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Abstract 9 

A key aspect of human cognitive flexibility concerns the ability to convert complex 10 

symbolic instructions into novel behaviors. Previous research proposes that this 11 

transformation is supported by two neurocognitive states: an initial declarative 12 

maintenance of task knowledge, and an implementation state necessary for 13 

optimal task execution. Furthermore, current models predict a crucial role of frontal 14 

and parietal brain regions in this process. However, whether declarative and 15 

procedural signals independently contribute to implementation remains unknown. 16 

We report the results of an fMRI experiment in which participants executed novel 17 

instructed stimulus-response associations. We then used a pattern-tracking 18 

procedure to quantify the contribution of format-unique signals during instruction 19 

implementation. This revealed independent procedural and declarative 20 

representations of novel S-Rs in frontoparietal areas, prior to execution. Critically, 21 

the degree of procedural activation predicted subsequent behavioral performance. 22 

Altogether, our results suggest an important contribution of frontoparietal regions to 23 

the neural architecture that regulates cognitive flexibility. 24 

Keywords: “Cognitive Control”, “Instructions”, “fMRI”, “multivariate analysis”, 25 

“frontoparietal network”, “retro-cues” 26 
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INTRODUCTION 28 

Instruction following constitutes a powerful instance of human cognitive flexibility. 29 

The greater specificity and efficiency in the transmission of task procedures 30 

compared to trial-and-error or reinforcement learning make it a distinctive skill that 31 

separates humans from other species (Cole et al., 2013). While recent years have 32 

witnessed substantial progress in our understanding of instruction following, the 33 

precise neural coding schemes that organize brain activity during the rapid 34 

transformation of abstract instructed content into effective behavior are still poorly 35 

understood. 36 

Previous behavioral studies have reported an intriguing signature of instruction 37 

processing, namely, a rapid configuration of instructed content predominantly 38 

towards action (González-García et al., 2020; Liefooghe et al., 2012, 2013; 39 

Liefooghe and De Houwer, 2018; Meiran et al., 2012, 2015a). This signature 40 

separates instruction implementation from related work in task switching and 41 

working memory: although preparation for action is not unique to novel 42 

instructions, in other contexts repetitive task execution makes it possible to retrieve 43 

specific long-term memory traces that allows for successful execution (Qiao et al., 44 

2017; Zhang et al., 2013). In instruction implementation, however, long-term 45 

memory traces are reasonably ruled out (Liefooghe et al., 2012; Meiran et al., 46 

2015a; Muhle-Karbe et al., 2016), and rather, an efficient proactive configuration 47 

can be achieved without prior practice. This configuration has a profound impact 48 

on brain activity. The intention to execute an instruction induces automatic motor 49 

activation (Everaert et al., 2014; Meiran et al., 2015b) and specific oscillatory 50 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 25, 2020. ; https://doi.org/10.1101/830067doi: bioRxiv preprint 

https://doi.org/10.1101/830067
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 
 

features (Formica et al., 2020b), engages different brain regions to coordinate 51 

novel stimuli and responses (Demanet et al., 2016; González-García et al., 2017a; 52 

Hartstra et al., 2011; Palenciano et al., 2019b, 2019a), and alters the neural 53 

representation of instructed content in control brain regions, primarily, the 54 

frontoparietal network (FPN) (Bourguignon et al., 2018; Muhle-Karbe et al., 2017). 55 

These and other findings propose a crucial role of the FPN in the rapid access to 56 

and configuration of an implementation stage, a highly efficient task readiness 57 

state that support successful execution (Bourguignon et al., 2018; González-58 

García et al., 2017b; Hartstra et al., 2011; Muhle-Karbe et al., 2017; Palenciano et 59 

al., 2019b, 2019a; Woolgar et al., 2015). 60 

To account for these findings, prominent theoretical models (Brass et al., 2017) put 61 

forward a serial-coding hypothesis of frontoparietal function, a multi-step process in 62 

which the FPN first encodes instructed information into a declarative code, that is, 63 

a persistent representation of the memoranda conveyed by the instruction. When 64 

this information becomes behaviorally relevant, FPN declarative representations 65 

are transformed into an implementation state that is optimized for specific task 66 

demands (Brass et al., 2017). Current models propose that such implementation 67 

state consists primarily of procedural codes, a proactive binding of relevant 68 

perceptual and motor information into a compound representation that leads to the 69 

boost of relevant action codes related to behavioral routines (Muhle-Karbe et al., 70 

2017). 71 

However, the characterization of neural coding during implementation remains 72 

unclear, primarily due to the fact that previous analytical approaches were unable 73 
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to track representational formats of specific nature. Previous work thus identified 74 

some properties of the FPN during the implementation of novel instructions, such 75 

as enhanced decoding of stimulus (González-García et al., 2017a; Muhle-Karbe et 76 

al., 2017) and rule identity (Ruge et al., 2019), or altered similarity within to-be-77 

implemented S-R associations (Bourguignon et al., 2018; Palenciano et al., 78 

2019b). Although these results reveal unique signatures of instruction 79 

implementation, they are agnostic regarding the functional representational state 80 

underlying such effects, that is, the extent to which they capture a contribution of 81 

procedural and declarative signals. Furthermore, previous approaches were not 82 

able to eliminate the contribution of domain-general processes, such as arousal or 83 

attention, which could potentially drive some of the differences between 84 

implementation and other experimental conditions. Therefore, currently, it cannot 85 

be discerned whether such implementation state is uniquely supported through the 86 

proposed procedural codes, or whether it additionally preserves task content in an 87 

independent, declarative format. Furthermore, the specific contribution of these two 88 

representational formats to successful behavior remains unknown. 89 

Here, we used a canonical template tracking procedure to capture whether 90 

different signals governed FPN activity during the prioritization of novel instructions 91 

(Brass et al., 2017). Using data from two independent localizers that encouraged 92 

either a declarative or action-oriented maintenance of novel instructions, we 93 

derived instruction-specific multivariate patterns of activity in declarative and 94 

procedural formats, respectively. We then assessed the contribution of these 95 

canonical declarative and procedural templates prior to task execution. Importantly, 96 
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this partialling logic allowed to determine the format-specific contribution of 97 

procedural and declarative representational formats and to partial out the 98 

contribution of domain-general processes. 99 

 100 

MATERIALS AND METHODS 101 

Methods are reported, when applicable, in accordance with the Committee on Best 102 

Practices in Data Analysis and Sharing (COBIDAS) report (Nichols et al., 2017). 103 

Participants 104 

Thirty-two participants (mean age = 23.16, range = 19-33; 20 females, 12 males) 105 

recruited from the participants’ pool from Ghent University participated in exchange 106 

of 40 euros. They were all right-handed (confirmed by the Edinburgh handedness 107 

inventory), clinically healthy and MRI-safe. The study was approved by the UZ 108 

Ghent Ethics Committee and all participants provided informed consent before 109 

starting the experiment. Of the initial 32 participants, 3 were excluded after 110 

acquisition (1 participant performed at chance during the task; 1 participant had an 111 

error rate of 1 in catch trials (see below); 1 participant’s within-run head movement 112 

exceeded voxel size), resulting in a final sample of 29 participants. Due to an 113 

incomplete orthogonalization of the cued and uncued S-R pairings, the first three 114 

participants were excluded from multivariate analyses (n = 26). 115 

Apparatus, stimuli, and procedure 116 
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S-R associations were created by combining images with words that indicated the 117 

response finger. Each S-R association was presented just once during the entire 118 

experiment to prevent the formation of long-term memory traces (Meiran et al., 119 

2015a). Given this prerequisite, images of animate (non-human animals) and 120 

inanimate (vehicles and instruments) items were compiled from different available 121 

databases (Brady et al., 2013, 2008; Brodeur et al., 2014; Griffin et al., 2006; 122 

Konkle et al., 2010), creating a pool of 1550 unique pictures (770 animate items, 123 

