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 Abstract 

 
Flexible behaviour requires cognitive-control mechanisms to efficiently resolve 

conflict between competing information and alternative actions. Whether a global 
neural resource mediates all forms of conflict or this is achieved within domain-

specific systems remains debated. We use a novel fMRI paradigm to orthogonally 
manipulate rule, response and stimulus-based conflict within a full-factorial design. 

Whole-brain voxelwise analyses show that activation patterns associated with these 
conflict types are distinct but partially overlapping within Multiple Demand Cortex 

(MDC), the brain regions that are most commonly active during cognitive tasks. 
Region of interest analysis shows that most MDC sub-regions are activated for all 

conflict types, but to significantly varying levels. We propose that conflict resolution 
is an emergent property of distributed brain networks, the functional-anatomical 

components of which place on a continuous, not categorical, scale from domain-
specialised to domain general. MDC brain regions place towards one end of that 

scale but display considerable functional heterogeneity. 
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Introduction 

 

The human brain maintains stable, yet flexible, behaviour through the employment of 

cognitive control mechanisms (Rougier et al., 2005; Stokes et al., 2017). These 
mechanisms allow information processing to be adjusted relative to situational 

requirements (Dosenbach et al., 2008; Braver et al., 2009). Competing sources of 
information and alternative actions can have conflicting neural representations, which 

compromises task performance (Botvinick et al., 2001). Consequently, a prominent 
function of cognitive control is to efficiently resolve conflict, thereby enabling optimal 
behaviour. 

 
The mechanisms underlying conflict resolution have been widely debated. Broadly 

speaking, there are two distinct classes of model. One class proposes that conflict 
resolution is domain-specific, with different brain regions specialised to process 

distinct sources of conflict (Egner et al., 2007; Notebaert and Verguts, 2008; Akçay 

and Hazeltine, 2011; Kim et al., 2012). From this perspective, multiple, independent 

control mechanisms are thought to operate in a conflict-driven manner, whereby the 

resolution of conflict from one source is independent of conflict from another (Egner, 

2008; Kiesel et al., 2006). Evidence to support this domain-specific perspective has 

come from studies looking at behavioural conflict adaptation, where task 
performance on a given trial improves if the previous trial was ‘high conflict’ 
(Verbruggen et al., 2005; Notebaert and Verguts, 2008; Akçay and Hazeltine, 2011; 

Kim et al., 2012). It has been proposed that control mechanisms are upregulated 
upon initial exposure to conflict in a domain-specific manner, and there is a 

subsequent improvement in task performance (Botvinick et al., 2001). 
 

Manipulating the conditions under which conflict adaptation occurs has been used 
to characterise the nature of these underlying mechanisms. For example, Akçay, and 

Hazeltine (2011) reported that conflict adaptation was evident when high conflict on 
the previous trial was within-type but not across-type. This indicates that conflict-

resolution mechanisms have a degree of dimension specificity. Neuroimaging 
evidence have also supported this hypothesis, showing activity in the superior 
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parietal cortex for stimulus-based conflict vs. the ventral premotor cortex for 
response-based conflict (Egner et al., 2007; Kim et al., 2010). 

 
In direct contrast to the localist perspectives is the hypothesis that a general cognitive 

system processes diverse sources of conflict (Cole and Schneider, 2007; Crittenden 
et al., 2016; Egner et al., 2007; Freitas et al., 2007; Kim et al., 2012). This hypothesis 

accords well with the broader globalist school of thought, which states that cognitive 
functions are rarely attributed to isolated brain regions. Instead, a non-discriminatory 

global cognitive control mechanism could flexibly adapt to resolve diverse sources of 
conflict (Cole and Scheider, 2007; Hsu et al., 2017; Kan et al., 2013). Brain regions 

commonly attributed a global role in conflict resolution include the dorsolateral 
prefrontal cortex (DLPFC), inferior frontal junction, cingulo-opercular network, dorsal 

premotor cortex, pre-supplementary motor area and adjacent dorsal anterior 
cingulate and intraparietal sulcus (Botvinick et al., 2001; Ambrosini and Vallesi, 2017; 

Li et al., 2017; Wu et al., 2020). These regions are consistent with ‘multiple-demand 
cortex’ (MDC) (Duncan 2001, Duncan, 2010), the set of brain regions that is most 

commonly activated across diverse cognitive tasks, that is, regardless of information 
type (Assem et al., 2020; Duncan, 2001; Duncan, 2010). This cortical volume is 

considered to support a ‘task set’ which is maintained throughout the task and is 
responsible for the coordination of processing strategies relative to demands 
(Melcher et al., 2008). 

 
Although conflict adaptation studies often support a domain-specific perspective, 

some have reported cross-domain conflict improvements in task performance, which 
could indicate global control (Kan et al., 2013; Kunde and Wühr., 2006). For example, 

Kan and colleagues (2013) observed conflict adaptation effects between tasks that 
were within-domain (verbal to verbal) and those that were across-domain (perceptual 

to verbal), suggesting that conflict resolution can generalise across different conflict 
types. However, the domain-general hypothesis is primarily supported by 

neuroimaging data. Fan and colleagues (2003) analysed three tasks, each with a 
distinct source of conflict. The results indicated that a global network of regions 

contribute to conflict resolution of any type, but there was also some activity unique 
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to each task. Similarly, Hsu et al., (2017) identified common activity patterns in 
response to conflict from multiple origins, suggesting influence from a domain-

general system.  
 

A limitation though is that conflict resolution mechanisms are assessed using a 
diverse tasks throughout the literature, which impedes comparisons between the two 

classes of model. Stimulus switching, task switching and factorial designs are 
common approaches (Egner, 2008). Thus, although the literature offers evidence for 

both local and global models of conflict resolution, there is no consensus on which is 
correct. Indeed, the two proposed classes of model are not necessarily mutually 

exclusive. It could be the case that MDC sub-regions are recruited for all types of 
conflict, but they operate in conjunction with local conflict resolution mechanisms, 

such as lateral inhibition (Erika-Florence et al., 2014; Hampshire & Sharp, 2015). 
Furthermore, if MDC subregions have greater proximity to different types of 

information input (Shashidhara et al., 2019), then this may be reflected in partial 
dissociations, that is, being recruited en masse, but to varying degrees dependent on 

the functional-anatomical locus of conflict. 
 

