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Abstract 

The development of targeted treatment options for precision medicine is hampered by a slow and 

costly process of drug screening. While small molecule docking simulations are often applied in 

conjunction with cheminformatic methods to reduce the number of candidate molecules to be 

tested experimentally, the current approaches suffer from high false positive rates and are 

computationally expensive. Here, we present a novel in silico approach for drug discovery and 

repurposing, dubbed connectivity enhanced Structure Activity Relationship (ceSAR) that 

improves on current methods by combining docking and virtual screening approaches with 

pharmacogenomics and transcriptional signature connectivity analysis. ceSAR builds on the 

landmark LINCS library of transcriptional signatures of over 20,000 drug-like molecules and 

~5,000 gene knock-downs (KDs) to connect small molecules and their potential targets. For a set 

of candidate molecules and specific target gene, candidate molecules are first ranked by chemical 

similarity to their ‘concordant’ LINCS analogs that share signature similarity with a knock-down 

of the target gene. An efficient method for chemical similarity search, optimized for sparse binary 

fingerprints of chemical moieties, is used to enable fast searches for large libraries of small 

molecules. A small subset of candidate compounds identified in the first step is then re-scored by 

combining signature connectivity with docking simulations.  On a set of 20 DUD-E benchmark 

targets with LINCS KDs, the consensus approach reduces significantly false positive rates, 

improving the median precision 3-fold over docking methods at the extreme library reduction. We 

conclude that signature connectivity and docking provide complementary signals, offering an 

avenue to improve the accuracy of virtual screening while reducing run times by multiple orders 

of magnitude. 
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Introduction 

Accelerating the pace of drug discovery and repurposing is paramount for the development 

of treatments for rare diseases or personalized treatment options for precision medicine, and the 

ability to respond to public health crises, such as the COVID-19 pandemic. Systematic efforts for 

drug discovery have used high throughput in vitro or ex vivo screening approaches, often in 

conjunction with an initial in silico screening of small molecule libraries. These efforts have 

resulted in a large number of candidate compounds targeting the druggable part of the genome1–3. 

Parallel advances in pharmacogenomics and large-scale candidate drug profiling in cell lines and 

other model systems, such as Connectivity Map4, NCI605  and Cancer Cell Line Encyclopedia6, 

or GDSC7,8, have further revolutionized drug discovery, target and mode of action prediction, and 

repurposing. For example, transcriptional signature connectivity analysis has been used to identify 

drugs that may reverse a signature of a disease state or that may have the same mode of action 

because of the similarity of their signatures4,9–11.  

The LINCS consortium has recently compiled a library of transcriptional signatures for 

over 40,000 drug-like molecules as well as over 6,000 gene knockdown (KD) and overexpression 

constructs in multiple cell lines12,13. As a result, LINCS transcriptional signatures can be used to 

directly correlate downstream transcriptional responses induced by chemical perturbations with 

those induced by loss or gain of function of the target protein. By enabling the direct exploration 

of drug-gene relationships on a previously unattainable scale, using significant subsets of both: the 

drug-like universe of small molecules and druggable genome, LINCS provides a unique big data 

resource for pharmacogenomics13–15 that is explored here with the goal of identifying candidate 

inhibitors of a specific protein target.  
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It should be emphasized that similar downstream transcriptional signatures may result from 

the loss of function of multiple upstream proteins in signaling cascades or pathways converging 

on the same transcriptional targets. Of particular relevance are signaling cascades involving 

multiple kinases and phosphorylation events between a growth receptor and a transcription factor 

in many types of cancer16.  Thus, the analysis of concordance between signatures of small 

molecules and the target gene knock-down can identify candidate molecules that effectively lead 

to the loss of function as pathway inhibitors, and not necessarily a specific target inhibitor, as 

illustrated in Figure 1. The left panel in the figure pictorially represents a signature connectivity 

analysis to identify putative inhibitors of SRC by searching for candidate small molecules whose 

 

Figure 1: The overall principle of the new connectivity enhanced Structure Activity Relation (ceSAR) 

approach that ranks candidate molecules by their similarity to LINCS analogs with signatures 

concordant to those of the target gene KDs (left panel), and can be subsequently combined with docking 

simulations to assess the shape complementarity with specific protein targets (right panel). 

Transcriptional signatures are defined as down- and up-regulated genes with the corresponding 

differential expression values, represented as blue and yellow boxes in the left panel, respectively. The 

fictitious SRC KD signature consists of 6 genes, with genes 1, 3, and 6 down-regulated and genes 2, 4, 

and 5 up-regulated. All 3 compounds targeting the EGFR – SRC – JUN cascade result in signatures 

concordant with that of SRC KD, but only the actual SRC inhibitor fits the binding pocket in docking. 
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signatures are concordant, i.e., positively correlated with the SRC KD signature. Note that all 3 

compounds targeting the EGFR – SRC – JUN signaling cascade are ‘concordant’, although only 

one of them targets SRC directly. 

