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Abstract Current attempts at methodological reform in sciences come in response to an overall9

lack of rigor in methodological and scientific practices in experimental sciences. However, most10

methodological reform attempts suffer from similar mistakes and over-generalizations to the ones11

they aim to address. We argue that this can be attributed in part to lack of formalism and first12

principles. Considering the costs of allowing false claims to become canonized, we argue for formal13

statistical rigor and scientific nuance in methodological reform. To attain this rigor and nuance, we14

propose a five-step formal approach for solving methodological problems. To illustrate the use and15

benefits of such formalism, we present a formal statistical analysis of three popular claims in the16

metascientific literature: (a) that reproducibility is the cornerstone of science; (b) that data must not17

be used twice in any analysis; and (c) that exploratory projects imply poor statistical practice. We18

show how our formal approach can inform and shape debates about such methodological claims.19

20

Introduction21

Widespread concerns about unsound research practices, lack of transparency in science, and low22

reproducibility of empirical claims have led to calls for methodological reform across scientific23

disciplines (Begley and Ioannidis, 2015; Donoho et al., 2008; Ioannidis et al., 2009; Open Science24

Collaboration, 2015). The literature on this topic has been termed “meta-research” (Ioannidis, 2018)25

or “metascience” (Schooler, 2014) and has had policy impact on science agencies, institutions, and26

practitioners (Peterson and Panofsky, 2020). Perhaps surprisingly, proper evaluation of method-27

ological claims in meta-research –understood as statements about scientific methodology that are28

either based on statistical arguments or affect statistical practice– has received little formal scrutiny29

itself. Policies are proposed with little evidentiary backing and methods which are suggested with30

no framework for assessing their validity or evaluating their efficacy (e.g., see policy and methods31

proposals in Chambers and Tzavella, 2020; Lakens et al., 2018; Lee et al., 2019; Munafò et al.,32

2017; Nosek et al., 2012;Wagenmakers et al., 2012).33

For example, reform methodologists have criticized empirical scientists for: (a) prematurely34

presenting unverified research results as facts (McShane et al., 2019); (b) overgeneralizing results35

to populations beyond the studied population (Henrich et al., 2010); (c) misusing or abusing36

statistics (Gelman and Loken, 2013; Simmons et al., 2011); and (d) lacking rigor in the research37

endeavor that is exacerbated by incentives to publish fast, early, and often (Munafò et al., 2017;38

Nosek et al., 2012). However, the methodological reform literature seems to us to be afflicted39

with similar issues: we see premature claims that untested methodological innovations will solve40

replicability/reproducibility problems; conditionally true statements about methodological tools41

presented as unconditional, bold facts about scientific practice; vague or misleading statistical42
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statements touted as evidence for the validity of reforms; and we are concerned about an overall43

lack of rigor in method development that is exacerbated by incentives to find immediate solutions to44

the replication crisis (see also Peterson and Panofsky, 2020, for an overall critique of the dominant45

epistemology of metascience). This is a reason for concern: we expect methodological reforms to46

be held to standards that are at least as rigorous as those we expect of empirical scientists. Should47

we fail to do so, we run the risk of repeating the mistakes of the past and creating new scientific48

processes that are no better than those they replace. There is an uncomfortable symmetry to this,49

but also an opportunity: reformers are in an opportune position to take criticism and self-correct50

before allowing false claims to be canonized as methodological facts (Nissen et al., 2016).51

In this paper, we advocate for the necessity of statistically rigorous and nuanced arguments52

to make proper methodological claims in the reform literature. Because methodological claims53

are either based on statistical arguments or affect statistical practice, they need to be statistically54

correct. Statistics is a formal science whose methods follow from probability calculus to be valid,55

and this validity is established either by mathematical proofs or by simulation proofs before being56

advanced for the use of scientists. Formalization allows us to subject our verbal intuitions to scrutiny,57

revealing holes, inconsistencies, and undeclared assumptions and to make precise, transparent58

claims that hold under well-specified assumptions (van Rooij and Blokpoel, 2020).59

The emphasis and novelty of our current work is in demonstrating by example how formal rigor60

can be achieved when proposing methods in metascience: by motivating them from first principles,61

and using fundamental mathematical statistics machinery to provide their proofs. Herfeld and62

Ivanova (2020) talk about first principles in science as fundamental building blocks and define them63

as follows: “Depending on the case, they can be formal axioms, theoretical postulations, basic64

propositions, or general principles that have a special status and role to play in the theory in which65

they are embedded.” Methodological reform and metascience currently lack a theoretical foun-66

dation (Peterson and Panofsky, 2020), are ambiguous about their first principles, and may benefit67

from formalism in establishing these building blocks. A formal approach to solving methodological68

problems can be summarized as follows.69

Formal approach to solving methodological problems:70

0. Conception. An informal problem statement and a proposed solution to that problem, often71

expressed non-technically.72

1. Definitions. Identification of variables, population parameters, and constants involved in the73

problem, and statistical model building using these quantities, with explicitly stated model74

assumptions.75

2. Formal problem statement. Mathematical propositions or algorithms positing methodolog-76

ical claims.77

3. Formal result. Mathematical or simulation-based proofs that interrogate the validity of the78

statements in step 2.79

4a. Demonstrations. If the statements are valid, examples showing their relevance in application.80

4b. Extensions and limitations. Assessing methodological claims’ computational feasibility,81

robustness, and theoretical boundaries in domain-specific applications.82

5. Policy making. Recommendations on how methods newly established through steps 2-4 can83

be useful in practice.84

Regardless of which claims they support or oppose to, most popular methodological proposals85

in the reform literature start with step 0, and jump to step 5 without formal results or much86

evidence of work in intermediate steps. This is in stark contrast with proper formal approach in87

statistical method development. Practical value of a method established by steps 4b and 5 may88

require domain-specific knowledge and might not be tackled well until after a method is introduced.89

However, in proper method development these steps are undertaken only if steps 1-4a can actually90

provide justifications for or against a methodological proposal at the onset.91

To show why formalism is essential in establishing the validity of methodological proposals and92
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how informal approaches making the jump from step 0 to 5 might misinform scientific practice, we93

evaluate three specific examples of methodological claims from the reform literature:94

• Reproducibility is the cornerstone of, or a demarcation criterion for, science.95

• Using data more than once invalidates statistical inference.96

• Exploratory research uses “wonky” statistics.97

We focus on these claims as case studies to illustrate our approach because all three are method-98

ological claims with statistical implications that have been impactful1 in the metascience literature99

as well as on post-replication crisis practices of empirical scientists while also receiving considerable100

but informal criticism. In an attempt to demonstrate how to formally resolve such disagreements,101

we evaluate each of these claims using statistical theory, against a broad philosophical and scientific102

background.103

The results from our call for formal statistical rigor and nuance can reach further: A formal statis-104

tical approach establishes a framework for broader understanding of a methodological problem by105

a careful mathematical statement and consideration of model assumptions under which it is valid.106

Most valid methodological advances are incremental, because they can only be shown formally to107

be valid under a strong set of assumptions. These advances rarely ever provide simple prescriptions108

to complex inference problems. Norms issued on the basis of bold claims about new methods109

might be quickly adopted by empirical scientists as heuristics and might alter scientific practices.110

However, advancing such reforms in the absence of formal proofs is sacrificing rigor for boldness111

and can lead to unforeseeable scientific consequences. We believe that hasty revolution may hold112

science back more than it helps move it forward. We hope that our approach may facilitate scientific113

progress that stands on firm ground—supported by theory or evidence.114

Claim 1: Reproducibility is the cornerstone of, or a demarcation criterion115

for, science.116

A common assertion in the methodological reform literature is that reproducibility2 is a core117

scientific virtue and should be used as a standard to evaluate the value of research findings (Begley118

and Ioannidis, 2015; Braude, 2002;McNutt, 2014; Open Science Collaboration, 2012, 2015; Simons,119

2014; Srivastava, 2018; Zwaan et al., 2018). This assertion is typically presented without explicit120

justification, but implicitly relies on two assumptions: first, that science aims to discover regularities121

about nature and, second, that reproducible empirical findings are indicators of true regularities.122

This view implies that if we cannot reproduce findings, we are failing to discover these regularities123

and hence, we are not practicing science.124

The focus on reproducibility of empirical findings has been traced back to the influence of125

falsificationism and the hypothetico-deductive model of science (Flis, 2019). Philosophical critiques126

highlight limitations of this model (Leonelli, 2018; Penders et al., 2019). For example, there can127

be true results that are by definition not reproducible. Some fields aim to obtain contextually128

situated results that are subject to multiple interpretations. Examples include clinical case reports129

and participant observation studies in hermeneutical social sciences and humanities (Penders130

et al., 2019). Other fields perform inference on random populations resulting from path-dependent131

stochastic processes, where it is often not possible to obtain two statistically independent samples132

1As an indication of impact on scientific literature, we looked up Google Scholar citation counts for some of the key articles

from which these claims originate, the oldest of which was published 8 years ago. By the time the current manuscript was

last revised, Begley and Ioannidis (2015) had 686; Nosek et al. (2012) had 1045; Nosek and Lakens (2014) had 473; Noseket al. (2018) had 574; Open Science Collaboration (2012) had 529; Open Science Collaboration (2015) had 4807; Pashler andWagenmakers (2012) had 1182;Wagenmakers et al. (2012) had 704; and Zwaan et al. (2018) had 244 citations.
2Here we use reproducibility as in: “the extent to which consistent results are observed when scientific studies are repeated”

(Open Science Collaboration, 2012, p.657). In Appendix 1 we provide a technical definition of reproducibility which we use in
obtaining our results. We limit our discussion to statistical reproducibility of results only (similar to results reproducibility inGoodman et al., 2016), and exclude other types such as computational or methods reproducibility —whether the materials,
methods, procedures, algorithms, analyses used in an original study are reported in a sufficiently detailed and transparent way

that enables others to carry it out again.
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from the population of interest. Examples are inference on parameters in evolutionary systems or133

event studies in economics. There are also cases where observing or measuring a variable’s value134

changes its probability distribution—a phenomenon akin to the observer effect. True replication135

may not be possible in these cases. In short, science does—rather often, in fact—make claims about136

non-reproducible phenomena and deems such claims to be true in spite of the non-reproducibility.137

In these instances what scientists do is to define and implement appropriate criteria for assessing138

the rigor and the validity of the results (Leonelli, 2018), without making a reference to replication or139

reproduction of an experimental result. Indeed, many scientific fields have developed their own140

qualitative and quantitative methods such as ethnography or event study methodology to study141

non-reproducible phenomena.142

We argue that even in scientific fields that possess the ability to reproduce their findings in143

principle, reproducibility cannot be reliably used as a demarcation criterion for science because it is144

not necessarily a good proxy for the discovery of true regularities. This counterpoint has informally145

been brought up in metascience literature before (Białek, 2018; Goodman et al., 2016; Haig, 2020;146