Here, we adjudicate between these possibilities by using a novel functional magnetic 
resonance imaging (fMRI) paradigm designed to orthogonally manipulate conflict at 

different stages of the stimulus-rule-response process. The mixed block/event-
related design used motion-coherence, relational rule and Go/No-Go manipulations 

to vary conflict at different stages of the stimulus-response process (Figure 1). The 

participants (14 female and 7 male) received no feedback during the task; therefore, 

the mapping rules were established by a process of instruction-based learning (Cole 
et al., 2013a; Hampshire et al., 2016 & 2019; Ruge and Wolfenstellar, 2013). By 

applying a fully factorial design with discrete switching and trial stages, we map the 
brain regions that are activated by increased conflict within specific domains whilst 

controlling for general difficulty and other confounding task demands. Contrasts and 
conjunction analyses are used to map distinct and common correlates of conflict 

resolution. Focused ROI analyses then test at a finer grain whether MDC sub-regions 
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have uniform or dissociable sensitivities to conflict demands and determine if such 
functional dissociations are absolute or a matter of degree. 

 
Figure 1. Examples of blocks within the task. Block 1 (A.) shows stimulus-response  

mapping rule level 1 (R1) and block 2 (B.) shows level 2/3 (R2/R3).  

 
Participants were initially shown an instruction slide for 16 seconds before being presented with ten 
stimuli, each with a duration of 2.1 seconds, separated by an inter-stimulus interval (fixation cross) of 
0.5 seconds. The stimulus conditions at each trial required the participants to make a choice between 
response A or B (Go or No-Go). Each block finished with a 10 second rest. (A.) Instruction slide and 
example trials for blocks featuring R1 where colour is not a relevant stimulus feature. (B.) Instruction 
slide (incomplete) and example trials for blocks featuring R2/3 where both direction of coherent motion 
and colour are relevant. R3 includes an additional temporal order dependency. (Table 1.) Possible 
stimuli defined by both motion direction and colour, and the corresponding required responses for the 
‘medium’ level along the rule dimension of the task space. (Table 2.) Possible stimuli including an 
additional temporal factor and the corresponding required responses for the ‘high’ depth of rule 
integration along the rule dimension of the task space. 
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Results 

 
Performance accuracy decreases as stimulus and rule interference increase  

 

Mean task performance during imaging acquisition was well above chance. Factorial 
ANOVAs with repeated measures were estimated to examine the main effects of 

stimulus level, rule level and response level and the interaction effect between factors 
on accuracy and response time. For response accuracy (RA), there was a significant 

main effect of stimulus level (F(1,20) =126.47; p<0.001; d = 1.184 stimulus 1>stimulus 

2) and rule level (F(2,19) =32.43; p<0.001; d = 0.055 (rule 1>rule 2); d= 2.98 (rule 2>rule 
3); d = 2.50 (rule 1>rule 3), but not for response level (F(1,20)=0.636; p=0.435; d =0.08 

(response 1>response 2), as depicted in Figure 2A. There was a significant 

interaction between rule and response (F(2,19) =9.884; p=0.001), but not between 
stimulus and rule (F(2,19)=3.254; p=0.061) or stimulus and response (F(1,20)=1.313; 

p=0.265). The three-way interaction was non-significant (F(2,19)=2.066; p=0.154). 
 

Reaction time increases as stimulus, rule and response interference increase 

 

For mean RT data (‘Go’ trials only), the ANOVA identified a significant main effect of 
stimulus level (F(1,20)=222.03; p<0.001; d = 1.13; stimulus 1<stimulus 2) and rule 

level (F(2,19)=234.24; p<0.001; d= 0.40 (rule 1<rule 2); d = 2.65 (rule 2<rule 3); d = 

2.70 (rule 1<rule 3)), and response level (F(1,20)=15.81; p<0.001; d = 0.19; response 

1<response 2), as depicted in Figure 2B. There was a significant interaction between 

stimulus and rule (F(2,19)=22.67; p<0.001) and rule and response (F(2,19)=21.36; 
p<0.001), but not for stimulus and response (F(1,20)=0.00053; p=0.982). The three-
way interaction was non-significant (F(2,19)=3.547; p=0.049). 

 

 

Practice is associated with increased accuracy and decreased reaction times  

 

One-way ANOVA with repeated measures was performed to examine the effect of 

acquisition on performance accuracy and reaction time. There was a significant effect 
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of acquisition on mean performance accuracy (F(2,40)= 12.634; p<0.001; d = 1.03; 

Acquisition 1 < Acquisition 3), as depicted in Table 3 & Figure 2C. Additionally, there 

was a significant effect of acquisition on mean RT (F(2,40)=11.736; p<0.001); d = 0.67; 

Acquisition 1 < Acquisition 3), as depicted in Table 4 & Figure 2D. All three 

acquisitions followed a trend towards faster speeds and increased performance 

accuracy with practice.  
 
Figure 2. Behavioural results 

 
(A) Difference in response accuracy between pairs of levels within the factorial design (Y scale is mean 
difference in accuracy count per block). During stimulus and rule interference, response accuracy is 
greater at a lower task difficulty. (B) Differences in mean RT between pairs of levels within the factorial 
design. During all interference conditions, mean RT is higher at a greater task difficulty. (C) There was 
a significant effect of practice on response accuracy (acquisition 1<3). (D) There also was a significant 
effect of practice on RT (acquisition 1<3). Data displayed as mean difference ± SEM. *=p<0.05, 
**=p<0.01, ***=p<0.001. 
 