780 inanimate). To increase perceptual similarity and facilitate recognition, the 124 

background was removed from all images, items were centered in the canvas, and 125 

images were converted to black and white. 126 

The response dimension was defined by the combination of a word (“index” or 127 

“middle”) and the position of the mapping in the encoding screen. For instance, if 128 

an S-R pair containing the word “index” was displayed on the left-hand side of the 129 

screen, this informed participants that the correct response associated with that 130 

particular stimulus would be “left index”. This allowed us to have 2 mappings on 131 

screen that involved the same (stimulus and) response category (e.g. index finger) 132 

but different effectors (e.g. left index finger vs right index finger). 133 

Importantly, even though specific S-R associations were presented only once 134 

throughout the experiment, they could be grouped depending on the specific 135 

combination of stimulus and response dimensions. Specifically, the combination of 136 

the 2 stimulus dimensions (animate/inanimate items) and the 2 response 137 

dimensions (index/middle finger) lead to 4 finger-animacy pairings:  S-R 1 138 
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(animate-index), S-R 2 (inanimate-index), S-R 3 (animate-middle), and S-R 4 139 

(inanimate-middle). 140 

In the main task, each trial started with an encoding screen (5000 ms) that 141 

displayed 4 S-R associations. The two mappings on the upper half of the encoding 142 

screen belonged to one S-R pairing, and the other two belonged to another S-R 143 

pairing. Immediately after the encoding screen, a retro-cue appeared. Informative 144 

retro-cues (75% of trials) consisted of an arrow centered in the middle of the 145 

screen pointing either upwards or downwards. Therefore, informative retro-cues 146 

did not select a specific S-R mapping but rather two mappings belonging to the 147 

same S-R pairing (e.g. “animate - index finger”). Such grouping was crucial for 148 

analysis purposes since it allowed us to identify the selected S-R pairing, as well 149 

as the unselected category that was initially encoded but could be dropped from 150 

working memory after the retro-cue. Additionally, for each trial, we identified the not 151 

presented S-R pairings, which would serve as empirical baseline for our template 152 

tracking analysis (see below). In contrast, neutral retro-cues did not select any 153 

mapping. The retro-cue was displayed for 1000 ms and was followed by a fixation 154 

point (cue-target interval; CTI), which duration was jittered following a pseudo-155 

logarithmic distribution (mean duration = 2266 ms, SD = 1276 ms, range = [600-156 

5000]). Directly after the CTI, a target was on screen for 1500 ms. Target screens 157 

displayed the image belonging to one of the selected mappings, prompting 158 

participants to execute the associated response by pressing the corresponding 159 

button in an MRI-compatible button box. In neutral trials, the target could be the 160 

stimulus of any of the 4 S-R encoded mappings. Additionally, in ~6% of trials, a 161 
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catch target appeared. This consisted of a new image, different from any of the 162 

encoded stimuli, to which participants had to answer by pressing the 4 available 163 

buttons in the response box. Catch trials were included to ensure that participant 164 

encoded all four S-R associations and were equally likely after an informative and 165 

a neutral retro-cue. Last, after the target screen, a fixation point was shown 166 

between trials (inter-trial interval, ITI) for a jittered duration (following the same 167 

parameters as the CTI jitter). Each trial lasted on average 12 seconds. The 168 

sequence of trial events is depicted in Figure 1. 169 

 170 

Figure 1. Behavioral paradigm. On each trial, participants first encoded four novel 171 

S-R mappings consisting in the association between an (animate or inanimate) 172 

item and a response (index or middle fingers; response hand defined by the 173 

position of the mapping on the screen; e.g. “helicopter-index” on the left-hand side 174 

of the screen requested participants to press the left index if the target screen 175 

displayed a helicopter). After the encoding screen, an informative retro-cue (75% 176 
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of the trials) signaled the relevance of two of the mappings. In the remaining 25% 177 

of trials, a neutral retro-cue appeared, and none of the mappings were cued. Last, 178 

a target stimulus prompted participants to provide the associated response (in this 179 

example, “right index” finger press). 180 

 181 

The main task was divided into 4 runs. Each run contained 51 trials (48 regular and 182 

3 catch trials). Of the 48 regular trials, 75% contained an informative retro-cue, and 183 

the remaining trials displayed neutral retro-cues. The S-R pairings selected and 184 

unselected by the retro-cue were fully counterbalanced, resulting in 36 trials per 185 

pairing across the entire experiment. For instance, there were 36 trials in which 186 

Pairing 1 mappings were selected by the retro-cue. Of these 36 trials, in one third, 187 

the unselected mappings (that is, mappings shown in the encoding screen but not 188 

selected by the retro-cue) belonged to Pairing 2, another third to Pairing 3, and the 189 

last third to Pairing 4. Each run lasted around 10 minutes, and the main task, 190 

containing 204 trials, lasted around 40 minutes in total. Prior to the main task, 191 

outside of the scanner, participants performed a practice session with trials 192 

following the same structure described above with the exception that feedback was 193 

included to help familiarization. The practice session was structured in blocks of 11 194 

trials. Participants performed these blocks until they achieved at least 9 correct 195 

responses. S-R mappings used during the practice were never used again.  196 

After the main task, participants performed two localizers to obtain an independent 197 

canonical representation of each S-R pairing in the two formats of interest. The two 198 

localizers were aimed at encouraging either a primarily procedural or a primarily 199 
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declarative coding of new S-Rs. Although a localizer eliciting uniquely one of these 200 

two types of coding is hard to conceive (for instance, one could claim a declarative 201 

representation of the elements of a task is required before any procedural 202 

representation can emerge (Formica et al., 2020a)), our pattern analysis (see 203 

below) capitalized on the specific engagement of procedural and declarative 204 

strategies encouraged by each of these localizers. 205 

The structure of the task was almost identical in the two localizers. In both 206 

localizers, trials started with an encoding screen (2000 ms) that contained two 207 

mappings of the same S-R pairing, followed by an inter-stimulus interval of jittered 208 

duration (same parameters as the jitters in the main task). Importantly, in both 209 

localizers, even though the two encoded mappings belonged to the same S-R 210 

pairing, they specified different effectors (for instance: “if you see an elephant, 211 

press left index finger; if you see a tiger, press right index finger), and therefore 212 

participants needed to maintain both mappings rather using other strategies, such 213 

as remembering 2 images and one response. 214 

Last, a target screen appeared (1500 ms) followed by a jittered ITI. The target 215 

screen differed in the two localizers and was inspired by previous studies 216 

investigating the dissociation of implementing vs. memorizing new instructions 217 

(Liefooghe et al., 2012; Liefooghe and De Houwer, 2018; Muhle-Karbe et al., 218 

2017). In the procedural localizer, the target consisted of a single image that 219 

prompted participants to execute the associated response. Although this 220 

configuration renders the procedural localizer similar to the main task, it remained 221 

different in a crucial aspect. Whereas in the procedural localizer participants could 222 
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prepare for executing one of the 2 mappings directly in the encoding screen, in the 223 

main task this highly action-oriented coding format was strategically optimal only 224 

after the selection process elicited by the retro-cue. Since our analyses focused on 225 

this moment of the main task, the localizer thus provided a means to test whether 226 

the selection of a novel S-R from working memory engaged similar procedural 227 

signals.  228 

The declarative localizer, in contrast to the procedural one, displayed a memory 229 

target consisting of one image and one response finger (e.g. left index). 230 

Participants were trained to answer whether the displayed mapping was correct 231 

(same association as the encoded one) or incorrect (different association) by 232 

pressing both left-hand buttons (when “correct”) or both right-hand buttons (when 233 

“incorrect”). Therefore, in the memorization localizer, participants never had to 234 

prepare to execute the encoded mapping but rather just maintain its information. 235 