Laraway et al., 2019; Leek and Jager, 2017; Patil et al., 2016; Strack and Stroebe, 2018). Our goal147

is to further advance this argument by providing a formal, quantitative evaluation of statistical148

reproducibility of results as a demarcation criterion for science. We consider the following two149

unconditional propositions: (1) reproducible results are true results and (2) non-reproducible results150

are false results. If reproducibility serves as a demarcation criterion for science, we expect these151

propositions to be true: we should be able to reproduce all true results and fail to reproduce all152

false results with reasonable regularity. In this section, we provide statistical arguments to probe153

the unconditional veracity of these propositions and we challenge the role of reproducibility as a154

key epistemic value in science. We also list some necessary statistical conditions for true results to155

be reproducible and false results to be non-reproducible. We conclude that methodological reform156

first needs a mature theory of reproducibility to be able to identify whether sufficient conditions157

exist that may justify labeling reproducibility as a measure of true regularities.158

1.1 Reproducibility rate is a parameter of the population of studies.201

To examine the suitability of reproducibility as a demarcation criterion, a precise definition of202

reproducibility of results is necessary. While many definitions have been offered for replication and203

results reproducibility (see Gervais, 2020, for a partial list), most are informal and not sufficiently204

precise or general for our purposes.3. In this paper, we use our own definitions based on first205

principles to facilitate the derivation of our theoretical results. In assessing the reproducibility of206

research results, literature refers to “independent replications” of a given study. Therefore, it is207

necessary to define the notion of a study mathematically, before referring to replications of that208

study. We provide a precise mathematical definition of an idealized study in Appendix 1. Briefly,209

its components involve an assumed probability model generating the data involving the random210

variable and parameters of interest, a data set of fixed sample size, the statistical method employed211

in analyzing the data, the background knowledge about the variable of interest, and a decision212

rule to deliver the result of the analysis. We note that it is not sufficient to lay out the higher-level213

assumptions to provide formal results. Lower-level assumptions such as mathematical regularity214

conditions about variables must also be specified as outlined in step 1 of our formal approach. We215

also note that the definition given in Appendix 1 is sufficiently broad to investigate reproducibility216

of results for any mode of statistical inference including estimation, model selection, and prediction,217

3Some exceptions are as follows: Patil et al. (2016) use the overlap in prediction intervals from original and replication
studies to define a statistical measure of reproducibility. Gorroochurn et al. (2007) investigates the relationship between
reproducibility and p-values and in the context of association between variables. Pauli (2019) develops a Bayesian model to
evaluate the results of replication studies and estimate a reproducibility rate. Hedges and Schauer (2019) offer a principled
way of evaluating replication studies within a meta-analytic framework. Different from purely statistical approaches, Fanelli
(2020) takes a meta-analytic approach to study reproducibility and uses an information theoretical framework to quantify it. We
acknowledge and endorse the formal approach undertaken by these articles to address practical problems of evaluating and

quantifying the results of replication experiments.
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Box 1. Some necessary conditions to obtain true results that are

reproducible and false results that are non-reproducible

159

160161

• True values of the unknown and unobservable quantities for which inference is desired must

be in the decision space (Appendix 2).
162

163

Examples: (i) In model selection, selecting the true model depends on having an M-

closed model space, which means the true model must be in the candidate set (Clarke
et al., 2013). (ii) In Bayesian inference, converging on the true parameter value depends
on the true parameter value being included in the prior distribution, as stated by

Cromwell’s rule (Lindley, 2006, p.90).

164

165

166

167

168

• If inference is performed under one assumed model, that model should correctly specify the

true mechanism generating the data.

169

170

Example: A simple linear regression model with measurement error misspecified as a

simple linear regression model yields biased estimates of regression coefficients, which

will affect reproducibility of true and false results (Figure 1, Figure 2).
171

172

173

• The quantities that methods use to perform inference on unknown and unobservable

components of the model must contain enough information about those components: If

they are statistics, they cannot be only ancillary. If they are pivots that are a function of

nuisance parameters, then the true value of those nuisance parameters should permit

reproducibility of results (Appendix 2).

174

175

176

177

178

Example: In a one sample z-test where the population mean is not equal to the hy-
pothesized value under the null hypothesis, the test incorrectly fails to reject with large

probability due to large population variance.

179

180

181

• If inference is about parameters, observables must carry enough discernible information

about these parameters. That is, model parameters should be identifiable structurally and

informationally. Even weak unidentifiability will reduce the reproducibility of true results.

182

183

184

Example: The requirement that the Fisher information (Lehmann and Casella, 1998,
p.115) about unknown parameters should be sufficiently large in likelihoodist frame-

works.

185

186

187

• Free parameters of methods should be compatible with our research goals.188

Example: A hypothesis test in Neyman-Pearson framework with Type I error rate � ≈ 1
is a valid statistical procedure that rejects the null hypothesis almost always when it is

true.

189

190

191

• Methods should be free of unknown bias.192

Example: Heisenbug is a special case of observer effect –where mere observation

changes the system we study, potentially leading to false results that are reproducible–

found in computer programming, that refers to a software bug that alters its behavior

or even disappears during debugging.

193

194

195

196

• The sample on which inference is performed is representative of the population from which

it is drawn.

197

198

Example: Statistical methods assume probabilistic sampling and do not make any claims

in a non-probabilistic sampling framework (Meng et al., 2018).
199

200
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and not just hypothesis testing.218

Strictly, we cannot speak of statistical independence between an original study and its repli-219

cations. If study B is a replication of study A, then many aspects of study B depend on study A.220

Rather, sequential replication studies should be assumed statistically exchangeable, conditional on221

the results and the assumptions of the original study, in the sense that the group of results obtained222

from a sequence of replication studies are probabilistically equivalent to each other irrespective of223

the order in which these studies are performed. Assuming that exchangeability holds, probability224

theory shows that the results from replication studies become independent of each other, but only225

conditional on the background information about the system under investigation, model assumed,226

methods employed, and the decision process used in obtaining the result. The commonly used227

phrase “independent replications” thus has little value in developing a theory of reproducibility228

unless one takes sufficient care to consider all these conditionals.229

This conditional independence of sequence of results immediately implies that irrespective of230

whether a result is true or false, there is a true reproducibility rate of any given result, conditional on231

the properties of the study. This true reproducibility rate is determined by three components: The232

true model generating the data, the assumed model under which the inference is performed, and233

the methods with which the inference is performed. In this sense, the true reproducibility rate is a234

parameter of the population of studies and we have the following result which satisfies step 2 of235

our formal approach.236

Proposition 1.1 Let Ro be a result. If I{R(i)=Ro|Ro} = 1 we say that Ro is reproduced by R(i).237

Else, we say that Ro failed to reproduce by R(i). Conditional on Ro, the relative frequency of238

reproduced results �N → � ∈ [0, 1], asN → ∞. Further, � = 1 only trivially. Proof is provided in239

Appendix 2, per step 3 of our formal approach.)240

To show the value of the formal approach, we now briefly interpret what Proposition 1.1241

establishes and contributes to our understanding about reproducibility of results. Just like a statistic242

(e.g., sample mean) has a sampling distribution, and it converges to its population counterpart (i.e.,243

the population mean) as the sample size increases, the sample reproducibility rate of a sequence244

of idealized studies has a sampling distribution, and it will converge to its population counterpart245

as the number of studies increases. Therefore, the true reproducibility rate for an idealized study246

must be a fixed population quantity and it is independent of our efforts given the idealized study.247

Further, this rate of reproducibility can take any value between 0 and 1. The actual value depends248

on the properties of the idealized study but it can be high or low, so that we should not expect it249

to be high all the time. Finally, we note that this holds for any result, true or false. Stepping back,250

now we see the advantage of the formal approach as follows. Given the definitions in Appendix 1,251

if the proof in Appendix 2 is correct, then our result is a mathematical fact and itmust be correct.252

Therefore, a formal statement like Proposition 1.1 has taken us one step further to understand the253

properties of reproducibility of results.254

1.2 True results are not necessarily reproducible.255

Much of the reform literature claims non-reproducible results are necessarily false. For exam-256

ple,Wagenmakers et al. (2012, p.633) assert that “Research findings that do not replicate are worse257

than fairy tales; with fairy tales the reader is at least aware that the work is fictional.” It is implied258

that true results must necessarily be reproducible, and therefore non-reproducible results must259

be “fictional.” More mildly, Zwaan et al. (2018, p.13) state: “A finding is arguably not scientifically260

meaningful until it can be replicated with the same procedures that produced it in the first place.”261

Others have taken issue with this claim (e.g., Gorroochurn et al., 2007; Laraway et al., 2019; Patil262

et al., 2016), pointing to reasons why replication attempts may fail to reproduce the original result263

other than its truth value. We now take our formal approach again and find that an evaluation of264

the claim provides support for this criticism.265
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The fact that the true reproducibility rate is a parameter of the population of studies matters:266

this parameter is a probability and therefore, it takes values on the interval [0, 1]. This implies267

that for finite sample studies involving uncertainty, the true reproducibility rate must necessarily268

be smaller than one for any result and in fact, we have the following result (step 2 of our formal269

approach).270

Proposition 1.2. There exists true results Ro = RT , whose true reproducibility rate �T is271

arbitrarily close to 0. (Per step 3 of our formal approach, proof is provided in Appendix 2).272

Before looking into some examples for Proposition 1.2, we discuss it to make an important point273

about the formal approach: Proposition 1.2 may seem perplexing because intuitively we might274

expect that if a result is true, we should be able to reproduce it. If this is in fact our (wrong) intuition,275

we should revisit and re-hone it studying the proof of Proposition 1.2. The reason is that, in a formal276

approach as long as the proof is correct, the result must be correct, and therefore our intuition277

must be wrong. Most importantly, all this evaluation is made possible by motivating the issue of278

reproducibility from the first principles and proceeding formally from that point into a next by279

stating and proving the results that help us to build knowledge on the subject. We already argued280

that first principles on evaluating the reproducibility of results required a definition of idealized281

study, together with all its assumptions and mathematical regularity conditions (Appendix 1). Given282

these, we were able to show that reproducibility rate is a parameter of the population of studies283

(Proposition 1.1). Given this, we showed that the relationship between true results and their284

reproducibility rate might be complex (Proposition 1.2). Therefore, moving in this formal way builds285

a solid body of knowledge, mathematically supported under well-defined and delineated models.286

As an example of step 4a of formal approach to solving methodological problems, we discuss287

two statistical scenarios to illustrate the counterintuitive result provided by Proposition 1.2. A288

well-known example is a data generating model where the sampling error (the uncertainty) is large289

with respect to the model expectation (the signal). This is rather an informal statement of the290

kind we make in step 0 (i.e., no statistical model is specified) of the formal approach to solving291

methodological problems. If we want to check whether the statement is true, it should and can be292

precisely formulated mathematically starting from our definition of idealized study.293

