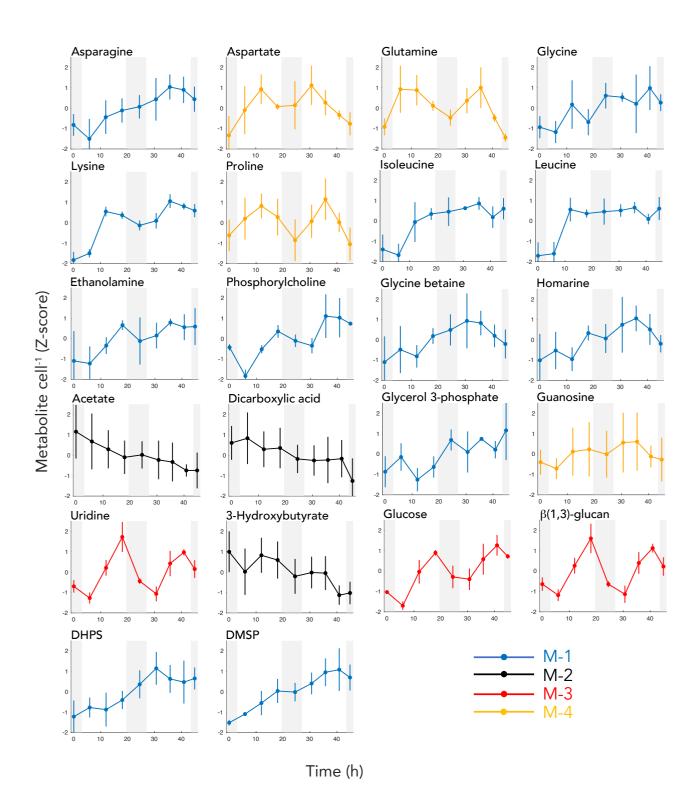


Figure S2. Temporal patterns in 22 diatom endometabolites annotated with high confidence and having significant membership values in a temporal cluster (M-1 through M-4). Metabolite abundance cell⁻¹ is shown as Z-scores for one representative non-overlapping NMR peak (see also Table S1). Error bars indicate standard deviation; n=3.

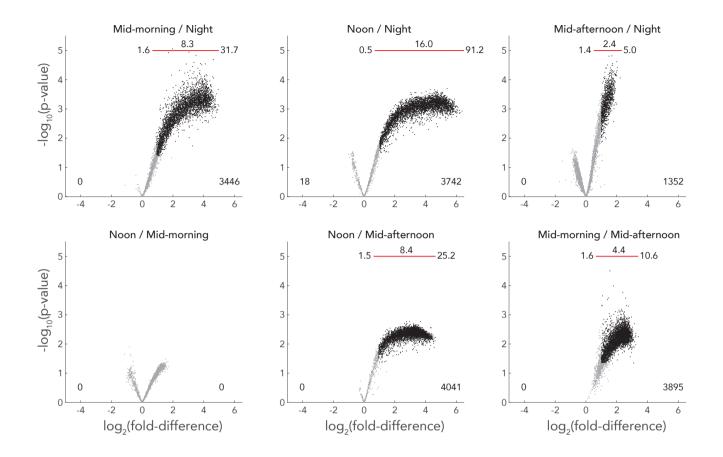


Figure S3. Pair-wise comparison between sample times of bacterial gene expression as transcripts cell⁻¹ in the co-culture experiment. Average, minimumand maximum difference values for differentially expressed genes (black symbols) are shown above the plots. Numbers on the bottom left and right indicate the number of differentially expressed genes (adjusted-p \leq 0.05 and fold-difference \geq 2).

