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Abstract: 17 

Single-cell omic protocols applied to disease, development or mechanistic studies can reveal 18 

the emergence of aberrant cell states or changes in differentiation. These perturbations can 19 

manifest as a shift in the abundance of cells associated with a biological condition. Current 20 

computational workflows for comparative analyses typically use discrete clusters as input 21 

when testing for differential abundance between experimental conditions. However, clusters 22 

are not always an optimal representation of the biological manifold on which cells lie, 23 

especially in the context of continuous differentiation trajectories. To overcome these barriers 24 
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to discovery, we present Milo, a flexible and scalable statistical framework that performs 25 

differential abundance testing by assigning cells to partially overlapping neighbourhoods on a 26 

k-nearest neighbour graph. Our method samples and refines neighbourhoods across the 27 

graph and leverages the flexibility of generalized linear models, making it applicable to a wide 28 

range of experimental settings. Using simulations, we show that Milo is both robust and 29 

sensitive, and can reveal subtle but important cell state perturbations that are obscured by 30 

discretizing cells into clusters. We illustrate the power of Milo by identifying the perturbed 31 

differentiation during ageing of a lineage-biased thymic epithelial precursor state and by 32 

uncovering extensive perturbation to multiple lineages in human cirrhotic liver. Milo is provided 33 

as an open-source R software package with documentation and tutorials at 34 

https://github.com/MarioniLab/miloR. 35 

 36 

Introduction: 37 

The advent and expansion of high-throughput and high-dimensional single-cell measurements 38 

has empowered the discovery of specific cell-state changes associated with disease, 39 

development and experimental perturbations. Perturbed cell states can be detected by 40 

quantifying shifts in abundance of cell types in response to a biological insult. A common 41 

analytical approach for quantitatively identifying such shifts is to ask whether the composition 42 

of cells in predefined and discrete clusters differs between experimental conditions [1–5]. 43 

However, assigning single-cells to discrete clusters can be problematic, especially in the 44 

context of continuous differentiation, developmental or stimulation trajectories, thus limiting 45 

the power and resolution of such differential abundance (DA) testing strategies. 46 

 47 

Alternative approaches for performing differential abundance testing without requiring clusters 48 

to be defined have been proposed for high-throughput mass cytometry data [6]. For example, 49 

Cydar constructs hyperspheres in the high-dimensional (protein) expression space and asks 50 

whether the abundance of cells from different conditions varies in each hypersphere. 51 
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However, the construction of hyperspheres depends heavily upon the choice of input 52 

parameters and upon data pre-processing. More recent developments have proposed 53 

strategies for overcoming some of these limitations, but are themselves constrained to 54 

pairwise comparisons, as implemented in DAseq [7], and thus lack flexibility. 55 

 56 

To solve these challenges, we have developed a computational method that performs 57 

differential abundance testing without relying on clustering cells into discrete groups. We make 58 

use of a common data-structure that is embedded in many single-cell analyses: k-nearest 59 

neighbour (k-NN) graphs. We model cellular states as overlapping neighbourhoods on such 60 

a graph, which are then used as the basis for differential abundance testing. To account for 61 

the non-independence of spatially overlapping neighbourhoods we build upon a previously 62 

described strategy to control the spatial False Discovery Rate (FDR) [6].  63 

 64 

Our method, which we call Milo, leverages the flexibility of generalized linear models (GLM), 65 

thus allowing complex experimental designs. Moreover, by modelling cell states as 66 

overlapping neighbourhoods, we are able to accurately pinpoint the perturbed cellular states, 67 

enabling the identification of the underlying molecular programs. We demonstrate the power 68 

of our approach by identifying perturbed cellular states from publicly available datasets in the 69 

context of human liver cirrhosis and by uncovering a fate-biased progenitor in the ageing 70 

murine thymus. Furthermore, we demonstrate the speed and scalability of our open-source 71 

implementation of Milo, and demonstrate its superiority to alternative approaches. 72 

 73 

Results: 74 

Modelling cell states as neighbourhoods on a k-NN graph 75 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 23, 2020. ; https://doi.org/10.1101/2020.11.23.393769doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.23.393769
http://creativecommons.org/licenses/by/4.0/


 4 

We propose to model the differences in the abundance of cell states between experimental 76 

conditions using graph neighbourhoods (Fig 1). Our computational approach allows 77 

overlapping neighbouring regions, which alleviates the principal pitfalls of using discrete 78 

clusters for differential abundance testing. We make use of a refined sampling implementation 79 