To achieve the specificity to a target in a pathway, the predicted binding affinity to a target 

protein may be used to complement the signature connectivity-based approach. This is illustrated 

in the right panel in Figure 1 where the actual SRC inhibitor is shown as predicted to have the 

lowest binding energy, and thus selected as consensus candidate. In this context, various in silico 

docking techniques have been widely used to computationally predict binding affinities between 

small molecules and their (structurally resolved) targets, often coupled with Structure-Activity 

Relationship (SAR) analysis of chemical analogs for top ranking candidate molecules17,18.   

Here, we present a novel approach for accelerating drug discovery and repurposing, dubbed 

connectivity enhanced Structure Activity Relationship (ceSAR), that combines these two 

principles. Capitalizing on the LINCS library of transcriptional signatures (denoted as 𝐿), ceSAR 

combines drug and target transcriptional signature connectivity analysis with efficient chemical 

similarity search and virtual screening approaches.  For a gene target and a library of candidate 

compounds to be screened, a subset of ‘concordant’ LINCS small molecules is first identified to 

include only those compounds that have signatures concordant with a target gene knock-down (or 

over-expression) signature. The library of candidate compounds is then reduced by using a fast 

chemical similarity search, optimized for sparse binary fingerprints of chemical moieties, to 

identify those compounds that are, with some Jaccard similarity19 threshold, structural analogs to 

a LINCS molecule with transcriptional concordance to the genetic knock-down (or over-

expression). The resulting small subset of compounds can be subsequently re-scored in 
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conjunction with docking, using a consensus ranking to filter out likely pathway, but not target 

protein inhibitors.  

Results 

In order to assess the new method and test the hypothesis that combining the principles of 

signature connectivity and shape complementarity can improve drug discovery by reducing the 

level of false positives and reducing computational cost of virtual screening, we systematically 

evaluate the performance of ceSAR and compare it with the results of Autodock20 and 

MTiOpenScreen21, using a subset of targets from the DUD-E benchmark, which is widely used in 

the assessment of docking and virtual screening methods22. 

Candidate molecule ranking using ceSAR. For a library of small molecules, 𝑄, and a target gene 𝑡 

with at least one consensus shRNA knock-down transcriptional signature available in LINCS, 𝑡 ∈

𝐿,  ceSAR ranks candidate compounds by identifying their closest chemical analogs in the LINCS 

library of transcriptionally profiled chemical perturbagens, 𝑘 ∈ 𝐿, that result in signatures 

concordant to those of the target KDs. For each 𝑞 ∈ 𝑄, the following similarity score is computed 

as a basis for ranking: 

𝑠(𝑞) = max
𝑘∈𝐿, 𝑐∗(𝑘,𝑡)≥𝑐0

{𝜎(𝑞, 𝑘)} 

where 𝜎(𝑞, 𝑘) is the Tanimoto coefficient (Jaccard similarity measure) 19 between compounds 𝑞 

and 𝑘 represented as binary fingerprints, and  𝑐∗(𝑘, 𝑡) is the maximum concordance (over all cell 

lines for 𝑡, and cell line, concentration, exposure time tuples for 𝑘) between the signatures of 

chemical perturbagen 𝑘 and genetic knock-downs of 𝑡. iLINCS correlation-based concordance 

measure is used here23, and the threshold for significant concordance is set to 𝑐0 = 0.2, as 

discussed in the Methods sections. 
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Note that the similarity score, 𝑠(𝑞), is in fact the Tanimoto coefficient for the closest 

‘concordant’ LINCS analog of 𝑞, and thus is a real number between 0 and 1. By increasing the 

similarity threshold, 𝑠0 ∈ [0,1], one can reduce the initial library to a (hopefully enriched into true 

positives) subset that can be used for further analysis and validation by taking only those 

compounds 𝑞 that receive a score larger than 𝑠0.  

While different forms of combining chemical similarity and concordance measures into a 

composite score can be considered to potentially improve the performance, such as machine 

learning-based ensemble consensus classifiers discussed in Supplementary Materials, we 

 

Figure 2: The median precision (or positive predictive value) for 20 DUD-E targets as a function of 

library size for the simple ceSAR search using Sig2Lead (S), docking using AutoDock (A), and 

consensus approaches that combine the initial library reduction by Sig2Lead with AutoDock for the top 

1%, 5% and 100% library subsets (C1, C5 and C100, respectively), compared with a simple baseline 

method (B) that ignores signature connectivity and uses only chemical similarity to LINCS compounds 

for library reduction.  
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deliberately use here this very simple form of the method, which will be referred to as S throughout 

the manuscript, to evaluate the advantages of ceSAR. 