In contrast to statements in some articles (e.g., Leek and Jager, 2017; Zwaan et al., 2018), large294

sampling error is not the only reason why true results might not be reproducible. Falling back to the295

definition of an idealized study given in Appendix 2, we see that its components are the assumed296

model and its parameters, data, method, background knowledge of the system, and the decision297

function to obtain a result. Because the reproducibility rate is a parameter of population of studies,298

components of an idealized study other than large sampling error can affect the reproducibility299

of a true result. For example, the model might be misspecified. Or the model might be correctly300

specified and sampling error small, but the method might have large error. Or the decision function301

might not be optimal. Again, having defined an idealized study formally helps us to investigate and302

prove any one of these cases if we wish so.303

We can also evaluate the opposite of the large sampling error case: Small sampling error is not304

a guarantee that true results will be highly reproducible. It turns out that there are mathematically305

necessary conditions other than the truth value of a result, that need to be met for true results to306

be highly reproducible. Some of these conditions which are related to the components of idealized307

study are listed in Box 1 informally. Thus, the formal approach has also the advantage of motivating308

and evaluating other cases such as complements, reverses, or counters, and therefore it enriches309

our understanding of reproducibility of results.310

Another well-known statistical scenario illustrating Proposition 1.2 is when the data are analyzed311

under a misspecified model (per step 4a). Here, we take a simple linear regressionmeasurement312

error model in which the measurement error is unaccounted for (Figure 1). We are interested in313

the effect of measurement error on the reproducibility rate of a true effect. As the ratio of the314

measurement error variability in predictor to sampling error variability increases, the probability315
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Figure 1. (A) Reproducibility rate of a true result decreases with measurement error in a misspecified simple

linear regression model. Reproducibility rate is estimated by the proportion of times the 95% confidence
interval captures the true effect. Sample sizes are 50 (small) and 500 (large). The true regression coefficient of
the predictor variable is 2 (small effect) and 20 (large effect). Model details are given in Appendix 4. (B) Example
data (black points) generated under simple linear regression model E(Y ) = 2 + 20X. Measurement and
sampling error are normally distributed with standard deviations equal 3. Regression lines are fit under
measurement error model (magenta line) and the correct model (blue line) with a sample size of 100. 95%
confidence interval for the regression coefficient obtained under the measurement error model is (7.94, 12.37),
which does not include the true value 20. In contrast, 95% confidence interval for the regression coefficient
obtained under the correct model, (19.86, 20.21), includes the true value.

that an interval estimator of the regression coefficient (i.e., the effect size) at a fixed nominal316

coverage contains the true effect decreases. This is not simply an artifact of small sample sizes or317

small effects: the same pattern obtains for large sample sizes and large true effects. In fact, for318

large sample sizes, the reproducibility rate drops to zero at lowermeasurement error variability than319

for small sample sizes (also see Loken and Gelman, 2017, for a similarly counter-intuitive effect of320

measurement error). Furthermore, the negative effect of measurement error on reproducibility321

rate of a true result actually grows with effect size, as Figure 1A illustrates. Even in this relatively322

simple setting it is by no means a given that a true result will be reproducible. Measurement error323

is only one type of model misspecification. Other sources of misspecification and types of human324

error (e.g., questionable research practices) might further impair the reproducibility of true results.325

When true reproducibility rate of a true result is low, the proportion of studies that fail to326

reproduce a true result will be high, even when methods being used have excellent statistical327

properties and the model is correctly specified. However, a true low reproducibility rate does not328

necessarily indicate a problem in the scientific process. As Heesen (2018) notes, low reproducibility329

in a given field or literature may be the result of there being few discoveries to be made in a given330

scientific system. When that is the case, a reasonable path to making scientific progress is to learn331

from non-reproducible results. Indeed, the history of science is full of examples of fields going332

through arduous sequence of experiments yielding failures such as non-reproducible results to333

eventually arrive at scientific regularities (Barwich, 2019; Chang, 2004; Shiffrin et al., 2018).334

In an article that makes practical recommendations to improve the methodology of psycho-335

logical science, Lakens and Evers (2014) argue that “One of the goals of psychological science is to336
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differentiate among all possible truths” and suggest that one way to achieve this goal is to improve337

the statistical tools employed by scientists. Some care is needed when interpreting this claim.338

Statistical methods might indeed help us get close to the true data generating mechanism, if their339

modeling assumptions are met (thereby removing some of the reasons why true results can be340

non-reproducible). However, statistics’ ability to quantify uncertainty and inform decision making341

does not guarantee that we will be able to correctly specify our scientific model. Irrespective of342

reproducibility rates of results obtained with statistical methods, scientists attempting to model343

truth use theories developed based on their domain knowledge. Some of the problems raised344

in Box 1, including model misspecification and decision spaces that exclude the true value of the un-345

known components, can only be addressed using a theoretical understanding of the phenomenon346

of interest. Without this understanding, there is no theoretical reason to believe that reproducibility347

rates will inform us about our proximity to truth.348

It would be beneficial for reform narratives to steer clear of overly generalized sloganeering349

regarding reproducibility as a proxy for truth (e.g., reproducibility is a demarcation criterion or non-350

reproducible results are fairy tales). A nuanced view of reproducibility might help us understand351

why and when it is or is not desirable, and what its limitations are as a performance criterion.352

1.3 False results might be reproducible.353

Contrary to Proposition 1.2, the next proposition considers false results and the respects in which354

these can sometimes be highly reproducible (per step 2 of our formal approach).355

Proposition 1.3. There exists false results Ro = RF , whose true reproducibility rate �F is356

arbitrarily close to 1. (Per step 3 of our formal approach, proof is provided in Appendix 2).357

In well-cited articles in methodological reform literature, high reproducibility of a result is often358

interpreted as evidence that the result is true (Nosek et al., 2012;Open Science Collaboration, 2015;359

Pashler and Wagenmakers, 2012; Zwaan et al., 2018). A milder version of this claim is also invoked,360

such as “Replication is a means of increasing the confidence in the truth value of a claim.” (Nosek361

et al., 2012, p.617). The rationale is that if a result is independently reproduced many times, it must362

be a true result.4 This claim is not always true (Laraway et al., 2019; Stroebe and Strack, 2014). To363

formally establish this, it is sufficient to note that the true reproducibility rate of any result depends364

on the true model and the methods used to investigate the claim. We follow with two examples365

(step 4a).366

First, consider a valid hypothesis test in which the researcher unreasonably chooses to set367

� = 1. Then, a true null hypothesis will be rejected with probability 1 and this decision will be 100%368

reproducible, assuming that replication studies also set the significance criterion (�) to 1. While we369

know better than to set our significance criterion so high, this example shows how reproducibility370

rate is not only a function of the truth but also our methods. Second, consider estimators that371

exploit the bias-variance trade-off by introducing a bias in the estimator to reduce its variance.372

These estimators have a higher reproducibility rate but for a false result by design. In this case,373

researchers deliberately choose false results that are reproducible when they prefer a biased374

estimator over a noisy one for usefulness. Next, we give a realistic example, in which we describe a375

mechanism for why reproducibility cannot serve as a demarcation criterion for truth.376

We consider model misspecification under a measurement error model in simple linear re-377

gression. Simple linear regression involves one predictor and one response variable, where the378

predictor variable values are assumed to be fixed and known. The measurement error model379

incorporates unobservable random error on predictor values. The blue belt in Figure 2 shows that380

as measurement error variability grows with respect to sampling error variability, effects farther381

4An epistemic claim that well-confirmed scientific theories and models capture (approximate) truths about the world is an

example of scientific realism. The arguments for and against scientific realism (e.g., positivism) are beyond the scope of this
paper. Interested readers may follow up on discussions in the philosophical literature (e.g., Hacking et al., 1983; Chakravartty,2017).
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Reproducibility rate of false results under measurement error model
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Figure 2. An example of almost perfectly reproducible false results in a misspecified simple linear regression

model with measurement error. Color map shows reproducibility rate (RR). Darkest blue cells indicate perfect

reproducibility rate (almost 100%) of false results at appropriate measurement error for each false effect size,

shown by its distance from the true effect size on the vertical axis. The true regression coefficient of predictor

variable (effect size) is 20. Details are given in Appendix 4. For description of letters and arrows, refer to the text.

away from the true effect size become perfectly reproducible. At point F in figure Figure 2, the382

measurement error variability is ten times as large as the sampling error variability, and we have383

perfect reproducibility of a null effect when the true underlying effect size is in fact large.384

Now consider a scientist who takes reproducibility rate as a demarcation criterion. Assume385

she starts at point A and she performs a study which lands her at point B—which might happen386

by knowingly or unknowingly choosing noisier measures or by reducing sampling error variability.387

The reproducibility of her results has increased (from white to inside the blue belt) and to increase388

it further, she performs another study by further tweaking the design, which then lands her at389

point C. If she were to move horizontally to the right with her future studies, the reproducibility390

of results will decrease, and she will turn back to C, which ultimately will be a stable equilibrium391

of maximal reproducibility. Further, this is just one of the possible paths that she could take to392

achieve maximal reproducibility. When at point B, she might perform a study that follows the purple393

path, always increasing the reproducibility of her results ending up at point D, which is another394

stable equilibrium point of maximal reproducibility. In fact, any sequence of studies that increases395

reproducibility will end at one of the points that corresponds to the darkest blue color in the belt. At396

this point, however, we note that going from point A to point C, our researcher started with a false397
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result where the estimated slope was some ≈ 13 units off the true value (y axis, point A) and arrived398

at the same false result (y axis, point C), even though she has maximized the reproducibility of her399

results. Worse, when she arrived at point D, the estimated slope is now some ≈ 15 (y axis, point D)400

units away from the true value, even though she still maximized the reproducibility of her results.401

Taking a step back, we note that to approach the true result, one needs to move to the origin in402

this plot. However, that approach is controlled by the vertical axis, and not the horizontal. Unless we403

know that we are committing a model misspecification error, we get no feedback when we perform404

studies that move us randomly on the vertical axis (yellow arrows). For example, points C and D405

have similar reproducibility of results but at C we are closer to truth then D. In fact, consider points406

E and F: we get high reproducibility of results at both points, but estimates obtained at point E are407

much closer to the true value than estimates obtained at point F. The mechanistic explanation of408

this process is that reproducibility-as-a-criterion can be optimized by the researcher independently409

of the underlying truth of their hypothesis. That is, optimizing reproducibility can be achieved without410

getting any closer to the true result. This is not to say that reproducibility is not useful, but it means411

that it cannot be used as a demarcation criterion for science.412

While we advance a statistical argument for the reproducibility of false results, the truth value413

of reproducible results from laboratory experiments has also been challenged for non-statistical414

reasons (Hacking, 1992, p.30). Hacking notes that mature laboratory sciences sometimes construct415

an irrefutable system by developing theories and methods that are “mutually adjusted to each416

other”. As a result, these sciences become what Hacking calls “self-vindicating”. That is:417

