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Abstract

Researchers working with neural networks have historically focused on either non-spiking neurons
tractable for running on computers or more biologically plausible spiking neurons typically requiring spe-
cial hardware. However, in nature homogeneous networks of neurons do not exist. Instead, spiking and
non-spiking neurons cooperate, each bringing a different set of advantages. A well researched biological
example of such amixed network is the sensorimotor pathway, responsible formapping sensory inputs to
behavioral changes. This pathway is also well researched in robotics where it is applied to achieve closed-
loop operation of legged robots by adapting amplitude, frequency, and phase of the motor output. In
this paperwe investigate how spiking and non-spiking neurons can be combined to create a sensorimotor
neuron pathway capable of shaping network output based on analog input. We propose sub-threshold
operation of an existing spiking neuron model to create a non-spiking neuron able to interpret analog in-
formation and communicate with spiking neurons. The validity of this methodology is confirmed through
a simulation of a closed-loop amplitude regulating network. Additionally, we show that non-spiking neu-
rons can effectively manipulate post-synaptic spiking neurons in an event-based architecture. The ability
to work with mixed networks provides an opportunity for researchers to investigate new network archi-
tectures for adaptive controllers, potentially improving locomotion strategies of legged robots.

1 Introduction
Current research employing neural networks for locomotion control tends to focus on homogeneous net-
works of neurons communicating through either graded signals (Aoi et al., 2017) or action potentials (Bing
et al., 2018). However, studies indicate that biological neural networks utilize both communication strate-
gies (Burrows, 1996) to achieve effective locomotion. Based on this, our research introduces a biologically-
inspired non-spiking interneuron (NSI) model into a spiking neural network (SNN) to further increase bio-
logical fidelity. In nature, sensor neurons receive information from the external environment and pass it
onto NSIs through current injections (Bidaye et al., 2018). This data is sent onwards by the NSI, affecting the
membrane potential of the connected neurons through a graded signal (Burrows and Siegler, 1978). How-
ever, NSIs are not only translational units. They are also found to be the primary neuronal type in some
animals such as the C. Elegans where communication through graded potentials is the main transmission
method (Schafer, 2016). Thereby, interneurons are computational units in and of themselves. Figure 1 illus-
trates a simplified neural pathway depicting an analog input from the environment producing movement
by an insect (A) and the equivalent pathway implemented in this study (B).

Individual neurons can be described using different models which try to capture the dynamics of a biolog-
ical neuron. In this study, we use two spiking neuron models, one works in its intended fashion but the
other operates within its sub-threshold range so that the membrane potential never surpasses the spiking
threshold. Spiking neuron models try to replicate biological neurons by calculating the membrane poten-
tial of the neuron at each time step, this potential is affected by incoming spikes, bias current, and other
parameters depending on themodel’s equation. Classical non-spiking neuronmodels used in artificial neu-
ral networks (ANNs) attempt to replicate neuron dynamics using a transfer function such as the sigmoid
function. These non-spiking models are able to map values but they cannot integrate an input over time
without a recurrent connection. Therefore, our paper uses a spiking neuronmodel in a non-spiking "mode"
to create the NSI.
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SNNs typically communicate through action potentials commonly called spikes. Spikes allow information
to be encoded through the frequency of spikes as well as the timing of individual spikes (Bohte, 2004). This
creates the possibility to transfer more information within a spike train as compared to traditional ANNs
(Bing et al., 2018). SNNs are used in our research so future work incorporating data-rich sensory input can
take advantage of temporal features for encoding input information.

As SNNs are typically homogeneous, all communication is handled by passing spikes between neurons. If
an analog sensor is added to the network, the information must be encoded into spikes for the network
to understand. This is also true for an output signal which must be converted from spikes to continuous
values to control a motor. The known encoding mechanisms found in nature include individual spike rate
(Adrian, 1926), population activity (Panzeri et al., 2015), and precise spike timing (Bohte, 2004). Neural
network engineers have applied each of thesemethods for translating sensory input, grouping the different
approaches into three main categories: rate, population, and temporal coding respectively.

Each encoding category has recognized strengths. Population coding is able to relay more information than
individual neurons so it can be useful for data-rich inputs (Mallot, 2013). On the other hand, temporal cod-
ing is particularly applicable for encoding streaming data as it quickly processes information (Petro et al.,
2019) while maximizing the amount of information contained within the compressed data (Sengupta and
Kasabov, 2017). Finally, while other methods are able to encode more information, rate coding has been
suggested to be the best tool for handling input with high firing rates (Azarfar et al., 2018). In our work,
rate coding is used to filter the output of the network from spikes to a continuous motor signal and we
introduce the NSI model as a hybrid encoding method able to directly translate input by itself or work to-
gether with rate, population, or temporal methods to increase the amount of information encoded.

1.1 Related Work
ANNs have been shown to effectively manipulate amplitude, frequency, and phase in legged robots to cre-
ate adaptive controllers (Thor andManoonpong, 2019, Pitchai et al., 2019, Nachstedt et al., 2013, Barikhan
et al., 2014, Schilling et al., 2013, Dürr et al., 2019). Thor and Manoonpong (2019) used an error signal to
update synaptic weights for adaptation of frequency to optimize walking, resulting in increased efficiency
and reduced tracking error. Pitchai et al. (2019) also created an energy-efficient control mechanism for a
legged robot by using an ANN to shape network outputs coupled with a non-spiking central pattern gen-
erator (nCPG) to change frequency. Nachstedt et al. (2013) were able to create a self-tuning network using
adaptive oscillators which allowed a robot to navigate a more complex environment. Barikhan et al. (2014)
showed that a decoupled nCPG network using sensory feedback to adapt to the environment was able
to handle changes in robot morphology and could coordinate movement with another robot when work-
ing on cooperative tasks. Schilling et al. (2013) used rules for coordination to adapt walking according to
sensory input. Similarly, Dürr et al. (2019) developed an ANN to control a hexapod robot which relied on
feedback for posture and rules for coordination. Their network produced emergent gaits, adjusting based
on the posturing of the robot. The addition of non-spiking interneurons to ANNs has been investigated by
Szczecinski et al. (2015). They reported control of a hexapod robot using interneurons modeled as classical
non-spiking neurons to trigger different bio-inspired reflexes. The interneurons were used to control out-
put oscillations, indicating that shaping nCPG outputs via interneurons to reproduce biological behaviors
is possible. Our paper combines the use of NSIs and spiking neurons to update amplitude, frequency, and
phase, as a step towards creating a more biologically plausible adaptive controller capable of interpreting
temporal data.

Pure SNNs are also capable of manipulating output amplitude, frequency, and phase by updating differ-
ent synaptic and neuronal characteristics (Strohmer et al., 2020). It was found that frequency could be
changed by updating the value of the voltage threshold potential of the spiking central pattern generator
(sCPG) neuron populations while amplitude was increased or decreased using the weight of the synap-
tic conductance to the motor neuron population (MNP). Finally, phase was determined by the network
architecture and synaptic delays. However, as input currents to NSIs are known to change firing rates of
connected motor neurons, reset rhythmic output (Bidaye et al., 2018), and update amplitude (von Ucker-
mann and Büschges, 2009), it is useful to look into how they interact with an sCPG network to shape these
outputs.