 

Fast exact chemical similarity search. The LINCS library of drug-like molecules comprises over 

40,000 compounds, while the user defined library of small molecules 𝑄 to be ranked and reduced 

by identifying ‘concordant’ LINCS analogs, can be quite large in the context of virtual screening. 

An efficient solution for computing the Jaccard similarity measure (Tanimoto coefficient) and 

retrieving the closest matches for the case of sparse binary fingerprints is used here to address this 

 

Figure 3: The distribution of the top true positive rank for 20 DUD-E targets at 0.1% library reduction 

for the simple ceSAR search using Sig2Lead (S), docking using AutoDock (A), and consensus 

approaches C1, C5 and C100 (see also Figure 1). Note that C1 improves significantly on Sig2Lead or 

AutoDock alone with Wilcoxon test p-values < 0.05 (without outliers) indicated by stars, while the other 

two consensus approaches avoid failures, i.e., targets without true positives in the top 100 candidates. 
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computational bottleneck and accelerate the ceSAR search. As shown in the Methods section, by 

using pre-processing of the reference data set of compounds (here LINCS library), the computation 

of similarity scores between a query compound 𝑞 and database compounds can be limited to only 

those columns in the binary fingerprint where 𝑞 is in the minority state, which is assumed to be 1, 

while also optimally exploiting the sparsity in each column of the fingerprint across database 

compounds by pre-computing indexes of database compounds in the minority state at that column. 

The resulting algorithm, dubbed minSim (for minority Sim), optimally exploits the sparse nature 

of binary fingerprints commonly used for fast chemical similarity search without using 

approximate techniques, such as those based on hashing24–26. For the retrieval from the LINCS 

library, minSim provides between 60 and 150-fold speed-up for different DUD-E datasets 

compared with traditional approaches (see Supplemental Table 1). 

Consensus re-ranking using docking to improve ceSAR. The initial ceSAR search, as defined 

above, can be subsequently combined with docking simulations to achieve higher specificity for a 

target at hand. For the purpose of systematic benchmarking and assessment of robustness of the 

new method, we consider several forms of consensus, starting from the entire library and 

performing the initial ceSAR search (S) and docking simulations for all compounds in the library 

to derive the consensus ranking, referred to as  C100, or starting from a subset of the library, first 

reduced using the signature connectivity based filter S. When the library is first reduced to the top 

5% or 1% of the library, the consensus form of ceSAR is referred to as C5 and C1, respectively. 

Note that C1 reduces the computational time 100-fold compared to docking, as only the top 1% of 

the library identified by using S needs to be screened by docking. While more complex, machine 

learning-based models to combine signature connectivity related features and docking scores are 

benchmarked in Supplementary Materials, here we present the results of a simple consensus that 
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aims to minimize the risk of overfitting, and defines the combined rank as the geometric average 

of signature connectivity and docking based ranks. 

Benchmarking of ceSAR. The Directory of Useful Decoys Enhanced (DUD-E) benchmark was 

developed to determine the success rate of virtual screening methods and assess their ability to 

discriminate between the known binders and carefully design sets of decoys that are unlikely to 

bind to target proteins. To evaluate the performance of ceSAR, we used a subset of 20 targets from 

the original DUD-E benchmark22 that had gene knockdowns available within LINCS. More details 

regarding the benchmark datasets used here are provided in the Supplementary Materials. The 

simple signature connectivity-based ceSAR search, referred to as S for signature-based (or 

Sig2Lead) , is compared with the traditional virtual screening using AutoDock v. 4.2 docking 

program and the set of original DUD-E crystal structures for target proteins, referred to as A for 

Autodock, and with the combined approach, denoted as C for consensus-based, that uses the simple 

search (S) first to reduce the library, and then applies docking (A) to such reduced subset to derive 

the consensus ranking as defined in the previous section.  

In addition, a simple baseline (denoted B) that ignores signature concordance while 

identifying the closest LINCS analogs of DUD-E compounds, and thus simply reflects biases in 

coverage for inhibitors of different targets in LINCS, is included to assess the contribution of 

signature concordance. The results are summarized in Figures 2, 4 and 5 in terms of precision 

curves to quantify the enrichment into true binders upon the reduction of the DUD-E datasets to 

small subsets amenable to further validation. Note that the precision, or positive predictive value, 

defined as 𝑃𝑃𝑉 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃), where 𝑇𝑃 denotes the number of true positive predictions and 

𝐹𝑃 the number of false positive predictions, captures how many candidate compounds, selected 

by in silico ranking, are in fact true binders. Thus, the precision or 𝑃𝑃𝑉 measures the likelihood 
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of successfully identifying an inhibitor through experimental validation for a small subset of the 

library reduced here by using ceSAR or docking, which arguably is the most relevant measure of 

success for virtual screening methods.     

