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ABSTRACT	

Technological	 advances	 in	 transcriptome	 sequencing	 of	 single	 cells	 continues	 to	 provide	 an	
unprecedented	 view	 on	 tissue	 composition	 and	 cellular	 heterogeneity.	While	 several	 studies	 have	
compared	 different	 single	 cell	 RNA-seq	 methods	 with	 respect	 to	 data	 quality	 and	 their	 ability	 to	
distinguish	cell	subpopulations,	none	of	these	studies	 investigated	the	heterogeneity	of	the	cellular	
transcriptional	response	upon	a	chemical	perturbation.	In	this	study,	we	evaluated	the	transcriptional	
response	of	NGP	neuroblastoma	cells	upon	nutlin-3	 treatment	using	 the	C1,	ddSeq	and	Chromium	
single	cell	 systems.	These	devices	and	 library	preparation	methods	are	 representative	 for	 the	wide	
variety	of	platforms,	ranging	from	microfluid	chips	to	droplet-based	systems	and	from	full	transcript	
sequencing	 to	 3-prime	 end	 sequencing.	 In	 parallel,	 we	 used	 bulk	 RNA-seq	 for	 molecular	
characterization	of	the	transcriptional	response.	Two	complementary	metrics	to	evaluate	performance	
were	 applied:	 the	 first	 is	 the	 number	 and	 identity	 of	 differentially	 expressed	 genes	 as	 defined	 in	
consensus	by	two	statistical	models,	and	the	second	is	the	enrichment	analysis	of	biological	signals.	
Where	 relevant,	 to	 make	 the	 data	 more	 comparable,	 we	 downsampled	 sequencing	 library	 size,	
selected	 cell	 subpopulations	 based	 on	 specific	 RNA	 abundance	 features,	 or	 created	 pseudobulk	
samples.	While	the	C1	detects	the	highest	number	of	genes	per	cell	and	better	resembles	bulk	RNA-
seq,	the	Chromium	identifies	most	differentially	expressed	genes,	albeit	still	substantially	fewer	than	
bulk	 RNA-seq.	 Gene	 set	 enrichment	 analyses	 reveals	 that	 detection	 of	 a	 limited	 set	 of	 the	 most	
abundant	genes	 in	 single	 cell	RNA-seq	experiments	 is	 sufficient	 for	molecular	phenotyping.	 Finally,	
single	 cell	 RNA-seq	 reveals	 a	 heterogeneous	 response	 of	 NGP	 neuroblastoma	 cells	 upon	 nutlin-3	
treatment,	 revealing	 putative	 late-responder	 or	 resistant	 cells,	 both	 undetected	 in	 bulk	 RNA-seq	
experiments.	

	

INTRODUCTION	

Almost	a	decade	ago,	the	first	single	cell	RNA-seq	study	was	published,	in	which	cells	were	manually	
isolated	and	polyadenylated	transcripts	were	captured	using	oligo(dT)	reverse	transcription	primers	
(1).	 Since	 then,	 numerous	 single	 cell	 RNA-seq	 methods	 and	 devices	 have	 emerged,	 unveiling	 an	

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 25, 2020. ; https://doi.org/10.1101/2020.11.25.396523doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.25.396523
http://creativecommons.org/licenses/by-nc-nd/4.0/


unanticipated	 cellular	 heterogeneity	 that	 was	 not	 very	 well	 recognized	 through	 classic	 bulk	 cell	
population	gene	expression	profiles.	As	such,	single	cell	RNA-seq	enabled	the	identification	of	subtle	
differences	among	cells	and	the	detection	of	rare	or	novel	subpopulations.	This	has	led	to	revolutionary	
discoveries	in	several	research	fields,	including	cancer	(2,	3)	and	embryonic	development	(4–6).	The	
first	automated	single	cell	isolation	devices	used	flow	cytometry	or	microfluidic	chips	and	could	only	
capture	a	hundred	cells.	Most	RNA	library	preparation	protocols	for	these	systems	provide	full	gene	
body	read	coverage,	enabling	mutation	and	splice	isoform	analysis	on	top	of	classic	gene	abundance	
profiling	(7–10).	Using	these	methods,	single	cells	can	be	visualized	to	remove	cell	doublets	or	select	
cells	 of	 interest.	 Later,	 commercially	 available	 and	 custom	made	 droplet-based	 methods,	 such	 as	
Chromium,	ddSeq	and	InDrop,	were	developed	increasing	the	throughput	to	thousands	of	cells	and	
reducing	the	cost	per	cell	considerably	(11–15).	One	limitation	is	that	these	methods	typically	sequence	
only	 the	 3’	 end	 of	 a	 transcript,	 reducing	 the	 analyses	 to	 gene	 expression	 profiling.	 Further,	 these	
droplet-based	methods	typically	quantify	only	the	most	abundant	genes,	excluding	for	 instance	the	
detection	of	medium	to	low	abundant	mRNAs	and	the	majority	of	long	non-coding	RNAs	(lncRNAs).	
Consequently,	 lower	 complexity	 sequencing	 libraries	 are	 generated	 using	 these	 droplet-based	
methods,	resulting	in	more	PCR	bias.	Fortunately,	this	bias	can	to	a	large	degree	be	reduced	through	
unique	 molecular	 indices	 (UMI),	 incorporated	 in	 the	 to-be-sequenced	 molecules	 in	 droplet-based	
systems	 (14–17).	 Also,	 virtually	 all	 these	 initial	 single	 cell	 RNA-seq	 methods	 only	 capture	
polyadenylated	transcripts,	ignoring	the	vast	non-polyadenylated	part	of	the	transcriptome.	Since	flow	
cytometry	and	microfluidic	chip	based	methods	are	mostly	open	systems,	 single	cell	 total	RNA-seq	
protocols	were	recently	custom	developed	enabling	the	sequencing	of	both	polyadenylated	as	well	as	
non-polyadenylated	 transcripts	 (18–20).	 The	 extensive	 advances	 in	 the	 single	 cell	 RNA-seq	
technologies	raises	the	question	which	method	is	best	suited	for	a	particular	application.	While	several	
studies	compared	single	cell	RNA-seq	methods	in	terms	of	data	quality,	costs,	reproducibility,	and	the	
ability	to	discriminate	subpopulations,	our	study	focuses	on	the	added	value	of	three	single-cell	RNA-
seq	 technologies	 for	 differential	 gene	 expression	 analysis	 and	 assessment	 of	 transcriptional	
heterogeneity	(21–25).	Therefore,	cell	cycle	synchronized	NGP	neuroblastoma	cells	were	treated	with	
the	TP53	activator	nutlin-3,	whose	transcriptional	effects	are	well-characterized	in	bulk,	resulting	in	
activation	of	the	TP53	pathway	and	consequently	in	cell	cycle	arrest	and	apoptosis	(26,	27).	Single	cell	
RNA-seq	 of	 this	 well-characterized	 model	 system	 has	 been	 performed	 using	 three	 commercially	
available	single	cell	devices,	C1	(Fluidigm),	ddSeq	(Bio-Rad,	Illumina)	and	Chromium	(10X	Genomics),	
representing	microfluidic	chip-based	and	droplet-based	single	cell	RNA-seq	platforms,	and	a	range	of	
throughputs	from	96,	300	or	more	than	10,000	cells	per	condition,	respectively.	As	a	reference,	the	
same	experiment	was	also	performed	using	bulk	RNA-seq	of	ten	replicates	per	group.	

Despite	 the	 lower	 number	 of	 differentially	 expressed	 genes	 detected	 in	 single	 cell	 RNA-seq	
experiments	compared	to	bulk	population	analysis,	the	biological	signal	can	be	faithfully	recognized	
through	gene	set	enrichment	analysis	of	data	from	all	tested	single	cell	devices.	Furthermore,	we	show	
that	single	cell	transcriptome	analysis	reveals	a	certain	degree	of	cellular	heterogeneity	in	response	to	
nutlin-3	treatment,	possibly	pinpointing	to	late-responding	or	resistant	cells,	hidden	in	bulk	RNA-seq	
experiments.	

	

METHODS	

Cell	lines	

The	neuroblastoma	cell	line	NGP	is	a	kind	gift	of	Prof.	R.	Versteeg	(Amsterdam,	the	Netherlands).	Cells	
were	maintained	in	RPMI-1640	medium	(Life	Technologies,	52400-025)	supplemented	with	10	%	fetal	
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bovine	serum	(PAN	Biotech,	P30-3306),	1	%	of	L-glutamine	 (Life	Technologies,	15140-148)	and	1	%	
penicillin/streptomycin	(Life	Technologies,	15160-047)	(referred	to	as	complete	medium)	at	37	°C	in	a	
5	%	CO2	atmosphere.	Short	tandem	repeat	genotyping	was	used	to	validate	cell	line	authenticity	prior	
to	performing	the	described	experiments	and	verification	of	absence	of	mycoplasma	was	done	on	a	
monthly	basis.	