“The theories of the laboratory sciences are not directly compared to ’the world’; they418

persist because they are true to phenomena produced or even created by apparatus in419

the laboratory and are measured by instruments we have engineered.”420

Hacking concludes that “[h]igh level theories are not ‘true’ at all.” They can be viewed as a summary421

of the collection of laboratory operations to which they are adapted, but if that set of operations is422

selected to match a particular theory, its evidentiary value may be limited. Hacking’s description423

of what makes mature laboratory sciences highly reproducible is consistent with our definition of424

reproducibility rate as a function of true model, assumed model, and methods.425

An example of a theory from laboratory sciences that is not directly compared to ’the world’426

comes from cognitive science. One high level theory that has become prominent in this field over427

the last two decades is the “probabilistic” or “Bayesian” approach to describing human learning and428

reasoning (Oaksford and Chater, 1998; Chater et al., 2008). As the paradigm rose to prominence,429

questions were raised as to whether claims of the Bayesian theory of the mind held any truth value430

at all, in either a theoretical or empirical sense (Bowers and Davis, 2012).431

Within a specific framework, a particular experimental result may have value in connection to432

a theoretical claim without being tied to the world. For instance, Hayes et al. (2019) presented433

several experiments that appear to elicit the “same” phenomenon in different contexts, and an434

accompanying Bayesian cognitive model that renders these results interpretable within that frame-435

work. On the other hand, rational Bayesian models of cognition have been criticized for not taking436

into account process-level data and making unrealistic environmental assumptions (Jones and437

Love, 2011). These models function at the computational rather than algorithmic level (per Marr’s438

levels of analysisMarr, 1982) and do not aim to explain the true mechanisms underpinning human439

reasoning (Tauber et al., 2017). Hence these robust empirical results from experiments that were440

designed from and adapted to the Bayesian framework do not necessarily imply normative claims441

about mechanisms underlying human cognition (see the discussion in Hayes et al., 2019, pp.40-44).442

As this example illustrates, Hacking’s observations about the “mutual tuning” between theoretical443

claims and laboratory manipulations are observed in practice, in cognitive science and potentially444

in other disciplines. Our measurement error example shown in Figure 2 provides just one possible445

realization for Hacking’s conjecture (see also Flake and Fried, 2019, for a detailed discussion on446

measurement practices that might exacerbate measurement error). Other forms of inference under447
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model misspecification might present different scenarios under which this mutual tuning may take448

place—for example, the inadvertent introduction of an experimental confound or an error in a449

statistical computation have the potential to create and reinforce perfectly reproducible phantom450

effects. The possibility of such tuning renders suspect the idea that reproducibility is a good proxy451

for assessing the truth potential of a result.452

The reform movement began as a response to the proliferation of false results in scientific453

literature. Our formal analysis suggests that if we were to treat observed reproducibility of a given454

result as a heuristic to establish its truth value, we might incentivize research that achieves high455

levels of reproducibility for the wrong reasons (per Goodhart’s law) and end up canonizing a subset456

of false results that satisfy specific criteria without facilitating any true discoveries. Hence we believe457

that turning reproducibility into a new false idol goes against the essence of the ongoing efforts to458

reform scientific practice.459

Claim 2: Using data more than once invalidates statistical inference.460

A well-known claim in the methodological reform literature regards the (in)validity of using data461

more than once, which is sometimes colloquially referred to as double-dipping or data peeking.462

For instance, Wagenmakers et al. (2012, p.633) decry this practice with the following rationale:463

“Whenever a researcher uses double-dipping strategies, Type I error rates will be inflated and p464

values can no longer be trusted.” The authors further argue that “At the heart of the problem lies465

the statistical law that, for the purpose of hypothesis testing, the data may be used only once.”466

Similarly, Kriegeskorte et al. (2009, p.535) define double-dipping as “the use of the same data467

for selection and selective analysis” and add the qualification that it would invalidate statistical468

inference “whenever the test statistics are not inherently independent of the selection criteria under469

the null hypothesis.” This rationale has been used in reform literature to establish the necessity470

of preregistration for “confirmatory” statistical inference (Nosek et al., 2018;Wagenmakers et al.,471

2012).472

In this section, we provide examples to show that it is incorrect to make these claims in overly473

general terms. The reform literature is not very clear on the distinction between “exploratory” and474

“confirmatory” inference. We will revisit these concepts in the next claim but for now, we evaluate475

the claim that using data multiple times invalidates statistical inference. For that, we will steer476

away from the exploratory-confirmatory dichotomy and focus on the validity of statistical inference477

specifically.478

The phrases double-dipping, data peeking, and using data more than once do not have formal479

definitions and thus they cannot be the basis of any statistical law. These verbally stated terms are480

ambiguous and create a confusion that is non-existent in statistical theory.481

A correct probability theory approach to establish the effect of using the data –in any way– is482

to derive the distributions of interest that will make the procedure valid under that usage. In fact,483

many well-known valid statistical procedures use data more than once (see Darnieder, 2011, for a484

detailed analysis in the context of data dependent priors). In these procedures, the conditioning485

is already taken into account while deriving the correct probability distribution of the quantity486

of interest. The consumers of statistical procedures are often not exposed to steps involved in487

derivations and it might be surprising to find that some of the well-known statistical procedures488

actually use the data more than once. As an example we consider testing whether the population489

mean �, of a Normally distributed random variable X is equal to a fixed value �o.We assume that490

we have a simple random sample of size n from X ∼ Nor(�, �) where � is the population standard491

deviation.492

If we start to develop a test using the sample mean X̄, a reasonable development toward493

obtaining a test statistic would be as follows: Under Ho we have X ∼ Nor(�o, �), and thus X̄ ∼494

Nor(�o, �∕
√

n), and so we must have495

(

X̄ − �o
)

/(

�∕
√

n
)

∼ Nor(0, 1). (1)
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The test statistic in equation 1 is distributed as standard normal and therefore the test is a z-test.496

This is all good, however, the test requires knowing �, which we often do not. To surpass this issue,497

we now think of extracting the sample standard deviation from the data (using the data once more)498

and substitute it as an estimate of � in equation 1 so that we can perform the test. But because499

we use the sample quantity s, the distribution of the new statistic is not standard normal anymore.500

What we can do, however, is to derive the correct probability distribution of the new statistic and501

still have a valid test. Indeed the quantity502

(

X̄ − �o
)

/(

s∕
√

n
)

, (2)

is t-distributed and results in t-test. Technically, the quantity in equation 2 uses the data three times,503

specifically to obtain n, X̄, and s. Although this example is simplistic, its main point is instructive:504

Irrespective of how many times the data is used or whether it is used in a single-step or a multi-step505

fashion, if the correct distribution of a test statistic can be derived via appropriate conditioning or506

from scratch, then it must yield a valid statistical procedure.507

The principle of deriving the correct distribution of statistics to obtain a valid statistical procedure508

also applies when we perform a variety of statistical activities on the data prior to an inferential509

procedure of specific interest. These activities can be of any type, including exploration of the data by510

graphical or tabular summaries, performing other formal procedures such as tests for assumption511

checks (see Shamsudheen and Hennig, 2020, for a formal approach for testing model assumptions).512

In fact, one can even build a valid statistical test by using the data to obtain almost all aspects of a513

hypothesis test that are not specifically user defined, including the hypotheses themselves. The key514

to validity is not how many times the data are used and for which type of activity, but appropriate515

application of the correct conditioning as dictated by probability calculus as information from the516

data is extracted with these activities (Lindley, 2000). When deriving valid statistical procedures,517

these rules must invariably hold for all cases of manipulations of random variables, whether it is a518

t-pivot, or a multi-step analysis.This is a mathematical fact and the validity of statistical procedures519

depend only on mathematical facts. Furthermore, under many cases, the conditioning does not520

affect the validity of the test of interest, and therefore can be dropped, freeing the data from its521

prison for use prior to test of interest (Buzbas, 2019).522

When conditioning on prior activity on the data is indeed needed to make a test valid, over-523

looking that a procedure should be modified to accommodate this prior activity might lead to an524

erroneous test. However, this situation only arises if we disregard the elementary principles of sta-525

tistical inference such as correct conditioning, sufficiency, completeness, and ancillarity. Conditional526

inferences are statistically valid when their interpretation is properly conditioned on the information527

extracted from the observed data, which are sufficient for model parameters. Therefore, uncondi-528

tionally stating that double-dipping, data peeking, or using data more than once invalidates inference529

does not make statistical sense. In contrast with common reform narratives, one can use the data530

many times in a valid statistical procedure. Below, we describe the conditions under which this531

validity is satisfied. We also discuss why preregistration cannot be a prerequisite for valid statistical532

inference, confirmatory or otherwise.533

2.1. Valid conditional inference is well-established.560

Imagine we aim to confirm a scientific hypothesis of interest which can be formulated as a statistical561

hypothesis and be tested using a chosen a test of interest. We suppose that we perform some562

statistical activity on the data as described in the previous section, until we begin the test of interest.563

We aim to assess the effect of information gained by this activity on the validity of the test of564

interest to be performed. To be useful in establishing results, it is necessary to assume that such565

information can be summarized by a statistic, as in a statistic obtained from prior analyses.566

First, we categorize the amount of information contained in the test statistic of interest. This567

statistic may contain anywhere from no information to all information in the data about the pa-568

rameter of interest. Further, it can satisfy some statistical optimality criterion, in which case it is569
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Box 2. Valid inference using data multiple times534535
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We assume a test based on an unbiased test statistic generates valid inference, in the sense

of achieving its nominal Type I error probability, under its assumptions within the Neyman-

Pearson hypothesis testing paradigm. Information extracted from the data prior to the test of

interest is represented by a statistic from prior analysis. Cells describe the necessity and/or

the outcome of conditioning the test of interest on this statistic from prior analysis, for varying

levels of information captured. Some technical clarifications for special cases are discussed

in Appendix 3.
Left: The statistic from prior analysis is not used in decision making, for example, by combining

it with a user defined criterion which might affect aspects of the test of interest. Many

commonly used linear models fall in the first column where procedures are based on an

optimal test statistic and therefore, using the information from prior analysis does not affect

the validity of the test of interest. However, even if the statistic for the test of interest is not

optimal, conditioning on statistic from prior analysis is not necessary for validity of inference.

Further, conditioning never hurts the validity of inference and improves the performance in

most cases. Details of the conditional analyses in this block are provided in Propositions 2.1

and 2.2.

Right: The statistic from prior analysis is combined with a user defined criterion to affect

aspects of the test of interest through a decision. An example is using the data to determine

which subsamples to compare. The validity of the test of interest is maintained when inference

is conditioned on this decision if the statistic from prior analysis contains at least some

information about the parameter to be tested.