As in the main task, catch trials consisted of new images, to which participants had 236 

to respond by pressing all 4 available buttons. Each trial lasted around 8 s on 237 

average, and each localizer contained 66 trials (15 per S-R pairing + 6 catch trials), 238 

resulting in a total of 9 minutes per localizer. Given that the task demands for the 239 

procedural localizer were more similar to the main task, this localizer was 240 

performed always before the declarative localizer, which required more detailed 241 

explanation to participants. Importantly, the nature of our template tracking 242 

approach (see below) accounted for any potential order confound in such analysis, 243 

since template activation is measured against an empirical within-localizer 244 

baseline, and not directly compared between localizers. 245 
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All tasks were presented in PsychoPy 2 (Peirce, 2007) running on a Windows PC 246 

and back-projected onto a screen located behind the scanner. Participants 247 

responded using an MRI-compatible button box on each hand (each button box 248 

contained two buttons, on which participants placed their index and middle 249 

fingers). 250 

Data acquisition and preprocessing 251 

Imaging was performed on a 3T Magnetom Trio MRI scanner (Siemens Medical 252 

Systems, Erlangen, Germany), equipped with a 64-channel head coil. T1 weighted 253 

anatomical images were obtained using a magnetization-prepared rapid acquisition 254 

gradient echo (MP-RAGE) sequence (TR=2250 ms, TE=4.18 ms, TI=900 ms, 255 

acquisition matrix=256 × 256, FOV=256 mm, flip angle=9°, voxel size=1 × 1 × 1 256 

mm). Moreover, 2 field map images (phase and magnitude) were acquired to 257 

correct for magnetic field inhomogeneities (TR=520 ms, TE1=4.92 ms, TE2=7.38 258 

ms, image matrix=70 x 70, FOV=210 mm, flip angle=60°, slice thickness=3 mm, 259 

voxel size=3 x 3 x 2.5 mm, distance factor=0%, 50 slices). Whole-brain functional 260 

images were obtained using an echo planar imaging (EPI) sequence (TR=1730 261 

ms, TE=30 ms, image matrix=84 × 84, FOV=210 mm, flip angle=66°, slice 262 

thickness=2.5 mm, voxel size=2.5 x 2.5 x 2.5 mm, distance factor=0%, 50 slices 263 

with slice acceleration factor 2 (Simultaneous Multi-Slice acquisition)). Slices were 264 

orientated along the AC-PC line for each subject. 265 

For each run of the main task, 373 volumes were acquired, whereas 330 volumes 266 

were acquired during each localizer. In all cases, the first 8 volumes were 267 

discarded to allow for (1) signal stabilization, and (2) sufficient learning time for a 268 
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noise cancellation algorithm (OptoACTIVE, Optoacoustics Ltd, Moshav Mazor, 269 

Israel). Before data preprocessing, DICOM images obtained from the scanner 270 

were converted into NIfTI files using HeuDiConv 271 

(https://github.com/nipy/heudiconv), in order to organize the dataset in accordance 272 

with the BIDS format (Gorgolewski et al., 2017). Further data preprocessing was 273 

performed in SPM12 (v7487) running on MATLAB R2016b. First, anatomical 274 

images were defaced to ensure anonymization. They were later segmented into 275 

gray matter, white matter and cerebro-spinal fluid components using SPM default 276 

parameters. In this step, we obtained inverse and forward deformation fields to 277 

later (1) normalize functional images to the atlas space (forward transformation) 278 

and (2) transform ROIs from the atlas on to the individual, native space of each 279 

participant (inverse transformation). Regarding functional images, preprocessing 280 

included the following steps in the following order: (1) Images were realigned and 281 

unwarped to correct for movement artifacts (using the first scan as reference slice) 282 

and magnetic field inhomogeneities (using fieldmaps); (2) slice timing correction; 283 

(3) coregistration with T1 (intra-subject registration): rigid-body transformation, 284 

normalized mutual information cost function; 4th degree B-spline interpolation; (4) 285 

registration to MNI space using forward deformation fields from segmentation: MNI 286 

2mm template space, 4th degree B-spline interpolation; and (5) smoothing (8-mm 287 

FWHM kernel). Multivariate analyses were conducted on the unsmoothed, 288 

individual subject’s functional data space and results were later pooled across 289 

participants for region-of-interest analyses. 290 

Experimental design and statistical analysis 291 
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Our main task design consisted of two within-subject factors orthogonally 292 

manipulated: retro-cue status (informative vs. neutral) and selected S-R pairing. 293 

Regarding behavioral data analyses, we used JASP (JASP Team, 2018) to 294 

perform two-tail paired t-tests comparing reaction times and error rates for trials 295 

with informative vs. neutral trials (collapsing across selected S-R pairing). 296 

General Linear Model (GLM) estimations and mass-univariate analyses. 297 

Four GLMs were estimated for each participant in SPM. First, a GLM was used to 298 

assess changes in activation magnitude between informative and neutral retro-299 

cues during the main task. A model was constructed including, for each run, 300 

regressors for the encoding screen (zero duration), informative/neutral retro-cues 301 

(with duration), informative/neutral CTI (with duration), target (zero duration) and 302 

ITI interval (with duration). Trials with errors were included as a different regressor 303 

that encompassed the total duration of the trial. All regressors were convolved with 304 

a hemodynamic response function (HRF). At the population level, parameter 305 

estimates of each regressor were entered into a mixed-effects analysis. To correct 306 

for multiple comparisons, first we identified individual voxels that passed a ‘height’ 307 

threshold of p < 0.001, and then the minimum cluster size was set to the number of 308 

voxels corresponding to p < 0.05, FWE-corrected. This combination of thresholds 309 

has been shown to control appropriately for false-positives (Eklund et al., 2016). A 310 

second GLM was estimated on the non-normalized and unsmoothed main task 311 

data for all multivariate analyses. This GLM contained beta estimates that specified 312 

the cued/uncued S-R pairings during informative retro-cues. For each participant 313 

and run, a model was built including the following regressors: encoding (zero 314 
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duration), neutral retro-cues (with duration), targets (zero duration), CTI and ITI 315 

(with duration). For informative retro-cues, a regressor that encompassed the total 316 

duration of the retro-cue was created for each S-R pairing combination (e.g. 317 

CuedPairing1_UncuedPairing2), resulting in a total of 12 regressors (3 per finger-318 

animacy pairing). Errors were included as a different regressor encompassing the 319 

full duration of the trial. Last, a third and fourth GLMs were performed on the non-320 

normalized and unsmoothed data from the two localizers. For each localizer, we 321 

built a model that contained regressors for the encoding screen (zero duration), 322 

encoding-target interval (ISI, with duration) for each S-R pairing (total of 4 323 

regressors), target (zero duration), ITI (with duration), and errors (full trial). As in 324 

the previous GLM, these models were not used in a population-level GLM and 325 

were estimated for later use in the canonical template tracking procedure. 326 

Multivariate pattern analysis (MVPA). MVPA was performed on the beta 327 

images of the second GLM using The Decoding Toolbox (Hebart et al., 2015) 328 

(v3.99). To assess the representation of cued S-R pairings during implementation, 329 

we carried out ROI-based one-vs-one multiclass decoding of S-R pairings. In each 330 

fold of the leave-one-run-out procedure, we trained a classifier (linear support 331 

vector machine (SVM); regularization parameter = 1) on the identity of the cued S-332 

R pairing using all informative retro-cue betas but four (one from each class). The 333 

classifier was then tested on the remaining samples. Thus, the held-out data in 334 

each cross-validation fold was from different experimental runs to the training data. 335 

The accuracy was averaged across folds. Only one decoding was performed per 336 

ROI, using all voxels. To remove any potential magnitude difference between 337 
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classes, we z-scored the values of each condition across voxels before the 338 

analysis (therefore, each condition that entered the analysis had a mean activation 339 

of 0 and an s.d. of 1). We then repeated the same procedure but now training and 340 

testing the classifier on the identity of the uncued S-R pairing. 341 

Statistics of decoding analyses followed a permutation approach 342 

(Combrisson and Jerbi, 2015). For each ROI, we computed a null distribution by 343 

repeating the decoding protocol 1000 times swapping the labels of the true 344 

classes. We then established the chance level for a given participant as the mean 345 

value of this null distribution. To assess significance at the population level, we first 346 

compared accuracy minus chance scores of all participants against 0, using a one-347 

sample t-test. Then, we computed the empirical null distribution of t-values by, on 348 

each of 1000 permutations, randomly flipping the sign of each individual score and 349 

performing a new t-test. Finally, an effect was considered significant if the 350 

observed t-value was larger than 95% of the t-values in the null distribution (thus, 351 

significance level = p < 0.05). 352 

Canonical template tracking procedure. The main goal of the current study 353 

was to assess the contribution of procedural and declarative signals during 354 

instruction implementation. To do so, we followed a canonical template tracking 355 

procedure (Wimber et al., 2015) (see Figure 4 for a visual representation of the 356 

analysis). The main rationale of this analysis was (1) to obtain canonical 357 

representations of the different S-R pairings under the two different formats of 358 

interest (procedural and declarative) from the ISI of the localizers, and later (2) 359 

estimate the extent of variance during implementation in the main task uniquely 360 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 25, 2020. ; https://doi.org/10.1101/830067doi: bioRxiv preprint 

https://doi.org/10.1101/830067
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 
 

explained by each of these representations. Importantly, this analysis was aimed at 361 

obtaining evidence for the presence (or lack thereof) of procedural and/or 362 

declarative signals and not to compare their strengths. 363 

The functional localizers performed after the main task allowed us to obtain a 364 

participant-specific canonical pattern of activation for each S-R pairing in 365 

declarative and procedural formats. All patterns were derived from beta weights of 366 

the GLMs described in the section General Linear Model estimations. Prior to 367 

analysis, betas were converted into t-maps and, given the impact of noise on 368 

correlation estimates, we performed multivariate noise normalization on each 369 

individual run of the main task and template separately (Walther et al., 2016). To 370 

do so, we used the residuals of each participant’s GLMs to estimate the noise 371 

covariance between voxels. These estimates, regularized by the optimal shrinkage 372 

factor (Ledoit and Wolf, 2004), were used to spatially pre-whiten the t-maps. 373 