 

We would like to emphasize that given the negligible computational cost compared with 

docking (see Figure 7) and the low barrier to applying ceSAR, one might consider a success even 

modest levels of enrichment or increased precision as the library is reduced. The other measure of 

success is the level of improvement over the baseline that measures the signal due to signature 

connectivity. As can be seen from Figure 2, the simple form of ceSAR (S) in fact performs 

significantly better than the baseline (p-value of 6.1 ×  10−10 using Kolmogorov-Smirnov test), 

 

Figure 4: Individual precision curves as a function of library size for DUD-E targets. Either Sig2Lead 

alone (Red, S) or consensus ceSAR methods (Yellow, C1, Orange, C5, Brown, C100) improve in 

precision over AutoDock alone (Blue, A) in 12 of the 20 cases, while performing on par with docking 

for additional 4 targets at the most reduced library sizes. 
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while the consensus form of ceSAR significantly outperform both A and S (including C1 that yields 

Kolmogorov-Smirnov p-values of 2.8 ×  10−3 and 1.1 ×  10−8 in comparison with A and S, 

respectively). Importantly, these improvements are obtained for the most reduced, and thus 

arguably most relevant, library sizes, where the consensus approaches achieve median precision 

of more than 25% (35% for  C1), compared with just 10% for docking. 

 

Thus, on the DUD-E benchmark (using the original target conformations and binding 

sites), docking is successful in eliminating the most unlikely binders by using shape 

complementarity and the predicted binding energies, leading to initial success and higher precision 

(and enrichment) at the level of 5 or 10% of the original library. However, docking struggles to 

correctly rank true positives and the remaining (more challenging) true negatives, resulting in a 

drop of accuracy as the size of the library is reduced further. Note that DUD-E datasets comprise 

tens of thousands of molecules, so reduction to less than 1% of the library size is desirable to 

reduce the number of compounds for testing.  

 

 

Figure 5: Performance of the consensus ceSAR approach (C1, Yellow), docking (A, Blue), the simple 

ceSAR search (S, Red),  and the baseline method (B, Black) on DUD-E benchmark in terms of the area 

under the precision curve (arbitrary units for comparison between targets) at different library size. 
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In terms of the distribution of precision values over 20 DUD-E targets, the results of the 

consensus-based ceSAR method (C1) and docking (A) are becoming statistically indistinguishable 

at 0.5% library size, while providing significant speed-ups since only a small fraction (1%) of the 

library needs to be re-scored using consensus with docking (see Figure 7). On the other hand, the 

simple ceSAR search (S) that can be performed on a personal laptop within minutes, achieves 

results statistically indistinguishable from docking at 0.1% library size, with both methods yielding 

a median precision (or positive predictive value) of about 10% at this furthest library reduction 

(see also Figure 2).  

 

Figure 6: Precision at the most reduced library size (0.1%) vs. the top true positive rank for individual 

20 DUD-E targets, using Sig2Lead (Red), AutoDock (Blue), and C1 consensus approach (Yellow) with 

the size of circles representing the fold enrichment at 0.1% library size.   
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Note that 0.1% library size on average corresponds to only about 20 compounds to be 

tested. At this furthest library reduction, the fraction of true binders among the candidate 

compounds selected by using the C1 consensus ceSAR approach, which combines signature 

connectivity analysis with docking for the top 1% of the library ranked by S, is equal or greater 

than 35% for half of DUD-E targets. We conclude that C1 consensus method provides the best 

trade-off between speed and accuracy on the DUD-E benchmark, while the performance of the 

consensus-based ceSAR methods (C1 , C5 and C100) is robust with respect to the choice of the top 

library subset for integration with docking. This is further illustrated by the distribution of top true 

positive rank for individual DUD-E targets (see Figure 3) that shows good performance of 

consensus methods. Similar results are obtained on a subset of DUD-E targets (as well as on the 

original DUD benchmark) using MTiOpenScreen docking server (see Supplementary Materials). 

Importantly, ceSAR is more robust compared to docking, which performs very well for 

some targets while also failing completely for several targets at that library size. This is illustrated 

in Figures 4 and 5 using precision curves for individual targets and comparison of the area under 

the precision curve at different library sizes, respectively. As can be also seen from Figure 6, at 

the most extreme library reduction considered here (0.1% library size), AutoDock fails to retain 

any true positives and thus yields precision of 0% in 8 out of 20 cases, compared with 7 for the 

simple ceSAR search, and only 4 such failures for the C1 consensus method. These trends also 

hold in terms of the number of targets for which none of the true positives is ranked among top 

100 candidates (Figure 3). 