The change in corresponding cells between left block and right block shows the effect of using

this user defined criterion on conditional statistical inference.
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identified as the best statistic with respect to this criterion. The case of no information is trivial and570

not interesting. The case of all information is well known.5 For many commonly used models, an571

optimal statistic is also well known6 (first column in left and right blocks, Box 2). Other cases include572

partial information (second column in left and right blocks, Box 2).573

Second, the statistic that summarizes the analyses performed on the same data prior to the test574

of interest may also contain anywhere from no information to all information in the data (rows in575

left and right blocks, Box 2). However, here the case of no information is also of interest7.576

If the statistic summarizing the prior analysis is used in a subsequent analysis for the test of577

interest, the validity of the test is guaranteed by conditioning the subsequent analysis on this578

statistic, using probability calculus. A relatively simple case may involve only conditioning on the579

statistic obtained from prior analysis (left block, Box 2). In this case, no quantity exogenous to580

the model generating the data is introduced into the test of interest. If the test of interest uses581

an optimal statistic (which is the case for many well-known models), the conditioning is irrelevant582

because the validity of the test is not affected by the prior information (left block first column583

in Box 2). The same result with the same validity is obtained as if we did not perform any activity on584

the data, previous to the test of interest. Hence, one can freely use information prior to performing585

the test of interest without any modification in the test of interest. If the test of interest does not use586

an optimal statistic, then conditioning will maintain the validity and often improve the performance587

of the test (left block second column in Box 2). This is a manifestation of Rao-Blackwellization of588

the test statistic to reduce its variance. We reproduce an example by Mukhopadhyay (2006) of589

estimating the parameter of a normal distribution whose mean and standard deviation are equal590

using a randomly sampled single observation in Figure 3. Therefore, Claim 2 is false for this case.591

Further, results showing this falsity can be generalized beyond hypothesis testing into other modes592

of inference such as estimation. Formally, we have the following definition and results (per step 1593

and 2 of our formal approach respectively).594

Definition. Let Sn ∼ ℙ(Sn|�) be a test statistic such that it is: 1) a function of an unbiased595

estimator of �, and 2) fixed prior to seeing the data. Let U ∼ ℙ(U |�) be a statistic obtained596

from the data, after seeing the data. If U is complete sufficient for �, it is denoted by Us, and if597

U is ancillary for �, it is denoted by Ua.598

Proposition 2.1. Let Sn
′ = E(Sn|Us). For an upper tail test, define � = ℙ(Sn ≥ s�|Ho) = ℙ(Sn

′ ≥599

s′�|Ho). Then, s� ≥ s′� and ℙ(Sn
′ ≥ s�|Ho) < �. Parallel arguments hold for lower and two tail600

tests.601

Proposition 2.2. LetHo ∶ � ∈ Θo such that Θo = g(Ua), where g is a known function and Ua is a602

function of the data. Then, the upper tail test ℙ(Sn ≥ s|Ho) ≤ � is a valid level � test. Parallel603

arguments hold for lower and two-tailed tests.604

(See Appendix 3 for proofs per step 3 of our formal approach).605

An intuitive interpretation of these formal statements is as follows. Assume a hypothesis test606

where a statistical procedure is pre-planned in the sense that its elements are determined before607

seeing the data. We then imagine using the data to obtain other statistics (necessarily after seeing608

the data). The propositions consider two scenarios regarding these statistics: In the first scenario,609

we consider a statistic that captures all the information in the data about the parameter being610

tested in a most efficient manner. Then, conditioning on this statistic results not only in a valid611

procedure, but also an equally good or improved one with respect to the pre-planned procedure.612

In the second scenario, we consider a statistic that contains no information about the parameter613

being tested. The null hypothesis is built using this statistic obtained from the data, and the test614

based on the pre-planned procedure still remains valid.615

5sufficient statistic

6complete sufficient statistic

7ancillary statistic
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Figure 3. For a normally distributed variable with equal mean and variance, we randomly sample a single

observation from the population. We plan to use this observation as a test statistic for the common parameter.

However, prior to this test we observe the absolute value of the sample and we decide to perform the test using

the information in both the observation and its absolute value, therefore, using the unsigned part twice. The

plot compares power of the test based on the single observation and on the single observation conditioned on

its absolute value. Conditioning improves inference by reducing the variance of the test statistic. This case

corresponds to left block, first row, second column in Box 2. Lighter shades represent larger true parameter
values. Technical details are given in Appendix 4.

A more complicated case occurs when one not only obtains a statistic from prior analysis,616

but also makes a decision to redefine the test of interest based on the observed value of that617

statistic—a decision that depends on an exogenous criterion and alters the set of values the test618

statistic of interest is allowed to take (right block, Box 2). For example, an exogenous criterion619

might be to perform the test only if the statistic from prior analysis satisfies some condition. Subgroup620

analyses or determining new hypotheses based on the results of prior analysis (HARKing) are621

other examples (Rubin, 2017b). Conditional quantities which make the test of interest valid are622

now altered because conditioning on a statistic and conditioning on whether a statistic obeys an623

exogenous criterion have different statistical consequences. If this criterion affects the distribution624

of the test statistic of interest, then conditioning is necessary. The correct conditioning will modify625

the test in such a way that the distribution of the test statistic under the null hypothesis is derived,626

critical values for the test are re-adjusted, and desired nominal error rates are achieved. A general627

algorithm to perform statistically valid conditional analysis in this sense is provided in Appendix 5.628

Adhering to correct conditioning, then, guarantees the validity of the test, making Claim 2 false629

again.630

Figure 4 provides an example of how conditioning can be used to ensure that nominal error631

rates are achieved (step 4a). We aim to test whether the mean of Population 1 is greater than the632

mean of Population 2, where both populations are normally distributed with known variances. An633

appropriate test is an upper-tail two-sample z-test. For a desired level of test, we fix the critical634

value at z, and the test is performed without performing any prior analysis on the data. The sum of635

black and dark orange areas under the black curve is the nominal Type I error rate for this test. Now,636

imagine that we perform some prior analysis on the data and use it only if it obeys an exogenous637

criterion: We do not perform our test unless “the mean of the sample from Population 1 is larger638

than the mean of the sample from Population 2.” This is an example of us deriving our alternative639

hypothesis from the data. The test can still be made valid, but proper conditioning is required.640

If we do not condition on the information given within double quotes and we still use z as the641
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Distribution of the test statistic under the null hypothesis 
     in a conditional and unconditional two sample z−test
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Figure 4. For a two sample z-test, we display rejection regions for an unconditional test and a conditional test,
setting the alternative hypothesis in the direction of the observed effect. The black curve shows the distribution

of the unconditional test statistic, with the critical value given by z. The orange curve shows the distribution of
the conditional test statistic, with the adjusted critical value given by z∗.

critical value, we have inflated the observed Type I error rate by the sum of the light gray and light642

orange areas because the distribution of the test statistic is now given by the orange curve. We can,643

however, adjust the critical value from z to z∗ such that the sum of the light and dark orange areas is644

equal to the nominal Type I error rate, and the conditional test will be valid. This case corresponds645

to the right block, first row, first column in Box 2. Technical details are provided in Appendix 4.646

Caution with regard to double-dipping might sometimes be justified. However, the claim that647

it invariably invalidates statistical inference is unsupported. In fact, the opposite is true since all648

cells in Box 2 yield valid tests. Following steps 1-4a of our formal approach, we established some649

foundations for claims regarding double-dipping. These are summarized in Box 2. Further, we650

provide a fairly generic algorithm via Approximate Bayesian Computation (Appendix 5) to obtain the651

sampling distribution of any statistic conditional on using some information in the data. Statistically652

and computationally nimble readers should find it straightforward to apply this algorithm to specific653

double-dipping problems they encounter. On the other hand, extending theoretical results from654

steps 1-4a of the formal approach to its applied part of steps 4b and 5 typically takes intensive655

work. This, for example, involves developing user friendly and well-tested tools of analysis, ready656

for mass consumption to perform conditional inference in a specific class of statistical models.657

Clearly, proper conditioning solves a statistical problem. However, the garden of forking paths658

applies to problems of scientific importance as well, since our conclusions become dependent on659

decisions we make in our analysis. Statistical rigor is the prerequisite of a successful solution, but660

we should ask: Solution to which problem? Statistical validity does not necessarily imply scientific661

validity (Navarro, 2019). The connection between statistical and scientific models might be weak—a662

problem that cannot be fixed by statistical rigor.8 Further, valid inference by proper conditioning663

entails maintaining the same conditioning for correct interpretation of scientific inference.664

8Testing hypotheses with no theory to motivate them is a fishing expedition regardless of methodological rigor. See Gervais
(2020); Guest and Martin (2020); Fried (2020);MacEachern and Van Zandt (2019);Muthukrishna and Henrich (2019); Oberauerand Lewandowsky (2019); Szollosi and Donkin (2019); Szollosi et al. (2019); van Rooij (2019); van Rooij and Baggio (2020a)
and van Rooij and Baggio (2020b) for discussions on scientific theory.
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Conditioning is not the only statistically viable way to address double-dipping related problems.665

Alternatives to conditioning include but are not limited to multilevel modeling (Gelman et al., 2012;666

Gelman and Loken, 2013), multiverse analysis (Steegen et al., 2016), simultaneous inference for667

valid data-driven variable selection (Berk et al., 2013), sequential or stepwise model selection668

procedures for optimal post-selection inference (Fithian et al., 2015; Loftus and Taylor, 2014), and669

iterative Bayesian workflow (Gelman et al., 2020). The key to successfully implement these solutions670

is a good understanding of statistical theory and a careful interpretation of results under clearly671

stated assumptions.672

2.2. Preregistration is not necessary for valid statistical inference.673

Nosek et al. (2018) claim that “Standard tools of statistical inference assume prediction.”9 Nosek674

et al. (2018) intend to convey that in hypothesis testing, the analytical plan needs to be determined675

(i.e., preregistered) prior to data collection or observing the data for statistical inference to have676

diagnostic value, that is, to be valid. Wagenmakers et al. (2012) suggest that preregistration would677

allow for confirmatory conclusions by clearly separating exploratory analyses from confirmatory678

ones and preventing researchers from fooling themselves or their readers. According to the679

methodological reform, any inferential procedure that is not preplanned or preregistered should680

better be categorized as postdiction or exploratory analysis, and should not be used to arrive at681

confirmatory conclusions (Klein et al., 2018; Nosek and Lakens, 2014).682

In this section, we first clarify the statistical problem which preregistration aims to address. Then683

we assess what preregistration cannot statistically achieve under its strict and flexible interpretation.684

We argue how preregistration can harm statistical inference while trying to solve its intended685

problem. After showing that preregistration is not necessary for valid statistical inference, we686

describe what it can achieve statistically.687

What is the statistical problem that preregistration aims to address? Statistically, preregistration is688

offered as a solution to the problem of using data more than once and issues of validity of statistical689

procedures resulting from this usage (Lindsay et al., 2016; Nosek et al., 2018; Paul et al., 2020;690