To measure the contribution of the canonical patterns during the main task, for 374 

each region, we computed the semi-partial correlation between the pattern of 375 

activity during the retro-cue in the main task and the canonical template of each S-376 

R pairing in the two formats. Semi-partial correlations make it possible to estimate 377 

how much unique variance the independent variable (e.g. the residuals of 378 

regressing the procedural template of one S-R pairing on the declarative template 379 

of the same pairing) explains in relation to the total variance in the dependent 380 

variable (e.g. activity during the main task), and are thus more practically relevant 381 

than partial correlations because they are scaled to the total variability in the 382 
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dependent variable, rather than to the variance unaccounted for by the rest of 383 

variables. 384 

An important feature of the described template tracking approach is that it was 385 

optimized to detect whether the two signals of interest were independently 386 

accounting for unique variance during implementation, and not to compare the 387 

strength of these two signals. Therefore, the raw semi-partial correlation magnitude 388 

of each template with the task was of no interest. Only the relative difference 389 

between correlation of cued, uncued S-Rs, and the empirical baseline provided by 390 

the not-presented S-R was informative for our hypotheses. Since our GLM 391 

included different retro-cue regressors depending on the selected S-R pairing, we 392 

could obtain a specific activation value for cued, uncued and not-presented 393 

pairings. Importantly, semi-partial correlations were used to obtain the amount of 394 

variance shared between the main task and a template of an S-R pairing (e.g. in 395 

procedural state) that is not explained by the template of that same pairing in the 396 

opposite state (e.g. declarative). As such, this approach is sensitive to content-397 

specific signals and rules out the relative contribution of domain general processes 398 

that are shared between the two localizers, ensuring that any significant result 399 

would only capture the activation of S-R information in a specific format. To 400 

statistically test the boost of cued information, we first normalized the semi-partial 401 

correlation scores by using Fisher’s z transformation and then performed paired t-402 

tests between the cued, uncued and not-presented S-R pairings activation (FDR-403 

corrected for multiple comparisons). 404 

Region-of-interest (ROI) definition 405 
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Frontoparietal ROIs were obtained from a parcellated map of the multiple-demand 406 

network (Fedorenko et al., 2013). Specifically, frontal ROIs comprised the inferior 407 

and middle frontal gyrus regions of the map, and parietal ROIs comprised the 408 

inferior and superior parietal cortex regions. All ROIs were registered back to the 409 

native space of each subject using the inverse deformation fields obtained during 410 

segmentation. 411 

We obtained a ventral visual cortex ROI by extracting the following regions in the 412 

WFU pickatlas software (http://fmri.wfubmc.edu/software/PickAtlas): bilateral 413 

inferior occipital lobe, parahippocampal gyrus, fusiform gyrus, and lingual gyrus (all 414 

bilateral and based on AAL definitions). The primary motor cortex ROI was also 415 

obtained using WFU pickatlas by extracting the bilateral M1 region. 416 

 417 

RESULTS 418 

S-R prioritization enhances instruction execution 419 

Analysis of participants’ behavioral performance revealed that retro-cues helped 420 

participants in prioritizing novel S-Rs. Specifically, participants were faster (t28,1 = 421 

13.51, p < 0.001, Cohen’s d = 2.51; Fig. 2a) and made less errors (t28,1 = 7.96, p < 422 

0.001, Cohen’s d = 1.47; Fig. 2b, left panel) in trials with informative retro-cues, 423 

compared to neutral. Participants were slower in catch trials compared to 424 

informative (t28,1 = 11.68, p < 0.001, Cohen’s d = 2.17) and neutral trials (t28,1 = 425 

3.36, p = 0.002, Cohen’s d = 0.63). This longer RT probably reflected the 426 

requirement to disengage from the encoded S-Rs and respond correctly to the 427 
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new, non-encoded image. In line with this interpretation, responses to catch 428 

images after a neutral retro-cue (M = 981 ms, SD = 122) were slower than after an 429 

informative retro-cue (M = 909 ms, SD = 95; t27,1 = 3.81, p < 0.001, Cohen’s d = 430 

0.72). This cost of WM load only modulated RTs: error rates for catch trials were 431 

lower than in neutral trials (t28,1 = 4.83, p < 0.001, Cohen’s d = 0.90), and not 432 

significantly different from informative trials (t < 1), suggesting that participants 433 

were able to detect new images and, therefore, that they successfully encoded all 434 

mappings of the encoding screen. 435 

Regarding performance during the two localizers, we expected more successful 436 

behavior during the procedural localizer task, given the simpler nature of the task. 437 

Accordingly, participants responded faster (t28,1 = 25.75, p < 0.001, Cohen’s d = 438 

4.78) and made less errors (t28,1 = 3.99, p < 0.001, Cohen’s d = 0.74) during the 439 

procedural localizer (RT M = 652 ms, SD = 84; ER M = 0.15, SD = 0.1), compared 440 

to declarative one (RT M = 1042, SD = 75; ER M = 0.25, SD = 0.08). 441 

 442 
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Figure 2. Behavioral results. (a) Reaction times in neutral, informative, and catch 443 

trials. (b) Error rates in neutral, informative, and catch trials. The thick line inside 444 

box plots depicts the second quartile (median) of the distribution (n = 29). The 445 

bounds of the boxes depict the first and third quartiles of the distribution. Whiskers 446 

denote the 1.5 interquartile range of the lower and upper quartile. Dots represent 447 

individual subjects’ scores. Grey lines connect dots corresponding to the same 448 

participant in two different experimental conditions. 449 

 450 

Identifying novel S-R selection activity 451 

As a first step, we investigated which brain regions were predominantly involved in 452 

the selection of instructions from working memory (WM). Based on recent 453 

experimental results (González-García et al., 2020; Myers et al., 2018; Yu and 454 

Postle, 2018) and theoretical models of WM (Myers et al., 2017), we assumed that 455 

selection would prioritize relevant S-R associations into a behavior-optimized state, 456 

akin to implementation. As such, retro-cues served as a tool to locate in time the 457 

moment after initial encoding in which implementation-specific signals should be 458 

magnified in detriment of encoded but uncued S-Rs, which could be potentially 459 

dropped from WM. Specifically, we predicted that if such prioritization of S-Rs is 460 

indeed similar to instruction implementation, then the FPN should be particularly 461 

engaged in trials with informative retro-cues (Bourguignon et al., 2018; González-462 

García et al., 2017a; Jackson and Woolgar, 2018; Muhle-Karbe et al., 2017; 463 

Palenciano et al., 2019a; Woolgar et al., 2015). We thus established a set of a 464 

priori candidate regions that encompassed frontal (inferior and middle frontal gyri) 465 
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and (inferior and superior) parietal cortices (see Fig. 3b, and the Region-of-interest 466 

definition section in the Methods). We then performed a whole-brain analysis to 467 

find regions sensitive to S-R selection (defined as informative vs. neutral retro-468 

cues) in their overall activation magnitude using a general linear model (GLM). We 469 

found that informative retro-cues elicited significantly higher activity in regions of 470 

the FPN, including the inferior and middle frontal gyri, inferior and superior parietal 471 

cortices, as well as regions outside the FPN, such as the lateral occipital cortex 472 