Cell	cycle	synchronization	and	nutlin-3	treatment	of	NGP	cells	

NGP	 cells	 were	 synchronized	 using	 serum	 starvation	 prior	 to	 nutlin-3	 treatment.	 First,	 cells	 were	
seeded	at	low	density	for	48	hours	in	complete	medium.	Then,	cells	were	refreshed	with	serum-free	
medium	for	24	hours.	Finally,	the	cells	were	treated	with	either	8	μM	of	nutlin-3	(Cayman	Chemicals,	
10004372,	dissolved	in	ethanol)	or	vehicle	(ethanol).	Cells	were	trypsinized	(Gibco,	25300054)	24	hours	
post	treatment	and	harvested	for	single	cell	analysis,	bulk	RNA	isolation	and	cell	cycle	analysis.	

Cell	cycle	analysis	

Four	million	cells	were	washed	with	PBS	(Gibco,	14190094)	and	the	pellet	was	resuspended	in	300	µl	
PBS.	Next,	700	µl	of	70	%	ice-cold	ethanol	was	added	dropwise	while	vortexing	to	fix	the	cells.	Cells	
were	stored	at	-20	°C	for	at	least	1	hour.	After	incubation,	cells	were	washed	with	PBS	and	the	pellet	
was	resuspended	in	1	ml	PBS	containing	RNAse	A	(Qiagen,	19101)	at	a	final	concentration	of	0.2	mg/ml.	
After	 1	 hour	 incubation	 at	 37	 °C,	 propidium	 iodide	 (BD	 biosciences,	 556463)	was	 added	 to	 a	 final	
concentration	of	40	µg/ml.	Samples	were	loaded	on	a	S3	cell	sorter	(Bio-Rad)	and	analyzed	using	the	
FlowJo	v.10	software.	

RNA	isolation	and	cDNA	synthesis	

Total	RNA	was	isolated	using	the	miRNeasy	mini	kit	(Qiagen,	217084)	with	DNA	digestion	on-column	
according	 to	 the	 manufacturer’s	 instructions.	 RNA	 concentration	 was	 measured	 using	
spectrophotometry	(Nanodrop	1000,	Thermo	Fisher	Scientific).	cDNA	was	synthesized	using	the	iScript	
Advanced	cDNA	synthesis	kit	(Bio-Rad,	1708897)	using	500	ng	RNA	as	input	in	a	20	µl	reaction.	cDNA	
was	diluted	to	2.5	ng/µl	with	nuclease-free	water	prior	to	RT-qPCR	measurements.	

Reverse	transcription	quantitative	PCR	

PCR	mixes	containing	2.5	µl	2x	SsoAdvansed	SYBR	qPCR	supermix	(Bio-Rad,	04887352001),	0.25	µl	each	
forward	and	 reverse	primer	 (5	µM,	 IDT),	 and	2	µl	 diluted	 cDNA	 (5	ng	 total	 RNA	equivalents)	were	
analyzed	on	the	LightCycler	480	instrument	(Roche)	using	two	replicates.	Expression	levels	of	targets	
CDKN1A,	 BAX	 and	 BBC3	 were	 normalized	 using	 four	 stable	 reference	 genes	 (SDHA,	 YWHAZ,	 TBP,	
HPRT1).	RT-qPCR	data	was	analyzed	using	the	qbase+	software	v3.0	(Biogazelle).	Primer	sequences	are	
available	in	Supplementary	Table	1.	

Bulk	RNA	library	preparation	of	NGP	cells	

The	RNA	of	ten	biological	replicates	of	NGP	cells	treated	with	either	nutlin-3	or	vehicle,	without	serum	
starvation	 was	 extracted	 using	 the	 RNeasy	 mini	 kit.	 The	 RNA	 concentration	 was	 measured	 using	
spectrophotometry	(Nanodrop	1000)	and	quality	ascertained	using	the	fragment	analyzer	(Advanced	
Analytical).	 100	 ng	 of	 total	 RNA	was	 used	 as	 input	 for	 the	 TruSeq	 stranded	mRNA	 library	 prep	 kit	
(Illumina,	20020594),	according	to	manufacturer’s	instructions.		
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Single	cell	RNA	library	preparation	of	C1	isolated	NGP	cells	

Cells	were	washed	with	PBS	and	centrifuged	at	300	g	for	5	minutes.	Pellets	of	vehicle	treated	cells	were	
resuspended	and	incubated	in	1	ml	pre-warmed	(37	°C)	cell	tracker	(CellTracker	Green	BODIPY	Dye,	
Thermo	 fisher	 Scientific,	 C2102)	 for	 20	minutes	 at	 room	 temperature.	 After	 incubation,	 cells	were	
washed	in	PBS	and	resuspended	in	1	ml	wash	buffer	(Fluidigm,	100-6201).	An	equal	number	of	stained	
(vehicle	treated)	and	non-stained	(nutlin-3	treated)	cells	were	mixed	and	diluted	to	300,000	cells	per	
ml.	Suspension	buffer	was	added	to	the	cells	 in	a	3:2	ratio	and	6	µl	of	 this	mix	of	was	 loaded	on	a	
primed	C1	Single-Cell	Auto	Prep	Array	for	mRNA	Seq	(Fluidigm,	100-6041)	designed	for	medium-sized	
cells	(10-17	µm).	Single	cell	polyA[+]	RNA-seq	on	the	C1	was	performed	using	the	SMART-Seq	v4	Ultra	
Low	 Input	 RNA	 Kit	 for	 the	 Fluidigm	 C1	 System	 (Takara,	 635026)	 according	 to	 manufacturer’s	
instructions.	One	microliter	of	the	ERCC	spike-in	mix	was	diluted	in	999	µl	loading	buffer	to	get	a	1/1000	
dilution	of	the	ERCC	spikes.	One	microliter	of	this	dilution	was	added	to	the	20	µl	lysis	mix.	The	quality	
of	the	cDNA	was	checked	for	11	random	single	cells	on	the	Fragment	Analyzer.	The	concentration	of	
the	 cells	 was	measured	 using	 the	 quantifluor	 dsDNA	 kit	 (Promega,	 E2670)	 and	 glomax	 (Promega)	
according	 to	 manufacturer’s	 instructions.	 The	 samples	 were	 1/5	 diluted	 in	 C1	 harvest	 reagent	
(Fluidigm).	Next,	library	prep	was	performed	using	the	Nextera	XT	library	prep	kit	(Illumina,	FC-131-
1096)	according	to	manufacturer’s	instructions,	followed	by	quality	control	on	the	Fragment	Analyzer.		

Single	cell	RNA	library	preparation	of	ddSeq	isolated	NGP	cells	

Single	cell	RNA-seq	on	the	ddSeq	system	(Bio-Rad)	was	performed	using	the	SureCell	WTA	3’	library	
prep	kit	(Illumina,	20014279)	according	to	manufacturer’s	instructions	with	minor	modifications.	Four	
samples	were	prepared:	(1)	nutlin-3	treated	cells	with	ERCC	spikes	diluted	to	1/1000	(N704	index),	(2)	
nutlin-3	treated	cells	with	ERCC	spikes	diluted	to	1/10,000	(N705	index),	(3)	vehicle	treated	cells	with	
ERCC	spikes	diluted	to	1/1000	(N706	index)	and	(4)	vehicle	treated	cells	with	ERCC	spikes	diluted	to	
1/10,000	(N707	index).	Cells	were	diluted	to	5000	cells/µl	and	ERCC	spikes	were	diluted	to	1/500	and	
1/5000.	Cells	and	ERCC	spikes	were	mixed	1:1	resulting	in	a	final	concentration	of	2500	cells/µl	and	a	
dilution	of	1/1000	and	1/10,000	for	the	ERCC	spikes,	respectively.	After	library	preparation,	the	quality	
of	the	RNA	libraries	was	confirmed	on	the	Bioanalyzer	(Agilent).	

Single	cell	RNA	library	preparation	of	Chromium	isolated	NGP	cells	

Single	cell	RNA-seq	on	the	Chromium	system	(10X	Genomics)	was	performed	for	nutlin-3	(SI-GA-8E	
index)	and	vehicle	(SI-GA-8D	index)	treated	NGP	cells	using	the	GemCode	Single	Cell	3’	Gel	Bead	and	
Library	 Kit	 (V2	 chemistry,	 10X	 Genomics,	 PN-120237,	 PN-120236,	 PN-120262)	 according	 to	
manufacturer’s	 instructions	with	minor	modifications.	 Cells	were	 centrifuged	 at	 4	 °C	 at	 400	 g	 and	
resuspended	in	PBS	+	0.04	%	BSA	to	yield	an	estimated	concentration	of	1000	cells/µl.	3.5	µl	of	the	cell	
suspension	was	used	to	obtain	a	cell	recovery	of	about	2000	cells	per	sample.	Per	sample,	2.5	µl	of	an	
1/10	dilution	of	ERCC	spikes	was	added	to	the	mastermix.	After	library	preparation,	the	quality	of	the	
RNA	libraries	was	confirmed	on	the	Bioanalyzer.	