Brain Activation during Task Performance 

 
Rule Encoding generates activity in frontoparietal networks  

 
A one-sample t-tests were conducted to examine the responses to rule complexity 
during the instruction phase (instruction level). Contrasts were weighted to display 
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significant activation during instructions for rule level 3 relative to 1. This contrast 
generated one extensive continuous area of activation, which is problematic for 

cluster correction; consequently, the voxelwise filter was increased to p<0.0001 prior 
to FDR cluster correction at p<0.05. A network of brain regions was rendered at this 

heightened threshold, including visual association areas, precuneus and parietal 
cortices, putamen and anterior caudate and the superior, middle and inferior frontal 

gyri (Table 5 & Figure 3Ai-iv). In accordance with past instruction-based learning 

studies, activity was left-lateralised. See Figure 3B for visual comparison to 

instruction-based learning results from Hampshire et al., (2019). 
 
Figure 3. Significant activity during complex - simple rule encoding  

 

(Ai-iv) Activation associated with 
encoding of instruction level 3 minus level 
1 during the current study. (B) Image 
taken with permission from Hampshire et 
al., (2019) and shows sustained, left-
lateralised activation during rule 
encoding. Contrasts rendered with a 
p<0.0001 voxelwise threshold and extent 
threshold FDR=0.05.  
 
 

 

 

 

 

 

 

Distinct regional activation correlates of visual, rule and motor conflict 

 

We mapped the neural correlates of increased conflict for each domain by examining 
the contrasts across levels separately for each domain using t-tests against 0. 

Contrasting high (S2) minus low (S1) visual interference trials rendered a broad 
pattern of occipital and parietal activity that was strongest in areas corresponding to 
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the dorsal stream. Right-lateralised activity was also evident more focally in the frontal 

polar cortex and middle frontal gyrus (Table 6 & Figure 4A). Contrasting high (R3) 

minus low (R1) rule interference trials rendered widespread bilateral increases in 

activity within the dorsolateral prefrontal cortex (DLPFC) and frontal poles, caudate, 
pre-supplementary motor area (pre-SMA), anterior cingulate cortex (ACC) and 

superior parietal lobule (Table 7 & Figure 4B). Contrasting Infrequent minus frequent 

stop trials generated activity in areas within the mid dorsolateral prefrontal, insular, 

ACC and precuneus cortical areas, the anterior caudate, and proximal to left motor 

and somatosensory areas (Table 8 & Figure 4C).  

 
Figure 4. Whole-brain analysis showing regions of significant activity in response to 
each interference condition 

(A) Visual interference. Activity 
spans early visual areas, spreading 

up through the superior parietal 
cortex and into frontal regions, 

consistent with the dorsal visual 

stream. (B) Rule interference. 
Activity spans frontal regions, 

including the DLPFC extending to 
the frontal pole and spreads 

through the caudate, pre-SMA, 
precuneus, ACC and superior 

parietal lobule. (C) Motor Stop 

Frequency. Activity spans the 
frontal regions as well as the insula 

and precuneus cortices, anterior 
caudate and ACC. Contrasts were 

rendered with a p<0.01 voxelwise 
threshold followed by p<0.05 FDR 

cluster correction.  

These results appeared to indicate different patterns of brain activation when conflict 

was increased within the visual, rule and motor domains. However, one possibility 
was that these reflected the ‘imager's fallacy’ (de Hollander et al., 2014; Henson, 

2005) whereby small non-significant differences between conditions can produce 
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visually different projections when a threshold is applied. To address this issue, we 
statistically analysed each contrast relative to the other two. There were areas of 

greater activity for visual conflict relative to rule and motor conflict (Table 9 & Figure 

5A) spanning early visual areas along the dorsal stream to the superior parietal lobes, 

bilaterally. Significant activation for rule conflict relative to visual and motor frequency 

conflict was evident in frontal regions (Table 10 & Figure 5B) including left DLPFC, 

extending to the frontal pole, right posterior DLPFC and the parietal cortex bilaterally. 

Significant activation for motor frequency relative to visual and rule conflict (Table 11 

& Figure 5C) spanned lateral occipital cortex and temporo-parietal junction (TPJ), 

lateral and medial temporal lobes bilaterally, anterior and posterior cingulate, left 
motor cortex, right anterior caudate and putamen bilaterally. Therefore, increased 

visual, rule and motor conflict produced significantly different patterns of network 
activation. 

Figure 5. Contrasting between conflict manipulation effects 
 
A. Visual>Rule+Motor. Activity spans early 
visual areas and spreads up through the 
superior parietal cortex. B. Rule>Visual+Motor. 
Activity spans frontal regions, including the left 
DLPFC extending to the frontal pole, right 
posterior DLPFC and the parietal cortex 
bilaterally. C. Motor Freq>Visual+Rule. Activity 
spans the lateral occipital cortices and 
temporo-parietal junction, bilaterally. Contrasts 
were rendered with a p<0.01 voxelwise 
threshold followed by p<0.05 FDR cluster 
correction. 
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Conjunction Analysis 

 

Stimulus, rule and motor conflict recruit sub-regions of Multiple Demand Cortex 

 

Taken across all three interference conditions, the conjunction analysis rendered a 
network of brain regions primarily within Multiple Demand Cortex, comprising anterior 

insula, middle frontal gyrus (MFG) and superior frontal gyrus (SFG), bilaterally and a 

region within the left inferior parietal cortex (Table 12 & Figure 6). 
 

Figure 6. Conjunction analysis showing regions of significant activity across all three 

conflict conditions (Visual, Rule, Motor).  

 

Activation map depicts activity from the conjunction analysis. This primarily includes regions within 
MDC. Contrasts rendered at p<0.05 FDR cluster corrected. 
 

Focused ROI analysis of Multiple Demand Cortex 

 

It is hard to determine from voxelwise contrasts whether significant differences in 
activation between conditions are statistical or a matter of degree. Similarly, it is not 

possible to determine from conjunction analyses whether commonly activated areas 
are substantially more active for some conditions than others. Consequently, we 

conducted a focused analysis of interest from which MDC is comprised by 
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parcellating an established mask (Fedorenko et al., 2013), produced by analysing 
activation across multiple demanding cognitive tasks, into discrete clusters using our 

in-house developed watershed function (Soreq et al., 2019 & 2020).  
 

