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ABSTRACT
Rapid progress in technologies such as calcium imaging and electrophysiology has seen a dramatic

increase in the size and extent of neural recordings. Even so, interpretation of this data often

depends on manual operations and requires considerable knowledge about the nature of the

representation. Decoding provides a means to infer the information content of such recordings but

typically requires highly processed data and prior knowledge of the encoding scheme. Here, we

developed a deep-learning-framework able to decode sensory and behavioural variables directly

from wide-band neural data. The network requires little user input and generalizes across stimuli,

behaviours, brain regions, and recording techniques. Once trained, it can be analysed to determine

elements of the neural code that are informative about a given variable. We validated this approach

using data from rodent auditory cortex and hippocampus, identifying a novel representation of

head direction encoded by putative CA1 interneurons.

INTRODUCTION1

A central aim of neuroscience is deciphering the neural code, understanding the neural representa-2

tion of sensory features and behaviours, as well as the computations that link them. The task is3

complex, and although there have been notable successes - such as the identification of orienta-4

tion selectivity in V1 (Hubel and Wiesel, 1959) and the representation of self-location provided by5

hippocampal place cells (O’Keefe and Dostrovsky, 1971) - progress has been slow. Neural activity6

is high dimensional and often sparse, while the available datasets are typically incomplete, being7

both temporally and spatially limited. This problem is compounded by the fact that the code is8

multiplexed and functionally distributed (Walker et al., 2011). As such, activity in a single region may9

simultaneously represent multiple variables, to differing extents, across different elements of the10

neural population. Taking the entorhinal cortex for example, a typical electrophysiological recording11

might contain spike trains from distinct cells predominantly encoding head direction, self-location,12

and movement speed via their firing rates (Sargolini et al., 2006; Kropff et al., 2015; Hafting et al.,13

2005), while other neurons have more complex composite representations (Hardcastle et al., 2017).14

At the same time, information about speed and location can also be identified from the local field15

potential (LFP) (McFarland et al., 1975) and the relative timing of action potentials (O’Keefe and16

Recce, 1993). Fundamentally, although behavioural states and sensory stimuli can generally be17

considered to be low dimensional, finding the mapping between noisy neural representations and18

these less complex phenomena is far from trivial.19

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 26, 2020. ; https://doi.org/10.1101/871848doi: bioRxiv preprint 

https://doi.org/10.1101/871848
http://creativecommons.org/licenses/by-nc-nd/4.0/


INTERPRETING WIDE-BAND NEURAL ACTIVITY USING CONVOLUTIONAL NEURAL NETWORKS 2

Historically, the approach for identifying the correspondence between neural data and external20

observable states – stimuli or behaviour – has been one of raw discovery. An experimenter, guided21

by existing knowledge, must recognise the fact that the activity covaries with some other factor.22

Necessarily this is an incremental process, favouring identification of the simplest and most robust23

representations, such as the sparse firing fields of place cells (Muller et al., 1987). Classical methods,24

like linear regression and linear-nonlinear-Poisson cascade models (Corrado et al., 2005; Kropff25

et al., 2015), provide powerful tools for the characterisation of existing representations but are26

less useful for the identification of novel responses - they typically require highly processed data27

in conjunction with strong assumptions about the neural response, and in the former cases are28

limited to one dimensional variables. Recent advances in machine learning suggest an alternative29

strategy. Artificial neural networks (ANNs) trained using error backpropagation regularly exceed30

human-level performance on tasks in which high dimensional data is mapped to lower dimensional31

labels (Krizhevsky et al., 2012; Mnih et al., 2015). Indeed, these tools have successfully been applied32

to processed neural data - accurately decoding behavioural variables from observed neural firing33

rates (Glaser et al., 2017; Tampuu et al., 2018). However, the true advantage of ANNs is not their34

impressive accuracy but rather the fact that they make few assumptions about the structure of35

the input data and, once trained, can be analysed to determine which elements of the input, or36

indeed combination of elements, are most informative (Cichy and Kaiser, 2019; Hasson et al., 2020;37