Woźniak et al. (2020) integrated spiking neurons into an ANN to take advantage of their power-saving po-
tential and temporal data encoding capabilities. They implemented the spiking neurons as a "spiking neural
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unit" consisting of two non-spiking neurons, one of which handles integration of the membrane potential
and the other to emit a spike. The spiking neural unit dynamics were modeled after the leaky integrate-
and-fire model of spiking neurons. Their integration of the membrane potential was handled through a
recurrent connection while spiking was mimicked using a step function. This approach differs from our
implementation as it defined the spiking neurons as a combination of non-spiking neurons whereas we
take the dynamics of a spiking neuron model and use it in the sub-threshold region to create a non-spiking
neuron model.

Patil et al. (2015) took a similar approach to our research and created a non-spiking neuron modeled as a
spiking neuron that communicated via graded potentials. Their work was based on the neural architecture
of the C. Elegans which is mostly composed of non-spiking neurons though recent research indicates more
advanced sensory systems in the worm might use spiking neurons (Liu et al., 2018). The paper showed
that a mixed neural network could be built to mimic the escape response of the C. Elegans upon being
touched externally. Their mixed network was implemented as neuromorphic hardware, simulating both
non-spiking and spiking neurons using analog circuitry, as opposed to our research using simulation soft-
ware to mathematically model neurons.

Our paper presents a novel encoding mechanism, sub-threshold encoding, that uses NSIs to relate values
from analog sensory inputs to an SNN. Our proposed method is referred to as sub-threshold encoding
because the output is a consequence of membrane potential fluctuations below the spiking threshold.
In contrast to using current injections to directly manipulate network output, the momentary membrane
potential of the NSI plays a role in how the post-synaptic neurons are affected. The main contribution of
this research is the introduction and investigation into how these NSIs can be integrated into existing SNNs
to shape network output.

2 Methods
Biological research indicates that sensory input to NSIs affects motor output (Büschges and Wolf, 1995).
Furthermore, depolarizing currents received by NSIs are shown to reset biological central pattern genera-
tor (bCPG) rhythms (Bidaye et al., 2018). We can replicate these behaviors by creating an equivalent neural
network representing the sensorimotor neuron pathway. In the neural network, the sensor neuron is re-
placed by an input bias current to the NSI (see Figure 1B) so that a change in input current represents a
change in sensory information from the external environment. The NSI then relates this information to the
connected SNN in order to adjust the network output. Figure 2B shows the block diagram of the selected
SNN, an sCPG network. The architecture of a pair of mutually inhibitory neuron populations is based on
the biology of spiking oscillators driving an antagonistic muscle pair (Bidaye et al., 2017). The output from
the sCPG network is spikes but an analog signal is required for control of a motor. Therefore, Figure 2A
demonstrates how these spike events are converted to an analog signal using rate coding. This mimics the
low-pass filtering performed by biological muscles (Hooper et al., 2007) by counting the amount of spikes
occurring within a time window to produce an analog value. Figure 2C highlights the characteristics of the
rate-coded output to be adjusted by the input to the NSI.

A diagram of the implemented network is shown in Figure 3A. The network consists of an NSI capable of
injecting current and manipulating the voltage characteristics of the post-synaptic neurons.

The sCPG populations and MNP consist of 5 neurons each in order to produce a smooth, stable output
with a minimum amount of neurons (Strohmer et al., 2020). The NSI is a single neuron so that all post-
synaptic neurons connected to it receive the same inputs. This reduces the complexity of the experiments
so that the tests focus on the communication from the NSI. The sCPG populations and MNP are comprised
of adaptive exponential integrate-and-fire neurons to allow for bursting behaviors (Brette and Gerstner,
2005). Neuronal parameters are set based on regular bursting as outlined in Naud et al. (2008) and their
dynamics are shown in equations (1) and (2).

C
dVm
dt

= −gL(Vm − EL) + gL(∆T )e
Vm−Vth

∆T − w + Ie (1)

when Vm > 0mV then Vm → Vreset

τw
dw

dt
= a(Vm − EL)− w (2)
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when Vm > 0mV then w → w + b

where C is the membrane capacitance, Vm is the membrane voltage, EL is the resting potential, gL is the
leakage conductance, Ie is the bias current, a is the sub-threshold adaptation conductance, b is the spike-
triggered adaptation, ∆T is the sharpness factor, τw is the adaptation time constant, Vth is the voltage
threshold potential, Vreset is the reset potential, andw is the spike adaptation current (Naud et al., 2008).
Equation (1) defines the change in membrane potential per time step whereas Equation (2) outlines the
current adaptation.

TheNSI is simulated as a leaky integrate-and-fire neuron, the dynamics of the neuron are shown in Equation
(3). The spiking threshold is set high enough to avoid spiking so there is no reset condition. The simpler
neuron model is used for the NSI because the only necessary behavior is the integration of input current
and leakage.

τm
dVm
dt

= −Vm +RIinput (3)

where τm = RC is the membrane time constant, Vm is membrane voltage, Iinput is input bias current,
andR is membrane resistance.

Yang et al. (2013) show that the magnitude of the NSI output is a graded function of the difference be-
tween the interneuron’s membrane potential and its rest potential. Additionally, they find a linear corre-
lation between the signal produced by the NSI and the response from the post-synaptic neuron. Based
on this knowledge, we construct a relation between the NSI membrane potential and the effect on the
post-synaptic neuron (Equations (4) and (5)).

Vcm =
Vrest − Vm

3
(4)

whereVcm is voltage characteristicmanipulation,Vrest is rest potential, andVm ismembrane voltage.

Equation (4) provides the offset to the voltage characteristic being adjusted for an sCPG neuron popu-
lation. Vrest is set to −60mV to stay consistent with biological findings (Graubard, 1978). The practical
implementation of Vrest uses the starting value of the NSI membrane potential as it fluctuates around the
desired resting potential due to noise added to the system. The divisor in Equation (4) limits the voltage
characteristic offset within a stable range. It is determined by dividing the biologically plausible 15mV NSI
membrane potential fluctuation range (Burrows and Siegler, 1978) with the 5mV voltage characteristic
manipulation range known to be stable for the sCPG network (Strohmer et al., 2020).

Equation (5) calculates the amount of current (Iinjection), in pA, to be added to the original current bias of
the post-synaptic neuron.

Iinjection = w · (Vrest − Vm) (5)

where Iinjection is current injection, w is synaptic conductance weight, Vrest is rest potential, and Vm is
membrane voltage.

The synaptic conductance weight,w, scales the current injection from the NSI to the post-synaptic neuron.
Conductance is measured in Siemens (S), the inverse of Ohms (Ω−1).