Figure 7. Peak beta values across 18 sub-regions of the multiple-demand cortex during 

rule, visual and motor frequency conflict  

Parameter estimates for each MD ROI under increased visual conflict (blue), rule conflict (orange) and 
motor conflict (green). Y axis is in arbitrary activation units. Error bars are SEM. Note that although 
most ROIs were activated by all conflict manipulations, they differed substantially in their relative 
sensitivities.  
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Repeated measures ANOVA with the factors ROI (18) and conflict domain (4) showed 

the expected significant ROI * condition interaction (F(34,646) =4.79; p<0.001) (Figure 

7). There also was a significant main effect of ROI (F(17,323) =4.925; p<0.001) but not 

conflict domain (F(2,38) =0.637; p=0.496). Notably though, when applying liberal one 
tailed t-tests against 0, only one ROI showed a negative coefficient for a contrast, 

and only four of the eighteen ROIs were not significantly activated by all three all three 
types of conflict contrast, these being cerebellum area V, right lateral occipital cortex,  

right precentral gyrus and one of the two regions within right mid dorsolateral frontal 
cortex. Therefore, the dissociations between MD sub-regions primarily reflected 
varying degrees of sensitivity to conflict type. 

 

Discussion 

Our results indicate that neither the globalist nor localist perspective on conflict 
resolution is entirely correct. Regarding the former, voxelwise analysis rendered 

significantly different patterns of activation dependent on the stage of the stimulus-
response process where conflict is manipulated. These different patterns of activity 

were not a consequence of ‘imager's fallacy’ (de Hollander et al., 2014; Henson, 
2005), as demonstrated by direct statistical comparison between the main effect 
contrasts. Nor could they be explained by broader recruitment of brain regions as 

general difficulty increased because there was a three-way dissociation in activity, 
and all three manipulations (visual, rule and motor) were associated with behavioural 

costs during ‘Go’ trials. Furthermore, whilst these activation patterns included areas 
considered to have domain-specific functional roles (e.g., visual processing streams 

and motor cortex), they also included different sub-regions of multiple demand 
cortex. Considered in isolation, these observations appear to accord with the localist 

view that conflict of different types is processed within domain-specialised brain 
systems. 
  

Counter to this interpretation, the conjunction analysis rendered areas of significant 
overlap between the visual, rule and motor conflict contrasts. The application of a 
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factorial design that precisely manipulates different aspects of the same task means 
that it is unlikely that some other confounding process forms the basis of this 

observed conjunction. For example, activity related to basic visual processing and 
motor response, or cognitive processes such as switching and attentional orienting, 

are effectively subtracted out when estimating the main effects. Furthermore, 
significant behavioural interactions were evident within the factorial design, whereby 

concurrent increases in multiple domains produced non-additive costs. These latter 
results accord well with the notion that a common system is involved in resolving 

diverse conflict demands.  
 

Notably though, it would be incorrect to conclude that the brain regions identified in 
the conjunction are specialised for conflict resolution. More specifically, they included 

anterior insula/inferior frontal operculum, anterior cingulate/ pre-supplementary 
motor area, inferior parietal and dorsolateral prefrontal cortex. These all are areas that 

fall within the classic multiple demand cortex volume (Duncan, 2001). MDC is defined 
by its role in diverse cognitively and attentionally demanding tasks (Duncan, 2010). 

Representative examples include tasks that tap processes related to conflict 
resolution such as response inhibition (Darda and Ramsey, 2019; Erika-Florence, 

2014; Hampshire et al., 2010; Li et al., 2006), and switching (Cools et al., 2002; Daws 
et al., 2020; Dove et al., 2000; Hampshire and Owen, 2006), but also other processes 
such as target detection (Hampshire et al., 2008; Hampshire et al., 2010; Linden et 

al., 1999), working memory (Cole and Schneider, 2007; Nyberg et al., 2003; Soreq et 
al., 2019; Stiers et al., 2010), planning (Cole and Schneider, 2007) and reasoning 

(Crittenden et al., 2016; Hampshire et al., 2012). These latter types of task often do 
not have overt conflict demands.  

 
Taken together, we believe that the above evidence accords best with a model 

whereby conflict resolution is an emergent property of interactions that occur across 
distributed networks composed of domain-specific and multiple demand brain 

regions, the latter of which are recruited under a broader range of contexts where 
additional cognitive or attentional resources are required. This simple domain 

specific-domain general interpretation is attractive as it can reconcile the apparent 
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discrepancy between evidence for classic localist and globalist perspectives within a 
network-science framework. 

 
Mechanistically, it seems reasonable to infer that MDC works in a top-down manner 

to resolve conflict between representations that occur within domains specialised 
systems, e.g., the visual processing streams during for visuo-perceptual conflict. 

Such interactions would be expected to produce increased processing load within 
both types of system in parallel. This view also is appealing because it accords well 

with models of cognitive control that are based around the principle of top-down 
modulation with lateral inhibition, which has been long established within the 

electrophysiology literature on attentional control processes (Desimone and Duncan, 
1995).  

 
However, whilst such top-down bias is likely to be part of the mechanism for conflict 

resolution, we argue that this view still does not fully explain the pattern of results 
observed here. Conflict may well occur within MDC, for example, rule conflict only 

activated MDC. Coding also is evident for relevant stimuli and responses within MDC 
as shown by human multivariate pattern analysis of imaging data (Li et al., 2007; Rao 

et al., 1997; Woolgar et al., 2011a; Woolgar et al., 2011b) and finer grained multi-unit 
analysis of the non-human primate analogues of MDC (Duncan, 2001; Freedman et 
al., 2001; Hoshi et al., 1998; Sigala et al., 2008). 

 
More problematic for this view are the results of the ROI analyses, which focused on 

the sensitivity of MDC sub-regions to the different conflict manipulations. Each of the 
three interference conditions recruited almost all 18 MDC sub-regions, but to 

substantially varying degrees. Consequently, from a functional standpoint, it is more 
accurate to infer that MDC responds to conflict of different types in a coordinated but 

heterogeneous manner. One explanation for such multi-way dissociations could be 
that MDC sub-regions have more direct access to different types of information; 

therefore, they respond to varying levels based on the functional-anatomical locus of 
the conflict (Assem et al., 2020; Duncan, 2001; Duncan, 2010). Another, non-mutually 
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exclusive, interpretation is that MDC is able to support diverse tasks in part because 
its sub-regions operate in different configurations.  