It should be emphasized that the success of ceSAR is not due to overrepresentation of 

known binders from DUD-E datasets among the LINCS compounds. As can be seen from 

Supplemental Table 2, both true binders and decoys from DUD-E have a similar overlap with the 
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LINCS library, as indicated by similar distributions of Tanimoto coefficients for the closest LINCS 

analog for both subsets. Furthermore, the baseline approach that ignores the signal coming from 

signature connectivity and simply uses the Tanimoto coefficient to the closest LINCS analog, 

irrespective of its ‘concordance’ with the target KDs, performs consistently very poorly (see 

Figures 2, 4 and 5).   

Accelerating the identification of BCL2A1 inhibitors using ceSAR. Even though such an approach 

is less efficient, the ceSAR approach can be extended to incorporate signature connectivity-based 

re-scoring after first using docking for virtual screening to reduce the library size (this is different 

from the consensus approaches C considered above by reversing the order of library reduction). 

This form of combined approach is tested here in the context of an effort to identify specific 

 

Figure 7: CPU times (in logarithmic scale) on 20 DUD-E targets for ceSAR and docking. Autodock alone 

(Blue, A) requires the longest computational time across all targets, the consensus approach (Yellow, C1) 

reduces the time by 100X, while Sig2Lead alone (Red, S) reduces the running by an average of 48,000X 

compared with docking.  
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inhibitors of an important anti-apoptotic target, namely BCL2A1 (A1).  A1 has been implicated in 

a wide array of diseases, ranging from inflammation associated with pre-term birth27 to 

chemotherapeutic resistance in melanoma28. To date, no inhibitors specific to A1 have been 

identified and most that target the BCL2 protein family are unable to effectively block A1 activity.  

Most anti-apoptotic proteins prevent apoptosis by physical binding and sequestration of 

pro-apoptotic proteins, achieved via binding to their “BH3” domain29.  A major success in 

targeting this family was the development of a Bcl-2 inhibitor ABT-73730, which was modified to 

a bioavailable version called ABT-263 or navitoclax.  Unfortunately, ABT-263 also bound Bcl-

 

 

Figure 8: Retrospective re-scoring of a drug-discovery pipeline for BCL2A1 yields an improved 

enrichment into experimentally validated inhibitors using a combined ceSAR approach (AutoDock 

followed by Sig2Lead re-scoring, Yellow), as compared to docking alone (AutoDock, Blue). 
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xL whose role in promoting survival of platelets, lead to thrombocytopenia in humans31,32.  This 

observation spurned a biochemical tour de force that resulted in the development of ABT-199, 

which lost specificity for Bcl-xL33. Thus, despite their structural similarity, it is possible to 

selectively target individual Bcl-2 family members.  However, few inhibitors have been developed 

against Bcl2-A1.  

To address this challenge, a small molecule compound library of 90,087 drug-like small 

molecules were screened using Autodock v. 4.2.6. The top 300 compounds found by docking were 

clustered and representatives of each cluster were tested in vitro using a differential scanning 

fluorimetry thermal shift assay to detect compound binding to BCL2A1 and a fluorescence 

polarization competition assay to test for inhibition of Noxa BH3 domain binding to BCL2A1. 

Compounds were classified as inhibitors for the sake of benchmarking the ceSAR method if they 

caused a thermal shift upon addition to the BCL2A1-Noxa reaction and had an IC50, as defined 

by dose-response fluorescence polarization, of 400 µM or less (detailed methods available in the 

Supplementary Materials).  

Sig2Lead, an R Shiny implementation of ceSAR, was then applied to re-score the tested 

compounds (Figure 8), demonstrating an improvement in the overall precision when ranking the 

top in vitro validated compounds. Thus, re-scoring candidate compounds obtained using docking 

simulations can yield further enrichment into true positives and limit the number of compounds 

that need to be tested experimentally. Conversely, the observed enrichment into true positives for 

an important and challenging target (with available LINCS KD signatures) illustrates how a set of 

experimentally identified weak binders can be used to seed the signature connectivity-based 

ceSAR search with the goal of identifying additional candidate compounds, i.e., the ‘concordant’ 

LINCS analogs of the compounds tested here.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 26, 2020. ; https://doi.org/10.1101/2020.11.25.399238doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.25.399238
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Discussion 

Accelerating drug discovery, development and repurposing is paramount for advancing 

treatment options and for improving response to public health crises, such as the SARS-CoV2 

pandemic, and for further progress in personalized precision medicine. In silico screening of small 

molecule libraries for their predicted interaction and inhibition of protein targets is often used to 

reduce the time and cost requirements in drug discovery and repurposing projects. The adage that 

structure dictates function has been applied in relation to small molecule inhibitors to enhance 

virtual screening by searching similar compounds and exploring structure activity relationships 

(SAR) 17,18,34,35. In this contribution, we introduce an efficient in silico method to accelerate drug 

discovery and repurposing, dubbed connectivity enhanced Structure Activity Relationship 

(ceSAR). ceSAR improves on existing approaches by combining small molecule docking 

simulations with signature connectivity analysis to reduce both false positive rates and the 

computational cost of virtual screening, and thus allows one to overcome two major limitations of 

current virtual screening approaches.   