Library	sequencing	

Bulk	RNA-seq	libraries	were	quantified	using	KAPA	library	quantification	kit	(Roche)	and	diluted	to	4	
nM.	1.2	pM	of	the	library	was	paired-end	sequenced	on	a	NextSeq	500	(Illumina)	with	a	read	length	of	
75	bp.	The	C1	RNA-seq	libraries	were	quantified	using	the	KAPA	library	quantification	kit	and	libraries	
were	diluted	to	4	nM.	1.5	pM	of	the	library	was	single-end	sequenced	on	a	NextSeq	500	(Illumina)	with	
a	 read	 length	of	75	bp.	The	ddSeq	RNA-seq	 libraries	were	quantified	using	 the	Qubit	dsDNA	HS	kit	
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(Thermo	Fischer	Scientific,	Q32854)	and	libraries	were	diluted	to	2	nM.	3	pM	of	the	library	was	paired-
end	sequenced	on	a	NextSeq	500	with	a	read	length	of	68	and	75	bp	and	a	custom	sequencing	primer	
included	in	the	SureCell	WTA	3’	library	prep	kit.	The	Chromium	RNA	libraries	were	quantified	using	the	
KAPA	library	quantification	kit	and	libraries	were	diluted	to	4	nM.	1.2	pM	of	the	library	was	paired-end	
sequenced	twice	on	a	NextSeq	500	with	a	read	length	of	26	and	98	bp.	

Data	analysis	of	the	bulk	RNA	sequencing	data	

Raw	fastq	files	were	processed	with	Kallisto	(v.0.43.1)	(28)	using	Ensembl	(v.91)	annotation	(29)	.	

Data	analysis	of	the	C1	RNA	sequencing	data	

To	assess	the	quality	of	the	data,	the	reads	were	mapped	using	STAR	(v.2.5.3)	(30)	on	the	hg38	genome	
including	 the	 full	 ribosomal	 DNA	 (45S,	 5.8S	 and	 5S)	 and	mitochondrial	 DNA	 sequences.	 The	 STAR	
parameters	were	set	to	retain	only	primary	mapping	reads,	meaning	that	for	multi-mapping	reads	only	
the	best	scoring	location	is	retained.	Genes	were	quantified	by	Kallisto	(v.0.43.1)	(28)	using	Ensembl	
(v.91)	(29)	annotation	supplemented	with	the	ERCC	spike-in	RNA	sequences.		

Data	analysis	of	the	ddSeq	RNA	sequencing	data	

To	analyze	the	ddSeq	data,	ddSeeker,	a	custom	pipeline	based	on	the	Drop-seq	Core	Computational	
Protocol	(version	2.0.0	-9/28/18),	was	used	(31).	ddSeeker.py	was	run	on	paired-end	gzipped	fastq	files	
with	default	parameters	using	Python	(v.3.6.4),	pysam	(v.0.14)	and	Biopython	(v.1.71).	First,	fastq	files	
were	converted	to	unaligned	BAM	files	using	Picard	FastqToSam.	These	BAM	files	were	subsequently	
tagged	with	both	cell	(XC)	and	molecular	(XM)	barcodes	using	TagBamWithReadSequenceExtended.	
Next,	these	tagged	BAM	files	were	filtered	to	remove	reads	below	the	base	quality	threshold	(XQ)	and	
to	remove	erroneous	barcodes	(XE).	The	SMART	adapter	at	the	5’	end	of	the	read	was	trimmed	using	
TrimStartingSequence	 and	 polyA	 tails	 were	 trimmed	 using	 PolyATrimmer.	 Next,	 the	 trimmed	 and	
filtered	BAM	files	were	converted	to	fastq	files	and	were	used	for	subsequent	alignment.	These	data	
can	be	accessed	through	the	GEO	repository	 (GSE161975).	Reads	were	aligned	using	STAR	(v.2.6.0)	
(30)	and	Ensembl	(v.91)	(29)	annotation	and	the	BAM	file	was	sorted	by	query	name	using	SortSam	
(Picard).	The	sorted	alignment	files	and	the	unaligned	(tagged)	BAM	files	were	then	merged	to	recover	
BAM	 tags,	 lost	 during	 alignment	 (MergeBamAlignment	 from	 Picard).	 TagReadWithGeneFunction	
provides	three	tags	for	each	read	(gene	name,	gene	strand	and	gene	function)	required	to	create	a	
digital	expression	matrix.	This	cell	matrix	contains	two	subpopulations	of	cells,	one	cell	population	with	
many	genes	and	reads	and	one	with	few	genes	and	reads	per	cell.	As	the	cell	population	with	few	genes	
and	reads	does	not	recapitulates	biological	signal,	these	needed	to	be	removed.	The	average	number	
of	genes	per	cell	(5045)	clearly	separated	the	two	subpopulations,	therefore,	only	cells	with	more	than	
5045	genes	were	retained	(MIN_NUM_GENES_PER_CELL=5045).	Furthermore,	only	genes	with	at	least	
2	read	counts	were	retained.	The	matrices	for	1/1000	and	1/10,000	diluted	ERCC	spikes	were	merged.	

Data	analysis	of	the	Chromium	RNA	sequencing	data	

Demultiplexing	of	the	raw	sequencing	data	was	done	by	10x	Cell	Ranger	(v.2.0.2)	software	‘cellranger	
mkfastq’	which	wraps	Illumina's	bcl2fastq.	The	fastq	files	obtained	after	demultiplexing	were	used	as	
input	for	‘cellranger	count’,	which	aligns	the	reads	to	the	hg38	human	reference	genome	using	STAR	
(30)	 using	 Ensembl	 (v.91)	 (29)	 annotation	 and	 collapses	 to	 UMI	 counts.	 This	 was	 extended	 with	
mapping	to	ERCC	spike-in	RNA	sequences,	generating	two	separate	matrices.	Aggregation	of	samples	
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to	one	dataset	was	done	using	‘cellranger	aggr’.	The	gene	and	ERCC	count	matrices	were	merged	and	
only	cells	containing	ERCC	spikes	were	retained.	

Quality	control	and	filtering	of	the	single	cell	sequencing	data	

Quality	assessment	and	further	filtering	were	done	in	R	(v.3.5.0)	using	Seurat	(v.2.3.4)	(32)	and	Scater	
(v.1.8.0)	(33)	as	described	by	Lun	et	al.	(34).	For	the	C1	dataset,	only	genes	with	at	least	5	counts	were	
retained,	as	described	previously	(35).	To	retain	a	similar	fraction	of	genes	for	the	other	two	single	cell	
devices,	genes	in	at	 least	17	and	20	cells	were	retained	for	ddSeq	and	Chromium,	respectively.	The	
cyclone	function	of	the	scran	(v.1.8.4)	package	was	used	to	determine	the	cell	cycle	stage	of	the	cells.	

Differential	analysis	of	the	single	cell	sequencing	data	using	PIM	and	EdgeR-Zinger	

For	testing	differential	gene	expression	(DGE)	between	the	nutlin-3	and	vehicle	treated	cells,	edgeR	in	
combination	with	Zinger	for	the	single	cell	experiments	(36,	37)	and	probabilistic	index	models	(PIM)	
(38)	(biorxiv,	DOI:	10.1101/718668)	were	used.	Zinger	calculates	weights	from	zero-inflated	negative	
binomial	 models,	 which	 is	 used	 by	 edgeR	 to	 fit	 a	 weighted	 generalized	 linear	 model	 (GLM)	 with	
negative	 binomial	 distribution.	 The	 PIM	 is	 a	 distribution-free	 regression	 model	 that	 models	 the	
probabilistic	 index	 (PI)	 as	 a	 function	 of	 the	 treatment	 factor.	 The	 PI	 indicates	 the	 degree	 of	 the	
difference	in	the	distribution	of	gene	expression	between	the	treatment	groups.		PI	ranges	from	0	to	
1	and	genes	are	defined	as	upregulated	in	the	nutlin-3	treated	group	if	PI	>	0.6	and	downregulated	if	
PI	<	0.4.		

TP53	pathway	activity	score	

Cells	were	ranked	based	the	total	count	for	TP53	pathway	genes	(39).	In	particular,	cells	were	ranked	
according	 to	 the	 sum	 of	 log-CPM	 for	 116	 TP53	 pathway	 genes	 (39).	 Ranks	 were	 then	 compared	
between	the	treatment	and	control	group	and	significance	was	determined	using	the	Wilcoxon	rank	
sum	test.	

Gene	set	enrichment	analysis	

Genes	were	 ranked	according	 to	 their	 log	 fold	 change	 in	decreasing	order	 and	used	as	 input	 for	 a	
preranked	gene	set	enrichment	analysis	(GSEA)	(40).	The	C2	(curated	gene	sets)	gene	sets	were	used	
to	identify	significantly	enriched	gene	sets	(q<0.05)	in	the	datasets.	