2.1 Time-Driven Experimentation
Two main categories of tests are performed on the network, excitatory and inhibitory. The input bias cur-
rent (Iinput) to the NSI is always positive, this is the input current defined in Equation (3). However, the
injection current (Iinjection) from the NSI to the post-synaptic neurons changes sign depending on test
type, sending a positive current if excitatory and negative current if inhibitory. The value of Iinjection is
determined by Equation (5). Testing is further broken into interactions between the NSI and post-synaptic
neuron populations. The overview of these tests is outlined in Table 1 and visualized in Figure 4.

The tests step through different configurations of injecting current and manipulating voltage characteris-
tics of post-synaptic neuron populations as seen in Figure 4. The voltage characteristics tests separately
investigate adjusting voltage threshold potential (Vth), voltage reset (Vreset), andmembrane potential (Vm)
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within Equations (1) and (2). The amount of the offset is determined by the voltage characteristic manipu-
lation Equation (4).

Each of the voltage characteristic manipulations is tested on individual sCPG neuron populations as well
as both simultaneously, these are defined by test subcategories seen in Table 2 and visualized in Figure 5.
When a test is running that does not update a particular voltage characteristic, the following values are
used: Vth = −51mV and Vreset = −46mV . These values are known to produce a stable, regular bursting
pattern by the sCPG network (Strohmer et al., 2020). The MNP never changes voltage characteristics, it
only receives current injections because it is not involved in generating rhythmic patterns, only shaping the
output.

The test results are compared by plotting the rate-coded output of theMNP. A sliding time window of 5ms
is used, counting all spikes from the MNP occurring within each time window to produce an analog value.
The output signal from the MNP is considered the output of the network because this would be the signal
used to control a motor when testing on a physical robot.

Static Iinput tests are performed first to find the maximum value for the conductance weight, w (Equation
(5)). These static tests are not outlined in the above tables as they are only for parameter tuning. In order
to find w, Iinput is set to the maximum value determined by the change in the NSI membrane potential,
restricting it to the biologically plausible range of 15mV (Burrows and Siegler, 1978). Then w is increased
by increments of 10nS until themaximumweight is found. Themaximum is accepted as the largest weight
value to produce an ideal output signal, this is further discussed in Section 3. This value is set as the
maximum conductance weight (wmax) for both excitatory and inhibitory tests. After this is found, all test
configurations update Iinput at regular intervals to confirm a change in analog input is able to manipulate
network output online. These stepping input current trials all use wmax to calculate Iinjection in Equation
(5). When the test is excitatory, Iinput starts at 0pA and ends at the determined maximum, the opposite is
true when the test is inhibitory. This allows the system to be "excited" by reducing inhibition so the same
general behavior can be expected at the output.

Neural Simulation Tool (NEST) (Jordan et al., 2019) is used to simulate the network and record test results.
The simulation is run for 6s for all trials. The input current to the NSI updates every 1 second, allowing
the network to settle after initial transients before the input changes again. Iinput starts at 0pA and ends
at the maximum, 148pA. Thus each step adds 29.6pA of input current. Gaussian white noise current is
added to all neurons in the network. The standard deviation of the noise current to the NSI is set to 25pA
so that the noise current is comparable to the current steps. When testing with larger values than this, the
output no longer reliably produces the necessary offsets for the voltage characteristic manipulation. For all
other neurons, the standard deviation is 50pA. The standard deviation of the noise currents are selected
and have not been tuned. A bash script is used to run tests in a reliable manner. The bash script and the
python test script are available on GitLab (Strohmer, 2020).

After performing all of the test combinations for frequency and amplitude manipulation as outlined in
Tables 1 and 2, one further test is performed to see how output phase is affected by switching between
frequencies. The frequency is either held constant for 6s or toggled between 4Hz and 8Hz updating
every second for 6s. There is no current injection to the motor population for these tests in order to
examine phase as affected solely by frequency. This test differs from previous phase manipulations of an
sCPG network where phase was determined by synaptic delay (Strohmer et al., 2020). Instead of trying
to create a specific phase shift, this trial only confirms that phase is affected by changing frequencies and
does not attempt to control it.

Insects use proprioceptive sensor neurons to understand the position of their limbs in relation to their
body. These internal feedback loops can help an insect engage resistance reflexes to maintain posture
(Tuthill andWilson, 2016). This knowledge is used to implement a simplified network simulating an internal
feedback loop (illustrated in Figure 3B) as a proof of concept application. The rate-coded output from the
MNP determines the strength of the synapse connecting the NSI and MNP. A number of trials are run to
determine an appropriate scaling factor for excitatory and inhibitory weight calculations.

w = scaling_factor · (desired_spike_number − current_spike_number) (6)

Varying the synaptic conductance weight, w, will regulate the output amplitude for this internal feedback
loop. Equation (6) determines thew to be used in Equation (5) instead of usingwmax. The scaling factor is
a value which allows for maximum effect without over-exciting or over-inhibiting the output. The desired
spike number acts as a set point whereas the current spike number is the actual number of spikes from the
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MNP occurring in the last time step. In this network an inhibitory weight is applied if the number of spikes
in the time window is above the desired number and an excitatory weight if below.

2.2 Event-Driven Experimentation
In order to confirm the NSI’s compatibility with a neuromorphic architecture, the network is also simulated
on CloudBrain (Larsen et al., 2020). CloudBrain is a scalable event-based SNN simulation platform utilizing
event stream processing technologies to communicate between neurons implemented as microservices
on a cluster. The NSI in CloudBrain is implemented as an event-based leaky integrator neuron so that the
neuronmodel is comparable to the NEST simulation. The neuron updates its voltage potential upon receipt
of an input event according to the dynamics shown in Equation (7).

∆Vm = Vrest + (Vm − Vrest)decaydt − Vm +
Iinput
C

(7)

Where ∆Vm is the change in membrane potential, Vrest is the rest potential, decay is the decay factor
simulating leakage, dt is the time since last incoming spike, Iinput is the input current from other neurons,
and C is the membrane capacitance.

In addition to updating the voltage potential, theNSI saves the time stampof last received input (tupdated).

Each microservice consists of a neuron and all incoming synapses so the NSI cannot directly access the
voltage of the NSI. Instead, the NSI parameters (V , Vrest, Vm, decay and tupdated) are sent to the synapse
each time they are updated. Based on this information, the synapse asynchronously calculates the exact
voltage potential of the neuron using Equation (8).

Vm(t) = Vrest + (Vm − Vrest)decayt−tupdated (8)

Where t is the current time, Vm is the voltage potential, Vrest is the rest potential, decay is the decay factor
simulating the leakage, and tupdated is the time at which the parameters were updated.