[8], which leads to high coverage of the graph while simultaneously controlling the number of 80 

neighbourhoods that need to be tested. For each neighbourhood we then perform hypothesis 81 

testing between biological conditions to identify differentially abundant cell states whilst 82 

controlling the FDR across the graph neighbourhoods. 83 

 84 

Our method works on a k-NN graph that represents the high-dimensional relationships 85 

between single-cells, a common scaffold for many single-cell analyses [1–4] (Fig 1A). The first 86 

step in our method is to define a set of representative neighbourhoods on the k-NN graph, 87 

where a neighbourhood is defined as the group of cells that are connected to an index cell by 88 

an edge in the graph. Consequently, we need to sample a subset of single-cells to use as 89 

neighbourhood indices. Adopting a purely random sampling approach means that the number 90 

of neighbourhoods required to sample a fixed proportion of cells scales linearly with the total 91 

number of index cells (Supp Fig 1B). This leads to an increased multiple testing burden, with 92 

the potential to reduce statistical power. To solve this problem we have implemented a refined 93 

sampling scheme (Fig 1A) [8]. Concretely, we perform an initial sparse sampling, without 94 

replacement, of single-cells and compute the k nearest neighbors for each sampled cell. We 95 

then calculate the median position of each set of nearest neighbors and find the nearest cell 96 

to this median position. These adjacent cells become the set of indices from which we compute 97 

the final set of neighbourhoods. This procedure has three main advantages: (1) fewer, yet 98 

more representative, neighbourhoods are selected, as initial random samplings from dense 99 

regions of the k-NN graph will often converge to the same index cell (Supp Fig 1A), (2) the 100 

representative neighbourhoods include more cells on average (Suppl Fig 1B) and (3) 101 

neighbourhood selection is more robust across initializations (Supp Fig 1C). 102 

 103 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 23, 2020. ; https://doi.org/10.1101/2020.11.23.393769doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.23.393769
http://creativecommons.org/licenses/by/4.0/


 5 

Next, we count the numbers of cells present in each neighbourhood (per experimental sample) 104 

and use these for differential abundance testing between conditions. To incorporate complex 105 

experimental designs (e.g., the presence of multiple conditions) we test for differences in 106 

abundance using a Negative Binomial GLM framework [9,10]. By doing this, we can borrow 107 

information across neighbourhoods, allowing robust estimation of dispersion parameters. We 108 

also employ a quasi-likelihood F-statistic [11] for comparing different hypotheses, which has 109 

been shown to be powerful in single-cell differential testing [12]. To account for multiple 110 

hypothesis testing we use a weighted FDR procedure [13] that accounts for the spatial overlap 111 

of neighbourhoods as initially introduced in Cydar [6]. We adapt this procedure for a k-NN 112 

graph, and weight each hypothesis test P-value by the reciprocal of the kth nearest neighbour 113 

distance.  114 

 115 

Although the GLM framework allows the incorporation of nuisance covariates, to maximize the 116 

power of DA testing, confounding effects should be minimized prior to graph building, for 117 

example by applying an appropriate batch integration (practical considerations and 118 

demonstrations on how to account for batch effects can be found in the Supplementary Notes 119 

and Suppl.Fig.2-3). 120 

 121 

To illustrate the Milo workflow we generated a simulated trajectory [14] composed of cells 122 

sampled from two experimental conditions (‘A’ and ‘B’; Fig1B). Cells in a defined 123 

subpopulation of this trajectory were simulated to be more abundant in the ‘B’ condition (Fig 124 

1B); this region of differential abundance is not defined as a distinct cluster by widely-used 125 

clustering algorithms (Supp Fig 4). However, applying Milo to these simulated data specifically 126 

detects that this region contains different abundances of cells from the two conditions (Fig 1C-127 

D). 128 

 129 
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Milo out-performs existing methods for differential abundance testing 130 

To illustrate the power and accuracy of Milo we first simulated 100 independent continuous 131 

trajectories, each consisting of 2000 single-cells, and assigned cells equally to one of 2 132 

conditions: ‘A’ or ‘B’. To simulate a subpopulation of differential abundance we sampled 90% 133 

of cells in a specific region of each trajectory from condition ‘B’. Moreover, we assigned cells 134 

to one of 3 replicates per condition, thus mimicking a common experimental design. These 135 

simulated data sets provide a ground truth against which the performance of differential 136 

abundance testing approaches can be compared (Fig 2A). 137 

 138 

As well as Milo, we applied two methods designed for differential abundance testing using 139 

single-cell data to these simulated datasets: Cydar, originally designed to model differential 140 

abundance in mass cytometry data [6], and DAseq, which utilises a logistic classifier to predict 141 

which cells are from single-cell DA subpopulations represented by a reduced dimensional 142 

space [7] (Fig 2B). In addition, we applied the current best-practise analysis strategy for single-143 

cell analysis: graph-clustering followed by differential abundance testing of clusters between 144 

conditions. For this approach we applied 2 commonly used community detection algorithms: 145 

Louvain [15] and Walktrap [16]. We modelled the differential abundance of clusters from these 146 

algorithms using a NB GLM, as implemented in edgeR [9]. To ensure comparability between 147 

methods we used the same reduced dimensional space as the input for all methods and the 148 

same parameter values, where these were shared, e.g. the value of ‘k’ for k-NN graph building. 149 

Where parameters were specific to a method, we made use of the recommended practise by 150 

the method developers to select an appropriate value (Supp Table 1). 151 

 152 

For each simulated dataset we computed the confusion matrix of each method against the 153 

ground truth, and calculated a number of common summary statistics (Fig 2C, Supp Fig 5), 154 

enabling an assessment of how well each method performs across a variety of metrics. To 155 

generate a single value for comparing methods, and integrate across the four categories of a 156 
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confusion matrix, we also calculated the Matthews correlation coefficient (MCC) [17] (Fig 2D). 157 