Wagenmakers et al., 2012). Once a hypothesis and an analytical plan is preregistered, the idea is691

that researchers would be prevented from performing analyses that were not preregistered and692

subsequently, from presenting them as “confirmatory”. We have shown that using data multiple693

times per se does not present a statistical problem. The problem arises if proper conditioning on694

prior information or decisions is skipped. The reform literature misdiagnoses the problem as an695

ordinal issue regarding the order of: hypothesis setting, decisions on statistical procedures, data696

collection, and performing inference. Preregistration locks this order down for an analysis to be697

called “confirmatory”. Our examples of valid tests in Box 3 ( per step 4a of our formal approach)698

show that the problem is not ordinal but one of statistical rigor. Prediction and postdiction—as699

proposed by Nosek et al. (2018)—do not have technical definitions in their intended meaning that700

reflects on statistical procedures. Further, the reform literature does not present any theoretical701

results to show the effects of this dichotomy on statistical inference. All well-established statistical702

procedures deliver their claims when their assumptions are satisfied. Other non-mathematical703

considerations are irrelevant for the validity of a statistical procedure. A valid statistical procedure704

can be built either before or after observing the data, in fact, even after using the data if proper705

conditioning is followed. Therefore, the validity of statistical inference procedures cannot depend706

on whether they were preregistered.707

9Prediction here is not used in statistical sense but refers to “the acquisition of data to test ideas about what will occur” (Noseket al., 2018, p.2600). To clarify, statistics uses sample quantities (observables) to perform inference on population quantities
(unobservables). Inference, therefore, is about unobservables. Statistical prediction, on the other hand, is defined as predicting

a yet unobserved value of an observable and therefore, is about observables. The quote refers to a procedure about

unobservables and hence “prediction” is not used in a statistical sense. Instead it is used to demarcate the timing of hypothesis

setting and analytical planning with regard to data collection or observation. The authors also specifically refer to null hypothesis

significance testing procedure as the standard tool for statistical inference referenced in this quote. While the statement itself
can be misleading because of these local definitions and assumptions, our aim is to critique the intended meaning not the

idiosyncratic use of statistical terminology.
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How can preregistration (strict or flexible) harm statistical inference? Preregistration may interfere708

with valid inference because nothing prevents a researcher from preregistering a poor analyti-709

cal plan. Preregistering invalid statistical procedures does not on its own ensure the validity of710

inference (see also Rubin, 2017b), while it does add a superficial veneer of rigor.711

Assume hypotheses, study design, and an analysis plan are preregistered, and the researchers712

follow their preregistration to a T. Many hypothesis tests make parametric assumptions and not713

all are robust to model misspecification. Dennis et al. (2019) show that under model misspecifi-714

cation, the Neyman-Pearson hypothesis testing paradigm might lead to Type I error probabilities715

approaching 1 asymptotically with increasing sample sizes. Model misspecification is suspected to716

be common in scientific practice (Box, 1976; Navarro, 2019; Szollosi et al., 2019). Since the validity717

of a statistical inference procedure depends on the validity of its assumptions, performing assump-718

tion checks (if possible) to choose and proceed with the model and method whose assumptions719

hold is sound practice. Assumption checks are performed after data collection and on the data,720

but before specifying a model and a method for analysis. To accommodate assumption checks under721

preregistration philosophy, an exception would need to be made to the core principle because722

they necessitate using data multiple times. Indeed such exceptions are often made (Lindsay et al.,723

2016; Nosek et al., 2018) and it has been suggested that assumption checks and contingency plans724

should be preregistered. However, no statistical reasoning is provided to define the boundaries of725

such deviations from preregistration.726

A common reform slogan states that “preregistration is a plan, not a prison10,” offering an727

escape route from undesirable consequences of rigidity. Nosek et al. (2018, p.2602) suggest that728

compared to a researcher who did not preregister their hypotheses or analyses, “preregistration with729

reported deviations provides substantially greater confidence in the resulting statistical inferences.”730

This statement has no support from statistical theory. On the other hand, the claim may make731

researchers feel justified in changing their preregistered analyses as a result of practical problems732

in data collection or analysis, without accounting for the conditionality in their decisions, leading to733

invalid statistical inference.734

A study of 16 Psychological Science papers with open preregistrations shows that research often735

deviated from preregistration plans (Claesen et al., 2019). Hence, in practice, preregistration fails736

to lock researchers in an analytical plan. Deviating from a preregistered plan might prevent a737

statistically flawed procedure from being implemented, and hence, might improve statistical validity738

of conclusions. On the other hand, it is possible to deviate from a plan by introducing more739

sequential decisions and contingency to data analysis, which if not accounted for, would invalidate740

the statistical inference. A strict interpretation of preregistration may also lead to invalid inference741

by locking researchers in a faulty plan. As such, preregistration or deviations from preregistration742

have little say over the diagnosticity of p-values or error control. Statistical rigor can neither be743

ensured by preregistration nor would be compromised by not preregistering a plan.744

What can preregistration achieve statistically? Strict preregistration might work as a behavioral780

sanction that prevents researchers from doing any statistical analysis that involves conditioning781

on data, valid or invalid. This way, preregistration can prevent using data multiple times without782

proper conditioning by preventing proper conditioning procedures along with it. Nevertheless,783

as we show in Box 2, conditioning on data may improve inference. On the other hand, a flexible784

interpretation of preregistration that allows for deviations in the plan so long as they are labeled785

as “exploratory” rather than “confirmatory” has no bearing on statistical outcomes. If proper786

conditioning is performed, analyses that are referred to as “exploratory” in the reform literature787

might observe strict error control and if it is not, analyses currently being labeled “confirmatory”788

might be statistically uninterpretable.789

There exist other social advantages to preregistration of empirical studies, such as the creation of790

10While not part of our core argument this particular slogan is underspecified. It is not clear how the argument for the

necessity of preregistration for statistically valid inference should be reconciled with the proposed flexibility of preregistrations.

In any case, this line of thinking is moot from our perspective since the underlying premise itself does not hold.
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Box 3. Validity of statistical analyses under strict, flexible, and no

preregistration

745

746747

We show how a strict interpretation of preregistration and a failure to use proper statistical

conditioning may hinder valid statistical inference with a simulation example. Our simulations

consist of 106 replications of hypothesis tests for the difference in the location parameter
between two populations. We build the distribution of p-values under the null hypothesis of

no difference for three cases and four true data generating models. In addition to the Normal

distribution with exponentially bounded tail, we use Cauchy and T distributions for heavy tail,

and Gumbel distribution for light tail. By a well-known result, the distribution of p-value under

the null hypothesis is standard uniform for a valid statistical test.
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756

• Hypothesis tests in Group 1 (solid lines) were performed using the following procedure:757

1. Collect data with no specification of hypothesis, model, or method (no preregistra-

tion).

758

759

2. Calculate the sample medians. Set the alternative hypothesis so that the median

of the population corresponding to the larger sample median is larger than the

median of the other population (using the data to determine the hypotheses).

760

761

762

3. Build the conditional reference distribution of the test statistic by permuting the
data (reusing the data to determine the method).

763

764

4. Calculate the test statistic from the data to compare with the reference distribution

(reusing the data to calculate observed value of the test statistic).

765

766

The tests in Group 1 derive almost all their components from the data by reusing them

multiple times. The distribution of the p-values show that these tests are valid since they

follow the standard uniform distribution (solid lines).

767

768

769

• Hypothesis tests in Group 2 (dashed lines) demonstrate a situation that may arise under

either flexible preregistration (assumption checks allowed) or no preregistration, when

proper statistical conditioning is not performed in step 3. This is akin to HARKing without

statistical controls. In this case, the distribution of p-values is uniform on (0, 0.5). These
tests are not valid, since ℙ(p ≤ �|H0) = 2� for some significance thresholds �.

770

771

772

773

774

• Hypothesis tests in Group 3 (dotted lines) demonstrate a situation that may arise under a

strict preregistration protocol (altering the preregistered model or methods not allowed)

when there is model misspecification. The preregistered model is Normal, but the data

are generated under other models. These tests are not valid, since ℙ(p ≤ �|H0) > � for
some significance thresholds �.

775

776

777

778

779
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a reference database for systematic reviews andmeta-analysis that is relatively free from publication791

bias. While these represent genuine advantages and good reasons to practice preregistration,792

they do not affect the interpretation or validity of the statistical tests in a particular study. We793

demonstrate some of the points discussed in this section with examples in Box 3. Our exposition and794

illustration in this section have policy implications, primarily suggesting caution when proceeding to795

step 5 of our formal approach in this context. The statistical theory behind these examples show796

that the benefits of preregistration —in promoting systematic documentation and transparent797

reporting of hypotheses, research design, and analytical procedures— should not be mistaken for a798

technical capacity for ensuring statistical validity. If and only if a statistically appropriate analytical799

plan has been preregistered and performed, would preregistration have a chance of ensuring the800

meaningfulness of statistical results. Yet a well-established statistical procedure always returns801

valid inference, preregistered or not.802

Claim 3: Exploratory Research Uses “Wonky” Statistics803

A large body of reform literature advances the exploratory-confirmatory research dichotomy from804

an exclusively statistical perspective. Wagenmakers et al. (2012) argue that purely exploratory805

research is one that finds hypotheses in the data by post-hoc theorizing and using inferential806

statistics in a “wonky” manner where p-values and error rates lose their meaning: “In the grey area807

of exploration, data are tortured to some extent, and the corresponding statistics is somewhat808

wonky.” The reform movement seems to have embracedWagenmakers et al. (2012)’s distinction809

and definitions, and this dichotomy has been emphasized in required documentation for prereg-810

istrations (van’t Veer and Giner-Sorolla, 2016), registered reports (Nosek and Lakens, 2014), and811

exploratory reports (McIntosh, 2017).812

We start by discussing why the exploratory-confirmatory dichotomy is not tenable from a purely813

statistical perspective. The reform literature does not provide an unambiguous definition for what814

is considered “confirmatory” or “exploratory”. There are many possible interpretations including: (1)815

Formal statistical procedures such as null hypothesis significance testing are confirmatory, informal816

ones are exploratory. (2) Only preregistered hypothesis tests are confirmatory, non-preregistered817

ones are exploratory. (3) Only statistical procedures that deliver their theoretical claims (e.g., error818

control) are confirmatory, invalid ones are exploratory. These three dichotomies are not consistent819

with each other and lead to confusing uses of terminology. One can speak of formal statistical820

procedures such as significance tests, and informal procedures such as data visualization, or valid821

and invalid statistical inference, but there is no mathematical mapping from these to exploratory or822

confirmatory research, especially when clear technical definitions for the latter are not provided, in823

clear violation of step 1 of our formal approach. Moreover, the general usefulness and relevance824

of this dichotomy has also been challenged for theoretical reasons (Oberauer and Lewandowsky,825

2019; Szollosi and Donkin, 2019). In this section, we sidestep issues with the dichotomy but argue826

against the core claim presented by (Wagenmakers et al., 2012) regarding the nature of exploratory827

research specifically, advancing the following points:828

• Exploratory research aims to facilitate scientific discovery, which requires a broader approach829

than statistical analysis alone and cannot be evaluated formally to derive meaningful method-830

ological claims.831

• Exploratory data analysis (EDA) is a tool for performing exploratory research and usesmethods832

that only answer to their assumptions to be valid. When making claims about EDA specifically,833

we should follow the steps of our formal approach.834

• Using “wonky” inferential statistics does not facilitate and probably hinders exploration, be-835

cause statistical theory only provides guarantees for statistical inference when its assumptions836

are met.837

• Exploratory research needs rigor to serve its intended aim to facilitate scientific discovery.838