A network consisting of an NSI and an sCPG is created in CloudBrain to confirm the NSI is able to update the
voltage threshold potential of the post-synaptic neurons in an event-based architecture. In this setup, the
sCPG is comprised of two single neuronsmutually inhibiting each other. Figure 3C shows the block diagram
of the network in CloudBrain. The input to theNSI is spikes since it is an event-based architecture. The input
spikes are the equivalent of the the stepping input current used in the time-based NEST simulation. A step
function is encoded to spikes using Ben’s Spiker Algorithm (Schrauwen and Van Campenhout, 2003) for
transmission to the NSI. In turn, the NSI updates the Vth of the sCPG neurons based on the frequency of
spiking input. The Vth of the sCPG neurons is caculated using a linear mapping of the voltage potential.
This allows us to control the upper and lower limits of the Vth. The NSI’s Vm is recorded for comparison
with the Vth and spiking output of the sCPG populations.

3 Results
Simulating with a constant Iinput of 148pA shows the NSI membrane potential starts close to the rest
potential,−60mV and ends around−45mV , though these values vary slightly due to noise. This gives us
the maximum allowable Iinput that restricts the NSI’s membrane potential within a 15mV range.

Themaximum synaptic conductanceweight for the NSI output synapse is determined to bewmax = 70nS.
The effect on amplitude as compared to a lower weight of 2nS is visible in Figure 6. Increasing w to 80nS
produces unwanted lifting behavior from the excitatory current injectionwhere the rate-coded output does
not always return to zero. This result can be seen in Figure S1 in the supplementary material.

Figure 6 shows that amplitude is affected by a change in Iinjection without altering the frequency or phase
of the output for both excitatory (A) and inhibitory (B) tests. The filled circles on the plots illustrate the peak
values (local maxima) of the rate-coded output. The difference in average peak value when comparing 2nS
versus 70nS is 28.37 spikes when excitatory and 16.69 when inhibitory.

Table 3 shows the progressive increase in average number of spikes per 5ms time window based on the
size of Iinjection to the MNP. This reveals that the change in the number of output spikes due to Iinjection
is scalable over a range.
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3.1 Online Amplitude Manipulation
The online manipulation of Iinjection to the MNP results in a change in the number of spikes per time
window for both excitatory and inhibitory tests (Figure 7A and B). The addition of Iinjection to both of
the sCPG populations changes the behavior of spiking, shifting the phase in comparison to the static input
current tests (Figure 7C, D, E, and F). Additionally, the strong inhibition of both sCPG neuron populations
leads to complete suppression of the output.

Injecting current to one sCPG population at a time creates instability in the system. Figures S4A and B in
the supplementary material show that the excitation of the excitatory sCPG population produces lifting
behavior when Iinjection reaches a specific threshold. Likewise, an increase in excitation of the inhibitory
neuron population dampens MNP spiking.

All figures in the supplementary material present both excitatory and inhibitory trials. Excitatory current
injections produce a larger change in amplitude whereas inhibition suppresses output up to a certain point
in many tests.

3.2 Online Frequency Manipulation
Figure 8 compares frequency manipulation of the output with and without current injection to the MNP.
Updating either Vth or Vreset of the sCPG neuron populations points to a linear relationship with fre-
quency.

Based on the voltage characteristic manipulation calculation (Equation (4)), Vth and Vreset are either in-
creased or decreased by approximately 1 at each time step. Figures 8A, B, C, and D show that their manip-
ulation results in an increase in frequency by the addition of approximately 1 peak per second, implying
a linear relationship. Figures 9A, B, and C reinforce the expectation of a linear relationship between fre-
quency and the change in Vth or Vreset. By contrast, adding an offset to Vm does not reliably change the
frequency and introduces instability as the current injection increases. Figure 9D shows that the frequency
does not trend in a particular direction for the Vm manipulation. Additionally, as the inhibitory test’s out-
put is suppressed for much of the duration of the trial, there are fewer data points as compared to other
tests.

Figure 9A highlights the similarity in the frequency change when comparing Vth and Vreset. This is also
true whether the test is excitatory or inhibitory. Table S1 in the supplementary material shows the exact
start and end frequency values for the voltage characteristic manipulation tests. The starting frequency for
Vth and Vreset tests is between 2.36-2.94Hz, ending between 8.01-8.94Hz. This reveals frequency can
be affected by a factor of 3.

Amplitude is also affected by frequency, the average number of maximum spikes for each frequency can
be seen in Table S2 in the supplementary material. The lower the frequency, the more spikes are counted
per time window, resulting in a higher value of the rate-coded output. The relationship does not appear to
be linear as the number of spikes is reduced by a larger amount when comparing the lowest 3 frequencies
as compared to the highest 3 frequencies.

3.3 Online Phase Manipulation
Phase is affected by frequency manipulation as seen in Figure 10. Figures 10A and B both show the initial
1,000 time steps of the simulation produce the exact same results for amplitude and phase. However, after
a frequency change the phase shifts.

3.4 Online Amplitude Regulation using Internal Feedback
Figure 11 shows the effects of amplitude regulation when updating the frequency of the network by adjust-
ing Vth in Equations (1) and (2). Vth changes based on the offset determined by Equation (4). The scaling
factors found to have the most effect without over-inhibition or over-excitation are 50 for inhibition and 2
for excitation (insert into Equation (6)).
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The amplitude based on a "desired spike value" (see Equation (6)) of 10 versus 50 confirms that the net-
work is monitoring the output and adjusting. This is seen more drastically when comparing the control
experiment (originally test 4_0) and the trial with a desired spike value of 10. Regardless of whether the
test is increasing or decreasing frequency, the amplitude is adjusted to a similar value. Figure 11 confirms
the number of spikes per time window is consistent based on the desired value and the frequency. Fur-
thermore, the phase is unaffected by this amplitude regulation.

3.5 Event-Driven Manipulation
The step input to the NSI resulting in an increase in Vth of the AdEx neuron is seen in Figure 12A. The y-axis
is adjusted for each graph so the height of the curves should not be directly compared. However, the time
axis is common to both graphs and shows the Vth follows the change in Vm almost immediately.

Figure 12B confirms the output frequency of the AdEx neuron is increased when the input spike bursting
frequency increases. The graph shows the increase in input bursting frequency starts ramping up the Vm of
the NSI. This promotes an increase in output bursting frequency from the AdEx neurons. The AdEx neurons
are confirmed to spike out of phase with each other and increase to the same bursting frequency.

4 Discussion
The results confirm our model of an NSI is capable of shaping output and setting rhythmic patterns of
an sCPG network based on a changing analog input. The amount of influence the NSI has on the output
is constrained since the change in membrane potential must stay within the biologically plausible 15mV
range. However, the range still allows at least a doubling of average output spikes per time window from
the MNP and triple the frequency when moving from a low to high input current to the NSI. The output
from the MNP also dictates usable parameter ranges. The lifting behavior observed when using a synaptic
conductance larger than 70nS means that the output cannot always return to zero due to some neurons
always spiking. This is not ideal as an output signal so the maximum conductance to the post-synaptic
neurons is limited to 70nS.