The MCC takes values between 1 (highly consistent) and -1 (highly inconsistent), thus 158 

providing an intuitive assessment of method performance. Across all 100 simulations we found 159 

that Milo out-performed all other methods, including both clustering methods, demonstrating 160 

the additional gains of modelling cell states using overlapping neighbourhoods (Fig 2C, Supp 161 

Fig 5). This was confirmed when examining the MCC, where we observed that Milo yielded 162 

the highest median correlation (0.85) and lowest variance (Fig 2D). Conversely, the clustering-163 

based methods resulted in highly variable MCC values, illustrating the sensitivity of these 164 

approaches to the input data set. In sum, our simulations demonstrate that Milo circumvents 165 

a common bottleneck in single-cell analyses: the need to perform iterative rounds of 166 

community detection to achieve an optimal clustering prior to differential abundance testing. 167 

 168 

 169 

Milo is fast and scalable 170 

The benchmarking dataset is fairly typical in size for current single-cell experiments. However, 171 

moving forward, the number of cells assayed is likely to increase with advances in 172 

experimental sample multiplexing [18,19]. As such, we tested the scalability of the Milo 173 

workflow, and profiled the memory usage across multiple steps. For this we ran Milo on 3 174 

published datasets of differing sizes from ~2000 to ~130,000 cells, representing differences 175 

in both biological and experimental complexity [2–4], as well as a dataset of 200,000 simulated 176 

single-cells from a linear trajectory (see Methods). Using these 4 data sets we measured the 177 

amount of time required to execute the Milo workflow from graph-building through to 178 

differential abundance testing (Fig 3A). In parallel, we profiled the amount of memory used 179 

across the entire workflow (Fig 3B) and at each defined step (Supp Fig 6). Notably, the amount 180 

of time taken increased linearly with the total size of the data set (Fig 3A), which for a large 181 

set of 200k cells was less than 90 minutes. Moreover, the total memory usage across all steps 182 
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of the Milo workflow scaled primarily with the size of the input dataset (Fig 3B), indicating that 183 

the complexity and composition of the single-cells largely determines the memory 184 

requirements (Supp Fig 6). Importantly, these memory requirements are within the resources 185 

of common desktop computers (i.e. <16GB). This benchmarking analysis demonstrates that 186 

Milo is able to perform differential abundance analysis in large and complex datasets at a 187 

scale and speed that is feasible on a desktop computer. 188 

 189 

Milo identifies the decline of a fate-biased epithelial precursor in the ageing mouse thymus 190 

To demonstrate the utility of Milo in a real-world setting we applied it to a single-cell RNA-seq 191 

dataset of mouse thymic epithelial cells (TEC) sampled across the first year of mouse life, 192 

which were previously clustered into 9 distinct TEC subtypes (Fig 4A) [3]. These data, 193 

generated using plate-based SMART-seq2, consist of 2327 single-cells equally sampled from 194 

mice at 5 different ages: 1, 4, 16, 32 and 52 weeks old (Fig 4B). Moreover, the experimental 195 

design included 5 replicate experimental samples of cells for each age. The goal of the study 196 

was to identify TEC subtypes that change in frequency during natural ageing. 197 

 198 

To this end, we first constructed a k-NN graph, before assigning cells to 363 neighbourhoods, 199 

which were then used to test for differential abundance of TEC states across time. At a 10% 200 

FDR, we identified 217 DA neighbourhoods (112 showed a decreased abundance with age, 201 

105 an increased abundance with age) spanning multiple TEC states (Fig 4C). We compared 202 

our results to those generated in the original publication, which demonstrated that we were 203 

able to identify the same DA states (Fig 4D), including changes in the abundance of the ‘sTEC’ 204 

population, which consisted of just 24 cells. Moreover, whilst we recovered the previously 205 

reported accumulation of Intertypical TEC with age, we also identified a novel subset of these 206 

cells that were depleted with age (Fig 4C-D). 207 
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 208 

We have previously shown that Intertypical TEC represent an adult progenitor of medullary 209 

TEC (mTEC) [3]. To understand the function of the novel sub-state of Intertypical TEC 210 

identified using Milo we performed marker gene expression identification between the 211 

Intertypical TEC in neighbourhoods enriched or depleted in younger mice (FDR 1%; Fig4E). 212 

This analysis indicated that the cells from younger mice up-regulated multiple cytokine 213 

response genes (e.g. Stat1, Stat4, Aff3) (Fig 4E), illustrated by the enriched Gene Ontology 214 

term GO:0034097 ‘response to cytokine’ (enrichment adjusted p-value=2.48x10-3). Cytokine 215 

signalling is key to mTEC differentiation [20,21], indicating that these TEC from younger mice 216 

might be differentiating more efficiently to the mTEC lineage. The discovery that medullary-217 

biased Intertypical TEC are less abundant with age was corroborated by our original study 218 

utilising a much larger data set of ~90,000 single-cells coupled with lineage-tracing [3]. 219 