Figure 3

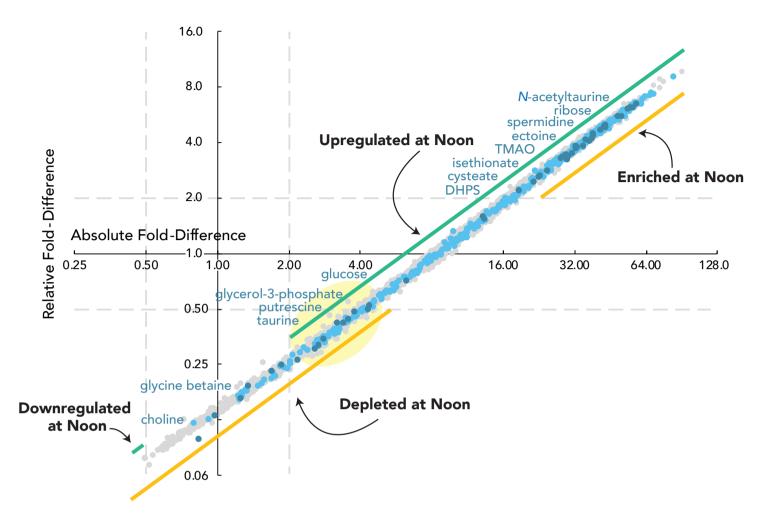


Figure S4. Comparison of fold-difference values for absolute versus relative transcript analysis of noon to night ratios of substrate transporter genes (blue symbols). Absolute analysis (x-axis) represents up- or down-regulation of the number of transcripts per bacterial cell. Relative analysis (y-axis) represents enrichment or depletion as a proportion of the transcriptome. Dark blue symbols indicate the transporter genes in Fig. 2; light blue symbols indicate other transporter genes; grey symbols indicate the remaining *R. pomeroyi* genes. Dashed gray lines mark where fold-difference = 2 on each axis (\log_2 units). The yellow shading highlights genes with transcript inventories per cell that are significantly higher at noon yet account for a significantly lower proportion of the cells' transcriptome.

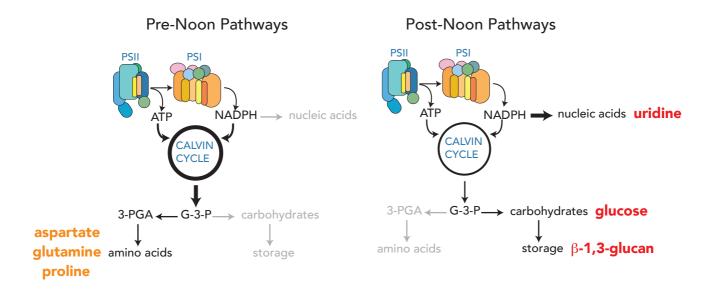


Figure S5. The biochemical pathways hypothesized to dominate marine phytoplankton metabolism pre-noon (left panel) and post-noon (right panel) (Behrenfeld et al. 2008) are good predictors of diel patterns in *T. pseudonana* endometabolite accumulation. Concentrations of aspartate, glutamine, and proline peaked at noon (cluster M-4 metabolites), while concentrations of uridine, glucose, and β -1,3-glucan peaked in mid-afternoon (cluster M-3 metabolites). Temporal endometabolite patterns are shown in Fig. S2. Biochemical pathways are re-drawn from Behrenfeld et al. (2008). G-3-P, glyceraldehyde-3-phosphate; PGA, phosphoglycerate.

(Behrenfeld, M. J., Halsey, K. H. & Milligan, A. J. Phil Trans Royal Soc B: Biol Sci 363, 2687, 2008).

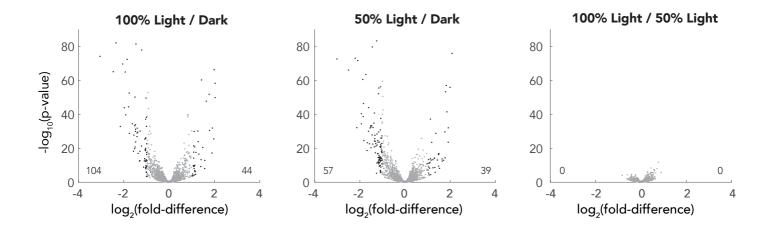


Figure S6. Effects of light exposure on bacterial gene expression as percent of transcriptome. Three light levels corresponding to those at the sample times in the co-culture experiment were examined: 100%, light level at noon; 50%, light level at mid-morning and mid-afternoon; dark, light level at night. Differentially expressed genes with fold-difference of \geq 2 and DESeq2 adjusted-p \leq 0.05 are shown as black symbols.