Donwsampling	of	sequencing	data	

The	subSeq	R	Bioconductor	package	(v	4.0)	was	used	for	downsampling	of	a	given	read	count	matrix	
(matrix	𝒀	with	dimension	𝐺×𝑛)	to	a	new	read	count	matrix	(matrix	𝑿	with	dimension	𝐺×𝑛)	(41).	The	
total	number	of	reads	of	𝑿	is	𝑝	times	the	total	number	of	read	counts	of	𝒀,	for	0 ≤ 𝑝 ≤ 1.	In	particular,	
the	subsampling	procedure	assumes	that	the	read	counts	in	𝑿	follow	a	binomial	distribution	with	trial	
size	of	the	total	reads	in	𝒀	and	binomial	probability	of	𝑝.	

The	Chromium	pseudobulk	data	was	created	by	pooling	of	𝑘	cells	 from	the	Chromium	data,	with	𝑘	
chosen	so	that	the	number	of	pseudobulk	samples	is	equal	to	the	number	of	bulk	samples	in	the	NGP	
nutlin	data.	 In	particular,	 in	each	treatment	group,	cells	were	first	shuffled	and	divided	 into	groups	
each	containing	exactly	𝑘	cells.	The	read	counts	of	each	gene	in	cells	of	a	given	group	are	summed	to	
create	pseudo-bulk	gene	expression	levels.	Afterwards,	subsampling	(as	discussed	above)	is	applied	to	
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the	bulk	dataset	make	sure	 that	 the	pseudobulk	and	real	bulk	data	have	an	equal	number	of	 total	
reads.	

To	compare	the	Chromium	and	C1	single-cell	RNA-seq	datasets,	first,	83	cells	from	the	Chromium	data	
were	randomly	selected.	In	particular,	the	number	of	cells	in	each	treatment	are	equal	in	both	datasets.	
Afterwards,	subsampling	(as	discussed	above)	is	applied	to	make	sure	that	reduced	Chromium	and	C1	
data	have	an	equal	number	of	total	reads.	

	

	

RESULTS	

Experimental	design		

To	 compare	 single	 cell	 polyA[+]	 RNA-seq	 data	 generated	 with	 the	 C1	 (Fluidigm),	 ddSeq	 (Bio-
Rad/Illumina)	 and	 Chromium	 (10x	 Genomics),	 the	 same	 cellular	 perturbation	 experiment	 was	
performed	on	all	three	devices.	Additionally,	the	same	experiment	was	also	performed	in	bulk	for	ten	
replicates	to	contrast	with	the	single	cell	RNA-seq	results	(Figure	1).	Since	cell	cycle	status	may	be	a	
confounder	 in	 single	 cell	 experiments,	 cell	 cycle	 synchronization	 by	 serum	 starvation	 of	 NGP	
neuroblastoma	cells	was	carried	out	for	all	single	cell	experiments	prior	to	treatment,	resulting	in	an	
arrest	in	the	G0/G1	phase	(Supplementary	Figure	1A).	Next,	NGP	cells	were	treated	with	nutlin-3	or	
vehicle	 (ethanol).	 Nutlin-3	 is	 a	 TP53	 activator	 by	 inhibiting	 the	 interaction	 between	 TP53	 and	 its	
negative	regulator	MDM2,	resulting	in	an	activation	of	the	TP53	pathway	and	consequently	in	cell	cycle	
arrest	and	apoptosis	(1).	The	effect	of	the	nutlin-3	treatment	was	confirmed	using	RT-qPCR	on	bulk	
cells	 and	 indicated	 a	 28-fold	 upregulation	 of	CDKN1A,	 a	 known	 TP53	 target	 gene	 (Supplementary	
Figure	1B).	ERCC	spike-in	RNA	was	added	in	all	single	cell	experiments.		

	

Quality	control	and	filtering	of	sequencing	data	

All	three	single	cell	methods	generated	high	quality	libraries	as	confirmed	by	Bioanalyzer	or	Fragment	
Analyzer	(Supplementary	Figure	1C).	Single	cell	RNA-seq	data	differ	amongst	others	in	the	generated	
read	structure,	as	ddSeq	and	Chromium	reads	for	instance	contain	UMIs,	while	this	is	not	the	case	for	
C1	 reads.	 Therefore,	 each	device	has	 its	 own	pipeline	 to	 analyze	 the	data.	Nevertheless,	 all	 reads,	
including	those	generated	with	the	bulk	RNA-seq	protocol,	were	mapped	against	Ensembl	v91,	making	
the	data	comparable	(Figure	1).	For	C1,	the	number	of	single	cells	was	determined	visually	and	83	of	
the	96	capture	sites	contained	single	cells	without	visible	debris.	In	contrast,	single	cells	isolated	with	
ddSeq	 and	 Chromium	 cannot	 be	 visualized	 and	 the	 number	 of	 single	 cells	 is	 determined	 by	 the	
computational	pipeline,	resulting	in	260	and	7514	single	cells	for	ddSeq	and	Chromium,	respectively.	
No	 ERCC	 spikes	were	 detected	 in	 7	 out	 of	 the	 7514	 Chromium	 isolated	 cells	 and	 these	 cells	were	
removed	 from	 further	 analysis.	 To	 filter	 out	 low	 quality	 cell	 data,	 all	 cells	 with	 a	 log-transformed	
number	of	reads	or	genes	more	than	three	times	the	median	absolute	deviation	(MAD)	below	the	log-
transformed	median	were	removed	 from	further	analysis,	 since	 transcripts	are	 likely	not	efficiently	
captured	in	these	cells	(2).	Similarly,	cells	above	this	cut-off	were	also	removed,	as	these	data	may	be	
derived	from	cell	doublets.	Since	we	added	ERCC	spike-in	molecules	in	all	three	single	cell	experiments,	
the	same	MAD	cutoff	was	used	to	remove	low	quality	cells	and	cell	doublets	based	on	the	percentage	
of	ERCC	spike-in	reads	per	cell.	Finally,	76,	192	and	6387	single	cells	were	retained	for	the	C1,	ddSeq	
and	Chromium,	 respectively	 (Table	 1,	Figure	 1).	 Besides	 low-quality	 cells,	 also	 genes	 that	 are	 only	
expressed	 in	 a	 few	cells	were	 removed.	Due	 to	 the	differences	 in	 throughput,	 the	 selected	 cut-off	
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differs	 depending	on	 the	device	 and	~58	%	of	 the	 genes	were	maintained	by	 retaining	only	 genes	
expressed	in	at	least	5	(16,921	genes),	17	(12,753	genes)	and	20	(15,307	genes)	cells	for	the	C1,	ddSeq	
and	Chromium,	respectively.	For	the	bulk	experiment,	genes	expressed	in	fewer	than	three	samples	
were	removed,	retaining	33,700	genes.	In	general,	the	average	gene	expression	correlation	among	the	
platforms	was	high.	As	expected,	the	correlation	between	ddSeq	and	Chromium	was	slightly	higher	
(r=0.84),	compared	to	each	of	these	methods	with	the	C1	(ddSeq:	r=0.77,	Chromium:	r=0.78)	as	ddSeq	
and	Chromium	generate	sequencing	libraries	in	a	similar	way	(supplementary	Figure	2A).	Furthermore,	
the	 average	 gene	 expression	 over	 all	 cells	 in	 the	 C1	 dataset	 correlates	 best	 with	 bulk	 (r=0.83)	
(supplementary	Figure	2B),	with	both	methods	sequencing	full	transcripts.		

Table	1:	Overview	of	the	number	of	cells	removed	based	on	library	size,	number	of	genes	and	percentage	ERCC	spikes	per	
cell.	

	 library	size	 number	of	genes	 percentage	 ERCC	
spikes	

remaining	cells	

C1	 0	 0	 7	 76	
ddSeq	 28	 36	 6	 192	
Chromium	 360	 211	 822	 6387	

	

	