Therefore, these analyses demonstrate the sensitivity of Milo by identifying that a mTEC 220 

progenitor state is depleted with age, a finding that was not resolved using clustering 221 

approaches. 222 

 223 

Milo identifies compositional disorder in cirrhotic human liver 224 

To demonstrate the applicability of our method in multiple biological contexts, we next applied 225 

Milo to a large dataset of hepatic cells isolated from 5 healthy and 5 cirrhotic human livers [2]. 226 

The original study assigned cells to multiple lineages, including immune, endothelial and 227 

mesenchymal cells (Fig 5A-B). A key goal of the study was to ask whether different cell types 228 

were differentially abundant between experimental samples taken from healthy and cirrhotic 229 

tissue. In the original study, cells from each lineage were sub-clustered and these sub-clusters 230 

were interrogated using a Poisson GLM to identify whether there were differential contributions 231 

from cirrhotic and healthy donors. 232 

 233 
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To explore whether more subtle differences could be detected, we applied Milo analysis to 234 

2696 neighbourhoods spanning the k-NN graph and identified 1404 neighbourhoods with 235 

differential abundance (10% FDR; Fig 5C). To assess performance, we compared DA results 236 

with those from the compositional analysis performed by Ramachandran et al. [2]. Milo 237 

recovered DA neighbourhoods in all clusters identified as differentially abundant between 238 

cirrhotic or uninjured tissue in the original study (Fig 5D).  239 

 240 

Moreover, Milo identified multiple groups of neighbourhoods within the same pre-defined sub-241 

clusters that showed opposing directions of differential abundance between the control and 242 

cirrhotic liver experimental samples (Fig 5D). In other words, within a sub-cluster, some 243 

neighbourhoods were enriched for control experimental samples whilst others were enriched 244 

for disease experimental samples. These patterns, exemplified by the T cell (2) and the 245 

endothelial (5) compartments were obscured in the previous study due to the reliance on pre-246 

clustering (Fig 5D).  247 

 248 

To further explore the biological meaning of these neighbourhoods, we first focused on the 249 

hepatic endothelial cells, where we resolved disease specific subpopulations at higher 250 

resolution than was possible by clustering-based analysis (Fig. 5D). Milo identified a gradient 251 

of changes in neighbourhood abundance across this compartment, suggestive of a continuous 252 

transition between healthy and diseased cell states (Fig 5E). To identify gene expression 253 

signatures associated with this change, we performed differential expression analysis 254 

between cells in DA neighbourhoods with positive and negative log fold changes, identifying 255 

83 differentially expressed genes (FDR 10%; Methods) (Fig5F). In the cirrhosis-enriched 256 

neighbourhoods, we recovered over-expression of known markers of scar-associated 257 

endothelium, including ACKR1, PLVAP and VWA1 (Fig. 5F) [2]. We also recovered over-258 

expression of genes associated with regulation of leukocyte recruitment, confirming the 259 

validated immunomodulatory phenotype displayed by scar-associated tissue (Supp Fig 7A) 260 

[22]. In addition, cirrhotic endothelium displays down-regulation of genes involved in response 261 
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to infection, endocytosis and immune complex clearance, including FCN2, FCN3, and 262 

FCGR2B (Supp Fig 7B), which have been suggested as an additional component of cirrhosis-263 

associated immune dysfunction [23,24].  264 

 265 

Milo also identified strong DA between healthy and cirrhotic cells in lineages that were 266 

unexplored in the original study, such as the cholangiocyte compartment (Fig 5D). 267 

Cholangiocytes are epithelial cells that line a three-dimensional network of bile ducts known 268 

as the biliary tree, and cholangiocyte proliferation can be induced by a broad range of liver 269 

injuries, in a process termed the ductular reaction [25]. However, the gene signatures 270 

associated with this process in human cirrhosis are largely unexplored. Indeed, Milo recovered 271 

an enrichment of disease-specific cholangiocytes (Supp Fig 7C-D), and differential gene 272 

expression analysis detected strong over-expression of genes associated with calcium 273 

signalling (Supp Fig 7E-F), a signalling pathway frequently dysregulated in liver disease and 274 

a potential target for clinical intervention [26,27]. 275 

 276 

These analyses demonstrate the potential of using DA subpopulations detected by Milo to 277 

recover known and novel signatures of disease-specific cell states. 278 

 279 

Discussion: 280 

Given the increasing number of complex single-cell datasets where multiple conditions are 281 

assayed [18,19], Milo tackles a key problem: robustly determining sets of cells that are 282 

differentially abundant between conditions without relying on pre-existing sets of clusters. 283 