Over the last two decades, transcriptional and other profiles of drug activity have been 

increasingly used in drug design, mode of action identification and SAR type analyses4,12,34,36,37. 

For example, identifying targets for small molecules (and thus identifying these molecules as novel 

inhibitors) can be facilitated by comparing bioactivity profiles or transcriptional signatures of a 

compound to known inhibitors34,38. Another important example is the use of the connectivity map 

approach to connect gene expression profiles of disease states (such as drug resistant forms of 

cancer) with discordant drug signatures, allowing one to identify drugs that can potentially be used 

to reverse the disease signature4,12,15.  
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The critical difference compared to these previous efforts is that ceSAR directly connects 

the transcriptional signatures of a small molecule with the signature of a gene knockdown for the 

purpose of identifying antagonists (or overexpression to identify agonists – an option not 

benchmarked in this manuscript) of a specific target rather than a pathway, and to that end 

combines signature connectivity analysis with atomistic docking simulations to use predicted 

binding energies to filter out likely pathway inhibitors. For the signature connectivity analysis, 

ceSAR capitalizes on the LINCS library of signatures which is at present the most comprehensive 

big data resource for pharmacogenomics12,13. The central advantage of LINCS is that it made 

available for the first time a large library of both chemical (small molecule) perturbation signatures 

as well as genetic (KD) perturbation signatures in one or multiple biological contexts (cell lines).   

Furthermore, ceSAR integrates chemical similarity and signature connectivity analyses to 

increase the overall success rates and expand virtual screening and SAR analysis to other suitable 

libraries of compounds, including those identified in high throughput experimental screening. 

Toward that end, an algorithm for fast (exact) chemical similarity search and database retrieval is 

introduced that optimally exploits the sparse representation of chemical moieties as binary 

fingerprints. Docking and docking-based in silico screening, on the other hand, rely on shape 

complementarity between putative inhibitors and target proteins, requiring structural information 

about the proposed target and its relevant conformational states which may be unavailable39,40. The 

results of docking simulations may also be very sensitive to the choice of a target’s conformation, 

choice of the empirical force fields, docking programs and sampling depth4,12,15. Additionally, 

traditional virtual screening approaches are computationally expensive and require significant 

computing resources.  
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For example, the average CPU time per DUD-E target required to perform AutoDock 

benchmarking (with the search depth and grid sizes defined in the Online Methods)  was of the 

order of 3,000 CPU hours on a computational cluster consisting mostly of 16 Intel(R) Xeon(R) 

CPU E5-2667 v3 @ 3.20 GHz core nodes. For comparison, the average CPU time per target 

required for the simple ceSAR search (S) was about 3.7 CPU minutes on a laptop computer with 

two Intel i5-4200U @ 1.6 GHz cores, and thus was reduced by roughly 50 thousand-fold compared 

to docking (see Figure 7). This dramatic speed increase makes it possible to perform in silico 

enrichment on large chemical libraries using a personal computer within minutes compared to 

weeks on a computing cluster, democratizing further the search for new drugs. 

Despite its negligible computational cost, the simple ceSAR search (S) outperforms 

docking for 9 out of 20 DUD-E targets and achieves the same median precision of about 10% at 

extreme library reductions. The C1 consensus based method yields higher precision and enrichment 

into true binders compared to docking alone in 12 out of 20, and performs on par with docking on 

3 other DUD-E targets, while still greatly reducing the overall computational cost compared to 

docking alone. In addition, C1 performs better or on par with docking for several targets (AHCY, 

AR, FXa) on which the simple ceSAR search (S) performs poorly. Importantly, the consensus 

approach is also more robust, as indicated by the failure rate at the extreme library reduction, 

defined here as the fraction of targets for which the precision is reduced to 0% at 0.1% library size. 

As illustrated in Figure 6, such defined failure rate is 40% (8 out of 20 targets) for AutoDock (A), 

35% (7 out of 20 targets) for the simple signature connectivity approach (S), and 20% (4 out of 20 

targets) for the consensus approach (C1). Another measure of failure is the number of targets for 

which none of the true positives is ranked among the top 100 candidates, which is 6 for AutoDock 

as opposed to 2 for Sig2Lead and 4 for C1 (it is worth noting that this number is zero for other 
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consensus approaches – see Figure 3).  Taken together, these results strongly indicate the 

complementarity of signature connectivity and docking based approaches for drug discovery.   