The baseline stepping current tests (1_0 and 1_3) confirm amplitude can be manipulated online without
changing the behavior of the system by updating the injection current to the MNP. Table 3 shows that the
difference in amplitude can be controlled using synaptic conductance. It can logically be concluded that
the average number of maximum spikes per time window when no current is injected is between 23 and
24.26. The number of spikes either increases or decreases from this starting point depending on if the
connection is excitatory or inhibitory. The difference between maximum spikes over the range of current
tested is steady, reinforcing the conclusion that amplitude is reliably altered by current injection. If the
synaptic weight is changed in addition to the current injection, the average number of spikes per time
window can be regulated from 6.31 to 52.63. This configuration increases the average spike difference to
a factor of 8 (52.63/6.31 = 8.34).

Tests involving a current injection to the sCPG neuron populations produce a phase shift. This is expected
because they are the populations driving the rhythmic output. The delay generated could be an exploitable
feature when coordinating multiple joints. However, the exact effect has not been calculated and the delay
changes based on the level of current injection (see Figure 7).

The linear relationship found between frequency and voltage threshold potential seen in Figure 9 is consis-
tent with previous research by Strohmer et al. (2020). It follows that reset potential has a similar relation-
ship to frequency as voltage threshold potential. Both characteristics change the amount a neuron’s voltage
potential must change before reaching the spiking threshold. Adding an offset directly to a post-synaptic
population’s membrane potential introduces discontinuities, creating small "jumps" based on the value of
the offset. The frequency does not appear to be linearly correlated with the change in Vm when looking at
Figure 9D. However, this might be due to the limited range of the offset tested in this study.

The comparison of frequency to the maximum amount of spikes depends on the size of the time window
chosen for rate coding as well as the number of neurons within the motor population. Likewise, a larger
number of neurons in the motor population increases the maximum possible spikes. The results shown in
this study are based on a time window of 5ms and a MNP size of 5. When comparing the start and end
frequencies for Table S1 against the average frequencies in Table S2, the static tests show a higher starting
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frequency (both tables are located in the supplementary material). The static tests average frequency
over a total of 5 seconds, removing the first second in case of transients. However, Test 4_0 updates the
frequency every 1 second so the minimum frequency and maximum frequency shown are not averaged
but single calculations. The averaging process most likely accounts for this difference in start and end
frequencies. This limits the reliable change in frequency to a difference of 2.8x.

Toggling between a low and high frequency over a single trial as compared to a constant frequency pro-
duces a phase shift as expected due to the alteration of the output signal’s period. This phase shift iswith re-
spect to the sCPG network’s own output from theMNP and does not indicate how frequency changesmight
affect a larger system with connected oscillators. However, these results imply that an NSI is able to reset
rhythmic behavior of an sCPG network in accordance with biological research (Bidaye et al., 2018).

Trials that only affected a single sCPG neuron population at a time created network instability, most likely
due to the change in network dynamics. The sCPG populations are mutually inhibitory so the excitation or
inhibition of one population affects the balance of the network. This is particularly visible in Figure S4 in the
supplementarymaterial where over-excitation of the excitatory neuron causes lifting and over-inhibition of
the excitatory neuron suppresses network output. Based on these results, a stable and predictable output
requires updating both sCPG neuron populations with the same current injection or voltage characteristic
manipulation. This conclusion can only be inferred for a mutually inhibitory sCPG architecture.

Reviewing the frequency tests with and without current injection to the motor population shows that the
amplitude adjusts based on the level of current injectionwithout affecting frequency. Furthermore, the fre-
quency is equally affected by a change in Vth or Vreset but biological research shows evidence that voltage
threshold adaptation is a strategy used by neurons to change firing rate (Azarfar et al., 2018). Therefore,
based on research findings and biological research, our recommended approach for parameter manipu-
lation of a mutually inhibitory sCPG network is to inject current to the MNP while updating the voltage
threshold potential of the sCPG neuron populations.

The regulation of amplitude is a building block for developing closed-loop adaptive controllers with NSIs.
The proof of concept network implemented shows that NSIs are capable of controlling output based on
live feedback. The method is solely for demonstration purposes and is not necessarily biologically plausi-
ble though there is evidence that short-term plasticity affects rhythmic outputs (McDonnell and Graham,
2017) and that the synaptic weight influences themagnitude of the post-synaptic potential (Burrows, 1996).
Testing the network reveals visible overshoot from the desired set point but this is expected because the
spike value must surpass the set point before inhibition initiates. The lower frequencies are also worse at
reducing the number of spikes, this is probably because of the significant excitation received from the sCPG
populations. As can be seen in the control experiment, the maximum numbers of spikes per time window
can reach 100 for the lowest frequency trial. It is more difficult to dampen the effects of these high spike
counts than the lower spike counts seen in higher MNP output frequencies.

The results of the event-based CloudBrain simulation are consistent with the time-based NEST simulation
showing that output frequency can bemanipulated based on input to theNSI. This suggests that theNSI can
translate both spiking and analog data into usable information for the network. The ability to receive spiking
input increases the usability of the NSI as a possible encoding tool, indicating potential for interfacing with
event-driven sensors. Additionally, the ability to run the NSI on an event-based simulation in real-time
means that it can be applied in closed-loop control of robots.

5 Conclusion
The method introduced in our research is able to integrate NSI’s into SNNs to create a mixed network.
Our model NSI is a biologically plausible input value encoder, receiving analog values as Iinput and passing
the information to spiking neuron populations which naturally output spikes. This research confirms that
the amplitude, frequency, and phase of an sCPG network can be manipulated based on changing input
to an NSI, implying that an NSI can function as an encoding mechanism within an SNN. Furthermore, the
ability of the network to adjust to an internal signal suggests that this setup could be useful in adaptive
controllers.

Our recommended architecture for integrating an NSI with a mutually inhibitory sCPG network is shown
in Figure 4, plot 4,5,6, allowing frequency to be adjusted by changing the voltage threshold potential. In
this specific setup, the average frequency of the network can be regulated between 3.0Hz and 8.5Hz.
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Additionally, the regulation of synaptic conductance weight from the NSI allows an average peak output
amplitude between approximately 6 and 52 spikes per time window. This assumes a rate-coding time win-
dow of 5ms and 5 neurons for the MNP as investigated in this study. The recorded frequency and ampli-
tude ranges are determined by the architecture and parameter ranges so it would be advantageous to look
further into the dynamics of this system to maximize flexibility. Additionally, the resolution of attainable
frequencies should be evaluated as this will be an important metric for adaptive control.

An implementation of anNSI should be further researched to compare sub-threshold use of existing spiking
neuron models to a unique non-spiking model. Further research into both the offset and injection current
equations as well as their respective parameters is also necessary. Additionally, the leakage constant of
the NSI could be optimized to ensure biological-plausibility and effectiveness. The relationships between
frequency and phase as well as frequency and amplitude should be quantified so that these dependencies
can be fully exploited.

The finding that amplitude can be scaled based on the value of the current injection to the MNP leads
to the possibility of using an NSI to prioritize sensory inputs or inform coordination tasks. Insect inter-leg
coordination is known to depend on sensory input not only from the local leg but also neighboring legs
(Bidaye et al., 2018). Therefore, synaptic weights from a single NSI population could be tuned in order to
injectmore current to the local leg while also providing varying amounts of injection current to neighboring
legs.