Moreover, Milo is fully interoperable with established single-cell analysis workflows and is 284 

implemented as an open-source R software package [28] with documentation and tutorials at 285 

https://github.com/MarioniLab/miloR. 286 

 287 
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The definition of neighbourhoods, as implemented in Milo, overcomes the main limitations of 288 

standard-of-practice clustering-based DA analysis, whilst utilising a common data-structure in 289 

single-cell analysis - graphs. A strength of our approach is that it is applicable to a wide range 290 

of datasets with vastly different topologies, including gradual state transitions, thus removing 291 

the need for time-consuming iterative sub-clustering and identifying subtle differences in 292 

differential abundance that would otherwise be obscured (Fig 5D). 293 

 294 

Recently, other clustering-free methods have been proposed to detect compositional 295 

differences between experimental conditions [7,29]. However, these are most suitable for 296 

pairwise comparisons between two biological conditions, and cannot be easily extended to 297 

detect changes across continuous conditions (age, time points) or multifactorial conditions. By 298 

modelling cell counts with a NB GLM, Milo can incorporate arbitrarily complex experimental 299 

designs as demonstrated by our application of Milo to detect compositional changes in the 300 

ageing mouse thymus (Fig 4) and across early embryonic development in mice (Supp Fig 3). 301 

Moreover, we show how nuisance technical covariates can be included in the GLM model to 302 

increase the power of DA testing in the presence of batch effects (Supp Fig 2-3). 303 

 304 

Although we have addressed several important challenges, Milo is not free of limitations. 305 

Firstly, the testing framework requires a replicated experimental design to estimate the 306 

dispersions of counts for each condition. Whilst this is not strictly a limitation of Milo, it reflects 307 

the importance of properly replicated experimental design in single-cell experiments. A 308 

potential solution would be to use a mixed effects model utilising random 309 

intercepts.  Secondly, the detection of DA subpopulations by Milo requires a k-NN graph that 310 

reflects the true cell-cell similarities in the phenotypic manifold; a limitation shared with all DA 311 

methods that work on graphs or reduced dimensional spaces [30]. Additionally, while Milo can 312 

account for artefacts such as batch effects during DA testing, we show that optimal results are 313 

achieved when batch correction is performed prior to graph construction (Suppl. Note 2, Suppl. 314 

Fig. 1, Suppl. Fig. 2). Thirdly, cells in a single neighbourhood do not necessarily represent a 315 
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unique biological subpopulation; a cellular state might span multiple neighbourhoods. 316 

Accordingly, we search for marker genes of DA states by aggregating cells in adjacent and 317 

concordantly DA neighbourhoods (Fig. 4E, 5F). One challenge of this approach is that rare 318 

cell states may be represented by a small subset of neighbourhoods, thus making 319 

identification of marker genes challenging. To overcome this problem one can either choose 320 

a smaller value of k or alternatively construct a graph on cells from a particular lineage of 321 

interest. 322 

 323 

Following the generation of reference single-cell atlases for multiple organisms and tissues, 324 

an increasing number of studies now focus on quantifying how cell populations are perturbed 325 

in disease, ageing, and development, using, for example, large scaled pooled CRISPR 326 

screens [31–33]. We envision that Milo will see use in all of these contexts. By leveraging a 327 

cell-cell similarity structure, Milo is also applicable to single-cell assays other than scRNA-seq, 328 

including multi-omic assays [34–38]. Thus, Milo has the potential to facilitate the discovery of 329 

fundamental biological and medically important processes across multiple layers of molecular 330 

regulation when they are assayed at single-cell resolution. 331 

 332 

Methods: 333 

Milo 334 

Milo detects sets of cells that are differentially abundant between conditions by modelling 335 

counts of cells in neighbourhoods on a k-NN graph. The workflow includes the following steps: 336 

 337 

(A) Construction of the k-NN graph: Similar to many other tasks in single-cell analysis, Milo 338 

uses a k-NN graph computed based on similarities in gene expression space as a 339 

representation of the phenotypic manifold in which cells lie. We assume that the k-NN graph 340 

is a faithful representation of the single cell phenotypes. Therefore, any batch effect should be 341 
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corrected prior to graph building to maximize the power of DA testing. In addition, nuisance 342 

covariates can be incorporated in the experimental design of the NB GLM framework (practical 343 

considerations and demonstrations on how to account for batch effects can be found in the 344 

Supplementary Notes and Supp Fig 2-3). Throughout this paper, we build the k-NN graph 345 

based on similarity in reduced principal component (PC) space.  346 

 347 

(B) Definition of cell neighbourhoods: We define the neighbourhood nj of cell j as the group 348 

of cells that are connected to j by an edge in the graph. We refer to j as the index of the 349 

neighbourhood. In order to define a representative subset of neighbourhoods that span the 350 

whole k-NN graph, we implement a previously adopted algorithm to sample the index cells in 351 

a graph [8,39] (See Supplementary Note 1.1.2 for a detailed description).  352 

 353 

(C) Counting cells in neighbourhoods: For each neighbourhood we count the number of 354 

cells from each experimental sample, constructing a neighbourhood x experimental sample 355 

count matrix. 356 

 357 

(D) Testing for differential abundance in neighbourhoods: To test for differential 358 

abundance, we analyse neighbourhood counts using the quasi-likelihood (QL) method in 359 

edgeR, similarly to the implementation in Cydar [6]. We fit a NB GLM to the counts for each 360 

neighbourhood and use the QL F-test with a specified contrast to compute a P value for each 361 

neighbourhood. Details of the statistical framework are provided in Supplementary Note 1.1.3 362 