On the other hand, Autodock (A) clearly outperforms signature connectivity enhanced 

methods (S and C) in 3 cases: HMGCR, Thrombin and PNP, none of which have close analogs in 

LINCS of the true binders included in the respective DUD-E datasets (see Supplemental Table 2) 

and/or are characterized by weak concordance between LINCS small molecule and KD signatures, 

which can be used to predict the likelihood of success of ceSAR (see Supplemental Figures 4 and 

5). This underscores one of the obvious limitations of ceSAR. Namely, in addition to target gene 

knock-down signatures, ceSAR requires a representative set of transcriptionally profiled 

molecules broadly covering the drug-like universe. While this is largely true about the LINCS 

library of over 40,000 compounds (of which some 25,000 have been profiled to date), not all 

classes of drugs are well represented, or may not induce sufficiently strong signatures to be 

considered for the connectivity analysis. On the other hand, some classes of targets and their 

antagonists, including kinase inhibitors, are well represented in LINCS, contributing to the high 

accuracy of ceSAR on the 5 kinases included in our evaluation. For these kinases, ceSAR (both S 

and C1) yield improvements over docking already at 5% library size, and for the most reduced 

library size, achieve about 2-fold increase in median precision, which is about 50% for Sig2Lead 

alone compared to about 25% for AutoDock (see Supplemental Figure 8).  

Using ceSAR, through the integration of signature connectivity analysis, fast exact 

chemical similarity search for sparse binary fingerprints, and virtual screening approaches, a 

dramatic increase in speed is obtained while improving accuracy, thus providing a fast, robust and 

accurate platform for drug discovery and repurposing. We believe that the performance of ceSAR 

adds significantly to the utility of LINCS as a big data resource for pharmacogenomics and 
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provides a strong argument in favor of further large-scale transcriptional profiling of drug-like 

molecules and druggable parts of the genome. We anticipate that with further advances in the 

CRISPR technology, more accurate gene signatures will be obtained, leading to increased 

performance of the new approach. At the same time, continued advances in determining 3D 

structures of proteins and their complexes by using cryo-electron microscopy and other techniques 

will expand the protein targetable space, adding to the importance of accelerating the speed of 

virtual screening approaches. 

Methods 

Candidate molecule ranking using ceSAR. ceSAR ranks candidate molecules by combining 

signature connectivity analysis and chemical similarity search to identify the most similar 

‘concordant’ LINCS analogs of candidate compounds. Here, ‘concordant’ is defined as having a 

signature that is significantly positively correlated with a target gene knock-down signature. For a 

target gene 𝑡, with at least one knock-down transcriptional signature available in LINCS, 𝑡 ∈ 𝐿, 

and for a library of small molecules to be ranked, 𝑄, the following similarity score is computed for 

each 𝑞 ∈ 𝑄 as a basis for ranking: 

𝑠(𝑞) = max
𝑘∈𝐿, 𝑐∗(𝑘,𝑡)≥𝑐0

{𝜎(𝑞, 𝑘)} 

where 𝜎(𝑞, 𝑘) is the Tanimoto coefficient (Jaccard similarity measure)19 between compounds 𝑞 

and 𝑘 ∈ 𝐿 represented as binary fingerprints, while  𝑐∗(𝑘, 𝑡) is the maximum concordance (over 

all cell lines for 𝑡, and cell line, concentration, exposure time tuples for 𝑘) between the signatures 

of chemical perturbagen 𝑘 and genetic knock-downs of 𝑡: 

𝑐∗(𝑘, 𝑡) = max
𝑘,𝑡∈𝐿

 {𝑐(𝑘, 𝑡)}. 
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Conceptually, taking the maximum value of signature concordance over all cell lines and 

concentrations (for chemical perturbagens) follows the assumption that genetic and chemically 

induced loss of function may result in the most pronounced signatures and concordance in some 

unknown biological contexts, as represented by different cell lines included in LINCS. Pearson 

correlation coefficient (PCC)-based concordance measure, 𝑐(𝑘, 𝑡) = 𝑃𝐶𝐶(𝑘, 𝑡), is used here23, and 

the threshold for significant concordance is set to 𝑐0 = 0.2. As shown in Supplementary Materials, 

the performance of the method is robust with respect to the choice of this threshold (see, e.g., 

Supplemental Figure 9). 

Sparse binary fingerprints for chemical similarity search. Binary fingerprints are widely used in 

cheminformatics for efficient chemical similarity search and SAR analyses41–44. In this 

approximation, small molecules are represented as binary vectors indicating the presence of 

substructures, subgraphs, pharmacophores or chemical groups41,42. Here, we use the 1024-bit 

atom-pair fingerprint representation41,45, as generated by the ChemmineR package46,47, which leads 

to a sparse binary vector representation of LINCS compounds. Indeed, as shown in Supplemental 

Figure 1, very few of the fingerprint features have a relatively balanced split between ones and 

zeros across the LINCS compounds. In addition, all LINCS compounds have less than 120 ones 

in their respective fingerprints of length 1024, with median of about 50 ones. 