Cammarata et al., 2020). Moreover, this framework provides full control over the weights, activations,38

and objective functions of the model, allowing fine-grained analysis of the inner workings of the39

network. Viewed in this way ANNs potentially provide a means to accelerate the discovery of novel40

neural representations.41

To test this proposal, we developed a convolutional network (LeCun et al., 2015) able to take min-42

imally processed, wide-band neural data as input and output predicted continuous regression43

variables. In the first instance, we trained the model with unfiltered and unclustered electrophysio-44

logical recordings made from the CA1 pyramidal cell layer in freely foraging rodents. As expected,45

the network accurately decoded the animals’ location, speed, and head direction - without spike46

sorting or additional user input. Analysis of the trained network showed that it had ‘discovered’ place47

cells (O’Keefe and Dostrovsky, 1971; O’keefe and Nadel, 1978) - frequency bands associated with48

pyramidal waveforms being highly informative about self-location (Epsztein et al., 2011). Equally,49

it successfully recognized that theta-band oscillations in the LFP were informative about running50

speed (McFarland et al., 1975; Jeewajee et al., 2008). Unexpectedly, the network also identified51

a population of putative CA1 interneurons that encoded information about head direction. We52

corroborated this observation using conventional tools, confirming that the firing rate of these53

neurons was modulated by facing-direction, a previously unreported relationship. Beyond this we54

found the trained network provided a means to efficiently conduct analyses which would otherwise55

have been complex or time consuming. For example, comparison of all frequency bands revealed56

positive interactions between frequencies associated with waveforms - components of the neural57

code that convey more information together than when considered individually. Subsequently, to58

demonstrate the generality of this approach, we applied the same architecture to electrophysio-59

logical data from auditory cortex as well as two-photon calcium imaging data (Stosiek et al., 2003)60

acquired while mice explored a virtual environment.61

Our model differs markedly from conventional decoding methods which typically use Bayesian62

estimators (Zhang et al., 1998) in conjunction with highly processed neural data. In the case of63

extracellular recordings, this usually implies that time-series are filtered and processed to detect64

action potentials and assign them to specific neurons. Necessarily this discards information in65
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frequency bands outside of the spike range, potentially introducing biases implicit in the algorithm66

used (Pachitariu et al., 2016; Chung et al., 2017; Lee et al., 2017) and operator’s subjective prefer-67

ences (Harris et al., 2000; Wood et al., 2004), and - despite considerable advances - still demands68

considerable manual input to adjust clusters (Pachitariu et al., 2016). Furthermore, accurate calcula-69

tion of prior expectations regarding the way in which the data varies with the decoded variable – an70

essential component of Bayesian decoding – requires considerable knowledge about the structure71

of the neural signal being studied and appropriate noise models. Other authors have attempted to72

address some of these shortcomings, for example, decoding without assigning action potentials to73

specific neurons (Kloosterman et al., 2013; Ackermann et al., 2019; Deng et al., 2015) or combining74

LFP and spiking data (Stavisky et al., 2015) for cursor control in patients. However, these approaches75

did not use wide-band unprocessed data and relied on existing assumptions about neural coding76

statistics, while their primary focus was simply to improve decoding accuracy. In contrast, the77

flexible, general-purpose approach we describe here requires few assumptions and - once trained78

- can be interrogated to inform the discovery of novel neural representations. In addition, as the79

model does not rely on specific oscillations or spike waveforms, it can easily generalize across80

domains - a fact we demonstrate with optical imaging data.81

RESULTS82

Accurate decoding of self-location from CA1 recordings83

In the first instance we sought to evaluate our network-based decoding approach on well charac-84

terised neural data with a clear behavioural correlate. To this end we used as input extracellular85

electrophysiological signals recorded from hippocampal region CA1 in five freely moving rats - place86

cells from this area being noted for their spatially constrained firing fields that convey considerable87

information about an animals self-location (O’Keefe and Dostrovsky, 1971; Muller et al., 1987).88

Animals were bilaterally implanted with 32 tetrodes and, after recovery and screening, 128 channel89

wide-band (0Hz to 15000 Hz sampled at 30kHz) recordings were made while the rats foraged in a90

1.25 x 1.75m arena for approximately 40 minutes (see methods). Raw electrophysiological data91

were decomposed using Morlet wavelets to generate a three-dimensional representation depicting92

time, channels, and frequencies from 2Hz to 15000Hz (Figure 1A) (Torrence and Compo, 1998).93