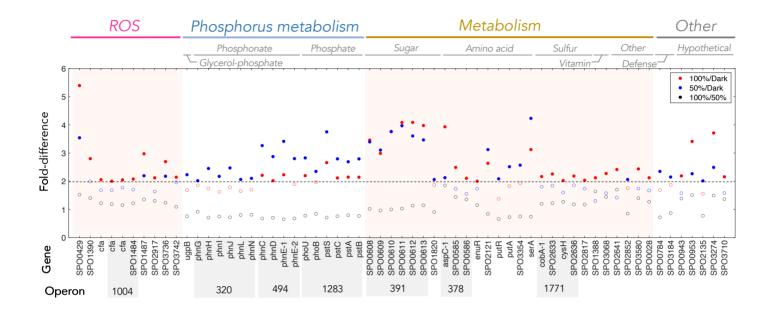


Figure S7. Direct effects of light on gene expression by *R. pomeroyi*. Filled circles indicate differentially expressed genes (fold-difference \geq 2 and DESeq2 adjusted-p \leq 0.05) at 100% light level relative to dark (red symbols), 50% light level relative to dark (blue symbols), and 100% light level relative to 50% light level (black symbols). Open circles with the same color codes represent comparisons that were not significantly different. All 61 genes enriched in the presence of light are included, and detailed gene information is given in Table S2. The horizontal line represents 2 fold-difference.

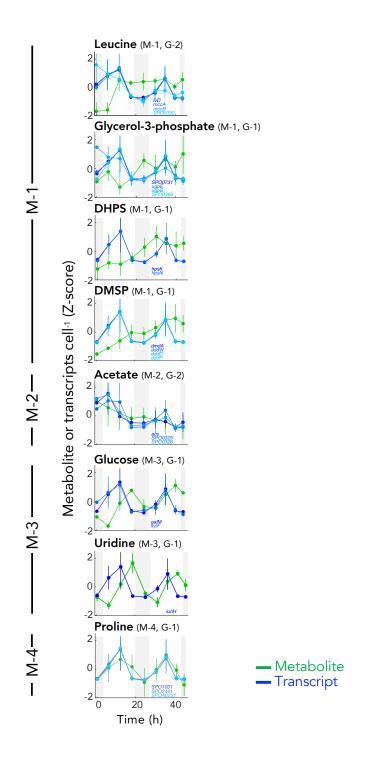


Figure S8. Temporal concentration changes in the eight diatom endometabolites (green) plotted with transcript inventories for all identified genes encoding uptake or catabolism of the same compound (blue shades). Error bars indicate standard deviation (n=3, except for genes in the first night where n=2).

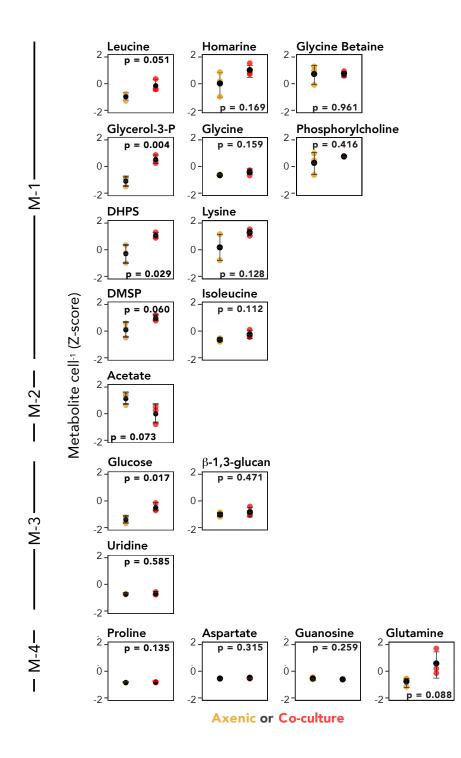


Figure S9. Comparison of endometabolite concentrations in axenic and co-culture treatments in the 15 day study. p values on each plot indicate results of t-tests. Black symbols indicate the mean value (n=3) and error bars indicate standard deviation.