Fast exact chemical similarity search using minSim. Consider now a search for a query compound 

𝑞 ∈ 𝑄 against a database compounds 𝑘 ∈ 𝐿 using binary fingerprints described above. The formula 

for the Tanimoto coefficient, 𝜎(𝑞, 𝑘), which is defined for two binary fingerprints 𝑞 and 𝑘 as the 

ratio of the number of positions with ones in both 𝑞 and 𝑘 and the number of positions with ones 

in either 𝑞 or 𝑘, can be written in the following form: 
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𝜎(𝑞, 𝑘) =
𝑠𝑖𝑚(𝑞, 𝑘)

𝑚(𝑞) + 𝑚(𝑘) − 𝑠𝑖𝑚(𝑞, 𝑘)
 

where 𝑚(𝑞) and 𝑚(𝑘) are the number of ones that can be pre-computed for all database 

molecules 𝑘, while 𝑠𝑖𝑚(𝑞, 𝑘) is the number of ones in common for 𝑞 and 𝑘. 

Note that the computation of 𝑠𝑖𝑚(𝑞, 𝑘) can be limited to only those columns in the binary 

fingerprint where 𝑞 is in the minority state, which is assumed to be 1. Furthermore, by using pre-

processing of the reference data set of compounds (here LINCS library) one can optimally exploit 

the sparsity in each column by pre-computing indexes of database compounds in the minority state 

at each column, as illustrated in Supplemental Figure 2. Namely, the following list of database 

vectors 𝑘𝑖 is pre-computed for each column 𝑗 in the fingerprint: 

𝑜𝑛𝑒𝑠(𝑗) = {𝑘𝑖  | 𝑘𝑖(𝑗) = 1}. 

The minSim (for minority Sim) algorithm, computes all Tanimoto coefficients for a query molecule 

𝑞 by updating integer counters 𝑠𝑖𝑚(𝑞, 𝑘), which are set to zero for all 𝑘 at the beginning of the 

search, in a simple loop over minority columns in 𝑞 and minority lists in each minority column: 

 for all minority columns 𝑗 in 𝑞  

   for all 𝑘𝑖 in 𝑜𝑛𝑒𝑠(𝑗) 

    𝑠𝑖𝑚(𝑞, 𝑘𝑖) = 𝑠𝑖𝑚(𝑞, 𝑘𝑖) + 1 

We posit that minSim optimally exploits the sparse nature of binary fingerprints by considering 

only those fingerprint columns (positions) where the query molecule 𝑞 is in the minority state, and 

by using precomputed lists of all database compounds 𝑘 that are in the minority states at these 

positions. The implementation of the algorithm in R is included in Supplemental Figure S3.  
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 Note also that minSim computes the exact Jaccard similarity, without using approximate 

techniques, such as those based on hashing25,26,46. As can be seen from Supplemental Table 1, for 

the retrieval from the LINCS library for different DUD-E datasets, minSim provides between 60 

and 150-fold speed-up compared to fpSim function, which represents traditional approaches for 

exact chemical similarity search46. Note that these speed-ups are consistent with the observed 

levels of sparsity in the LINCS dataset, while reflecting the varying degree of sparsity in DUD-E 

datasets of query molecules. 

Statistical analysis. Multiple comparison was performed by Kruskal-Wallis test, while the median 

difference of the precision between two methods was assessed by the two-sided Wilcoxon test. 

The difference of the whole distribution of the precision values at different sizes of the reduced 

libraries between methods was performed by using the two-sided Kolmogorov-Smirnov test. 

Data Availability 

DUD-E data sets and target structures used here for benchmarking can be downloaded from 

http://dude.docking.org/subsets/dud38. The LINCS library of small molecules can be downloaded 

from the LINCS Data Portal (http://lincsportal.ccs.miami.edu/dcic-portal/) while its pre-processed 

counterpart for fast chemical similarity search and SAR analyses can be downloaded from 

https://github.com/sig2lead. The gene knock-down and chemical perturbation LINCS signatures, 

as well as their pre-computed concordance scores are available through iLINCS and its API  

programmatic interfaces (http://www.ilincs.org). 

Code Availability 

ceSAR has been implemented as an R Shiny app, dubbed Sig2Lead, that uses API calls to iLINCS 

to obtain concordance scores for LINCS compounds and a target gene, and precomputed indexes 
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for fast retrieval of LINCS analogs using the minSim algorithm. Sig2Lead is a public domain 

package and can be downloaded from https://github.com/sig2lead. 
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