Using the wavelet coefficients as inputs, the model was trained in a supervised-fashion using error94

backpropagation with the X and Y coordinates of the animal as regression targets.95

To reduce computational load and improve test set generalisation we use 2D-convolutions with96

shared weights applied to the three-dimensional input (Figure 1B, Table S1) - the first eight convolu-97

tional layers having weights shared across channels and the final six across time. Implementing98

weight sharing in this way is desirable as the model is able to efficiently identify features that reoccur99

across time and channels, for example, prominent oscillations or waveforms, while also drastically100

reducing model complexity. For comparison, an equivalent architecture trained to decode position101

from 128 channels of hippocampal electrophysiological but without shared weights had 38,144,900102

hyperparameters compared to 5,299,653 - an increase of 720%. The more complex model took 4.7103

hours to run per epoch, as opposed to 175s, and ultimately yielded less accurate decoding (Figure104

S1).105

The model accurately decoded position from the unprocessed neural data in all rats, providing a106

continuous estimate of location with an average error less than 10% of the environment’s length.107

This demonstrates that, as expected, the network was able to identify informative signals in the raw108

neural data (Mean error 17.31cm ± 4.46cm; Median error 11.40cm ± 3.82cm; Chance level 65.03cm109
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Figure 1: Accurate decoding of self-location from unprocessed hippocampal recordings. A) Top, a typical ’raw’ extracellular
recording from a single CA1 electrode. Bottom, wavelet decomposition of the same data, power shown for frequency bands from 2Hz

to 15kHz (bottom to top row). B) At each timestep wavelet coefficients (64 time points, 26 frequency bands, 128 channels) were fed

to a deep network consisting of 2D convolutional layers with shared weights, followed by a fully-connected layer with a regression

head to decode self-location; schematic of architecture shown. C) Example trajectory from R2478, true position (black) and decoded

position (blue) shown for 3s of data. Full test-set shown in Video 1. D) Distribution of decoding errors from trial shown in (C), mean
error (14.2cm ± 12.9cm, black), chance decoding of self-location from shuffled data (62.2cm ± 9.09cm, red). E) Across all five rats,

the network (CNN) was more accurate than a machine learning baseline (SVM) and a Bayesian decoder (Bayesian) trained on action

potentials. This was also true when the network was limited to high frequency components (>250Hz, CNN-Spikes). When only local

frequencies were used (<250Hz, CNN-LFP), network performance dropped to the level of the Bayesian decoder (distributions show the

five-fold cross validated performance across each of five animals, n=25). F) Decoding accuracy for individual animals, the network

outperformed the Bayesian decoder in all cases. An overview of the performance of all tested models can be seen in Figure S2. G) The

advantage of the network over the Bayesian decoder increased when the available data was reduced by downsampling the number of

channels (data from R2478). Inset shows the difference between the two methods.
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± 6.91cm; Figure 1C,D). To provide a familiar benchmark, we applied a standard Bayesian decoder110

with a continuity prior (Zhang et al., 1998; Ólafsdóttir et al., 2015) to the spiking data from the same111

datasets (see methods). To this end, action potentials were identified, clustered, manually curated,112

and spike time vectors were used to decode location - data contained in the local field potential113

(LFP) was discarded. Notably our CNN approach was consistently more accurate than the Bayesian114

decoder, exceeding its performance in all animals (Bayesian mean error 23.38cm ± 4.35cm; network115

error 17.31cm ± 4.46 cm; Wilcoxon signed-rank test: T=18, p=0.0001). Similarly, to compare the CNN116

against standard machine learning tools we used the wavelet transformed data to train support117

vector machines (SVMs). Note that in this case the spatial structure of the input is inevitably lost118

as the input features are transformed to a one-dimensional representation. Both linear (53.6cm ±119

14.77cm; Figure 1E) and non-linear SVMs ((61.2cm ± 15.67cm) performed worse than the CNN.120

The relative advantage over the Bayesian decoder increased further when the number of channels121

used for decoding was downsampled to simulate smaller recordings (linear regression Wald-test122