The	C1	has	the	highest	gene	detection	sensitivity	

After	filtering,	an	average	of	0.71	million,	3780	and	9466	reads	were	retained	per	cell,	resulting	in	the	
detection	 of	 on	 average	 7621,	 1487	 and	 2220	 genes	 per	 cell	 for	 the	 C1,	 ddSeq	 and	 Chromium,	
respectively,	demonstrating	that	the	C1	has	the	highest	sensitivity	(Figure	2A-B).	Of	note,	0.1	%,	1.5	%	
and	16.8	%	of	the	reads	were	respectively	attributed	to	ERCC	spikes.	Single	cell	RNA-seq	experiments	
suffer	from	a	lot	of	missing	data	points	(dropouts)	that	can	be	biological	or	technical.	For	C1,	54.96	%	
of	the	values	are	dropouts,	while	this	is	much	higher	for	ddSeq	(88.34	%)	and	Chromium	(85.50	%).	
PCA	plots	show	a	separation	between	nutlin-3	and	vehicle	treated	cells	for	all	single	cell	devices.	While	
the	distinction	is	clear	for	ddSeq,	there	is	more	overlap	between	treated	and	untreated	cells	for	the	C1	
and	Chromium	(Supplementary	Figure	3A).	In	general,	genes	that	are	low	abundant	are	detected	in	a	
few	cells,	while	more	abundant	genes	are	expressed	in	a	higher	fraction	of	cells	(Figure	2C).	ddSeq	and	
Chromium	display	a	tighter	curve	compared	to	the	C1,	probably	due	to	the	higher	number	of	cells	and	
removal	of	amplification	bias	by	UMIs.	Furthermore,	ddSeq	and	Chromium	data	contain	more	genes	
that	are	expressed	in	only	a	few	cells	compared	to	C1,	where	genes	are	generally	detected	in	a	larger	
fraction	 of	 cells	 (Figure	 2C).	While	most	 of	 the	 genes	 detected	 using	 single	 cell	 RNA-seq	 are	 also	
detected	with	bulk	RNA-seq,	a	tiny	fraction	of	genes	is	only	detected	by	one	of	the	devices	(Figure	3A).	
In	 general,	 genes	 detected	 by	 all	 platforms	 display	 a	 higher	 expression	 level	 compared	 to	 genes	
detected	by	only	one	device	(Figure	3	B-D).	16.3	%	and	7.2	%	of	all	reads	map	on	the	top	25	expressed	
genes	 for	 the	 C1	 and	 ddSeq,	 respectively,	 while	 this	 number	 is	 higher	 for	 Chromium	 (29.6	 %),	
highlighting	the	lower	library	complexity	of	Chromium	libraries.	The	top	25	abundant	genes	contain	
many	ribosomal	and	mitochondrial	genes	(Supplementary	Figure	3B).	Overlap	analysis	shows	that	the	
top	25	genes	in	terms	of	abundance	differ	per	platform	(Supplementary	Figure	3C).	
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Bulk	RNA-seq	detects	the	largest	number	of	differentially	expressed	genes,	while	Chromium	results	
in	most	numerous	enriched	gene	sets	

As	the	number	of	differentially	expressed	genes	in	part	depends	on	the	statistical	tool,	we	performed	
both	EdgeR	in	combination	with	Zinger	as	well	as	probabilistic	index	model	(PIM)	analysis	and	retained	
high-confident	consensus	genes	that	are	called	significantly	differentially	expressed	with	both	tools	
(3–5).	In	a	comparison	study,	EdgeR	was	shown	to	be	one	of	the	better	tools	for	single	cell	differential	
gene	expression	analysis	and	PIM	is	a	new	tool,	developed	specifically	for	differential	gene	expression	
analysis	of	 single	 cells	 (biorxiv,	DOI:	 10.1101/718668).	Genes	were	 called	 significantly	differentially	
expressed	 by	 EdgeR	 if	 FDR	 <	 0.05	 and	 absolute	 log	 fold	 change	 >	 1,	 while	 genes	 are	 significantly	
differentially	expressed	according	to	PIM	if	adjusted	p-value	<	0.05	and	PI	<	0.4	(downregulated)	or	PI	
>	0.6	(upregulated).	For	bulk,	C1,	ddSeq	and	Chromium,	7010,	40,	28	and	88	significantly	differentially	
expressed	genes	were	identified,	respectively	(Supplementary	Table	2).	By	only	including	genes	that	
are	detected	by	all	four	platforms,	the	number	of	differentially	expressed	genes	in	the	bulk	dataset	
drastically	dropped	to	1665,	while	only	 little	differences	were	noticed	for	C1	(36	genes),	ddSeq	(28	
genes)	and	Chromium	(86	genes),	in	line	with	the	fact	that	many	genes	are	only	detected	in	the	bulk	
experiment.	While	most	differentially	expressed	genes	in	the	single	cell	datasets	overlap	with	those	
detected	 in	 the	 bulk	 dataset,	 some	 genes	 are	 uniquely	 differentially	 expressed	 in	 only	 one	 of	 the	
datasets	(Figure	4A).	Genes	that	are	differentially	expressed	in	only	one	of	the	single	cell	datasets	are	
mostly	 borderline	 in	 significance	 and	 effect	 size	 (Supplementary	 Figure	 4).	 Interestingly,	 although	
many	more	genes	are	significantly	differentially	expressed	in	the	bulk	dataset	compared	to	the	single	
cell	datasets,	enrichment	analysis	shows	that	Chromium	identifies	more	significantly	(q-value	<0.05)	
positively	enriched	gene	sets,	demonstrating	that	biological	signal	can	be	effectively	captured	with	a	
subset	of	the	most	abundant	genes	(Supplementary	Table	2,	Figure	4B).	Of	note,	several	TP53	gene	
sets	pop	up	in	all	positively	enriched	gene	sets,	and	cell	cycle	gene	sets	are	common	in	the	negatively	
enriched	gene	sets,	validating	the	effect	of	nutlin-3	on	the	TP53	pathway	and	the	cell	cycle	arrest	in	
nutlin-3	treated	cells	for	all	datasets.	Furthermore,	the	TP53	activity	scores	are	significantly	different	
(p-value	<	0.01)	in	nutlin-3	treated	cells	compared	to	vehicle	treated	cells	for	all	devices,	supporting	
the	 fact	 that	 all	 methods	 are	 capable	 of	 detecting	 biological	 signal	 (Figure	 4C).	 Of	 note,	 the	 bulk	
experiment	has	the	clearest	separation	between	treated	and	untreated	cells,	but	this	may	be	in	part	
due	to	the	fact	that	TP53	target	genes	were	previously	defined	based	on	bulk	gene	expression	profiles	
(6).		

	

Single	cell	RNA	sequencing	reveals	a	heterogeneous	response	upon	nutlin-3	treatment	and	uncovers	
hidden	biological	signals	

To	get	a	first	view	on	the	transcriptional	response	of	NGP	cells	on	nutlin-3	treatment,	the	expression	
of	CDKN1A,	 a	 known	 TP53	 target,	was	 determined	 for	 the	 three	 single	 cell	 and	 the	 bulk	 RNA-seq	
experiments.	While	CDKN1A	is	significantly	upregulated	in	all	datasets	upon	nutlin-3	treatment,	there	
is	 a	 remarkable	 heterogeneity	 of	 CDKN1A	 expression	 in	 the	 single	 cell	 datasets	 (Figure	 5A).	 To	
understand	the	differences	between	cells	with	a	low	and	high	expression	of	CDKN1A,	nutlin-3	treated	
cells	with	CDKN1A	expression	 in	 the	 lowest	quartile	were	compared	to	cells	with	expression	 in	 the	
highest	quartile.	To	have	a	sufficiently	large	number	of	cells	in	each	group,	this	analysis	was	only	done	
for	the	Chromium	dataset.	In	total,	83	genes	were	significantly	differentially	expressed,	of	which	76	
overlapped	with	the	set	of	genes	significantly	differentially	expressed	between	nutlin-3	and	vehicle	
treated	 cells	 in	 the	 full	 Chromium	 dataset	 (Supplementary	 Table	 2).	 In	 addition,	 93	 of	 the	 103	
significantly	positively	enriched	gene	sets	overlap	with	those	of	the	full	Chromium	dataset	(Figure	5B-
C,	Supplementary	Table	2).	These	results	demonstrate	that	the	same	signals	can	be	detected	between	
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vehicle	 and	 nutlin-3	 treated	 cells	 and	 between	 nutlin-3	 treated	 cells	 with	 low	 and	 high	 CDKN1A	
expression.	To	validate	these	results,	 this	analysis	was	also	performed	for	PUMA.	PUMA	 is	another	
TP53	target	gene	that	is	significantly	upregulated	in	all	datasets	upon	nutlin-3	treatment	and	for	which	
there	is	a	remarkable	heterogeneity	of	expression	in	the	single	cell	datasets	(Supplementary	Figure	
5A).	86	genes	were	significantly	differentially	expressed	between	the	cells	with	an	expression	of	PUMA	
in	 the	 lowest	 and	highest	 quartile	 (Supplementary	 Table	 2).	Of	 these,	 77	overlapped	with	 the	 full	
Chromium	dataset.	79	of	the	100	significantly	positively	enriched	gene	sets	overlap	with	those	of	the	
full	Chromium	dataset	(Supplementary	Figure	5B-C,	Supplementary	Table	2).	These	results	confirm	
that	the	same	signals	can	be	detected	between	vehicle	and	nutlin-3	treated	cells	and	between	nutlin-
3	treated	cells	with	low	and	high	expression	of	a	TP53	target	gene.	