The event-based demonstration on the CloudBrain platform indicates that implementation on neuromor-
phic hardware is possible. A closed-loopmixed network should be further studied in CloudBrain since it can
communicate with a robot in real-time (Larsen et al., 2020). This provides the opportunity for investigation
of a mixed network adaptive controller using environmental interaction.

The ability of sub-threshold encoding to shape an sCPG network’s output opens up possibilities for new
approaches to coordination and control tasks. Storchi et al. (2012) report observing the use of combinations
of encoding mechanisms in biological systems, indicating that the use of multiple methods within a single
robot could be a fruitful investigation direction for adaptive controllers.
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Figure 1: A: An illustration of a simplified sensorimotor neuron pathway. A signal is received from the
outside world and sent onwards from the sensor neuron to the NSI through current injection. The NSI
passes the information onto the motor neuron to generate movement. B: A high-level overview of the
mixed neural network combining an NSI and SNN.
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Amplitude = number of spikes
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Spike Events vs. Rate Coding

Figure 2: A: Illustration of how spikes are converted to analog values. The spike events for all neurons
within a time window are counted. This value is used as the analog output value of the network. B: Block
diagram of the sCPG network. Neuron populations 1 and 2 create the spiking oscillator, sending spikes to
the MNP. The output spikes from the MNP are considered the network output. C: Illustration of network
output characteristics, visualizing the terms amplitude, frequency, and phase.
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Figure 3: A: Block diagram outlining the network structure. Spiking neuron populations "1" (excitatory neu-
ron population) and "2" (inhibitory neuron population) comprise the sCPG. The MNP is also spiking, it is
regulated by an excitatory and inhibitory connection from the sCPG populations. The combination of the
sCPG populations and the MNP create the complete sCPG network. The interneuron is non-spiking, com-
municating with the sCPG neuron populations through current injection and voltage characteristic manipu-
lation. The MNP only receives current injections from the NSI. The neural network is altogether composed
of 16 neurons, 5 neurons per population plus a single NSI. Red dashed lines indicate input and output of
current between different neurons while blue dashed lines mark voltage characteristic manipulations. The
dashed lines do not show direct connections because testing combined different configurations of current
injection and voltage characteristic manipulation. B: Network for regulating output signal amplitude using
the MNP spike count. The total number of spikes output by the motor neurons during the latest time step
is sent to the NSI to determine the size of the current injection to the MNP. C: The event-based network
consisting of an sCPG of two single AdEx neurons. The Vth of each AdEx neuron is manipulated by an NSI
based on spiking input.
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Table 1: Test code reference
NSI Communication Testing

Test No. Current Injection
(Motor)

Current Injection
(sCPG)

Voltage Characteris-
tic (sCPG)

1 Stepping None None
2 None Stepping None
3 Stepping Stepping None
4 Stepping None Vth
5 Stepping None Vreset
6 Stepping None Vm
7 None None Vth
8 Stepping Stepping Vth
9 None None Vreset
10 Stepping Stepping Vreset
11 None None Vm
12 Stepping Stepping Vm

1 2

MNP

1 2

MNP

1 2
1 2

MNP

3

1 2

MNP

4, 5, 6
1 2

MNP

7, 9, 11
1 2

MNP

8, 10, 12

NSI NSI NSI

NSI NSI NSI

Figure 4: Visualization of NSI communication testing outlined in Table 1. Red indicates a current injection
and blue indicates a voltage characteristic manipulation. Input bias current to the NSI is always excitatory
(black dashed arrow). The numbers indicate the main test number corresponding with the depicted setup.
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Table 2: Test subcategory code reference
NSI Communication Testing

Test Subcategory Current Injection
Type

Excitatory sCPG Neu-
ron

Inhibitory sCPG Neu-
ron

_0 Excitatory Yes Yes
_1 Excitatory Yes No
_2 Excitatory No Yes
_3 Inhibitory Yes Yes
_4 Inhibitory Yes No
_5 Inhibitory No Yes

1 2

_1
1 2

_2
1 2

_0

1 2

_4
1 2

_5
1 2

_3

NSI NSI NSI

NSI NSI NSI

Figure 5: Visualization of NSI communication testing subcategories outlined in Table 2. Arrows are exci-
tatory and solid circles are inhibitory connections. The connection may be a current injection, a voltage
characteristic manipulation, or both depending on themain test number found in Table 1. This visualization
shows how the subcategories determine the input to the sCPG populations. The numbers indicate the test
subcategory corresponding with the depicted setup.
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Figure 6: Comparison of the output from the MNP when w in Equation (5) is 2nS versus 70nS with a
constant maximum Iinput of 148pA into the NSI (Equation (3)). There is a visible change in amplitude
without affecting the frequency or phase.The peaks (local maxima) aremarkedwith a filled circle. A: Injects
excitatory current to the MNP; B: Injects inhibitory current to the MNP;
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Table 3: Average maximum number of spikes per time window when injecting excitatory or inhibitory cur-
rent to theMNP. Iinjection shown is an approximation, calculated using Equation (5) where Vm = −45mV
and w is as defined in the table. Iinjection is positive when excitatory and negative when inhibitory. The
average peak number of spikes increases and decreases with excitation and inhibition respectively.

Calculated current
injection, Iinjection
(pA)

Conductance, w (nS) Average peak (excita-
tory)

Average peak (in-
hibitory)

30 2 24.26 23.00
150 10 26.50 20.76
300 20 29.33 18.10
450 30 32.19 14.43
600 40 36.33 12.74
750 50 41.14 10.64
900 60 46.94 8.02
1050 70 52.63 6.31
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A B

C D

E F

Current Injection to MNP (Excitatory) Current Injection to MNP (Inhibitory)

Current Injection to sCPG Populations (Excitatory) Current Injection to sCPG Populations (Inhibitory)

Current Injection to sCPG Pops & MNP (Excitatory) Current Injection to sCPG Pops & MNP (Inhibitory)

Figure 7: Comparison of various current injection configurations to the original static input test. For the
stepping tests 1, 2 and 3, Iinput to the NSI increases every 1,000 time steps (1 second). Outputs show
that current injection to the MNP changes the amplitude but the addition of current to the sCPG neurons
creates a phase shift to the output. A and B: Baseline stepping current tests injecting current from the NSI
to the MNP; C and D: Iinjection from the NSI to both sCPG populations; E and F: Iinjection from the NSI to
both sCPG populations and the MNP; Excitatory tests are on the left while inhibitory tests are on the right.
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A B

C D

E F

Voltage Threshold Tests (Excitatory) Voltage Threshold Tests (Inhibitory)

Voltage Reset Tests (Excitatory) Voltage Reset Tests (Inhibitory)

Membrane Potential Tests (Excitatory) Membrane Potential Tests (Inhibitory)