 363 

(E) Controlling the Spatial FDR in neighbourhoods: To control for multiple testing, we 364 

adapt the Spatial FDR method introduced by Cydar [6]. The Spatial FDR can be interpreted 365 

as the proportion of the union of neighbourhoods that is occupied by false-positive 366 

neighbourhoods. To control the spatial FDR in the k-NN graph, we apply a weighted version 367 

of the Benjamini-Hochberg (BH) method, where P values are weighted by the reciprocal of the 368 
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neighbourhood connectivity. As a measure of neighbourhood connectivity, we use the 369 

Euclidean distance to the k-th nearest neighbour of the index cell for each neighbourhood. 370 

 371 

A full description of Milo can be found in Supplementary Notes. 372 

 373 

Visualization of DA neighbourhoods 374 

To visualize results from differential analysis on neighbourhoods, we construct an abstracted 375 

graph, where nodes represent neighbourhoods and edges represent the number of cells in 376 

common between neighbourhoods. The size of nodes represents the number of cells in the 377 

neighbourhood. The position of nodes is determined by the position of the sampled index cell 378 

in the single-cell UMAP, to allow qualitative comparison with the single cell embedding. 379 

 380 

Mouse thymus analysis 381 

Single-cell data are available from ArrayExpress (accession E-MTAB-8560), additional meta-382 

data were acquired from Baran-Gale et al. [3] including cluster identity and highly variable 383 

genes (HVGs). The dataset consists of 2327 single thymic epithelial cells that passed QC (see 384 

[3] for details). Log-normalized gene expression values were used as input, along with 4906 385 

HVGs, to estimate the first 50 principal components using a randomized PCA implemented in 386 

the R package irlba, the first 40 of which were used for k-NN graph building (k=21) and 387 

UMAP embedding. The refined sampling, using an initial random sampling of 30% of cells, 388 

identified 363 neighbourhoods. Differential abundance testing used the mouse age as a linear 389 

predictor variable, thus log fold changes are interpreted as the per-week linear change in 390 

neighbourhood abundance. Neighbourhood cluster identity was assigned by taking the most 391 

abundant cluster identity amongst neighbourhood cells. 392 

 393 
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Differential expression (DE) testing was performed on cells within neighbourhoods containing 394 

a majority of cells from the Intertypical TEC cluster. This subset of neighbourhoods was 395 

aggregated into 2 groups based on similarity of log fold change direction and number of 396 

overlapping cells (≥10 cells). DE testing was performed comparing the log normalized gene 397 

expression of neighbourhood cells between the more and less abundant groups using a linear 398 

model implemented in the Bioconductor [40,41] package limma [42], using 1% FDR. Gene 399 

Ontology Biological Process term analysis was performed on the 448 DE genes (adj. P-value 400 

< 0.01) using the R package enrichR [43].  401 

 402 

Liver cirrhosis analysis 403 

The dataset including cell type annotations was downloaded from 404 

https://datashare.is.ed.ac.uk/handle/10283/3433 (GEO accession: GSE136103 [2]). The 405 

dataset comprises 58358 cells, obtained from 5 healthy and 5 cirrhotic liver samples. 406 

Following the pre-processing steps from the original publication, dimensionality reduction with 407 

PCA was performed on the 3000 top highly variable genes (HVGs), calculated using 408 

modelGeneVar and getTopHVGs from the R package scran [44], and the top 11 PCs were 409 

retained for k-NN graph building and UMAP embedding. Refined sampling identified 2676 410 

neighbourhoods (k=30, initial proportion of sampled cells = 0.05). We run Milo to test for DA 411 

between cirrhotic and healthy experimental samples. To assign cell type annotations to 412 

neighbourhoods, we take the most frequent annotation between cells in each neighbourhood. 413 

Neighbourhoods are generally homogeneous, with an average of 80% of cells belonging to 414 

the most abundant cell type label. 415 

 416 

For the focused analysis on the endothelial and cholangiocyte lineages, DE testing was 417 

performed on the subset of neighbourhoods from the selected lineage. Neighbourhoods were 418 

aggregated into 2 groups based on similarity of log fold change direction. DE testing was 419 
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performed summing the gene expression counts for each experimental sample and 420 

neighbourhood group between the more and less abundant groups using the quasi-likelihood 421 

test implemented in edgeR [9], using 10% FDR. GO term analysis was performed on the 422 

significant DE genes using the R package clusterProfiler [45].   423 

 424 

Mouse gastrulation data 425 

The raw count matrix and batch corrected PCA matrix were downloaded via the R package 426 

MouseGastrulationData [46]. To construct the uncorrected k-NN graph, raw counts 427 

were log transformed and PCs were computed on the 5000 top variable genes. Refined 428 

sampling identified 11895 neighbourhoods in the uncorrected graph and 8451 429 

neighbourhoods in the MNN corrected graph (k = 30, initial proportion of sampled cells = 0.1).  430 