(Fig. 3a, primary voxel threshold [p < 0.001 uncorrected] and cluster-defining 473 

threshold [FWE p < .05]). Overall, the resulting statistical map roughly overlap with 474 

the set of a priori defined regions of interest (ROIs; Fig. 3b), confirming the 475 

involvement of the FPN in S-R selection and, more broadly, providing initial 476 

evidence that such prioritization could engage similar mechanisms as instruction 477 

implementation.  478 

Next, we predicted that the prioritization state would modulate the representation of 479 

S-R pairings. To test this hypothesis, we performed two similar multivariate 480 

decoding analyses in the 4 FPN ROIs. First, we tested if at the moment of the 481 

retro-cue the patterns of activity in these four regions carried information about the 482 

specific finger-animacy pairing of the cued S-R. We found significant decoding in 483 

the right PFC and bilateral parietal ROIs (permutation-based one-sample t-tests, all 484 

ps < 0.02), and not significant decoding in the left PFC (t25,1 = 1.69, p = 0.1), 485 

although a Bayesian t-test suggested no conclusive evidence for neither the 486 

alternative nor the null hypothesis in this ROI (BF10 = 0.45). Next, we tested the 487 

extent to which the FPN also carried information about the encoded, but not cued 488 
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pairing. In contrast to the previous results, we expected these pairings not to be 489 

decodable, given that uncued mappings could be dropped from memory. In line 490 

with our prediction, decoding did not reach significance in any of the ROIs (all ps > 491 

0.06), and a Bayesian counterpart of the analysis provided support for the null 492 

hypothesis (in left DLPFC and bilateral parietal ROIs, all BFs < 0.3) and 493 

inconclusive evidence in the right DLPFC (BF10 = 0.58). Finally, we directly 494 

compared the decoding accuracies for the cued and uncued pairings. This analysis 495 

revealed significantly stronger decoding of the cued pairing compared to the 496 

uncued one in right PFC and bilateral parietal cortices (permutation-based paired t-497 

tests, all ps < 0.02, Fig. 3c; see Table 1 for individual statistics, p-values and BF10 498 

estimates). 499 

 500 

Figure 3. S-R selection induced changes in frontoparietal neural activity. (a) GLM 501 

contrast of informative > neutral retro-cue trials. Warm colors show regions with 502 

significantly higher activity magnitude during informative compared to neutral retro-503 

cues (primary voxel threshold [p < 0.001 uncorrected] and cluster-defining 504 

threshold [FWE p < .05]). (b) Set of regions-of-interest defined prior to analyses, 505 

encompassing frontal (inferior and middle frontal gyri) and (inferior and superior) 506 

parietal cortices. (c) Mean S-R pairing decoding (minus empirical chance level) 507 
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within each region of interest. Error bars denote between-participants s.e.m. Grey 508 

asterisks denote accuracies significantly above chance level (permutation-based 509 

one-sample t-test, 1k permutations). Black asterisks denote significantly higher 510 

accuracies for cued compared to uncued S-R pairings (permutation-based paired t-511 

test, 1k permutations). 512 

ROI t p BF10 
cued ldlpfc 1.3088 0.108 0.445 

rdlpfc 2.1274 0.02 1.412 
lpar 3.5149 < 0.001 21.601 
rpar 3.4638 < 0.001 19.32 

uncued ldlpfc -0.2089 0.406 0.211 
rdlpfc -1.5223 0.068 0.575 
lpar -0.0739 0.454 0.208 
rpar -0.336 0.384 0.218 

comparison ldlpfc 1.1338 0.142 0.632 
rdlpfc 2.4384 0.01 4.794 
lpar 2.5978 0.01 6.475 
rpar 2.2243 0.018 3.255 

 513 

Table 1.  Statistics, p-values and BF10 estimates for ROI-based decoding results. 514 

BF10 > 3 suggests support for the alternative hypothesis, whereas BF10 < 0.3 515 

indicates support for the null hypothesis. 516 

 517 

Tracking format-unique S-R patterns 518 

Altogether, these results show that instruction prioritization has a profound impact 519 

on FPN activity, impacting the representation of selected and irrelevant S-Rs. 520 

However, similarly to previous studies, they are agnostic regarding the nature of 521 

the signals underlying such effect. The main goal of our study was to test whether 522 
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both declarative and procedural signals contributed to the representational 523 

organization of FPN activity during instruction implementation. To do so, we 524 

implemented a canonical template tracking procedure that allowed us to estimate 525 

neural activations of specific S-R pairings under the two functional formats of 526 

interest (see Figure 4, for a visual representation of the procedure, and Methods, 527 

for a detailed description of the analysis). Importantly, this approach revealed the 528 

amount of shared variance between task data and a given template (e.g. S-R 529 

pairing 1 in procedural state) that is not explained by the same template in the 530 

alternative state (e.g. S-R pairing 1 in declarative state). Therefore, processes 531 

common to both localizers (e.g. arousal, domain-general attention and/or task 532 

preparation) cannot inflate correlations, and any significant enhancement from 533 

baseline rather reflects the activation of S-R-specific information in a specific 534 

format during the main task. 535 
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 536 

Figure 4. Schematic of the canonical template tracking procedure. For each region 537 

of interest, we extracted the pattern of activity of specific S-R pairings during 538 

informative retro-cues (upper panel, in yellow) and computed similarity with 539 

canonical templates of such pairings in declarative (bottom left, in blue) and 540 

procedural (bottom right, in green) formats, obtained in two separate localizers. 541 

Importantly, similarity was assessed via semi-partial correlations, obtaining the 542 

proportion of uniquely shared variance between task and template data (middle, 543 

Venn diagram) of the cued, uncued and not-presented S-R pairings, which provide 544 

an empirical baseline. Graphs represent a hypothetical set of results, in which 545 

implementation recruits non-overlapping procedural and declarative 546 
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representations of cued S-R pairing. This informational boost, relative to baseline 547 

(not-presented S-R pairings), is superior to that of the uncued pairing. 548 

 549 

To validate this procedure outside the FPN, we created an ROI comprising the 550 

primary motor cortex, where implementation should be dominated by action-551 

oriented signals and no declarative information about S-R pairings is expected. 552 

The results obtained (Fig. 5) matched the predictions, revealing a specific 553 

enhancement of procedural information of the cued pairing compared to the 554 

uncued (t25,1 = 4.08, p < 0.001, Cohen’s d = 0.80), and critically, to the empirical 555 

baseline defined by the not-presented pairings (t25,1 = 5.45, p < 0.001, Cohen’s d = 556 

1.07). No activation of the uncued S-R pairing was found (t25,1 = 1.32, p = 0.2, 557 

Cohen’s d = 0.26). As predicted, no differences between cued, uncued and 558 

baseline pairings were found in declarative signals (all ts < 1.53, all ps > 0.14). 559 

 560 

Figure 5. Template tracking procedure results in the primary motor cortex. Bars 561 

represent the normalized semi-partial correlation between task data and the 562 

procedural and declarative templates of cued, uncued and not presented S-R 563 
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pairings. Error bars denote within-participants s.e.m (Morey, 2008). Asterisks 564 

denote significant differences (p < 0.05, paired t-test). 565 

 566 

To further assess the sensitivity of our tracking approach, we repeated the analysis 567 

on the beta estimates obtained during the encoding screen of the trial, where no 568 

differences should be found between cued and uncued mappings. Given the 569 

results during the retro-cue period, here we focused on procedural activation 570 

scores. We then entered the template activation scores of the encoding and retro-571 

cue events in a repeated-measures ANOVA with the factors S-R type (cued vs. 572 

uncued) and Event (Encoding vs. Retro-cue). Importantly, the activation scores 573 

entered were the scores for cued and uncued relative to not-presented mappings, 574 

therefore not-presented mappings were not included as a separate level in the S-R 575 

type factor of the ANOVA. This analysis yielded a significant S-R type * Event 576 

interaction (F25,1 = 10.61, p = 0.003, η2
p = 0.3). The interaction effect revealed a 577 

difference in activation of cued and uncued S-Rs only during the retro-cue screen 578 

(F = 16.68, p < 0.001), whereas no significant differences were found during the 579 

encoding screen (F < 1, p = 0.67). Furthermore, it revealed a boost in the 580 

activation of cued mappings during the retro-cue, compared to the encoding 581 

screen (F = 4.9, p = 0.036). No difference was found for the uncued S-Rs (F = 2.5, 582 

p = 0.125), although activation was numerically weaker during the retro-cue (M = 583 