Scientific exploration is the process of attempting to discover new phenomena (Swedberg,839
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2018). Outside of the methodological reform literature, exploratory research is typically associated840

with hypothesis generation and is contrasted with hypothesis testing—sometimes referred to as841

confirmatory research. Exploratory research may lead to serendipitous discoveries. However,842

it is not synonymous with serendipity but is a deliberate and systematic attempt at discovering843

generalizations that help us describe and understand an area about which we have little or no844

knowledge (Stebbins, 2001). In this sense, it is analogous to topographically mapping an unknown845

geographical region. The purpose is to create a complete map until we are convinced that there846

is no element within the region being explored that remains undiscovered. This process may847

take many forms from exploration of theoretical spaces (i.e., theory development; van Rooij, 2019;848

van Rooij and Baggio, 2020a) and exploration of model spaces (Devezer et al., 2019;MacEachern849

and Van Zandt, 2019) to conducting qualitative exploratory studies (Reiter, 2017) and designing850

exploratory experiments (Arabatzis, 2013; Waters, 2007), and finally to exploratory data analy-851

sis (Behrens, 1997; Gelman, 2003; Haig, 2005; Tukey, 1980).852

This process of hypothesis generation is notoriously hard to formalize, as Russell (1945, p.544)853

so clearly laid out:854

As a rule, the framing of hypotheses is the most difficult part of scientific work, and the855

part where great ability is indispensable. So far, no method has been found which would856

make it possible to invent hypotheses by rule. Usually some hypothesis is a necessary857

preliminary to the collection of facts, since the selection of facts demands some way of858

determining relevance. Without something of this kind, the mere multiplicity of facts is859

baffling.860

Therefore, without further work on formal approaches it is not easy to implement a formal ap-861

proach to make methodological claims about exploration, since we will fail at step 1. At least in862

our current knowledge state, we are not able to formally define exploration as a research activity.863

Informally, hypothesis generation requires creativity, flexibility, and open-mindedness to allow864

for ideas to emerge (Stebbins, 2001; Swedberg, 2018). The inferential approach employed during865

exploration cannot be described as deduction or induction since it requires adding something866

new to known facts. This process of generating explanatory hypotheses is known as abduction867

proper11 and the process of generating that set of hypotheses. The latter process, which is of868

interest to our discussion, is specifically known as abduction proper (Blokpoel et al., 2018; van Rooij869

and Baggio, 2020a). Abduction proper is then a way to meaningfully reduce the search space for870

possible hypotheses. Blokpoel et al. (2018) show that abduction proper is uncomputable when un-871

constrained and remains computationally intractable even when constrained. This seems to render872

attempts at efficiently capturing this process with rules and formalism somewhat futile. (Peirce,873

1974), which involves studying the facts and generating a theory to explain them (Peirce, 1974, p.90).874

Abduction proper requires scientists to absorb and digest all known facts about a phenomenon,875

mull them over, use introspection and common sense (Good, 1983), evaluate them against their876

background knowledge (van Rooij and Baggio, 2020a), and add something as of yet unknown, with877

the intention of providing new insight or understanding that would not have been possible without878

abduction (Peirce, 1974). Hypothesis generation, therefore, cannot be reduced down to formal879

statistical inference, whose methods are deductively derived and used inductively in application. In880

fact, meticulous exploration via abduction proper would improve our statistical inference by facili-881

tating the first two conditions mentioned in Box 1 by constraining our search space in a theoretically882

meaningful fashion.883

That said, exploratory data analysis (EDA) can be instrumental in hypothesis generation. Tukey884

(1980) suggests that EDA is not a bundle of formal inferential techniques and that it requires exten-885

sive use of data visualization with a flexible approach. EDA is usually an iterative process of model886

specification, residual analysis, examination of assumptions, and model respecification (Behrens,887

11Abductive inference involves both the process of making inference to the best explanation based on a set of candidate

hypotheses (Haig, 2009)
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1997; MacEachern and Van Zandt, 2019) to find patterns and reveal data structure. If inferential888

statistics are employed for the purposes of data exploration, we can prioritize minimizing the889

probability of failing to reject a false null hypothesis (Goeman et al., 2011; Jaeger and Halliday,890

1998) as opposed to minimizing false positives because priority is given to not missing true dis-891

coveries. Nonetheless, other methods than hypothesis testing are often more closely associated892

with EDA due to their flexibility in revealing patterns, such as graphical evaluation of data (Behrens,893

1997; Tukey, 1980), exploratory factor analysis (Behrens, 1997; Haig, 2005), principal components894

regression (Massy, 1965), and Bayesian methods to generate EDA graphs (Gelman, 2003, 2004;895

Williams and Mulder, 2020).896

Whichever method is selected for EDA; however, it needs to be implemented rigorously to897

maximize the probability of true discoveries while minimizing the probability of false discoveries.898

As Behrens (1997, p.134) observes:899

A researcher may conduct an exploratory factor analysis without examining the data900

for possible rogue values, outliers, or anomalies; fail to plot the multivariate data to901

ensure the data avoid pathological patterns; and leave all decision making up to the902

default computer settings. Such activity would not be considered EDA because the903

researcher may be easily misled by many aspects of the data or the computer package.904

Any description that would come from the factor analysis itself would rest on too many905

unassessed assumptions to leave the exploratory data analyst comfortable.906

The implication is that using “wonky” statistics cannot be a recommended practice for data907

exploration. The reason is that by repeatedly misusing statistical methods, it is possible to generate908

an infinite number of patterns from the same data set but most of them will be what Good (1983,909

p.290) calls a kinkus—“a pattern that has an extremely small prior probability of being potentially910

explicable, given the particular context”. If the process of hypothesis generation yields too many911

such kinkera (plural of kinkus), it can neither be considered a proper application of abduction912

principle nor would serve the ultimate goal of exploratory research: making true discoveries.913

Relying on statistical abuse in the name of scientific discovery will easily lead to well-known statistical914

problems such as increasing false positives bymultiple hypothesis testing (Benjamini and Hochberg,915

1995), specifically by multiple tests of the same hypothesis (Matsunaga, 2007; Rubin, 2017a), or by916

failing to use proper conditioning as we outlined in the previous section.917

If exploratory research needs to satisfy a certain level of rigor to be effective but we are not able918

to formalize it, what criteria should we use to assess its quality? Since the process of exploration919

is elusive and informal, it may not be possible to derive some minimum standards all exploratory920

studies need to meet. Nonetheless some desirable qualities can be inferred from successful921

implementation of exploratory approaches in different fields. (1) As suggested by Russell’s quote,922

exploration needs to start with subject matter expertise or theoretical background, and hence,923

cannot be decontextualized, free of theory, or completely dictated by the data (Behrens, 1997;924

Blokpoel et al., 2018; Good, 1983; van Rooij and Baggio, 2020a; Reiter, 2017;Waters, 2007). (2) The925

key for running successful exploratory studies is the richness of data (Reiter, 2013). Random data926

sets that are uninformative about the area to be explored will likely not yield important discoveries.927

(3) Exploration requires robust methods that are insensitive to underlying assumptions (Behrens,928

1997). As such, rather than misusing or abusing standard procedures for inferential statistics, using929

robust approaches such as multiverse analysis (Steegen et al., 2016) or metastudies (Baribault930

et al., 2018) could be more appropriate for exploration purposes. (4) Exploratory work needs to931

be done in a structured, systematic, honest, and transparent manner using a deliberately chosen932

methodology appropriate for the task (Lee et al., 2019; Reiter, 2013).933

The above discussion should make two points clear, regarding Claim 3: First, exploratory934

research cannot be reduced to exploratory data analysis and cannot be formalized, rendering935

broad methodological claims about exploration unwarranted. Second, when exploratory data936

analysis is pursued as a preferred method for scientific exploration, it needs rigor and formal937
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justifications. Describing exploratory research as though it were synonymous with or accepting of938

“wonky” procedures that misuse or abuse statistical inference not only undermines the importance939

of systematic exploration in the scientific process but also severely handicaps the process of940

discovery.941

Conclusion942

Our call for statistical rigor and scientific nuance encompasses all claims regarding scientific practice943

and policy changes. Rigor requires attention to detail, precision, clarity in statements and methods,944

and transparency. Nuance necessarily means moving away from speculative, sweeping claims and945

not losing sight of the context of inference. Simple fixes to complex scientific problems rarely exist.946

Simple fixes motivated by speculative arguments, lacking rigor and proper scientific support might947

appear to be legitimate and satisfactory in the short run, but may prove to be counter-productive in948

the long run. It is instructive to remember how taking p < 0.05 as a sign of scientific relevance or949

even truth has proved to be detrimental to scientific progress.950

Recent developments in methodological reform have already been impactful in inducing behav-951

ioral and institutional changes. However, as Niiniluoto (2019) suggests, impact of research “only952

shows that it has successfully ‘moved’ the scientific community in some direction. If science is953

goal-directed, then wemust acknowledge that movement in the wrong direction does not constitute954

progress.” Unfortunately, the reform literature has largely overlooked the necessity of first princi-955

ples and formalism in advancing methodological tools. That is: Providing mathematical definitions956

of fundamental concepts the methods rely on, making claims about these tools with transparency957

and under clearly stated assumptions, supporting these claims by and mathematical or simulation958

proofs, and documenting the limitations of these tools. Such a formal approach aids us in making959

positive contributions to scientific progress. The five-step formal approach we illustrated in this960

article is just an example of this formalism, showing how to encapsulate the necessary standard for961

methodological rigor and nuance.With this example, and its application to three proposed reform962

policies, we hope to contribute to laying the groundwork of a formal methodology in scientific reform.963
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Appendix 11201

Notation, assumptions, definitions1202

Regularity conditions and notation. We assume some regularity conditions for all random

variables:

1203

1204

• Distribution functions F ≡ F (w) = ℙ(W ≤ w), are absolutely continuous and non-
degenerate, endowed with the density function f (w) = dF (w)∕dw.

1205

1206

• {E(|W |

n) < ∞,∀n}, E(W 2) > 0,where E(W ) = ∫ ∞
−∞ f (w)dw, and V (W ) = E(W 2)−[E(W )]2.1207

• We make frequent use of the indicator function: I{A} = 1 if A, and 0 otherwise.1208

Assumptions of idealized study. We build on the notion of idealized study (Devezer et al.,
2019), obeying the following assumptions:

1209

1210

A1. There exists a true probability modelMT , completely specified by FT of random variable
X, which is the observable for a phenomenon of interest.

1211

1212

A2. Some known background knowledge K partially specifiesMT up to property � ∈ Θ,
which denotes unknown and unobservable components ofMT . For notational econ-
omy, K is often dropped, with the understanding that all statements are conditional
on K .

1213

1214

1215

1216

A3. A statement that is in principle testable via statistical inference using a simple random

and finite sample Xn = (X1, X2,⋯ , Xn), where Xi ∼ FT is made about �.
1217

1218

A4. Candidate mechanismsMi, inducing distribution functions Fi are formulated.1219

A5. A fixed and known function S is used to extract the information in Xn pertinent toMi.
S evaluated at Xn returns Sn, with non-degenerate distribution function ℙ(Sn ≤ s).

1220

1221

A6. Formal statistical inference returns a result {R = d(Sn, c), R ⊂ Θ}, where c is a user-
defined known quantity, and d(⋅, ⋅) is a fixed and known non-constant decision function
which formalizes the statistical inference (by inducing a frequency assessment for a

result).