 431 

Scalability analysis 432 

We assessed the scalability of Milo by profiling the time taken to execute the workflow, starting 433 

with the k-NN graph building step and concluding with the differential abundance testing. We 434 

simulated a dataset of 200000 single-cells using the dyntoy package implemented in R [14]. 435 

With this large simulation we down-sampled to specific proportions, ranging from 1 to 100%, 436 

and recorded the elapsed system time to complete the Milo workflow using the system.time 437 

function in R [28]. In addition, we performed an equivalent analysis using the published data-438 

sets included in this manuscript: mouse thymus [3], human liver [2], and mouse gastrulation 439 

[4]. All timings are reported in minutes. 440 

 441 

To assess the memory usage of the Milo workflow we made use of the Rprof function in R 442 

to record the total amount of memory used at each step. We followed the same approach as 443 
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above, down-sampling simulated and published datasets from 1 to 100% of the total cell 444 

numbers. All memory usage is reported in megabytes (MB). 445 

 446 

For both the system timing and memory usage we ran the simulated and published datasets 447 

down-sampling analyses on a single node of the high-performance computing (HPC) cluster 448 

at the Cancer Research UK - Cambridge Institute. Each node has 2x Intel Xeon E5-2698 449 

2.20Ghz processors with 40 cores per node and 384GB DDR4 memory; cluster jobs were run 450 

using a single core. 451 

 452 

Batch effect analysis 453 

Simulated data: we simulated a dataset representing a continuous trajectory of 5000 cells 454 

using the R package dyntoy [14]. We assigned cells to one of 6 experimental samples and 455 

samples to one of 2 conditions. In a specific region of the trajectory we assigned 80% of cells 456 

to condition ‘B’ and 20% to condition ‘A’, simulating differential abundance between conditions. 457 

A batch effect was incorporated by adding a gaussian random vector to the expression profiles 458 

of all cells in two of six samples. We performed batch correction using the MNN method, as 459 

implemented in the R package batchelor by the function fastMNN, using default 460 

parameters [47].  Refined sampling identified 298 neighbourhoods in the uncorrected graph 461 

and 317 neighbourhoods in the MNN corrected graph (k = 10, initial proportion of sampled 462 

cells = 0.1). We ran Milo to test for DA between conditions, with and without accounting for 463 

the batch effect in the experimental design (design = ~ condition or design = ~ 464 

batch + condition).  465 

 466 

Mouse gastrulation data: We ran Milo to test for DA with 3 alternative experimental designs: 467 

(A) test for DA across developmental time points (design = ~ time point), (B) test for 468 

DA across developmental time points, accounting for the sequencing batch (design = ~ 469 
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seq. batch + time point) and (C) test for DA between sequencing batches (design = 470 

~ seq. batch). 471 

 472 
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 611 

Code and data availability: 612 

Milo is implemented as an open-source package in R: https://github.com/MarioniLab/miloR. 613 

Code used to generate figures and perform analyses can be found at 614 

https://github.com/MarioniLab/milo_analysis_2020. 615 
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Figure 1: Detecting perturbed cell states as di�erentially abundant graph neighbourhoods (A)
Schematic of the Milo workflow. Neighbourhoods are defined on index cells, selected using a graph sampling
algorithm. Cells are quantified according to the experimental design to generate a counts table. Per-
neighbourhood cell counts are modelled using a negative binomial GLM, and hypothesis testing is performed
to determine di�erentially abundant neighbourhoods. (B) A force-directed layout of a k-NN graph repre-
senting a simulated continuous trajectory of cells sampled from 2 experimental conditions (top panel - A:
purple, B: white, bottom panel - kernel density of cells in condition ‘B’). (C) Hypothesis testing using Milo
accurately and specifically detects di�erentially abundant neighbourhoods (FDR 1%). Red points denote DA
neighbourhoods. (D) A graph representation of the results from Milo di�erential abundance testing. Nodes
are neighbourhoods, coloured by their log fold-change. Non-DA neighbourhoods (FDR 1%) are coloured
white, and sizes correspond to the number of cells in a neighbourhood. Graph edges depict the number of
cells shared between adjacent neighbourhoods. The layout of nodes is determined by the position of the
neighbourhood index cell in the force-directed embedding of single cells.

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 23, 2020. ; https://doi.org/10.1101/2020.11.23.393769doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.23.393769
http://creativecommons.org/licenses/by/4.0/