As	the	cell	cycle	status	can	be	a	major	confounder	in	single	cell	experiments	masking	putative	biological	
effects,	cells	in	the	G1	phase	of	the	cell	cycle	in	the	Chromium	data	set	were	selected	based	on	the	
expression	of	a	G1	cell	cycle	signature.	Doing	so,	105	genes	were	significantly	differentially	expressed	
between	 nutlin-3	 and	 vehicle	 treatment,	 of	which	 80	 overlapped	with	 the	 differentially	 expressed	
genes	 of	 the	 full	 Chromium	 dataset	 (Supplementary	 Table	 2).	 As	 we	 detected	 slightly	more	 (105	
instead	of	88)	differentially	expressed	genes	between	nutlin-3	and	vehicle	treated	cells	in	the	G1	phase	
compared	to	 the	 full	dataset,	 these	differentially	expressed	genes	might	have	been	masked	by	cell	
cycle	effects	in	the	full	dataset.	Several	genes	that	are	downregulated	in	the	G1	cells,	but	not	in	the	
full	dataset,	including	UBE2C	and	PCLAF,	are	known	to	be	repressed	by	TP53	and	also	downregulated	
in	the	bulk	RNA-seq	dataset	(7,	8).	Likewise,	several	genes	that	are	upregulated	in	the	G1	cells	only,	
including	DDIT4	and	KRT17,	are	known	to	be	induced	by	TP53	and	also	upregulated	in	the	bulk	RNA-
seq	dataset,	showing	that	more	biologically	relevant	targets	are	identified	in	RNA-seq	data	from	single	
cells	in	the	same	cell	cycle	phase	(9,	10).	Interestingly,	PTTG1	is	significantly	differentially	expressed	in	
G1	cells,	but	not	in	the	full	Chromium,	nor	the	bulk	dataset,	and	known	to	be	repressed	by	TP53	(11).	
Additionally,	87	of	 the	100	significantly	positively	enriched	gene	sets	overlap	with	 those	of	 the	 full	
dataset	(Figure	5B-C).	One	gene	set	(CONCANNON_APOPTOSIS_BY_EPOXOMICIN_UP,	NES=	1.80,	FDR	
=	 0.03)	 containing	 genes	 upregulated	 because	 of	 apoptosis	 was	 only	 enriched	 in	 the	 G1	 cells,	
supporting	the	relevance	of	signals	that	are	only	detected	in	the	G1	cells	and	not	in	the	full	dataset.	

Finally,	single	cell	experiments	are	characterized	by	a	high	dropout	rate.	To	determine	the	differences	
between	nutlin-3	and	vehicle	treated	cells	without	detectable	expression	of	CDKN1A,	such	so-called	
CDKN1A	 null	 cells	were	 selected	 for	 each	 treatment	 arm.	 71	 genes	were	 significantly	 differentially	
expressed,	of	which	68	overlapped	with	the	full	set	(Figure	5B-C,	Supplementary	Table	2).	In	contrast,	
only	 21	of	 the	73	 significantly	positively	 enriched	gene	 sets	overlap	with	 those	of	 the	 full	 dataset.	
Validating	these	results	for	PUMA	null	cells	revealed	similar	to	CDKN1A	null	cells	a	large	overlap	in	the	
significantly	differentially	expressed	genes	(70	of	the	72	genes).	In	contrast	to	CDKN1A	null	cells,	there	
was	a	large	overlap	of	the	significantly	positively	enriched	gene	sets	(71	of	the	81)	with	the	full	dataset,	
highlighting	the	complexity	of	dropouts	in	single	cell	experiments.	

	

Pseudobulk	data	resembles	real	bulk	data	better	than	single	cell	data	

To	 understand	 the	 differences	 between	 bulk	 RNA-seq	 and	 single	 cell	 RNA-seq	 patterns	 better,	
pseudobulk	data	from	the	single	cell	data	were	created	by	pooling	and	averaging	subsets	of	single	cells.	
Chromium	data	were	pooled	in	ten	pseudosamples	per	treatment	arm,	resulting	in	the	same	sample	
size	as	the	bulk	data.	Chromium	was	taken	as	an	example	as	this	dataset	contains	the	highest	number	
of	cells.	To	make	the	data	even	more	comparable,	the	bulk	library	size	was	downsampled	to	obtain	the	
same	 number	 of	 reads	 for	 the	 single	 cell	 and	 bulk	 dataset	 summarized	 over	 all	 (pseudo)samples.	
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Originally,	 the	 bulk	 library	 size	was	 4.8	 times	 larger	 compared	 to	 the	 single	 cell	 library	 size.	 After	
downsampling,	 the	total	number	of	reads	 in	each	experiment	was	70.2	million,	with	a	mean	of	3.5	
million	reads	per	(pseudo)sample	(Figure	6A).	As	done	before	for	the	original	bulk	data,	only	genes	
expressed	in	at	least	3	samples	were	retained	in	the	downsampled	bulk	and	pseudobulk	datasets.	The	
correlation	between	the	average	gene	expression	in	the	downsampled	bulk	and	pseudobulk	dataset	
was	higher	(r=0.83)	compared	to	the	correlation	 in	the	original	bulk	and	single	cell	dataset	(r=0.69)	
(Supplementary	Figures	2	and	6A).	As	expected,	fewer	genes	(27,659	instead	of	33,700)	and	fewer	
significantly	differentially	expressed	genes	(4606	instead	of	7010)	were	detected	in	the	downsampled	
bulk	dataset	compared	to	the	original	bulk	dataset,	due	to	the	lower	sequencing	depth	(Supplementary	
Table	2).	Of	these	differentially	expressed	genes,	the	large	majority	(4012,	87.10	%)	overlapped	with	
the	differentially	expressed	genes	of	the	original	bulk	dataset.	For	the	pseudobulk	dataset,	almost	10-
fold	more	genes	(810	instead	of	88)	were	significantly	differentially	expressed	compared	to	the	original	
single	 cell	 dataset.	 Of	 note,	 this	 number	 is	 still	 considerably	 lower	 compared	 to	 bulk	 at	 equal	
sequencing	 depth.	 The	 higher	 number	 of	 differentially	 expressed	 genes	 in	 the	 pseudobulk	 dataset	
compared	to	the	original	single	cell	dataset	is	probably	owing	to	the	reduction	in	noise	after	pooling	
single	cells	into	pseudobulk	samples.	509	of	the	810	significantly	differentially	expressed	genes	in	the	
pseudobulk	dataset	overlap	with	the	differentially	expressed	genes	of	the	downsampled	bulk	dataset.	
Furthermore,	123	and	101	significantly	positively	enriched	datasets	were	identified	for	the	pseudobulk	
and	downsampled	bulk	dataset,	respectively.	With	42	of	the	123	positively	enriched	gene	sets	in	the	
pseudobulk	dataset	overlapping	with	those	of	the	downsampled	bulk,	and	only	18	of	the	94	positively	
enriched	gene	sets	overlapping	in	the	original	single	cell	data	and	the	bulk	data,	the	pseudobulk	data	
better	resembles	the	bulk	data	(Figure	6B,	Supplementary	Figure	6B).	Furthermore,	the	TP53	activity	
scores	are	significantly	different	(p-value	<	0.01)	in	nutlin-3	treated	cells	compared	to	vehicle	treated	
cells	 for	 both	 the	 downsampled	 bulk	 and	 pseudobulk	 dataset,	 showing	 that	 pseudobulk	 samples	
continue	to	recapitulate	biological	signal.	Interestingly,	there	is	a	clearer	separation	for	the	pseudobulk	
dataset	compared	to	the	original	single	cell	dataset	(Figure	4C,	6C).	

	

The	C1	and	Chromium	datasets	become	more	comparable	when	comparing	an	equal	number	of	cells	
and	equal	sequencing	depth	

To	determine	the	effect	of	the	sequencing	depth	on	single	cell	experiments,	83	cells	of	the	Chromium	
dataset	were	randomly	selected	to	compare	with	the	83	cells	of	the	C1	dataset.	To	make	the	datasets	
even	better	comparable,	the	C1	dataset	was	downsampled	to	the	sequencing	depth	of	the	subset	of	
83	cells	of	the	Chromium	dataset.	Originally,	the	Chromium	library	size	of	the	complete	dataset	was	
1.17	 times	 larger	 compared	 to	 the	 C1	 dataset.	 After	 selecting	 an	 equal	 number	 of	 cells	 for	 the	
Chromium	 and	 C1	 dataset	 and	 downsampling	 the	 C1	 dataset,	 the	 total	 number	 of	 reads	 in	 each	
experiment	was	0.8	million,	with	a	mean	of	9652	and	9645	reads	per	sample	for	Chromium	and	C1,	
respectively	(Supplementary	Figure	7A).	Only	genes	expressed	in	at	least	3	samples	were	retained	in	
both	datasets.	The	correlation	between	the	average	gene	expression	in	the	downsampled	C1	dataset	
and	subset	of	the	Chromium	dataset	was	somewhat	lower	(r=0.73)	compared	to	the	correlation	in	the	
original	C1	and	Chromium	single	cell	datasets	(r=0.78)	(Supplementary	Figures	2	and	6C).	Surprisingly,	
more	significantly	differentially	expressed	genes	(71	instead	of	40)	were	detected	in	the	downsampled	
C1	 dataset	 compared	 to	 the	 original	 C1	 dataset	 (Supplementary	 Table	 2).	 However,	 of	 these	
differentially	 expressed	 genes,	 only	 21	 overlapped	 with	 the	 differentially	 expressed	 genes	 of	 the	
original	C1	dataset.	 For	 the	 subset	of	 the	Chromium	dataset,	 fewer	 genes	 (79	 instead	of	 88)	were	
significantly	differentially	expressed	compared	to	the	original	single	cell	dataset,	probably	due	to	the	
reduction	 in	 cell	 number.	 Only	 10	 of	 the	 71	 significantly	 differentially	 expressed	 genes	 in	 the	
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subsampled	C1	dataset	overlap	with	the	differentially	expressed	genes	of	the	subset	of	the	Chromium	
dataset.	 Furthermore,	 21	 and	 53	 significantly	 positively	 enriched	 datasets	 were	 identified	 in	 the	
subsampled	C1	and	subset	of	Chromium	dataset,	respectively.	With	18	of	the	53	positively	enriched	
gene	 sets	 in	 the	 subset	 of	 the	 Chromium	 dataset	 overlapping	with	 those	 of	 the	 downsampled	 C1	
dataset	(Jaccard	0.39),	and	20	of	the	94	positively	enriched	gene	sets	of	the	original	Chromium	dataset	
overlapping	with	the	original	C1	data	(Jaccard	0.21),	it	is	clear	that	by	taking	an	equal	number	of	cells	
for	 both	 datasets	 and	 subsampling	 the	 data,	 the	 Chromium	 and	 C1	 dataset	 are	 more	 similar	
(Supplementary	Figure	6D-7B).	Furthermore,	the	TP53	activity	scores	remain	significantly	different	(p-
value	<	0.01)	in	nutlin-3	treated	cells	compared	to	vehicle	treated	cells	for	both	the	subsampled	C1	
and	 subset	 of	 Chromium	 dataset,	 indicating	 that	 these	 smaller	 data-sets	 continue	 to	 recapitulate	
biological	signal	(Supplementary	Figure	7C).		