(n=31), s=-0.65, p=1.83e-10; Figure 1G). Notably, the model achieved a similar decoding performance123

with twenty tetrodes (80 channels, 23.45cm ± 3.15cm) as the Bayesian decoder reached with the124

full data set (128 channels, 23.25cm ± 2.79cm, Figure 1G). The high accuracy and efficiency of the125

model suggest that the CNN utilizes additional information contained in the LFP as well as from126

sub-threshold spikes and those that were not successfully clustered. Note that while the Bayesian127

decoder explicitly incorporates information about the animals’ positions at previous timesteps and128

probability with which each spatial location is visited, our model is effectively feed-forward - being129

presented with 2̃s windows of data.130

To better understand which elements of the raw neural data the network used, we retrained our131

model using datasets limited to just the LFP (<250Hz) and just the spiking data (>250Hz). In both132

cases, the network accurately decoded location (spikes-only (CNN-Spikes) mean error 17.23cm ±133

4.69cm; LFP-only (CNN-LFP) mean error 24.24cm ± 6.00cm; Figure 1E), indicating that this framework134

is able to extract information from varied electrophysiological sources. Consistent with the higher135

information content of action potentials, the spikes-only network was considerably more accurate136

than the LFP-only network (Wilcoxon signed-rank test, two-sided (n=25): T=0, p=1.22e-05), although137

the LFP-only network was still comparable with the spike-based Bayesian decoder (Bayesian 23.38cm138

± 4.35cm; LFP 24.24cm ± 6.00cm; Wilcoxon signed-rank test, two-sided (n=25): T=136, p=0.475).139

Note that previous studies have shown that demodulated theta is informative about the position of140

an animal in its environment (Agarwal et al., 2014). However, in those experiments theta oscillations141

were converted into a complex-valued signal, which carried both the magnitude and phase of theta142

- here we only used the magnitude for decoding of position.143

Simultaneous decoding of multiple factors144

The hippocampal representation of self-location is arguably one of the most readily identifiable145

neural codes - at any instance a small number of sparsely active neurons are highly informative. To146

provide a more stringent test of the network’s ability to detect and decode behavioural variables147

from unprocessed neural signals, we retrained with the same data but simultaneously decoded148

position, speed, and head-direction within a single model. CA1 recordings are known to incorporate149

information about these additional factors but their representation is less pronounced than that150

for self-location. Thus, the spatial activity of place cells is known to be weakly modulated by head151

direction (Jercog et al., 2019; Yoganarasimha et al., 2006), while place cell firing rates and both152

the frequency and amplitude of theta, a 7-10Hz LFP oscillation, are modulated by running speed153

(McFarland et al., 1975; Jeewajee et al., 2008). In this more complex scenario the architecture and154
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Figure 2: Simultaneous decoding
of multiple variables from hip-
pocampal data.
A) Position, head direction, and

running speed were accurately de-

coded in concert by a single net-

work. Data from all five animals,

each point indicates an error for

a single sample. The red dashed

line indicates the chance level ob-

tained by shuffling the input relative

to the output while fully retraining

the model.

B) R2-scores, a loss-invariant mea-

sure of model performance - rang-

ing from 1 (perfect decoding) to neg-

ative infinity - allowing performance

to be compared between dissimilar

variables. Data as in (A), each point

corresponds to one of five cross-

validations within each of five rats.

hyper-parameters remained the same with just the final fully connected layer of the network being155

replicated, one layer for each variable, with the provision of appropriate loss functions - cyclical156

mean absolute error for head direction and mean absolute error for speed (see Methods). All157

three variables were decoded simultaneously and accurately (Position, 17.78cm ± 4.96cm; Head158

Direction, 0.80rad ± 0.18rad; Speed 4.94cm/s ± 1.00cm/s; Figure 2A & Video 1), with no meaningful159

decrement in performance relative to the simpler network decoding only position (position-only160

model 17.31cm ± 4.46; combined model 17.78cm ± 4.96cm; Wilcoxon signed-rank test two-sided161

(n=25): T=116, p=0.2108). Indeed, comparison of the R2-score metric from the fully trained network162