 
In this respect, an interesting parallel can be drawn to our recent work investigating 

the functional-anatomical correlates of working memory (WM) processes (Soreq et 
al, 2019). Working memory studies also have previously polarised the debate 

between localist versus globalist perspectives. In line with the present study, we 
found that one-to-one mapping of specialist regions were better described as 

prominent features of wider, multivariate activity patterns within MDC. This led us to 
propose a network coding perspective whereby WM visual domains and sub-

processes are classifiable by distinct functional profiles, including within MDC. 
Relatedly, a study by Lorenz et al, (2018) identified distinct, functional activation 

profiles for two networks within MDC (the dorsal frontoparietal network (FPN) and 
ventral FPN) within a multivariate task space.  

 
This balance within MDC of global recruitment, and internal activation patterns that 

vary according to process or information content, has been observed in several other 
contexts, including at a fine grain for rule mapping (Woolgar et al., 2011b). Such 

flexibility is also evident in connectivity both with MDC, and between MDC and other 
brain regions (Cole et al., 2013b; Soreq et al., 2019 & 2020). As opposed to 
undermining the MDC hypothesis, we consider these observations to further 

emphasise the highly flexible nature of this global neural resource.  

In conclusion, we propose that the ubiquitous process of conflict resolution is best 

considered as an emergent property of distributed networks, the functional-
anatomical components of which sit on a continuous, not categorical, scale from 

domain-specialised to domain general. Brain regions that typically are labelled as 
MDC place towards one end of that scale; however they still have considerable 

functional heterogeneity, and substantial variability in their degree of domain 
generality, with anterior insula/inferior frontal operculum and anterior cingulate/pre-

supplementary motor areas having amongst the most uniform sensitivity to different 
types of conflict demand. In this manner, the evidence for localist and globalist 

perspectives on conflict resolution, and the notion of a global resource within MDC, 
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may be reconciled within a contemporary network science framework. Looking 
forward, a further challenge exists in understanding how dynamic interactions 

throughout these networks enable different types of conflict resolution, and whether 
these can be augmented in targeted ways using training or stimulation. The full 

factorial design reported here may also form a good basis for causal modelling and 
higher temporal resolution analyses of conflict resolution mechanisms.  

 

Materials and Methods 

 

Task Design 

 

We developed a novel stimulus-response paradigm with a mixed block/event-related 
design that used motion-coherence, relational rule and Go/No-Go manipulations to 

vary conflict at different stages of the stimulus-response process (Figure 1). More 

specifically, on each trial, the participant had to discriminate the dominant direction 

of movement of a panel of dots, and based on a mapping rule of varying complexity, 
either make or withhold a motor response.  
 

The total duration of the task was 31 minutes 12 seconds. Three independent 
acquisitions of the task were completed within this time. Each acquisition had a 

duration of 10 minutes 24 seconds. The task was run in 36 blocks, with 12 blocks 
completed in each of the three acquisitions, each block with a duration of 52 seconds. 

At the start of each block, an instruction slide with the rule and responses was shown 
and the participant had sixteen seconds to encode it. All instructions were presented 

as text. Subsequently, ten trials were presented with a fixed duration of 2.1 seconds, 
followed by an interstimulus-interval of 0.5 seconds. A fixation cross was displayed 

during the interstimulus interval. At the end of each block, there was a rest period of 
ten seconds before the start of the next block, enabling task-related activity to be 

estimated relative to a resting baseline (Figure 1). Participants received no feedback 

during the task; therefore, the mapping rules were established by a process of 
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instruction-based learning (Cole et al., 2013a; Hampshire et al., 2016 & 2019; Ruge 
and Wolfenstellar, 2013).  

 
The task parameters were manipulated in a three-dimensional full factorial design that 

introduced conflict for visual discrimination (2 levels), mapping rule selection (3 levels) 
and motor-response generation (2 levels). Each level was sampled 16 times for visual 

and motor factors, and 12 times for the rule factor.  
 

Visual conflict was manipulated across two levels using dot-motion stimuli. Each 
stimulus consisted of 500 dots moving across a square field of view. On each trial, a 

larger proportion of dots moved in one direction (either up or down), with the 
remainder moving in the opposite direction. The proportion of dots moving in the non-

dominant direction was either low (0.8:0.2) or high (0.6:0.4), with the latter condition 
designed to produce more conflict between representations of up and down motion.  

 
The level of conflict between alternative mapping rules was varied across three levels 

by manipulating the degree to which their sub-rules overlapped. In the low 
interference condition the direction of motion mapped uniquely to the motor 

response; e.g., if the dominant direction of the dots was upwards and the participant 
was required to make a motor response then this would be classed as a ‘Go’ trial. 
Alternatively, if the dominant direction was downwards and the participant was 

required to withhold a motor response then this would be classed as a ‘No-Go’ trial. 

In this condition, the dots were all coloured white (Figure 1A). In the medium 

condition, the dots were coloured either red or cyan and the mapping was dependent 

on the conjunction of direction and colour (Table 1; Figure 1B). This makes it harder 

to resolve between the alternative mapping rules given the stimulus features 

considered individually map to both response conditions. The dot conditions (the 
dominant direction of motion and the direction-colour combinations) were pseudo-
randomised to ensure a given stimulus condition or required response occurred no 

more than three times in succession. The high rule-conflict condition was the same 
as the medium condition but with the addition of a temporal component such that 

the conjunction of stimulus features also mapped to both response conditions (Table 
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2; Figure 1B). Specifically, as opposed to the colour-motion combinations mapping 

to a specific response, participants were required to either repeat the response they 
gave during the previous trial (t-1) or select the alternate response (i.e. Go if the 

previous trial was No-Go). At this harder level, for the first trial of each block, 

participants were required to respond as per the medium rule level (Table 1). 