Figure 8: Comparison of voltage characteristicmanipulationwith andwithout current injection to theMNP.
Network behavior remains the same when current is injected to the MNP during frequency changes for all
voltage characteristic manipulations. Frequency changes linearly during Vth and Vreset tests. Excitatory
and inhibitory tests are compared to their respective counterparts. Vertical lines indicate when a change
in input current occurs once per second. A and B: Test 4 includes current injection to the MNP, Test 7
only updates voltage threshold potential; C and D: Test 5 includes current injection to the MNP, Test 9 only
updates voltage reset; E and F: Test 6 includes current injection to theMNP, Test 11 only updatesmembrane
potential.
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Figure 9: Calculation of frequency for each voltage characteristic manipulation using the time difference
between peaks. Double peaks are removed as outliers. The x-axis only represents iteration through the
array by subtracting the previous array element from the current element, it does not indicate time. The
frequency of the MNP output trends upwards for A, B, and C, indicating that peaks occur more frequently
when the absolute difference in voltage between Vreset and the Vth is decreased. The suffix _0 is used
for excitatory tests and _3 for inhibitory tests. A: Compares peak frequencies of Vth and Vreset; B: Vth; C:
Vreset; D: Vm;
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A BToggling High to Low Freq vs Static High Freq Toggling Low to High Freq vs Static Low Freq

Figure 10: Comparison of output phase when toggling between frequencies versus a constant frequency.
Both plots show the first 1,000 time steps (equivalent of 1 second) are exactly the same as the toggling
(blue) and constant (red) frequency plots follow each other. After a change in frequency, the phase shifts
so that they no longer follow each other exactly even though the frequency returns to the original speed.
A: Compares a constant high frequency (red) to a toggling frequency (blue). B: Compares a constant low
frequency (red) to a toggling frequency (blue).
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Figure 11: Comparison of amplitude when running the network unregulated versus creating a set point
(SP) at 10 spikes and 50 spikes. The SP in this plot is equivalent to the "desired spike value" referred to
in Equation (6). There is more overshoot for lower frequencies as compared to higher frequencies but
the change in amplitude is visible from the control experiment where wmax is applied uniformly. Vertical
lines indicate when a change in voltage threshold potential occurs thereby changing the frequency. The
threshold updates every 1,200 time steps (1.2s) creating a total of 10 divisions. Vth starts at −54.81mV
producing a frequency of 3.77Hz and increases to −50.79mV producing a frequency of 9.14Hz. After
6,000 time steps Vth decreases again, returning to a value of −54.74mV producing a final frequency of
4.00Hz. Themiddle two trials from4,800-7,200 time steps are held at the highestVth, around−50.79mV .
The values fluctuate by hundredths of amV because Vth is affected by current noise.
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NSI Membrane Voltage vs AdEx Voltage Threshold AdEx Voltage Threshold vs Spike Events

x104 x104

A B

Figure 12: A: Comparison of the NSI’s Vm to the post-synaptic AdEx neuron’s Vth. The plot shows Vth
follows Vm confirming that the neuronal characteristics are updated based on the membrane potential of
the NSI. The AdEx neurons are defined as "left" and "right" based on their relative position in the sCPG.
There is no noise on the synapses to the AdEx neurons so the Vth of each neuron follows each other exactly
thereby obscuring the view of the right neuron underneath the left. B: Comparison of each AdEx neuron’s
Vth to the input and output spike events. The spikes are not rate-coded because there is only one neuron
per population. Vth increases when the input spike events increase which leads to an increase in bursting
frequency of the AdEx neuron. The left and right neurons spike 180 out of phase as expected based on the
sCPG architecture of mutual inhibitory coupling.

References
Edgar D Adrian. The impulses produced by sensory nerve endings: Part i. The Journal of physiology, 61(1):
49, 1926.

Shinya Aoi, Poramate Manoonpong, Yuichi Ambe, Fumitoshi Matsuno, and Florentin Wörgötter. Adaptive
control strategies for interlimb coordination in legged robots: a review. Frontiers in neurorobotics, 11:39,
2017.

Alireza Azarfar, Niccoló Calcini, Chao Huang, Fleur Zeldenrust, and Tansu Celikel. Neural coding: A single
neuron’s perspective. Neuroscience & Biobehavioral Reviews, 94:238–247, 2018.

Subhi Shaker Barikhan, Florentin Wörgötter, and Poramate Manoonpong. Multiple decoupled cpgs with
local sensory feedback for adaptive locomotion behaviors of bio-inspiredwalking robots. In International
Conference on Simulation of Adaptive Behavior, pages 65–75. Springer, 2014.

Salil S Bidaye, Till Bockemühl, and Ansgar Büschges. Six-legged walking in insects: how cpgs, peripheral
feedback, and descending signals generate coordinated and adaptive motor rhythms. Journal of neuro-
physiology, 119(2):459–475, 2017.

Salil S Bidaye, Till Bockemühl, and Ansgar Büschges. Six-legged walking in insects: how cpgs, peripheral
feedback, and descending signals generate coordinated and adaptive motor rhythms. Journal of neuro-
physiology, 119(2):459–475, 2018.

Zhenshan Bing, ClausMeschede, Florian Röhrbein, Kai Huang, and Alois C Knoll. A survey of robotics control
based on learning-inspired spiking neural networks. Frontiers in neurorobotics, 12:35, 2018.

Sander M Bohte. The evidence for neural information processing with precise spike-times: A survey. Nat-
ural Computing, 3(2):195–206, 2004.

Romain Brette and Wulfram Gerstner. Adaptive exponential integrate-and-fire model as an effective de-
scription of neuronal activity. Journal of neurophysiology, 94(5):3637–3642, 2005.

MBurrows andMVSiegler. Graded synaptic transmission between local interneurones andmotor neurones
in the metathoracic ganglion of the locust. The Journal of physiology, 285(1):231–255, 1978.

Malcolm Burrows. The neurobiology of an insect brain. Oxford University Press on Demand, 1996.

23

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 26, 2020. ; https://doi.org/10.1101/2020.08.13.249375doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.13.249375
http://creativecommons.org/licenses/by-nc-nd/4.0/


Ansgar Büschges and Harald Wolf. Nonspiking local interneurons in insect leg motor control. i. common
layout and species-specific response properties of femur-tibia joint control pathways in stick insect and
locust. Journal of neurophysiology, 73(5):1843–1860, 1995.

Volker Dürr, Paolo P Arena, Holk Cruse, Chris J Dallmann, Alin Drimus, Thierry Hoinville, Tammo Krause, Ste-
fanMátéfi-Tempfli, Jan Paskarbeit, Luca Patanè, et al. Integrative biomimetics of autonomous hexapedal
locomotion. Frontiers in neurorobotics, 13, 2019.

Katherine Graubard. Synaptic transmission without action potentials: input-output properties of a non-
spiking presynaptic neuron. Journal of Neurophysiology, 41(4):1014–1025, 1978.