- a measure which represents the portion of variance explained and is independent of the loss163

function - indicated that mean decoding performance was above chance for all three behaviours164

(R2-score Position 0.86 ± 0.08, Head Direction 0.60 ± 0.12, Speed 0.72 ± 0.14, Chance R2-score165

Position -0.14 ± 0.13, Head Direction 0.04 ± 0.11, Speed -0.16 ± 0.22) (Figure 2B). Thus, the network166

was able to effectively access multiplexed information embedded in minimally processed neural167

data.168

Interrogation of electrophysiological recordings169

Although the network supports accurate decoding of self-location from electrophysiological data,170

this was not our main aim. Indeed, our primary goal for this framework was to provide a flexible tool171

capable of discovering and characterising sensory and behavioural variables represented in neural172

data - providing insight about the form and content of encoded information. To this end, in the fully173

trained network, we used a shuffling procedure to estimate the influence that each element of the174

3D input (frequencies x channel x time) had on the accuracy of the decoded variables (see Methods).175

Since this approach does not require retraining it provides a rapid and computationally efficient176

means of assessing the contribution made by different channels, frequency bands, and time points.177

Turning first to position decoding, we saw that the adjacent 469Hz and 663Hz frequency bands were178
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by far the most influential - together accounting for more than 42% of the information about self-179

location derived from the electrophysiological data (Figure 3A). Since these recordings were made180

from CA1, we hypothesized that these frequencies corresponded to place cell action potentials.181

To confirm this hypothesis - and demonstrate that it was possible to objectively use this network-182

based approach to identify the neural basis of decoded signals - we applied the following approach183

(see Methods): First, we isolated the waveforms of place cells (n=629) and putative interneurons184

(n=91) in all animals, which were identified using a conventional approach (Pachitariu et al., 2016;185

Klausberger et al., 2003; Csicsvari et al., 1999). Second, for these two groups, we calculated the186

relative representation of the 26 frequency bands in their waveforms. We found that the highly187

informative 469Hz and 663Hz bands were the dominant components of place cell action potentials188

and that in general the power spectra of these spikes strongly resembled the frequency influence189

plot for position decoding (Spearman rank-order correlation, two-sided (n=26) ρ=0.84, p=7.63e-08;190

Figure 3B). In contrast, putative interneurons - which typically have a shorter after-hyperpolarisation191

than place cells (English et al., 2017) - were characterised by higher frequency components (Figure192

3B, Mann-Whitney rank test interneuron (n=91) vs. place cell (n=629), U=1009.5, p=2.47e-13), with193

the highest power at 5304Hz and 3750Hz, bands that were considerably less informative about194

self-location (Figure 3A).195

Since the frequencies associated with place cell waveforms were the most informative, this indicated196

that the network had correctly identified place cells as the primary source of spatial information197

in these recordings. To corroborate this, we used the same data and for each channel eliminated198

power in the 469Hz and 663Hz frequency bands at time points corresponding to either place cell199

or interneuron action potentials. As expected, position decoding was most strongly affected by200

removal of the place cell time points (Mann-Whitney-U-Test (n=629 place cells, n=91 interneurons):201

U=1497, p=2.86e-08; Figure 3C). Using the same shuffling method we also analysed how informative202

each channel was about self-location (Figure S3). In particular, we found that the number of place203

cells identified on a tetrode from the spike sorted data was highly correlated with the tetrode’s204

spatial influence (Spearman rank-order correlation (n=128) ρ=0.71, p=5.11e-06) and that the overall205

distribution of both number of place cells and spatial influence followed a log-normal distribution206

(Shapiro-Wilk test on log-transformed data, number of place cells, W=0.79, p=3.59e-05; tetrode207

influence W=0.59, p=3.04e-08; Figure S3B). In sum, this analysis correctly identified that the firing208

rates of both place cells and putative interneurons are informative about an animal’s location, place209

cells more so than interneurons (Wilent and Nitz, 2007). The analysis also highlighted the spatial210

activity of place cells, pointing to the stable place fields as a key source of spatial information.211