 
To examine the level of motor conflict, the frequency of Go vs No-Go responses was 

varied from either 3:7 or 7:3. This was implemented based on the hypothesis that 
omission of a response in the No-Go condition should be more difficult if the motor 
responses are frequent and therefore prepotent (Nieuwenhuis et al., 2003, Hampshire 

and Sharp, 2015). 
 
Prior to data collection, participants read a written protocol and were given the 
opportunity to ask questions about the task, to ensure they fully understood the 

requirements. Following this, participants completed three shortened practice 
acquisitions outside of the scanner, each containing two or three blocks. Each 
shortened practice acquisition gave an example of one task dimension changing over 

all levels of interference, whilst the levels of the other two dimensions remained 
constant, and at the simplest level, throughout. Following this, participants 

completed two full practice acquisitions of the task before entering the scanner. The 
total time for the practice phase was 26 minutes 52 seconds.  

 

Behavioural analysis 

 
The task was programmed using Psychtoolbox for MATLAB (Brainard, 1997). Three 

variants of the task paradigm were tested prior to arriving at the design reported here. 
This was to (1) identify the optimal amount of practice to produce consistent 

performance across runs, (2) ensure that the task produced the desired behavioural 
interference effects, whilst (3) confirming that participants could perform the more 

difficult task conditions above chance level. Mean reaction time (RT) (calculated as 
the time between trial onset and button response during ‘Go’ trials) and response 

accuracy (RA) (calculated as the number of correct responses within 10 trials) were 
computed using MATLAB (MathWorks). A factorial analysis of variance (ANOVA) was 
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performed, using RT and RA, to test for a main effect of stimulus level, rule level or 
response level and for interaction effects between factors on both measures. A one-

way ANOVA with repeated measures and Tukey HSD post-hoc test were performed 
to examine if there was an effect of run on mean RT and/or RA and therefore to 

determine the optimum length of the practice phase. Effect size for the pairwise 
comparisons was calculated using η2 (η2 = between groups sum of squares / total 

sum of squares) and compared to Cohen’s d.  

 

fMRI acquisition and preprocessing  

 

21 individuals (14=female, mean age=23.10 yrs, SD=0.77, range=21-25 yrs) 

performed the interference task for 31 minutes and 12 seconds. Scanning was 
undertaken on a 3T Siemens Verio (Siemens, Erlangen, Germany), using a 32-channel 

head coil. Functional images were collected using the following parameters: T2*-
weighted gradient-echo, echoplanar imaging (EPI) sequence, TR=2s, TE=30ms, voxel 

size=3mm³, FA=80°, FOV=192×192×105 mm, 35 slices, GRAPPA=2. A T1-weighted 
image was also acquired using an MPRAGE sequence, TR=2.3s, TE=2.98ms, 

TI=900ms, voxel size=1mm³, FA=9°, FOV=256×256 mm, 256×256 matrix, 160 slices, 
GRAPPA=2. FMRI data were preprocessed using FSL (Jenkinson et al., 2012) and 

SPM12 (Ashburner et al., 2014) tools. In brief, images were motion corrected using 
MCFLIRT (Jenkinson et al., 2002) and coregistered to the BET (Smith, 2002) T1-image 

using boundary-based registration (BBR) (Greve and Fischl, 2009). We then used  
DARTEL to generate a study template and to calculate the structural data warps to 
MNI space and then applied these to normalise the fMRI images. Normalised images 

were smoothed with a 5mm full-width at half maximum Gaussian kernel. 
 

Image Analysis 

 

Single subject task-evoked brain activation patterns were estimated by general linear 
modelling (GLM) in SPM12. 36 predictor variables were generated from the relevant 

task events via the convolution of task onset timings and durations with the 
haemodynamic response function (HRF), providing estimates of event related brain 
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activation per unit time. These included instructions for blocks 1-12, ‘Go’ trials for 
blocks 1-12 and ‘No-Go’ trials for blocks 1-12. Rotations and translations in the X, Y 

and Z planes, calculated during motion correction, were included as six nuisance 
variables. 

 
Contrast images were generated for group level analysis. These were: instruction 

difficulty (all hard minus easy instructions), rule complexity (all complex minus simple 
mapping trials (R3-R1)), visual discriminability (all hard minus easy stimulus level trials 

(S2-S1)) and motor response frequency (all infrequent minus all frequent ‘No-Go’ 
trials). 

 
Contrast images from the individual subject models were examined at the group level 

using one sample t-tests, one-way ANOVAs and factorial designs in SPM12. Group-
level analyses were FDR cluster correction for the whole-brain volume at p<0.05 after 

applying a voxelwise filter of p<0.01. Activation labels were determined from MNI 
coordinates using the Harvard-Oxford structural atlas in FSLeyes (Jenkinson et al., 

2012). Common regions of activation in response to all three interference conditions 
were determined using conjunction analysis with whole brain cluster correction at 

FDR p<0.05. Statistical maps were thresholded voxelwise at p<0.01 uncorrected 
prior to conjunction. 
 

For the Region-of-interest (ROI) analysis, the statistical Multiple Demand Cortex 
volume published by Fedorenko et al. (2013) was used to define both MDC (i.e. task 

active) and DMN (i.e. task negative) ROI sets. Using our in-house fusion-watershed 
toolbox (Soreq et al., 2019 & 2020 Nat Comms) both functional activation maps were 

segmented into discrete clusters. A 150 voxels threshold was applied with a 6mm 
neighbourhood radius around the local peak maxima. At the end of the clustering 

stage small ROI’s (<50 voxels) were merged with bigger neighbours. Mean contrast 
values for all voxels within each ROI were averaged and extracted for each subject. 