0.001, SD = 0.004) than during the encoding screen (M = 0.003, SD = 0.006). To 584 

directly test whether activation for cued and uncued during the retrocue was 585 

greater that during the encoding screen, we performed a new ANOVA in which we 586 
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introduced direct scores (not relative to baseline), therefore including not-587 

presented S-R as another level of the S-R type factor. This ANOVA confirmed the 588 

Event * S-R type interaction (F = 6.71, p = 0.003). Moreover, post-hoc tests 589 

(Bonferroni-corrected) revealed, first, that during the retrocue screen cued S-Rs 590 

had higher activation than uncued (t = 4.66, p < 0.001) and not-presented S-Rs (t = 591 

5.58, p < 0.001), whereas uncued and not-presented S-Rs did not differ (t < 1). In 592 

contrast, no differences were found between cued, uncued and not-presented S-593 

Rs during the encoding epoch (all ps > 0.11). 594 

 595 

Declarative and procedural contributions to instruction implementation in 596 

frontoparietal regions (and beyond) 597 

To elucidate which signals govern implementation in control-related regions, we 598 

carried out the template tracking procedure on each FPN region separately. 599 

Furthermore, we decided to include the ventral visual cortex (VVC) in this analysis 600 

to explore the effect of implementation in higher-order visual regions, since these 601 

have been consistently shown to be involved in instruction processing (González-602 

García et al., 2017a; Muhle-Karbe et al., 2017; Palenciano et al., 2019b, 2019a) 603 

and our univariate results also revealed their engagement in the current task. 604 

Importantly, our main goal was to assess whether FPN contained procedural 605 

and/or declarative signals during implementation and not to compare the strength 606 

of these to each other. Therefore, the raw semi-partial correlation of cued pairings 607 

in procedural and declarative formats, which could be biased by for instance higher 608 
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resemblance between the procedural localizer and the main task, was not 609 

informative for our purpose (and did not differ between procedural [M = 0.03, SD = 610 

0.014] and declarative signals [M = 0.03, SD = 0.015], t < 1, p = 0.34). Instead, we 611 

focused on the comparison of these activations to the within-localizer empirical 612 

baselines provided by the irrelevant mappings on each format. Supporting previous 613 

results and theoretical models (Brass et al., 2017; Muhle-Karbe et al., 2017), this 614 

analysis (Fig. 6a) revealed prioritization involves the representation of relevant 615 

information in an action-oriented format in the FPN (two-tail paired t-test against 616 

empirical baseline [not-presented pairings], all ts > 2.16, all ps < 0.04, all Cohen’s 617 

d > 0.42). Critically, procedural information of cued pairings was significantly more 618 

activated than uncued pairings (all ts > 2.26, all ps < 0.04, all Cohen’s d > 0.44). 619 

Regarding declarative information (Fig. 6b), parietal nodes of the FPN showed a 620 

specific enhancement of declarative information of the cued S-R pairing, compared 621 

to the irrelevant (ts > 3, all ps < 0.005, all Cohen’s d > 0.6) and uncued ones (ts > 622 

2.16, all ps < 0.02, all Cohen’s d > 0.49). In contrast, no significant differences 623 

were found in frontal nodes between cued and uncued S-Rs, and cued and 624 

irrelevant S-Rs (ts < 2.06, all ps < 0.05, all Cohen’s d < 0.4). To further assess this 625 

difference between frontal and parietal nodes we performed an ANOVA on the 626 

activation scores with the factors ROI (left frontal, right frontal, left parietal, right 627 

parietal) and S-R (cued, irrelevant). This yielded a significant ROI*S-R interaction 628 

(F75,3 = 4.33, p = 0.007, η2
p = 0.15), revealing that the declarative activation of 629 

cued S-Rs was significantly above baseline in parietal (Fs > 9.5, ps < 0.005) but 630 

not frontal nodes (Fs < 0.6, ps > 0.28) of the FPN. Another ANOVA but with cued 631 
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and uncued as levels of the S-R factor revealed a similar profile difference, 632 

although the interaction in this case was not significant (F = 2, p = 0.13). Last, an 633 

ANOVA with uncued and irrelevant as S-R levels revealed no significant 634 

differences in activation between these two levels (F = 1.22, p = 0.28), and this 635 

was not modulated by the ROI (F < 1, p = 0.78), suggesting that declarative 636 

information of uncued S-Rs was not activated above baseline in any of the FPN 637 

nodes. 638 

Importantly, the lack of declarative activation of cued S-Rs on frontal nodes, and 639 

overall the lower enhancement from baseline compared to procedural information 640 

(as can be seen comparing Figure 6a and 6b) cannot be due to a lower correlation 641 

magnitude of declarative signals with the main task (no significant differences with 642 

the correlation magnitude of procedural signals, t < 1, p = 0.45). Still, given the 643 

overall low signal-to-noise ratio and pattern reliability in prefrontal cortices 644 

(Bhandari et al., 2018), slight differences inherent in the templates could affect the 645 

activation measures. For instance, it could be argued that the amount of signal in 646 

declarative templates is intrinsically lower than that of procedural templates, which 647 

in turn might induce a lack of power to detect the activation of declarative 648 

templates in the same regions during the task. To rule out these concerns, for each 649 

template and region of the FPN, we compared the signal-to-noise ratio (computed 650 

as mean t-value across voxels of the ROI divided by the standard deviation), 651 

informational content (computed as Shannon entropy) and correlationability of the 652 

templates (i.e. the degree to which individual templates correlated with other 653 

templates from the same localizer). This analysis revealed that procedural and 654 
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declarative FPN templates did not differ in any of these measures (all BF10 < 0.5). 655 

Moreover, we tested pattern reliability on each localizer separately by assessing 656 

the stability of patterns of the same S-R pairing in odd and even trials. To do so, 657 

we computed a new GLM with two regressors per S-R pairing, one for odd and 658 

another for even trials. We then estimated the correlation (Spearman’s rho) 659 

between each regressor. Finally, we compared the similarity of each specific S-R 660 

pairing (e.g. in odd trials) with its counterpart (in even trials) to the similarity of the 661 

same S-R pairing and the rest of pairings (in even trials). A higher within-pairing 662 

compared to between-pairing correlations would suggest reliability of the patterns 663 

of activity obtained during the localizers. This analysis revealed statistically reliable 664 

patterns in all ROIs and in both localizers (all t > 2.6, all p < 0.05, FDR-corrected 665 

for multiple comparisons), supporting the idea that templates contained S-R 666 

specific information. 667 

Last, higher-order visual regions showed a similar pattern to parietal nodes of the 668 

FPN. As before, the raw semi-partial correlation magnitude of cued pairings with 669 

the main task was of no interest and did not differ (t < 1, p = 0.63) between 670 

declarative (M = 0.018, SD = 0.024) and procedural signals (M = 0.022, SD = 671 

0.023). Compared to the empirical baseline, we found a significant enhancement of 672 

both procedural (t = 8.80, p < 0.001, Cohen’s d = 1.73) and declarative (t = 6.76, p 673 

< 0.001, Cohen’s d = 1.33) information of the cued S-R pairing. Crucially, these 674 

signals were significantly stronger than the ones of uncued mappings (procedural: 675 

[t = 6.19, p < 0.001, Cohen’s d = 1.21]; declarative: [t = 5.84, p < 0.001, Cohen’s d 676 

= 1.15]). 677 
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 678 

Figure 6. Canonical template tracking procedure results in frontoparietal cortices 679 

and ventral visual cortex. Bars represent the normalized semi-partial correlation 680 

between task data and (a) the procedural and (b) declarative templates of cued 681 

and uncued S-R pairings. Importantly, raw semi-partial correlation magnitudes of 682 

cued pairings are not informative (and did not differ between procedural and 683 

declarative signals, all ts < 1), and therefore results are plotted relative to the 684 

empirical baseline (not-presented S-Rs). Thus, the heights of the bars in panels a 685 

and b simply reflect the difference from baseline and not necessarily different raw 686 

semi-partial correlations. Error bars denote within-participants s.e.m. Gray 687 

asterisks denote a significant increase from baseline (p < 0.05, paired t-test, FDR-688 

corrected). Black asterisks denote significant differences between cued and 689 
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uncued pairings (p < 0.05, paired t-test, FDR-corrected). (c) Across-participant 690 

correlation of Inverse Efficiency Scores and procedural activation index in 691 

frontoparietal cortices. (d) Correlation of Inverse Efficiency Scores with declarative 692 

activation index in frontoparietal cortices. In c and d, dots represent individual 693 

participants, thick lines depict the linear regression fit, and asterisks denote 694 

significant Pearson’s correlation (p < 0.05). Activation indices are obtained by 695 

subtracting the activation of uncued S-Rs to the activation of cued S-Rs (this can 696 

lead to negative values, as can be seen in the c and d). 697 

 698 

Action-oriented codes support novel instruction implementation 699 

To assess the behavioral relevance of declarative and procedural signals, we 700 

reasoned that if action-oriented representations are crucial during implementation 701 

in control-related regions, and implementation can be conceived as a behavior-702 

optimized state, then the degree of action-oriented activation should predict the 703 

efficiency of instruction execution. To test this hypothesis, we first converted RTs 704 

and error rates of informative retro-cue trials into a single compound measure 705 