	

Discussion	

Over	the	last	years,	several	single	cell	RNA-seq	methods	emerged,	whereby	the	number	of	single	cells	
drastically	increased	from	a	few	dozen	up	to	tens	of	thousands	of	single	cells.	While	several	studies	
attempted	to	compare	these	single	cell	RNA-seq	methods,	most	studies	focused	on	the	quality	of	the	
generated	data	and	their	ability	to	distinguish	cellular	subpopulations	(1–5).	Furthermore,	the	more	
recent	ddSeq	instrument	was	included	in	only	one	comparative	study	(2).	Here,	we	evaluated	for	the	
first	 time	 three	 commercially	 available	 single	 cell	 devices	 -	 C1,	 ddSeq	 and	 Chromium	 -	 to	 study	
transcriptional	 heterogeneity	 upon	 a	 therapeutic	 perturbation	 and	 to	 contrast	 it	 with	 a	 bulk	 cell	
population	response.	To	this	purpose,	NGP	neuroblastoma	cells	were	treated	with	the	TP53	activator	
nutlin-3	 or	 vehicle	 as	 negative	 control	 followed	 by	 single	 cell	 RNA-seq	 using	 the	 C1,	 ddSeq	 and	
Chromium.	Since	the	cell	cycle	state	is	a	known	confounder	in	single	cell	experiments,	this	effect	was	
minimized	by	synchronizing	cells	prior	to	treatment.	To	further	characterize	the	results	of	the	single	
cell	experiments,	bulk	RNA-seq	was	performed	in	parallel	on	the	same	model	system	in	ten	biological	
replicates.	We	showed	that	the	highest	number	of	genes	with	lowest	dropout	rates	are	detected	using	
the	C1,	confirming	that	this	platform	has	the	highest	detection	sensitivity,	which	may	 in	part	result	
from	the	higher	sequencing	depth	(5).	While	downsampling	read	depth	to	an	equal	average	number	
of	reads	per	cell	for	all	three	devices	should	be	carried	out	to	effectively	confirm	that	the	C1	displays	
the	highest	sensitivity,	different	read	distribution	along	the	transcript	(i.e.	entire	transcript	(C1)	vs.	3’	
end	only	(ddSeq,	Chromium))	may	continue	to	confound	such	an	analysis.	We	also	observed	that	the	
overlap	between	the	detected	genes	in	the	bulk	and	single	cell	datasets	was	highest	for	the	C1	with	an	
overlap	of	more	than	50	%,	which	is	slightly	higher	than	reported	previously	(5).	The	C1	average	gene	
expression	levels	correlated	better	with	bulk	gene	expression	data	compared	to	ddSeq	and	Chromium,	
owing	to	the	higher	sequencing	depth	and	higher	transcriptome	complexity	of	the	C1	cDNA	libraries.	
In	contrast,	correlation	of	average	gene	expression	among	the	single	cell	devices	revealed	a	slightly	
better	correlation	between	the	ddSeq	and	Chromium,	in	line	with	their	similarity	in	terms	of	RNA-seq	
library	preparation.	The	correlation	between	C1	and	Chromium	was	the	lowest,	as	previously	reported	
(5,	6).	The	gene	expression	profiles	of	the	ddSeq	and	Chromium	seem	less	noisy	compared	to	the	C1,	
owing	to	the	higher	number	of	 isolated	single	cells	and	the	use	of	UMIs.	 It	has	been	reported	that	
technical	noise	can	be	reduced	by	50	%	using	 the	UMI	enabled	counting	of	cDNA	molecules	 (7,	8).	
Although	a	large	overlap	in	the	genes	quantified	with	the	three	single	cell	devices	was	seen,	each	device	
also	detected	some	unique	genes.	It	has	been	previously	reported	that	unique	C1	genes	do	not	have	
3’	ends	that	are	difficult	to	capture,	preventing	their	detection	by	3’	end	sequencing	technologies	such	
as	the	ddSeq	and	Chromium.	Hence,	the	large	set	of	unique	C1	genes	results	from	higher	C1	mRNA	
capture	efficiency	 (1,	5).	 In	our	attempt	 to	make	the	devices	more	comparable,	ERCC	spike-in	RNA	
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molecules	were	added	to	all	three	single	cell	experiments.	Of	note,	ERCC	spikes	are	generally	not	added	
to	 droplet-based	 experiments,	 since	 these	 spikes-in	 molecules	 are	 added	 to	 every	 droplet	 and	
consequently	also	amplified	and	sequenced	in	droplets	without	cells,	increasing	the	sequencing	costs	
considerably	(1).	Due	to	the	lack	of	guidelines	for	droplet-based	experiments,	too	many	reads	(17	%)	
in	 our	 Chromium	 dataset	 mapped	 to	 ERCC	 spikes,	 consequently	 losing	 endogenous	 reads	 and	
indicating	that	lower	amounts	of	ERCC	spike-in	RNA	should	be	added	in	future	experiments.	Apart	from	
being	used	as	workflow	control,	ERCC	spike-in	molecules	can	also	be	used	for	normalization,	although	
this	use	is	still	under	debate	(9–11).		

To	test	the	ability	to	identify	differentially	expressed	genes	upon	nutlin-3	treatment	in	single	cell	RNA-
seq	datasets,	two	different	statistical	methods	were	used,	i.e.	EdgeR	in	combination	with	Zinger,	and	
PIM.	 As	 differential	 gene	 expression	 analysis	 tools	 typically	 vary	 in	 the	 number	 of	 genes	 called	 as	
differentially	 expressed,	 we	 here	 continued	 with	 the	 intersection	 of	 both	 tools	 to	 conservatively	
identify	truly	differentially	expressed	genes	(12).	The	largest	number	of	differentially	expressed	genes	
was	 detected	 in	 the	 Chromium	 dataset,	 in	 line	 with	 the	 observation	 that	 more	 genes	 are	 called	
differentially	expressed	with	increasing	number	of	single	cells	(5,	12).	Although	many	more	genes	were	
differentially	expressed	in	the	bulk	dataset,	the	biological	signal	is	faithfully	recapitulated	in	the	tested	
single	cell	datasets	as	strong	enrichment	of	several	TP53	gene	sets	was	present	 in	all	datasets.	This	
result	suggests	that	detecting	the	most	abundant	genes	(through	single	cell	RNA-seq	data)	is	sufficient	
for	pathway	activity	analysis.	Of	note,	single	cell	datasets	also	reveal	some	unique	enrichment	signals,	
of	which	the	relevance	should	be	determined	by	further	investigation.	