These ROI activation estimates were analysed using repeated measures ANOVA in 
SPSS. 
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Supplementary Tables 
 
 
 
Table 3. Paired t-tests to determine the effect of run on response accuracy 
 
 
 95% Confidence 

Interval of the 
Difference 

 

Run Mean Std. 
Deviation 

Std. 
Error 
Mean 

Lower Upper t df Sig. (2-
tailed) 

1 -.24206 .46837 .10221 -.45526 -.02886 -2.368 20 .028 

2 -.56745 .58844 .12841 -.83530 -.29960 -4.419 20 .000 

3 -.32539 .49293 .10757 -.54977 -.10101 -3.025 20 .007 
 
 
Table 4. Paired t-tests to determine the effect of run on response time 
 
 
 95% Confidence 

Interval of the 
Difference 

 

Run Mean Std. 
Deviation 

Std. 
Error 
Mean 

Lower Upper t df Sig. (2-
tailed) 

1 .01694 .07716 .01684 -.01818 .05206 1.006 20 .326 

2 .07218 .07004 .01528 .04030 .10406 4.722 20 .000 

3 .05524 .06662 .01454 .02492 .08557 3.800 20 .001 
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Table 5. Peak values, MNI coordinates and corresponding brain regions for rule 
encoding. 
  

  MNI Coordinates   

Peak T X {mm} Y {mm} Z {mm} Corresponding Brain Region 

7.98 -4 -68 40 Precuneus (L) 

4.28 5 -72 36 Precuneus (R) 

5.72 -10 -64 64 Superior Lateral Occipital Cortex (L) 

9.34 18 -68 62 Superior Lateral Occipital Cortex (R) 

4.59 -40 -84 -6 Inferior Lateral Occipital Cortex (L) 

4.68 40 -84 -2 Inferior Lateral Occipital Cortex (R) 

6.06 -22 -82 -14 Occipital Fusiform Gyrus (L) 

3.93 22 -82 -14 Occipital Fusiform Gyrus (R) 

6.28 -30 -58 56 Superior Parietal Lobule (L) 

6.01 22 -54 58 Superior Parietal Lobule (R) 

4.90 -18 18 -4 Putamen (L) 

6.37 18 18 -4 Putamen (R) 

4.73 -18 22 2 Anterior Caudate (L) 

3.79 18 22 2 Anterior Caudate (R) 

8.01 -6 -68 8 Intracalcarine Sulcus (L) 

6.15 6 -68 8 Intracalcarine Sulcus (R) 

6.28 -10 -58 -2 Lingual Gyrus (L) 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 20, 2020. ; https://doi.org/10.1101/2020.11.19.388231doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.19.388231
http://creativecommons.org/licenses/by-nd/4.0/


 

33 

6.83 18 -52 0 Lingual Gyrus (R) 

7.03 -4 14 46 Paracingulate Gyrus (L) 

3.67 4 14 46 Paracingulate Gyrus (R) 

4.98 -48 34 8 Inferior Frontal Gyrus (L) 

4.39 -28 32 34 Middle Frontal Gyrus (L) 

4.70 36 4 52 Middle Frontal Gyrus (R) 

5.26 -20 6 66 Superior Frontal Gyrus (L) 
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Table 6. Peak values, MNI coordinates and corresponding brain regions for visual 
difficulty. 
  

  MNI Coordinates   

Peak T X {mm} Y {mm} Z {mm} Corresponding Brain Region 

9.01 -32 -84 20 Superior Lateral Occipital Cortex (L) 

8.76 34 -80 18 Superior Lateral Occipital Cortex (R) 

6.73 -42 -78 12 Inferior Lateral Occipital Cortex (L) 

7.58 40 -74 14 Inferior Lateral Occipital Cortex (R) 

4.43 -14 -58 58 Superior Parietal Lobule (L) 

6.04 38 -36 48 Superior Parietal Lobule (R) 

4.25 -40 18 -4 Insula Cortex (L) 

4.54 42 16 -2 Insula Cortex (R) 

3.10 -24 -50 -10 Temporal Occipital Fusiform Cortex (L) 

3.82 32 -50 -8 Temporal Occipital Fusiform Cortex (R) 

5.36 -4 24 42 Paracingulate Gyrus (L) 

4.68 4 24 42 Paracingulate Gyrus (R) 

2.97 -46 16 4 Inferior Frontal Gyrus (L) 

3.12 -48 30 34 Middle Frontal Gyrus (L) 

5.67 52 36 28 Middle Frontal Gyrus (R) 

4.25 -32 26 -2 Frontal Orbital Cortex (L) 

3.27 -40 14 8 Frontal Operculum Cortex (L) 

3.41 42 14 2 Frontal Operculum Cortex (R) 
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3.75 -44 40 20 Frontal Pole (L) 

5.41 52 42 20 Frontal Pole (R) 
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Table 7. Peak values, MNI coordinates and corresponding brain regions for rule 

difficulty. 

 MNI Coordinates  

Peak T X {mm} Y {mm} Z {mm} Corresponding Brain Region 

6.58 -38 -60 50 Superior Lateral Occipital Cortex (L) 

4.68 38 -60 50 Superior Lateral Occipital Cortex (R) 

8.33 -28 -54 46 Superior Parietal Lobule (L) 

4.10 38 -48 54 Superior Parietal Lobule (R) 

8.41 -44 -46 56 Posterior Supramarginal Gyrus (L) 

3.47 48 -44 58 Posterior Supramarginal Gyrus (R) 

7.13 -4 4 66 Supplementary Motor Cortex (L) 

8.44 -4 -66 56 Precuneus Cortex (L) 

7.38 1 -64 46 Precuneus Cortex (R) 

9.28 -2 16 48 Paracingulate Gyrus (L) 

5.15 10 14 46 Paracingulate Gyrus (R) 

5.68 -30 24 2 Insula Cortex (L) 

4.68 -18 14 10 Caudate (L) 

4.50 18 22 4 Caudate (R) 

3.35 -10 22 28 Anterior Cingulate Cortex (L) 

3.84 6 28 28 Anterior Cingulate Cortex (R) 

6.09 -44 6 22 Central Opercular Cortex (L) 
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4.11 -54 -58 -10 Inferior Temporal Gyrus (L) 

4.12 -58 -56 4 Middle Temporal Gyrus (L) 

5.06 36 26 0 Frontal Orbital Cortex (R) 

4.90 46 18 0 Frontal Operculum Cortex (R) 

4.78 -52 18 0 Inferior Frontal Gyrus (L) 

4.78 -38 28 46 Middle Frontal Gyrus (L) 

4.73 44 28 32 Middle Frontal Gyrus (R) 

9.10 -26 14 60 Superior Frontal Gyrus (L) 

6.16 24 10 66 Superior Frontal Gyrus (R) 

8.81 -44 40 18 Frontal Pole (L) 

3.37 36 42 8 Frontal Pole (R) 
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Table 8. Peak values, MNI coordinates and corresponding brain regions for motor 
response frequency. 
  