Condition
A
B

0

100

200

300

M1 M2 M3 M4 M5
Cell Group

#C
el

ls

A C

D

−1.0
−0.5

0.0
0.5
1.0

Milo Cydar DAseq Louvain Walktrap
Method

M
C

C

Method Input Key 
parameters

Testing 
framework

Clustering-free
Flexible 

experimental
design

Milo KNN graph K Negative binomial GLM

Cydar PCA hypersphere 
radius

Negative binomial GLM

DAseq PCA Range of Ks Logistic classifier
prediction 

Louvain + 
edgeR

Clusters K Negative binomial GLM

Walktrap + 
edgeR

Clusters K Negative binomial GLM

B

0.81 0.24 0.51 0.23 0.19

0.99 0.76 0.79 0.79 0.77

0.19 0.76 0.49 0.77 0.81

0.07 0.87 0.06 0.32 0.3

0.05 0.14 0.77 0.64 0.69

0.01 0.24 0.21 0.22 0.25

0.93 0.13 0.94 0.68 0.7

0.87 0.37 0.3 0.26 0.23

0.95 0.86 0.23 0.36 0.31

FDR
FPR
FNR
FOR

Power
F1

TNR
NPV
PPV

Milo Cydar DAseq LouvainWalktrap
Method

M
ea

su
re

Rank
1
2
3
4
5

Figure 2: Milo outperforms alternative di�erential abundance testing approaches (A) An example
simulated trajectory of cells drawn from 5 groups with cells assigned to either conditions ‘A’ (purple points)
or ‘B’ (white points). Inset bar plot shows the number of cells (y-axis) assigned to each condition according
to the group from which cells were sampled (x-axis). (B) A table describing the di�erent methods compared
to Milo, along with the input, key parameters and an overview of the testing framework for each. (C)
Rankings of DA testing methods across a number of measures to determine performance. Each box is
coloured by the ranking of each measure for each method, where a rank of 1 indicates the best performance
and 5 indicates the worst across 100 simulated data sets. Ranks are calculated from the mean value across
100 simulated data sets; mean values are shown. PPV: positive predictive value, NPV: negative predictive
value, TNR: true negative rate, F1: F1 score, FOR: false omission rate, FNR: false negative rate, FPR: false
positive rate, FDR: false discovery rate. (D) The Matthews correlation coe�cient assesses the performance
of each method by integrating across multiple performance measures. Box plots show the MCC across 100
independent simulations for each method.
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Figure 3: Milo e�ciently scales to large data sets (A) Run time (y-axis) of the Milo workflow from
graph building to di�erential abundance testing. Each point represents a down-sampled dataset, denoted by
shape. Coloured points show the total number of cells in the full dataset labelled by the elapsed system time
(mins). (B) Total memory usage (y-axis) across the Milo workflow. Each point represents a down-sampled
dataset, denoted by shape. Coloured points are the full datasets labelled with the total memory usage
(megabytes).
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Figure 4: Milo identifies the decline of a fate-biased precursor in the ageing mouse thymus
(A-B) A UMAP of single thymic epithelial cells sampled from mice aged 1-52 weeks old. Points are labelled
according to their annotation in Baran-Gale et al. 2020 (A) and mouse age (B) (C) A graph representation
of the results from Milo di�erential abundance testing. Nodes are neighbourhoods, coloured by their log
fold change across ages. Non-DA neighbourhoods (FDR 10%) are coloured white, and sizes correspond to
the number of cells in a neighbourhood. Graph edges depict the number of cells shared between adjacent
neighbourhoods. The layout of nodes is determined by the position of the neighbourhood index cell in the
UMAP embedding of single cells. (D) Beeswarm plot showing the distribution of log-fold change across
age in neighbourhoods containing cells from di�erent cell type clusters. DA neighbourhoods at FDR 10%
are coloured. Cell types detected as DA through clustering by Baran-Gale et al. (2020) are annotated
in the left side bar. (E) A heatmap of genes di�erentially expressed between DA neighbourhoods in the
Intertypical TEC cluster. Each column is a neighbourhood and rows are di�erentially expressed genes (FDR
1%). Expression values for each gene are scaled between 0 and 1. The top panel denotes the neighbourhood
DA log fold-change.

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 23, 2020. ; https://doi.org/10.1101/2020.11.23.393769doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.23.393769
http://creativecommons.org/licenses/by/4.0/


A B C

D E

F

Figure 5: Milo identifies the compositional disorder in cirrhotic liver (A-B) UMAP embedding of
58358 cells from healthy (n = 5) and cirrhotic (n = 5) human livers. Cells are colored by cellular lineage
(A) and injury condition (B) (C) Graph representation of neighbourhoods identified by Milo. Nodes are
neighbourhoods, coloured by their log fold change between cirrhotic and healthy samples. Non-DA neigh-
bourhoods (FDR 10%) are coloured white, and sizes correspond to the number of cells in a neighbourhood.
Graph edges depict the number of cells shared between adjacent neighbourhoods. The layout of nodes is
determined by the position of the neighbourhood index cell in the UMAP embedding of single cells.
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(D) Beeswarm plot showing the distribution of log-fold change in abundance between conditions in neighbour-
hoods from di�erent cell type clusters. DA neighbourhoods at FDR 10% are coloured. Cell types detected
as DA through clustering by Ramachandran et al. (2019) are annotated in the left side bar. (E) UMAP
embedding and graph representation of neighbourhoods of 7995 cells from endothelial lineage. (F) Heatmap
showing average neighbourhood expression of genes di�erentially expressed between DA neighbourhoods in
the endothelial lineage (572 genes). Expression values for each gene are scaled between 0 and 1. The top
panel denotes the neighbourhood DA log fold-change.
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