1222

1223

1224

1225

Definitions.1226

• � = (Mi, �,Xn, S,K, d) is an idealized study.1227

• �(i) which differs from � only in K and Xn
(i)
generated independently from Xn, is a

replication experiment.

1228

1229
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Appendix 21230

Relationship between true results and reproducible results1231

Proofs of Propositions 1.1, 1.2, and 1.3. R(i) are {0, 1} exchangeable random variables
since �(i) are invariant under permutation of labels. By De Finetti’s representation theorem
for {0, 1} variables, there exists a � such that R(i) are conditionally independent given �.
For a finite subsequence R(1), R(2),⋯ , R(N), and the relative frequency of reproduced results
defined by �N = N−1∑N

i=1 I{R(i)=Ro|Ro}, we have limN→∞ �N = �, almost surely by the Strong
Law of Large Numbers.

1232

1233

1234

1235

1236

1237

By definition � ≥ 0, since it is a probability. It follows by contradiction that � = 1 only
in trivial cases: Assume � = 1. We have � = E(I{R=Ro|Ro}) = ℙ(R = Ro|Ro) = 1, which implies
that I{R(i)=Ro|R} = 1 for all i. Therefore, d(Sn, c) in A6must return a singleton (Ro) for all values
of Sn. This can happen in three ways: Xn is non-stochastic, which contradicts A1, or Sn is

non-stochastic, which contradicts A5, or Ro is not a proper subset of Θ, which contradicts A6.

1238

1239

1240

1241

1242

The truth of 1.2 implies 1.3 and vice versa: if a result is not true, then it is false because

�T + �F = 1. To see that �T can be arbitrarily close to zero (and �F arbitrarily close to 1), fix
RT . Choose S such that d(Sn, c) does not return RT with probability 1 − �T . A simple example
is a biased estimator of a parameter in a probability distribution. We also note that by

Proposition 1.1, �T must have positive probability for every point on its support for some �,
which includes values arbitrarily close to 0.

1243

1244

1245

1246

1247

1248

Remark. �N should not be misinterpreted as an estimator with less than ideal properties.
Quite the opposite: By Central Limit Theorem, (�N − �)∕[�(1 − �)] converges to the stan-
dard normal distribution and �N has excellent statistical properties as an estimator of �
(Dvoretzky et al., 1953; Berry, 1941; Esseen, 1942).

1249

1250

1251

1252

Remarks for some cases in Box 1.1253

Bullet 1. Fix c such that �(c) > 0. Consider a model selection problem where d(Sn, c) returns
a model between two candidate modelsM1 andM2, which are different from the true model
MT . The selected model M1 or M2 is false with probability 1 independent of how well S
performs. Yet,M1 andM2 can be chosen so that the divergence or metric on which themodel

selection measure S is based satisfy selectingM1 overM2 with probability �F = 1 − �(c).

1254

1255

1256

1257

1258

Bullet 3. Let �o be the parameter of interest of FT and �
′

o be nuisance parameters. Assume

that the true value of �o is in Θ.We let d(Sn, c) to return Sn as an estimator of parameter �o
where E(Sn) is not equal to the true value. Sn is often a pivotal quantity. We consider two

cases: If further, Sn is a statistic then it is ancillary for �o. Let V (Sn) = �(c)2. By Chebychev’s
inequality we have |Sn − E(Sn)| ≤ �(c) with probability 1. Thus, the result returned is false and
�F > 1 − �(c). Else if, Sn is not a statistic, but depends on �

′

o, choosing the value of �
′

o suitably

yields the result.

1259

1260

1261

1262

1263

1264

1265
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Appendix 31266

Conditional analysis1267

Proof 2.1. By Chebychev’s inequality we have ℙ{|Sn − �| ≤
√

V (Sn)∕�} ≤ �2 and ℙ{|Sn
′ − �| ≤

√

V (Sn
′)∕�} ≤ �2, where V (Sn)∕� and V (Sn

′)∕� are critical values of the two tests. We have
0 ≤ V (Sn

′) ≤ V (Sn) by Rao-Blackwell Theorem (Casella and Berger, 2002, p.342). It follows
that s� ≥ s′� and ℙ(Sn

′ ≥ s�|Ho) < �.

1268

1269

1270

1271

Proof 2.2. By ancillarity we have ℙ(Ua|�) = ℙ(Ua), implying ℙ(Ua|Sn, �) = ℙ(Ua|Sn). The sam-
pling distribution of S given � can be written as:

ℙ(Sn|�) = ℙ(Sn|Ua, �)ℙ(Ua|�)∕ℙ(Ua|Sn, �) = ℙ(Sn|Ua, �)
[

ℙ(Ua)∕ℙ(Ua|Sn)
]

,

where the second equality follows by substituting for ℙ(Ua|�) and ℙ(Ua|Sn, �). The term within
the brackets is independent of �, so that a test based on Sn, and a test based on Sn|Ua yield
the same result. Therefore, using Ua to informHo does not affect the validity of the test.

1272

1273

1274

1275

1276

1277

1278

1279

Remarks for some cases in Box 2.1280

Left block, 1st row, 1st column. If Sn is not complete sufficient and Us is minimally
sufficient, then for an upper tail test ℙ(Sn ≥ s|Us,Ha) ≥ ℙ(Sn ≥ s|Ha) for some s is
possible, where Ha is the alternative hypothesis. That is, the test conditional on a

statistic from prior analysis can be more powerful. Parallel arguments hold for lower

and two-tailed tests.

1281

1282

1283

1284

1285

Left block, 1st row, 2nd column. Rao-Blackwellization guarantees that V (Sn|U ) ≤
V (Sn). See Figure 3 for an example.

1286

1287

Right block, 1st row, 1st column. Conditioning on a decision based on user defined

criterion might alter the support of the sampling distribution of Sn. In these cases,

conditioning is necessary for a valid test. See Figure 4 for an example.
1288

1289

1290

Right block, 3rd row. Ua and Sn might be dependent (see Casella and Berger (2002,
p.284–285) for an example). Applying a decision with a user defined criterion and Ua
might affect the support of the sampling distribution of Sn. In these cases, conditioning

on the decision regarding Ua is necessary for a valid test.

1291

1292

1293

1294
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Appendix 41295

Details of models used in Figures1296

Figure 1A. The simple linear regression model is given by yi = �0 + �1xi + �i, where the errors
obey Gauss-Markov conditions: E(�i) = 0, V (�i) = �2� , ∀i, and Cov(�i, �j) = 0, ∀(i, j). The xi are
assumed fixed and known. The errors �i ∼ Nor(0, ��). The measurement error model is the
true model when there is stochastic measurement error in xmaking it a random variable
X. We assume Xi = xi + �i, where �i ∼ Nor(0, ��). The assumed (incorrect) model under
which inference is performed is the simple linear regression model, which corresponds

to �� = 0. Specific values used in the plot are: x ∼ Unif(0, 10), �0 = 2, �1 ∈ {2, 20}, �� = 1,
�� ∈ {0.01, 0.02,⋯ , 1.0}, and the sample size is 50.

1297

1298

1299

1300

1301

1302

1303

1304

Figure 2. The model is the same as in Figure 1A, except that the values plotted are �� ∈
{0.01, 0.02,⋯ , 10}, and the true value is �1 = 20. The vertical axis shows the distance between
�̂1 and �1.

1305

1306

1307

Figure 3. This example is fromMukhopadhyay (2006). Let X ∼ Nor(�, �), � > 0. The data is a
single observation X1, which is an unbiased estimator of �. Using Rao-Blackwellization, |X1|

is a sufficient statistic for � and the mean of X1 conditional on the value |X1| improves the

power of a test while maintaining its validity.

1308

1309

1310

1311

Figure 4. Let Xi ∼ Nor(�X , �2X) and Yi ∼ Nor(�Y , �2Y ), i = 1, 2,⋯ , n independent samples
with known population variances �2X and �

2
Y . Let the null and the alternative hypotheses

be Ho ∶ �X = �Y , Ha ∶ �X > �Y respectively. An appropriate test statistic for level
� = ℙ(Z ≥ z�|Ho) test is the z-score: Z = (X̄ − Ȳ )∕(�X∕

√

n+ �Y ∕
√

n), which follows a standard
normal distribution underHo. Assume we perform the test is only if we observe X̄ − Ȳ > 0.
Define: U (c) = X̄ − Ȳ if X̄ > Ȳ , and U (c) = 0 otherwise. Here, U (c) is the statistic U = X̄ − Ȳ
whose nonzero values are constrained by the user defined criterion c, given by X̄ > Ȳ . The
conclusion of the test depends on U (c) since when X̄ > Ȳ , larger the value of U, larger the
value of Z. The distribution of the conditional test statistic Z|U (c),Ho is not standard normal

and therefore the level of the test is not necessarily � for the critical value z� , as is with the
test statistic Z. However, if the distribution of Z|U (c),Ho is available then the correct critical

value, can be chosen to perform a level � test. We let W = ZI{X̄>Ȳ }, the standard normal
random variable with support on non-negative real line (folded at zero), properly normalized.

This is known as the standard half-normal distribution.

We see that ℙ(W > z�|Ho) = 2�. For the level of the conditional test to be �, we adjust the
critical value as z∗ = z�∕2 and have ℙ(W > z∗|Ho) = �.

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328
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Appendix 51329

A simulation-based method to sample the conditional distribution of the

test statistic

1330

1331

If the distribution of the conditional test statistic underHo is not available as a closed form

solution, an appropriate simulation-basedmethod can be used to sample it. Here, we give an

example for the unconditional test statistic Sn with distribution ℙ(Sn|Ho), whereHo ∶ � = �o.
We aim to sampleM values from the conditional distribution of Sn|U (c),Ho where U (c) is a
statistic obtained from the data constrained by a user defined criterion c.

1332

1333

1334

1335

1336

Algorithm.1337

Initialize: SetM (large desired number), and i = 0.1338

Begin While i < M, do:1339

1. Simulate Xj ∼ ℙ(Xi|�o), j = 1, 2,⋯ , n independently of each other. Set Xn
(i) =

(X1, X2,⋯ , Xn).
1340

1341

2. Calculate Sn
(i) = S(Xn

(i)) and U (i) = U (Xn
(i)).1342

3. If U (i) obeys c accept Sn
(i)
as a draw from the distribution of the conditional test

statistic and set i = i + 1. Else discard (Xn
(i),Sn

(i), U (i)).
1343

1344

End While1345

The accepted values Sn
(1),Sn

(2),⋯ ,Sn
(M)
is a sample from the distribution Sn|U (c),Ho. A valid

level � test can be built by finding the relevant sample quantile. This method is precise up to
a Monte Carlo error which vanishes asM → ∞.

1346

1347

1348

Sometimes it may not be possible to condition on the exact value of statistic U (c), for
example when c involves an equality (instead of inequality) and U is continuous random
variable. In these cases, the algorithm given above can be modified to build an approximate

test using an approximate simulation method such as a likelihood free method. The error

rates in approximation can be estimated by simulation.

1349

1350

1351

1352

1353

1354
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