 MNI Coordinates  

Peak T X {mm} Y {mm} Z {mm} Corresponding Brain Region 

4.26 -48 -76 -2 Inferior Lateral Occipital Cortex (L) 

4.06 52 -68 2 Inferior Lateral Occipital Cortex (R) 

3.79 -26 -84 32 Superior Lateral Occipital Cortex (L) 

3.81 34 -80 38 Superior Lateral Occipital Cortex (R) 

4.22 -34 -48 50 Superior Parietal Lobule (L) 

3.76 26 -54 64 Superior Parietal Lobule (R) 

5.20 -20 -58 6 Precuneus Cortex (L) 

5.19 18 -58 8 Precuneus Cortex (R) 

5.38 -14 20 0 Caudate (L) 

7.54 8 18 2 Caudate (R) 

7.05 30 -48 -8 Temporal Occipital Fusiform Cortex (R) 

5.89 -26 -54 6 Lingual Gyrus (L) 

4.09 22 -52 -2 Lingual Gyrus (R) 

4.28 -2 -34 26 Posterior Cingulate Gyrus (L) 

4.28 2 -32 28 Posterior Cingulate Gyrus (R) 

4.08 -16 -6 62 Superior Frontal Gyrus (L) 

3.32 24 -2 66 Superior Frontal Gyrus (R) 

3.83 -28 46 12 Frontal Pole (L) 
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2.96 22 60 -6 Frontal Pole (R) 

 
 
 
 
 
 
Table 9. Peak values, MNI coordinates and corresponding brain regions for visual 
discriminability relative to the rule and motor dimensions. 
 

  MNI Coordinates   

Peak T X {mm} Y {mm} Z {mm} Corresponding Brain Region 

4.24 -18 -92 -2 Occipital Pole (L) 

4.72 28 -94 14 Occipital Pole (R) 

5.48 -32 -90 18 Superior Lateral Occipital Cortex (L) 

4.81 24 -64 38 Superior Lateral Occipital Cortex (R) 

4.64 -20 -60 58 Superior Parietal (L) 

4.24 22 -58 58 Superior Parietal (R) 
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Table 10. Peak values, MNI coordinates and corresponding brain regions for rule 
difficulty relative to the visual and motor dimensions. 
  

  MNI Coordinates   

Peak T X {mm} Y {mm} Z {mm} Corresponding Brain Region 

3.47 0 -60 -4 Cerebellum (R) 

4.44 -48 -50 54 Parietal Cortex (L) 

4.3 -2 4 60 SMA (L) 

5.09 -4 -64 52 Precuneus (L) 

3.72 -18 58 8 Lateral Orbitofrontal Cortex (L) 

3.61 -46 36 24 Mid dorsolateral PFC (L) 

4.89 -42 26 38 Posterior Middle Frontal Gyrus (L) 

6.16 -26 14 60 Posterior Superior Frontal Cortex (L) 

4.23 28 16 46 Posterior Superior Frontal Cortex (R) 
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Table 11. Peak values, MNI coordinates and corresponding brain regions for motor 
response frequency relative to the visual and rule dimensions. 
  

  MNI Coordinates   

Peak T X {mm} Y {mm} Z {mm} Corresponding Brain Region 

6.68 8 18 2 Anterior Caudate (R) 

5.94 14 12 -6 Putamen (R) 

5.37 -20 12 -8  Putamen (L) 

4.8 0 4 38 Cingulate Cortex (R) 

4.39 2 18 32 Anterior Cingulate Cortex (R) 

4.22 6 36 16 Anterior Cingulate Cortex (R) 

5.85 -4 -76 30 Cuneus (L) 

5.12 -40 -16 10 Temporal Lobe (L) 

5.22 50 -30 20 Temporal Parietal Junction (R) 

5.12 -50 -20 18 Temporal Parietal Junction (L) 

4.38 -26 -56 -2 Lingual Gyrus (L) 

4.6 22 -58 10 Precuneus (R) 

4.06 28 -44 -16 Fusiform (R) 

5.42 -16 -68 10 Intracalcine Cortex (L) 

5.41 20 -64 28 Precuneus (R) 

5.02 -44 2 8 Central Operculum/Insular (L) 

4.03 -44 8 -8 Insula Cortex (L) 
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4.16 42 2 10 Central Operculum/Insular (R) 

4.51 -62 -48 20 Supramarginal Gyrus (L) 

4.85 62 -42 22 Supramarginal Gyrus (R) 
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Table 12. Peak values, MNI coordinates and corresponding brain regions for the 
conjunction of average activity across all interference conditions. 
  

  MNI Coordinates   

Peak T X {mm} Y {mm} Z {mm} Corresponding Brain Region 

3.99 -32 -59 60 Superior Occipital Cortex (L) 

6.86 -25 -54 46 Superior Parietal Lobule (L) 

5.74 -45 -43 46 Supramarginal Gyrus (L) 

4.64 8 34 30 Paracingulate Gyrus (R) 

6.31 -6 19 46 Paracingulate Gyrus (L) 

4.95 30 20 10 Insula Cortex (R) 

5.13 -38 16 -1 Insula Cortex (L) 

3.53 -48 -30 47 PostCentral Gyrus (L) 

4.94 8 31 23 Anterior Cingulate Gyrus (R) 

5.85 45 20 2 Frontal Operculum (L) 

5.28 -36 18 6 Frontal Operculum (R) 

4.69 -46 18 6 Inferior Frontal Gyrus (L) 

4.05 52 18 28 Inferior Frontal Gyrus (R) 

3.79 49 20 44 Middle Frontal Gyrus (R) 

6.14 2 16 59 Superior Frontal Gyrus (R) 

4.25 40 36 22 Frontal Pole (R) 
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