(Inverse Efficiency Scores; IES. IES were obtained by dividing each participant’s 706 

mean RT by the percentage of accurate responses (Townsend and Ashby, 1983)). 707 

Then, we derived a template activation index by subtracting the degree of 708 

activation of cued pairings to that of uncued pairings for each region and format 709 

(procedural and declarative). Note that this can lead to a negative activation index 710 

(if activation for uncued pairings is stronger than for cued ones). Finally, we 711 

correlated individual IES with the activation indices on each region of the FPN. 712 
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This analysis revealed significant negative correlations in all FPN regions between 713 

IES and procedural activation (all Pearson’s rs > -0.475, all ps < 0.02; See Table 2 714 

for individual ROI Pearson’s rs, p-value and BF10 estimates). 715 

Regarding declarative codes, we considered three hypotheses. First, if procedural 716 

representations are highly dependent on the quality of declarative representations 717 

so that participants with high procedural activation also have high declarative 718 

activation, one could expect that declarative signals of relevant S-Rs should in 719 

principle aid performance as well. Second, declarative activations could be driven 720 

primarily by participants with lower procedural activation. In that case, we should 721 

find the opposite correlation with behavior (higher declarative activation would 722 

predict worse performance). Last, if declarative correlations reflect a residual 723 

activation of this coding format that might support the emergence of procedural 724 

codes but it is not itself related to behavior, we should expect no correlation. This 725 

analysis revealed that IES did not correlate with declarative activation in any region 726 

(all rs < -0.34, all ps > 0.09), although conclusive evidence for the null hypothesis 727 

was only found for the left DLPFC and right parietal ROIs (BF10s < 0.3; for the 728 

remaining ROIs, evidence was inconclusive; see Table 2). 729 

ROI r p BF10 
procedural ldlpfc -0.475 0.014 4.203 

rdlpfc -0.583 0.002 24.887 
lpar -0.641 < 0.001 88.146 
rpar -0.605 0.001 39.057 

declarative ldlpfc 0.096 0.639 0.27 
rdlpfc -0.339 0.09 0.955 
lpar 0.213 0.297 0.408 
rpar 0.113 0.582 0.281 

 730 
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Table 2. Individual ROI Pearson’s rs, p-values, and BF10 estimates. BF 731 

interpretation is identical to Table 1. 732 

When averaging activation indices across FPN regions, an identical pattern was 733 

found, namely, a significant correlation of IES with procedural (r = -0.679, p < 734 

0.001) but not declarative (r = 0.06, p = 0.77) activation (Fig. 6c-d). Moreover, 735 

these two correlations were significantly different (z = -3.13, p = 0.0018). Similar 736 

results were obtained when using RTs (procedural: r = -0.67, p < 0.001; 737 

declarative: r = 0.076, p = .71) and error rates (procedural: r = -0.54, p = 0.004; 738 

declarative: r = -0.019, p = 0.93) as behavioral measures.  Also, when removing 739 

participants with negative procedural activation scores (which could reflect the use 740 

of suboptimal strategies to solve the task, or noise in the estimation of the neural 741 

measures) from the analysis, the correlation with IES remained significant (r = -742 

0.54, p = 0.009), whereas the correlation of declarative activation and IES was not 743 

significant (r = -0.17, p = 0.43). Finally, we tested if the degree of procedural 744 

activation predicted the degree of declarative activation. This correlation was also 745 

not significant (r = -0.17, p = 0.40), and if anything pointed in the direction that 746 

participants with higher procedural activation were the ones with weakest 747 

declarative signals, and vice versa. 748 

 Altogether, these results show that the more implementation was governed by 749 

relevant procedural codes in the FPN, the faster and more accurately participants 750 

executed the instruction. In contrast, the strength of declarative signals of the same 751 

S-R association did not predict behavioral performance. 752 

 753 
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DISCUSSION 754 

In the current study, we report a pervasive effect of novel instruction 755 

implementation across behavioral and neural data. A canonical template tracking 756 

procedure revealed that unique declarative and procedural representations govern 757 

FPN activity during implementation, prior to execution. These representations were 758 

specific to prioritized S-Rs and did not take place for irrelevant mappings. Critically, 759 

our results show that procedural (but not declarative) activation in the FPN 760 

predicted efficient execution of novel instructions. 761 

Frontoparietal flexible coding of novel S-Rs 762 

Previous research has highlighted the important role of the FPN in the 763 

implementation of novel instructions (Bourguignon et al., 2018; Demanet et al., 764 

2016; González-García et al., 2017a; Hartstra et al., 2011; Muhle-Karbe et al., 765 

2017; Palenciano et al., 2019a, 2019b; Ruge and Wolfensteller, 2010). 766 

Accordingly, our results show that the FPN represents relevant S-R pairings during 767 

implementation. However, these results remain agnostic regarding the functional 768 

nature of the neural codes underlying this effect. Here, we leveraged a canonical 769 

template tracking approach to approximate to process-pure measures of 770 

procedural and declarative coding formats. This allowed us to later investigate the 771 

unique contribution of each format to instruction implementation. 772 

 In accordance with the serial-coding hypothesis, we observed that implementation 773 

engaged the activation of procedural representations (Brass et al., 2017; Muhle-774 

Karbe et al., 2017). Interestingly, our results show that, in addition to procedural 775 
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codes, some nodes of the FPN preserve relevant declarative information about the 776 

upcoming task. 777 

A first consideration concerns the exact nature of the reactivated signals. In the 778 

declarative localizer, participants had to remember specific S-R associations and 779 

match them to another S-R probe. In contrast, in the procedural localizer, 780 

participants’ goal was to execute the correct response associated with a target 781 

stimulus. The different readout from WM thus encouraged different strategies, as 782 

suggested by previous studies (González-García et al., 2020; Liefooghe et al., 783 

2012; Muhle-Karbe et al., 2017). Therefore, it is conceivable that templates will 784 

contain unique information: a persistent maintenance of the memoranda in the 785 

declarative localizer, and a proactive action-oriented representation in the 786 

procedural localizer. However, procedural and declarative representations likely 787 

share further information, for instance, related to specific perceptual stimulation 788 

and domain-general processes, such as arousal or attention. We took several 789 

measures to reduce the influence of such components. First, template activation 790 

was derived from semi-partial correlations between data from the main task and 791 

the localizers. Thus, our measure reflects unique shared variance between the 792 

task and the representation of an S-R pairing in a given localizer, partialling out the 793 

variance explained by the representation of the same S-R in the remaining 794 

localizer. Importantly, our study was aimed at assessing the presence (or lack 795 

thereof) of procedural and/or declarative signals and not at comparing to what 796 

extent one signal might be more predictive than the other, and therefore we base 797 

our results in activation of templates relative to empirical baselines provided by 798 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 25, 2020. ; https://doi.org/10.1101/830067doi: bioRxiv preprint 

https://doi.org/10.1101/830067
http://creativecommons.org/licenses/by-nc-nd/4.0/


40 
 

not-presented S-Rs. Second, templates were built for S-R pairings rather than 799 

unique mappings, and therefore a contribution of perceptual features to template 800 

activation seems unlikely. Moreover, semi-partial correlations were computed 801 

between data from the retro-cue screen (in the main task), and inter-stimulus 802 

interval (in the localizers), which reduces the likelihood of significant correlations 803 

due to perceptual similarity between templates and specific S-Rs. Therefore, 804 

although other non-mutually exclusive explanations cannot be fully discarded (e.g. 805 