Scott L Hooper, Christoph Guschlbauer, Géraldine von Uckermann, and Ansgar Buschges. Different motor
neuron spike patterns produce contractions with very similar rises in graded slow muscles. Journal of
neurophysiology, 97(2):1428–1444, 2007.

Leon Bonde Larsen, Rasmus Karnøe Stagsted, Beck Strohmer, and Anders Lyhne Christensen. Cloudbrain:
Real-time neural computation in the cloud. Preprint, 2020.

Qiang Liu, Philip B Kidd, May Dobosiewicz, and Cornelia I Bargmann. C. elegans awa olfactory neurons fire
calcium-mediated all-or-none action potentials. Cell, 175(1):57–70, 2018.

Hanspeter A Mallot. Coding and representation. In Computational Neuroscience, pages 113–129. Springer,
2013.

Mark DMcDonnell and Bruce P Graham. Phase changes in neuronal postsynaptic spiking due to short term
plasticity. PLoS computational biology, 13(9):e1005634, 2017.

Timo Nachstedt, Florentin Wörgötter, Poramate Manoonpong, Ryo Ariizumi, Yuichi Ambe, and Fumitoshi
Matsuno. Adaptive neural oscillators with synaptic plasticity for locomotion control of a snake-like robot
with screw-drive mechanism. In 2013 IEEE International Conference on Robotics and Automation, pages
3389–3395. IEEE, 2013.

Richard Naud, Nicolas Marcille, Claudia Clopath, and Wulfram Gerstner. Firing patterns in the adaptive
exponential integrate-and-fire model. Biological cybernetics, 99(4-5):335, 2008.

Stefano Panzeri, JakobHMacke, JoachimGross, and Christoph Kayser. Neural population coding: combining
insights from microscopic and mass signals. Trends in cognitive sciences, 19(3):162–172, 2015.

Sukanya Patil, Kaidi Zhou, andAlice C Parker. Neural circuits for touch-induced locomotion in caenorhabditis
elegans. In 2015 International Joint Conference on Neural Networks (IJCNN), pages 1–8. IEEE, 2015.

Balint Petro, Nikola Kasabov, and Rita M Kiss. Selection and optimization of temporal spike encoding meth-
ods for spiking neural networks. IEEE transactions on neural networks and learning systems, 2019.

Matheshwaran Pitchai, Xiaofeng Xiong, Mathias Thor, Peter Billeschou, Peter Lukas Mailänder, Binggwong
Leung, Tomas Kulvicius, and PoramateManoonpong. Cpg driven rbf network control with reinforcement
learning for gait optimization of a dung beetle-like robot. In International Conference on Artificial Neural
Networks, pages 698–710. Springer, 2019.

William Schafer. Nematode nervous systems. Current Biology, 26(20):R955–R959, 2016.

Malte Schilling, Thierry Hoinville, Josef Schmitz, and Holk Cruse. Walknet, a bio-inspired controller for
hexapod walking. Biological cybernetics, 107(4):397–419, 2013.

Benjamin Schrauwen and Jan Van Campenhout. Bsa, a fast and accurate spike train encoding scheme. In
Proceedings of the International Joint Conference on Neural Networks, 2003., volume 4, pages 2825–
2830. IEEE, 2003.

Neelava Sengupta and Nikola Kasabov. Spike-time encoding as a data compression technique for pattern
recognition of temporal data. Information Sciences, 406:133–145, 2017.

Riccardo Storchi, Michael R Bale, Gabriele EM Biella, and Rasmus S Petersen. Comparison of latency and
rate coding for the direction of whisker deflection in the subcortical somatosensory pathway, 2012.

24

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 26, 2020. ; https://doi.org/10.1101/2020.08.13.249375doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.13.249375
http://creativecommons.org/licenses/by-nc-nd/4.0/


Beck Strohmer. Interneuron encoding, 2020. https://gitlab.sdu.dk/stroh/
interneuron-encoding, last accessed on 19. June, 2020.

Beck Strohmer, Poramate Manoonpong, and Leon Bonde Larsen. Flexible spiking cpgs for online manipu-
lation during hexapod walking. Frontiers in Neurorobotics, 14, 2020.

Nicholas S Szczecinski, David M Chrzanowski, David W Cofer, Andrea S Terrasi, David R Moore, Joshua P
Martin, Roy E Ritzmann, and Roger D Quinn. Introducingmantisbot: hexapod robot controlled by a high-
fidelity, real-time neural simulation. In 2015 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 3875–3881. IEEE, 2015.

M. Thor and P. Manoonpong. A fast online frequency adaptation mechanism for cpg-based robot motion
control. IEEE Robotics and Automation Letters, 4(4):3324–3331, Oct 2019. ISSN 2377-3774. doi: 10.1109/
LRA.2019.2926660.

John C Tuthill and Rachel I Wilson. Mechanosensation and adaptive motor control in insects. Current
Biology, 26(20):R1022–R1038, 2016.

Géraldine von Uckermann and Ansgar Büschges. Premotor interneurons in the local control of stepping
motor output for the stick insect single middle leg. Journal of neurophysiology, 102(3):1956–1975, 2009.

Stanisław Woźniak, Angeliki Pantazi, Thomas Bohnstingl, and Evangelos Eleftheriou. Deep learning incor-
porating biologically inspired neural dynamics and in-memory computing. Nature Machine Intelligence,
2(6):325–336, 2020.

Sung Min Yang, María Eugenia Vilarchao, Lorena Rela, and Lidia Szczupak. Wide propagation of graded
signals in nonspiking neurons. Journal of neurophysiology, 109(3):711–720, 2013.

Jakob Jordan, Håkon Mørk, Stine Brekke Vennemo, Dennis Terhorst, Alexander Peyser, Tammo Ippen, Ra-
jalekshmi Deepu, Jochen Martin Eppler, Alexander van Meegen, Susanne Kunkel, Ankur Sinha, Tan-guy
Fardet, Sandra Diaz, Abigail Morrison, Wolfram Schenck, David Dahmen, Jari Pronold, Jonas Stap-manns,
GuidoTrensch, Sebastian Spreizer, JessicaMitchell, Steffen Graber, Johanna Senk, Charl Linssen, Jan Hahne,
Alexey Serenko, Daniel Naoumenko, Eric Thomson, Itaru Kitayama, Sebastian Berns, and Hans Ekkehard
Plesser. Nest 2.18.0, June 2019.

25

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 26, 2020. ; https://doi.org/10.1101/2020.08.13.249375doi: bioRxiv preprint 

https://gitlab.sdu.dk/stroh/interneuron-encoding
https://gitlab.sdu.dk/stroh/interneuron-encoding
https://doi.org/10.1101/2020.08.13.249375
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	Related Work

	Methods
	Time-Driven Experimentation
	Event-Driven Experimentation

	Results
	Online Amplitude Manipulation
	Online Frequency Manipulation
	Online Phase Manipulation
	Online Amplitude Regulation using Internal Feedback
	Event-Driven Manipulation

	Discussion
	Conclusion
	Author Contributions
	Funding
	Conflict of Interest