Table S3. Summary of model output for the default and bacteria response models. Pearson correlations and *p* values between experimental and model data for metabolites and corresponding genes are shown. n.a., not applicable.

Metabolite or gei	Pattern category	Default	t model	Recognition model		
			r	p	r	p
Metabolites						
	Leucine	M-1	-0.412	0.033	0.701	0.000
	Glycerol 3-phosphate	M-1	-0.181	0.365	0.554	0.003
	DHPS	M-1	-0.104	0.605	0.725	0.000
	DMSP	M-1	-0.246	0.217	0.824	0.000
	Acetate	M-2	0.580	0.002	n.a.	n.a.
	Glucose	M-3	0.807	0.000	0.913	0.000
	Uridine	M-3	0.887	0.000	n.a.	n.a.
	Proline	M-4	0.567	0.002	n.a.	n.a.
Genes						
Leucine	ivD	G-2	0.22	< 0.05	0.17	< 0.05
	mccA	G-2	0.30	< 0.01	0.21	< 0.05
	SPO0390	G-2	0.01	0.73	0.07	0.18
Glycerol 3-phosphate	SPO0731	G-1	0.34	< 0.01	0.26	< 0.05
	ugpE	G-1	0.32	< 0.01	0.25	< 0.05
	SPO0369	G-1	0.44	< 0.001	0.35	< 0.01
DHPS	hpsK	G-1	0.42	< 0.001	0.33	< 0.01
	hpsN	G-1	0.42	< 0.001	0.34	< 0.01
DMSP	dmdA	G-1	0.42	< 0.001	0.34	< 0.01
	dddW	G-1	0.45	< 0.001	0.36	< 0.01
	dddD	G-1	0.42	< 0.001	0.34	< 0.01
	dddP	G-1	0.44	< 0.001	0.36	< 0.01
Acetate	SPO0325	G-2	0.26	< 0.05	n.a.	n.a.
	SPO0326	G-2	0.29	< 0.01	n.a.	n.a.
Glucose	galM	G-1	0.32	< 0.01	0.31	< 0.01
	xylF	G-1	0.19	< 0.05	0.17	< 0.05
Uridine	iunH	G-1	0.28	< 0.05	n.a.	n.a.
Proline	SPO1031	G-1	0.25	< 0.05	n.a.	n.a.
	SPO2441	G-1	0.24	< 0.05	n.a.	n.a.
	SPOA0231	G-1	0.27	< 0.05	n.a.	n.a.

Table S4. Instrument settings for NMR experiments.

Experiment (program name by Bruker)	Corresponding figure and table	Spectral width/offset (ppm)		Size c	of FID	Number of scans
		f2	f1	f2	f1	
¹ H- ¹³ C HSQC (hsqcetgpprsisp2.2)	Figure 1, 3, S2, S8, and S9	14.2/4.7	40.0/68.0	1024	96	16
	Fig. S1; Table S1	14.2/4.7	159.9/75.0	1024	256	256
¹ H- ¹³ C HSQC-TOCSY (hsqcdietgpsisp.2)	Fig. S1	14.2/4.7	189.9/90.0	1024	256	256
¹ H- ¹³ C HMBC (hmbcetgpl2nd)	Fig. S1	12.0/4.7	140/70.0	5768	390	96

Table S5. Summary of transcriptome sequence data. #reads, raw reads. #QC, number of reads passing quality control. QC%, percent of reads passing quality control. rRNA, number of reads identified as rRNA, %rRNA, percent of reads identified as rRNA, MTST5, number of reads identified as internal standard 5. MTST6, number of reads identified as internal standard 6. MTST_total, sum of MTST5 and MTST6 reads. std%, percent of reads identified as internal standards. #ReadsLeft, mRNA reads remaining for analysis. n.a., not applicable.