“procedural” templates containing procedural signals but also any other code 806 

present in the procedural localizer and not in the declarative one), we believe it is 807 

the most parsimonious interpretation to consider that our procedure succeeded at 808 

tracking format-specific signals, especially given the validation results in the motor 809 

cortex.  810 

An important aspect then concerns the specific functional significance of each 811 

format. Regarding procedural templates, although the configuration of the 812 

procedural localizer was similar to the main task, the highly action-oriented 813 

encoding format encouraged during this localizer was strategically optimal only 814 

after the selection process elicited by the retro-cue in the main task. Thus, this 815 

localizer allowed us to test whether the selection of an S-R from WM engaged the 816 

same procedural signals elicited by encoding tasks with the intention to implement. 817 

With respect to the declarative templates, an intriguing question is what exactly is 818 

being reactivated, and how is this not present in the procedural localizer (which 819 

necessarily has to contain some declarative information as well (Formica et al., 820 

2020a)). One possibility is that the specific demands of each localizer encourage 821 
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differentiated coding strategies, that is, different readouts from WM could modulate 822 

the specific way in which each format is represented. However, we believe a more 823 

likely, non-mutually exclusive possibility regards the previously mentioned 824 

distinction between the procedural localizer and the main task. Given that the 825 

process of maintenance prior to selection is likely diminished in the procedural 826 

localizer, it is feasible that such maintenance signals are present in the main task 827 

relatively independent from the codes established in the procedural localizer. In 828 

turn, it is possible that declarative codes account at least partially for such 829 

maintenance components, leading to the observed declarative activations in the 830 

main task. 831 

From this standpoint, our results suggest that during novel instruction 832 

implementation, FPN regions contain information about the declarative 833 

memoranda conveyed by the instruction and an independent action-oriented S-R 834 

code that primarily drives task execution. 835 

Heterogeneous S-R coding within the FPN 836 

Although we did not have specific hypotheses for the role of individual FPN 837 

regions, a second important finding concerns the heterogeneity of results within 838 

this network. Frontal nodes showed the implementation profile predicted by the 839 

serial-coding hypothesis, namely, a primarily procedural representation of 840 

instructed content. This is in line with previous studies that propose a crucial role of 841 

the frontolateral cortex in the integration of stimulus and response information into 842 

a task set based on verbal instructions (De Baene et al., 2012; Hartstra et al., 843 
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2012, 2011), as well as in representing task rules (Jackson and Woolgar, 2018; 844 

Loose et al., 2017; Wisniewski et al., 2019; Woolgar et al., 2015) and goals 845 

(Muhle-Karbe et al., 2014).  846 

In contrast, parietal nodes carried both procedural and declarative information in 847 

their patterns of activity. Whereas the role of parietal regions in representing goals 848 

and task set information is widely acknowledged (González-García et al., 2017a; 849 

Jackson and Woolgar, 2018; Muhle-Karbe et al., 2017, 2014; Palenciano et al., 850 

2019b; Wisniewski et al., 2015; Woolgar et al., 2015), it is unclear what drives such 851 

declarative activation. One possibility is that it reflects a category-specific top-down 852 

selection scheme, driven by increased attention towards the cued S-R (Nobre et 853 

al., 2004; Tamber-Rosenau et al., 2011). The fact that a similar pattern was found 854 

in higher-order visual regions, which usually coordinate with parietal cortices to 855 

represent relevant task dimensions in anticipation of future demands (González-856 

García et al., 2015; Kuo et al., 2014; Lepsien and Nobre, 2007), further supports 857 

this possibility. This tentative interpretation would be coherent with goal neglect 858 

effects reported in patients with frontal lobe damage (Duncan et al., 1996). These 859 

patients are capable of selecting, maintaining, and remembering task-relevant 860 

information, yet their ability to transform relevant information into goal-driven 861 

actions is impaired. Such dissociation goes at least partially in line with our results 862 

in that (1) goal-oriented representations depends critically on prefrontal cortices 863 

(impaired in goal neglect patients), and (2) the involvement of other control-related 864 

regions, intact in these patients, boosts the declarative representation of specific 865 

task information, such as particular S-R pairings, presumably in coordination with 866 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 25, 2020. ; https://doi.org/10.1101/830067doi: bioRxiv preprint 

https://doi.org/10.1101/830067
http://creativecommons.org/licenses/by-nc-nd/4.0/


43 
 

posterior category-selective regions. However, these results should be interpreted 867 

with caution, since the difference between frontal and parietal regions could partly 868 

reflect a difference in activation magnitude not captured by our method, due to a 869 

generally weaker coding in frontal lobes (Bhandari et al., 2018). Still, the impact of 870 

this alternative interpretation seems relatively limited, given we observed a similar 871 

raw semi-partial correlation magnitude of cued pairings with the main task, and no 872 

differences in terms of signal-to-noise ratio, informational content, and 873 

correlationability of the templates. 874 

Implementation as a selective output gating process 875 

Remarkably, although we found both signals in the FPN during implementation, 876 

only procedural representations predicted efficient behavior and, if anything, 877 

stronger procedural activations did not predict stronger declarative signals. The 878 

fact that implementation is signaled by retro-cues renders this effect relevant to 879 

current debates on information prioritization and WM architecture. In this regard, 880 

our results are consistent with the interpretation of implementation as a particular 881 

instance of output gating mechanisms. Similar to the idea of an input gate that 882 

limits what information enters WM, some computational models propose an 883 

additional gate that determines which pieces of this information will drive behavior 884 

(Chatham et al., 2014). Recent theoretical frameworks suggest a role of 885 

prioritization not only in selecting relevant content from WM but also in reformatting 886 

such content into a “behavior-guiding representational state” (Myers et al., 2017), 887 

analogous to an output gating mechanism. Interestingly, these models propose 888 

that whereas other control-related regions might be involved in attention-driven 889 
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representations of relevant content, frontal regions are thought to be especially 890 

important in transferring this content into a state that is optimal for behavior. 891 

Accordingly, our results suggest that an action-oriented representation of novel 892 

instructions dominates activity in frontal cortices and that this representational 893 

format is tightly linked to behavioral efficiency. A limitation of the current study 894 

concerns the lack of specificity on what precise information is captured on each 895 

template: it is possible that part of the correlation with behavior we observe is 896 

driven not only by procedural codes but also by any other code of different nature 897 

that is present in the procedural localizer and not in the declarative one, although 898 

what this code would be specifically remains unknown. This question awaits further 899 

investigation. 900 

Importantly, our results reveal that the neural substrate of instruction prioritization 901 

involves further brain regions, such as category-selective and parietal cortices, and 902 

that procedural and declarative information coexist in these regions. This raises the 903 

question of what the contribution of declarative representations might be. One 904 

possibility is that declarative codes support the generation and maintenance of 905 

procedural codes, but once these are created, they do not directly contribute to 906 

behavior. It should be noted, however, that fMRI data lacks the temporal resolution 907 

to discern the dynamic profile of these two representational formats. Thus, the 908 

conclusions about the dynamics of declarative and procedural codes in the FPN 909 

we can extract from the current dataset are limited. Further research is needed to 910 

elucidate whether, in smaller timescales, a temporal hierarchy between these two 911 

signals can be established or, in contrast, whether both signals are held 912 
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simultaneously in these regions. Future studies should employ time-resolved 913 

techniques that can succeed at characterizing the contribution of different brain 914 

regions to separate control and WM processes (Quentin et al., 2019). 915 

Last, the current work relies on a relatively high number of tests and decisions 916 

along the analysis pipeline, which could potentially impact the results and the 917 

conclusions extracted from them (Botvinik-Nezer et al., 2020). As such, the new 918 

method proposed here would benefit from independent conceptual replications and 919 

extension of the current findings in the future. 920 

CONCLUSIONS 921 

In summary, the present study reveals the strong impact of instruction 922 

implementation on frontoparietal regions. We observed that these regions contain 923 

information about prioritized S-R pairings in detriment of the irrelevant ones during 924 

implementation. This information contained two non-overlapping neural codes, one 925 

reflecting the declarative maintenance of task, and another, more pragmatic, 926 

action-oriented coding of the instruction. Importantly, the strength of procedural 927 

activation predicted behavioral performance. Altogether, our results highlight the 928 

contribution of frontoparietal regions to output gating mechanisms that drive 929 

flexible behavior. 930 
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