To	characterize	the	effect	of	nutlin-3	treatment	at	the	single	cell	level,	five	cell	subpopulations	from	
the	full	Chromium	dataset	were	selected	based	on	their	cell	cycle	stage	and	TP53	transcriptional	target	
gene	 CDKN1A	 and	 PUMA	 expression	 levels,	 and	 compared	 with	 the	 entire	 cell	 population.	 These	
subpopulation	analyses	were	only	performed	for	the	Chromium	dataset	in	order	to	have	a	sufficient	
number	of	cells	per	subset.	In	order	to	avoid	cell	cycle	effects	as	much	as	possible,	nutlin-3	and	vehicle	
treated	 cells	 in	 the	 G1	 phase	 were	 selected	 in	 the	 first	 subset.	 Although	 a	 large	 fraction	 of	 the	
differentially	 expressed	 genes	 in	 the	 G1	 cells	 overlapped	 with	 the	 full	 dataset,	 more	 significantly	
differentially	expressed	genes	were	detected	in	the	G1	cells,	possibly	hidden	by	cell	cycle	effects	in	the	
full	 dataset.	Many	 of	 these	 genes	 are	 known	 to	 be	 regulated	 by	 TP53,	 showing	 the	 utility	 of	 cell	
subpopulation	analysis	and	the	relevance	of	the	genes	differentially	expressed	in	cells	in	the	G1	phase.	
This	type	of	subpopulation	analysis	could	in	principle	be	extended	to	the	other	cell	cycles	stages.	In	a	
second	subset,	differential	gene	expression	and	gene	set	enrichment	analysis	on	nutlin-3	treated	cells	
with	low	or	high	expression	of	the	TP53	target	genes	CDKN1A	or	PUMA	revealed	that	these	subsets	
resemble	vehicle	and	nutlin-3	treated	cells	from	the	full	dataset.	This	indicates	that	treated	cells	with	
low	expression	of	CDKN1A	or	PUMA	are	similar	to	vehicle	treated	cells	and	may	thus	represent	cells	
that	react	in	a	later	stage	to	nutlin-3	or	show	primary	resistance.	To	further	investigate	this	intriguing	
observation,	time-course	experiments	should	be	set	up	to	reveal	if	CDKN1A	or	PUMA	is	upregulated	in	
a	larger	fraction	of	cells	at	later	timepoints,	in	line	with	a	delayed	nutlin-3	response.	In	the	third	subset,	
nutlin-3	 and	 vehicle	 treated	 cells	 without	 CDKN1A	 or	 PUMA	 expression	 were	 compared.	 With	
exception	of	the	enrichment	analysis	in	the	CDKN1A	nulls	cells,	overall	our	results	indicate	that	nulls	
cells	are	very	similar	than	the	full	population	of	cells.	This	strongly	suggests	that	these	cells	likely	not	
reflect	a	different	subpopulation,	but	are	–	at	least	to	a	large	degree-	null	cells	because	of	technical	
dropout.	While	we	cannot	exclude	that	truly	different	null	cells	exist,	it	seems	to	caution	us	that	the	
absence	of	a	marker	does	not	necessarily	denote	a	different	cell	status	or	cell	type.	While	our	analyses	
provide	first	insights	in	the	heterogeneous	response	of	NGP	cells	on	nutlin-3	treatment,	more	in	depth	
analyses	are	required	to	better	understand	these	observations.	
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Since	single	cell	and	bulk	RNA-seq	experiments	differ	at	several	points,	such	as	the	library	prep	method,	
the	sequencing	depth,	and	the	‘sample’	size,	we	set	up	an	additional	analysis	in	which	we	attempted	
to	 cancel	 out	 these	 differences.	 To	 account	 for	 the	 sample	 size,	 Chromium	 single	 celle	 data	were	
pooled	 to	 create	 10	 pseudobulk	 samples	 for	 each	 condition.	 In	 addition,	 the	 bulk	 dataset	 was	
downsampled	 to	obtain	 the	 same	number	of	 reads	 as	 the	 single	 cell	 RNA	 seq	dataset.	 Correlation	
analysis	between	the	gene	expression	profiles	of	the	pseudobulk	and	bulk	samples	depicted	a	higher	
correlation	 compared	 to	 the	 correlation	 between	 the	 original	 bulk	 and	 the	 Chromium	 single	 cell	
dataset,	 validating	 that	 pseudobulk	 data	 resembles	 bulk	 data.	 More	 genes	 were	 differentially	
expressed	upon	pooling,	likely	because	of	a	reduction	of	measurement	noise,	which	is	typically	high	in	
single	cell	experiments	(7,	13).	Still,	the	number	of	differentially	expressed	genes	is	lower	compared	to	
the	 bulk	 dataset,	 owing	 to	 the	 marked	 higher	 detection	 sensitivity	 of	 bulk	 RNA-seq	 methods.	 In	
addition,	to	make	the	C1	and	Chromium	single	cell	datasets	more	comparable,	an	equal	number	of	
cells	was	 compared	 (n=83)	 at	 equal	 sequencing	 depth.	Despite	 the	 lower	 correlation	 between	 the	
subsampled	C1	dataset	and	the	subset	of	the	Chromium	dataset	compared	the	original	datasets,	more	
significantly	positively	enriched	gene	sets	overlap,	showing	that	analyzing	an	equal	number	of	cells	at	
equal	sequencing	depth,	makes	the	data	more	similar.	

In	conclusion,	we	evaluated	for	the	first	time	three	commercial	single	cell	RNA-seq	devices	in	terms	of	
their	ability	to	characterize	a	cellular	perturbation	system.	We	revealed	that	despite	the	lower	number	
of	 differentially	 expressed	 genes	 in	 single	 cell	 RNA-seq	 experiments	 compared	 to	 bulk	 RNA-seq	
experiments,	the	biological	signal	can	be	faithfully	detected	through	gene	set	enrichment	analysis	for	
all	single	cell	devices.	We	also	demonstrated	that	single	cell	RNA-seq	analyses	reveal	transcriptional	
heterogeneity	in	response	to	nutlin-3	treatment,	which	may	form	the	basis	to	identify	potentially	late-
responders	or	resistant	cells	that	are	hidden	in	bulk	RNA-seq	experiments.	

	

	
Figure	legends	

Figure	 1:	 overview	 of	 the	 experimental	 set-up.	 Synchronized	 NGP	 cells	 were	 treated	 with	 either	
nutlin-3	or	vehicle	and	single	cell	RNA-seq	was	performed	using	the	C1,	ddSeq	and	Chromium	device.	
In	parallel,	bulk	RNA-seq	of	10	replicates	of	NGP	cells	treated	with	nutlin-3	and	vehicle	was	carried	out.	
Each	dataset	was	analyzed	with	the	appropriate	pipeline.		

Figure	2:	number	of	counts	and	genes	detected	per	device.	Boxplots	depicting	the	number	of	counts	
(A)	and	genes	 (B)	detected	 for	 the	C1,	ddSeq	and	Chromium	after	 filtering.	 (C)	 Smoothscatter	plot	
shows	the	correlation	between	the	gene	expression	 level	and	the	number	of	cells	 that	express	 the	
gene.	Red	dots	show	the	ERCC	spikes.	

Figure	3:	each	platform	detects	a	unique	set	of	genes.	(A)	Overlap	between	detected	genes	using	bulk	
RNA-seq,	C1,	ddSeq	and	Chromium.	Cumulative	expression	plots	of	genes	detected	with	all	single	cell	
devices	or	with	only	C1	(B),	ddSeq	(C)	or	Chromium	(D).	

Figure	4:	single	cell	RNA-seq	results	recapitulate	the	biological	signal.	(A)	Overlap	of	genes	detected	
by	all	platforms	and	significantly	differentially	expressed	with	both	EdgeR	in	combination	with	Zinger	
as	well	as	PIM.	(B)	Heatmap	of	significantly	positively	(q-value	<0.05)	enriched	gene	sets	after	GSEA	for	
the	C2-curated	gene	sets	for	each	method.	Gene	sets	are	color-coded	according	to	their	normalized	
enrichment	score	(NES).	(C)	Boxplots	depicting	the	TP53	activity	score	per	cell,	whereby	ranking	was	
based	on	the	expression	of	116	TP53	target	genes.	
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Figure	5:	differences	between	cells	with	varying	CDKN1A	expression.	(A)	CDKN1A	expression	in	the	
bulk	and	single	cell	RNA-seq	datasets.	(B)	Heatmap	of	significantly	positively	(q-value	<0.05)	enriched	
gene	 sets	 after	 GSEA	 for	 the	 C2-curated	 gene	 sets	 for	 each	 subgroup.	 Gene	 sets	 are	 color-coded	
according	 to	 their	 normalized	 enrichment	 score	 (NES).	 (C)	Overlap	 between	 significantly	 positively	
enriched	gene	sets	for	the	three	cellular	subgroups	and	full	Chromium	dataset.		

Figure	6:	downsampling	of	bulk	and	pseudobulkification	of	single	cell	data.	(A)	After	downsampling	
of	 the	bulk	data	and	generating	pseudobulk	data	 from	the	Chromium	single	cell	RNA-seq	data,	 the	
mean	number	of	reads	per	(pseudo)sample	 is	3.5	million.	(B)	Heatmap	of	significantly	positively	(q-
value	 <0.05)	 enriched	 gene	 sets	 after	 GSEA	 for	 the	 C2	 curated	 gene	 sets	 for	 the	 original	 and	
downsampled	bulk	and	pseudobulk	Chromium	datasets.	(C)	Boxplots	depicting	the	TP53	activity	score	
per	cell,	whereby	ranking	was	based	on	the	expression	of	116	TP53	target	genes.		
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