ID	Sample	#reads	#QC	QC%	rRNA	rRNA%	MTST5	MTST6	MTST_total	std%	#ReadsLeft
E05	Co-culture experiment, Night1-1	13,498,405	12,363,245	91.59	3,406,623	27.6	166,618	608,592	775,210	6.3	8,181,412
F04	Co-culture experiment, Night1-2	15,502,853	14,168,744	91.39	2,786,395	19.7	140,544	482,014	622,558	4.4	10,759,791
F02	Co-culture experiment, Mid-morning1-1	16,837,562	15,353,979	91.19	1,712,502	11.2	129,664	403,709	533,373	3.5	13,108,104
E01	Co-culture experiment, Mid-morning1-2	17,807,607	16,244,554	91.22	3,132,687	19.3	176,739	576,341	753,080	4.6	12,358,787
E10	Co-culture experiment, Mid-morning1-3	19,910,294	18,205,466	91.44	2,953,724	16.2	115,098	270,503	385,601	2.1	14,866,141
F03	Co-culture experiment, Noon1-1	19,275,856	17,722,932	91.94	1,164,010	6.6	115,767	324,058	439,825	2.5	16,119,097
D08	Co-culture experiment, Noon1-2	19,685,509	18,037,235	91.63	1,825,730	10.1	312,628	990,970	1,303,598	7.2	14,907,907
E02	Co-culture experiment, Noon1-3	19,408,658	17,720,533	91.30	966,890	5.5	81,101	241,754	322,855	1.8	16,430,788
E11	Co-culture experiment, Mid-afternoon1-1	20,885,480	19,054,538	91.23	3,581,342	18.8	324,456	959,900	1,284,356	6.7	14,188,840
E12	Co-culture experiment, Mid-afternoon1-2	17,557,260	16,073,027	91.55	3,914,892	24.4	261,021	719,276	980,297	6.1	11,177,838
E03	Co-culture experiment, Mid-afternoon1-3	16,977,882	15,523,460	91.43	1,406,118	9.1	348,476	1,057,642	1,406,118	9.1	12,711,224
D12	Co-culture experiment, Night2-1	23,851,789	22,079,516	92.57	7,073,693	32.0	233,505	1,014,268	1,247,773	5.7	13,758,050
F07	Co-culture experiment, Night2-2	19,469,653	17,836,736	91.61	3,663,942	20.5	197,821	734,821	932,642	5.2	13,240,152
F09	Co-culture experiment, Night2-3	31,934,931	29,269,343	91.65	5,338,425	18.2	479,384	1,609,432	2,088,816	7.1	21,842,102

D10	Co-culture experiment, Mid-morning2-1	20,554,827	18,824,484	91.58	2,744,962	14.6	186,059	571,690	757,749	4.0	15,321,773
D11	Co-culture experiment, Mid-morning2-2	13,279,747	12,174,740	91.68	1,927,329	15.8	203,698	551,681	755,379	6.2	9,492,032
E04	Co-culture experiment, Mid-morning2-3	14,605,987	13,367,467	91.52	2,215,170	16.6	109,203	347,448	456,651	3.4	10,695,646
E06	Co-culture experiment, Noon2-1	19,722,654	18,019,139	91.36	1,623,225	9.0	136,858	395,528	532,386	3.0	15,863,528
E08	Co-culture experiment, Noon2-2	28,885,375	26,482,283	91.68	1,079,553	4.1	117,326	323,826	441,152	1.7	24,961,578
F06	Co-culture experiment, Noon2-3	21,993,618	20,024,426	91.05	2,301,998	11.5	165,550	518,511	684,061	3.4	17,038,367
E09	Co-culture experiment, Mid-afternoon2-1	22,556,906	20,538,846	91.05	3,499,739	17.0	334,172	1,166,834	1,501,006	7.3	15,538,101
F08	Co-culture experiment, Mid-afternoon2-2	19,472,311	17,798,623	91.40	2,893,773	16.3	191,917	749,108	941,025	5.3	13,963,825
D09	Co-culture experiment, Mid-afternoon2-3	13,658,878	12,514,100	91.62	3,167,132	25.3	266,044	762,316	1,028,360	8.2	8,318,608
E07	Co-culture experiment, Night3-1	18,841,406	17,419,067	92.45	6,766,726	38.8	147,411	492,285	639,696	3.7	10,012,645
F01	Co-culture experiment, Night3-2	15,647,403	14,312,249	91.47	2,959,371	20.7	145,088	638,394	783,482	5.5	10,569,396
F05	Co-culture experiment, Night3-3	16,962,656	15,604,901	92.00	4,147,196	26.6	220,930	803,400	1,024,330	6.6	10,433,375
0-1	Direct light experiment, light level 0%-1	25,586,505	24,300,490	94.97	6,613,045	27.2	n.a.	n.a.	n.a.	n.a.	17,687,445
0-2	Direct light experiment, light level 0%-2	31,663,480	30,051,703	94.91	10,646,884	35.4	n.a.	n.a.	n.a.	n.a.	19,404,819
0-3	Direct light experiment, light level 0%-3	26,282,421	24,902,417	94.75	9,821,337	39.4	n.a.	n.a.	n.a.	n.a.	15,081,080
50-1	Direct light experiment, light level 50%-1	32,174,743	30,533,445	94.90	6,613,045	21.7	n.a.	n.a.	n.a.	n.a.	21,524,552
50-2	Direct light experiment, light level 50%-2	29,926,762	28,405,710	94.92	10,646,884	37.5	n.a.	n.a.	n.a.	n.a.	17,997,524
50-3	Direct light experiment, light level 50%-3	23,998,399	22,748,705	94.79	9,821,337	43.2	n.a.	n.a.	n.a.	n.a.	11,800,777

100-1	Direct light experiment, light level 100%-1	26,526,300	25,152,623	94.82	6,613,045	26.3	n.a.	n.a.	n.a.	n.a.	15,731,031
100-2	Direct light experiment, light level 100%-2	30,378,955	28,845,621	94.95	10,646,884	36.9	n.a.	n.a.	n.a.	n.a.	16,872,089
100-3	Direct light experiment, light level 100%-3	33,568,541	30,855,170	91.92	9,821,337	31.8	n.a.	n.a.	n.a.	n.a.	19,179,745

Modeling Methods

To determine the factors impacting diel metabolite dynamics a simple model of the coculture system was developed. The model consists of three metabolite pools, the phytoplankton endometabolome (P), the medium exometabolome (E), and the bacterial endometabolome (B). The time evolution of these pools was calculated using the following differential equations.

$$\delta_t P = N X - T - R$$
$$\delta_t E = R - U$$
$$\delta_t B = U - C$$

Where N is the metabolite biosynthesis rate, X is the bacterial response mechanism, increasing the metabolite biosynthesis rate in the presence of bacteria by 1.5- or 2-fold, R is release rate from the phytoplankton, and T is rate at which endometabolites are allocated for biomass and energy generation by phytoplankton cells. U represents bacterial uptake of the exometabolome and C represents catabolism of the metabolite within the bacterial metabolome. These differential equations were solved at times steps of 0.1 hours for 10 days using the variable definitions provided below. To simulate the experimental conditions the bacterial term was set to zero until inoculation on day 6.

N is represented by the following equation to account for the effects C-fixation irradiance oscillation around the peak in light intensity.

$$N = \begin{cases} -A\sin\left((t+0.5)*\frac{\pi}{12}+\frac{\pi}{6}\right) + \frac{1}{3}, \ 0 < t \le 16\\ -0.5 \operatorname{atan}(a_1*t-a_1*b_1) + 0.6, \ 16 < t \le (16+H)\\ -0.5 \operatorname{atan}(a_2*t-a_2*b_2) + 0.6, \ (16+H) < t \le 24 \end{cases}$$

Where A represents the amplitude of N, t represents the independent variable time in hours, and H influences the intensity of this oscillation as the length of time, in tenths of an hour, it takes for N to fall to 30% efficiency. To align with the experiment's light-dark cycle the modeled light dark cycle is: dark from 0:00 hours to 08:00 hours, and light from 08:00 hours to 24:00 hours, with peak light intensity at 16:00 hours. The coefficients a and b were solved for as

$$a = \frac{\tan(-2N+1.2) - \tan(-2N_0 + 1.2)}{t - t_0}$$
$$b = \frac{-\tan(-2N+1.2)}{a} + t_0$$

so that the function N is continuous, where N_0 is the initial value of N for each time range and t_0 is the initial time. T was calculated as

$$T = P_0 F_T$$

Where P_0 is the endometabolite concentration at the previous time point and F_T is the fraction of the endometabolite consumed by internal cellular processes during each time step. R was assumed to be release by passive diffusion out of the cell

$$R = F_R(P_0 - E_0G)$$

Where F_R is the fraction of the endometabolite pool that can be released from the cell in each time step and is multiplied by a term representing the diffusion gradient between endometabolome and the exometabolome at the previous time step, E_0 . G accounts for the difference in relative volume between the endometabolome and the exometabolome, relating the pool magnitude to a relative concentration. As an option within the base model R_A allows the cell to increase release when light intensity is high, representing excretion for physiological balance:

$$R_A = a\cos\left(\frac{t\,\pi}{12} + \frac{8\pi}{12}\right) + 1$$

Where *a* is the amplitude. R_A then alters release rate as

$$R = F_R(P_0 - E_0 G) R_A$$

U is assumed to follow Michaelis-Menten kinetics as

$$U = \frac{V_{max} E_0}{k_m + E_0}$$

Were V_{max} is the maximum uptake velocity and k_m is the half saturation constant. Finally, C is represented as

$$C = B_0 F_C$$

Where B_0 is the magnitude of the bacterial endometabolome at the previous time step and F_C is the fraction of the bacterial endometabolite that is consumed in cellular processes each time step.

	P_0	Α	F_T	F_R	G	Vmax	km	Н	X	R _A	а
M1G1Rec	20	0.05	0.002	0.001	0.05	0.67	3	30	2	Yes	0.5
M1G1	20	0.05	0.002	0.001	0.05	0.67	3	30	1	Yes	0.5
M1G2Rec	20	0.05	0.0015	0.0015	0.05	0.65	2	50	2	Yes	0.5
M1G2	20	0.05	0.0015	0.0015	0.05	0.65	2	50	1	Yes	0.5
M2G1	80	0.05	0.0015	0.0055	0.195	0.88	2	50	1	Yes	0.5
GlucRec	80	0.375	0.0015	0.001	0.05	0.8	2	70	2	Yes	0.5
M3G1	20	0.667	0.0055	0.003	0.05	0.74	2	79	1	Yes	1.0
M4G1	20	0.667	0.01	0.0085	0.05	0.75	2	20	1	No	NA
M4G2	20	0.6	0.0165	0.0165	0.05	0.39	1	21	1	No	NA
M2G2	80	0.25	0.0015	0.0035	0.15	0.7	6	65	1	Yes	1.0

Table 1. Variable Model Parameters.

P₀ is the initial phytoplankton endometabolite concentration.

A is the amplitude of diel variation of metabolite synthesis.

 F_T is the fraction of the endometabolite pool consumed by internal cellular processes during each time step.

 F_R represents the baseline fraction of the endometabolite pool released from the cell in each time step.

G influences the strengths of the diffusive gradient between the endometabolome and the exometabolome by accounting for the difference in relative volume, and subsequent concentration, between the pools.

 V_{max} is the maximum uptake velocity of exometabolite by bacteria.

 k_m is the half saturation constant of exometabolite uptake by bacteria.

H influences the intensity of asymmetric carbon fixation as the length of time, in tenths of an hour, it takes for N to fall to 30% efficiency.

X is the optional bacterial recognition response, increasing the metabolite biosynthesis rate in the presence of bacteria.

 R_A represents increased excretion during high illumination for physiological balance, it is an option in the base model.

a is the amplitude of the physiological release function, R_A .