A potential concern is that our approach might not identify multiple frequency bands if the in-212

formation they contain is mutually redundant. The previous example, in which place cells and213

putative interneurons were both found to be informative about self-location, demonstrates this214

is not entirely the case. However, to further exclude this possibility we compared the influential215

frequencies identified from our complete model with models trained on just a single frequency band216

at a time. Specifically, twenty-six models were trained, one for each frequency - the performance217

of each of these models being taken as an indication of the information present in that band. As218

expected we found both methods identified similar frequencies as indicated by a high correlation219

between our influence measure and the performance of single frequency band models (Position,220

Spearman rank-order correlation (n=26) ρ=0.88, p<0.001; Head Direction, ρ=0.82, p<0.001; Speed,221

ρ=0.47, p=0.02, Figure S4). Note that, although each model was individually faster to train than the222

complete model, the time to train all 26 was considerably longer than the single model applied223

simultaneously to all frequencies (51.2 hours vs. 8.6 hours, 6̃x faster). Thus our combined approach224
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Figure 3: Analysis of trained network identifies informative elements of the neural code.
(A) A shuffling procedure was used to determine the relative influence of different frequency bands in the network input. Left, the

469Hz and 663Hz components - corresponding to place cell action potentials - were highly informative about animals’ positions. Middle,

both place cells and putative interneurons (5304Hz) carried information about head direction. Right, several frequency bands were

informative about running speed, including those associated with the LFP (10.4Hz) and action potentials. Data from all animals. (B)

Wavelet coefficients of place cell (top) and interneuron (bottom) waveforms are distinct and correspond to frequencies identified in A.

Inset, average waveforms. Data from all animals. (C) Frequency bands associated with place cells (469 & 663Hz) were more informative

about position than those associated with putative interneurons (5304 Hz) - their elimination produced a larger decrement in decoding

performance (p<0.001). Data from all animals. (D) A subset of putative CA1 interneurons encodes head direction. 33/91 interneurons

from five animals exhibited pronounced directional modulation that was stable throughout the recording (green). Depth of modulation

quantified using Kullback-Leibler divergence vs. uniform circle. Stability assessed with the Pearson correlation between polar ratemaps

from the first and second half of each trial (dark grey and light grey). Cells with p<0.01 for both measures were considered to be reliably

modulated by head direction. Inset, example polar ratemaps. Data from all animals.

provides a fair and efficient means to determine the informative elements of wide-band neural data.225

More importantly, analyses of the full network enables multiple frequency bands to be considered226

in-concert, providing a means to identify interactions (e.g.Figure S5) that are not accessible to227

standard single-frequency methods.228

CA1 interneurons are modulated by head direction229

Next, having validated our approach for spatial decoding, we examined the basis upon which the230

network was able to decode head direction. Although place cells primarily provide an allocentric231

spatial code, their infield firing rate is known to be modulated by heading direction (Muller et al.,232

1994; Rubin et al., 2014). Consistent with the presence of this directional code, we again saw233

that the most influential frequencies for head direction decoding were those associated with234

place cells (469Hz and 663Hz; Figure 3A). However, the distribution also incorporated a secondary235

peak corresponding to the frequencies typical for interneuron waveforms (Spearman rank-order236

correlation (n=26) ρ=0.76, p=5.71e-06, Fig 3AB). Presubicular interneurons have been shown to be237
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modulated by both head direction and angular velocity (Preston-Ferrer et al., 2016) but to the best of238

our knowledge no similar responses have been noted in CA1. To establish if putative interneurons239

conveyed information about head direction we again used an ’elimination’ analysis on data from all240

five animals - the two frequency bands most strongly associated with interneurons (3750Hz and241

5304Hz) were scrambled at time points when interneuron spikes were present. Consistent with the242

influence plots, we found that selectively eliminating putative interneurons degraded the accuracy243

with which head direction was decoded (relative influence: 0.089 ± 0.043, two-sided t-test (n=91)244

t=4.16, p=0.014). As a final step, to verify this novel observation we reverted to a standard approach.245

Specifically, we calculated the directional ratemap for each interneuron using only periods when the246

animal was in motion (>10cm/s), determined the Kullback-Leibler divergence vs. a uniform circle247

(Doeller et al., 2010), and applied a shuffling procedure to determine significance - as a whole the248

population exhibited reliable but weak modulation of interneuronal firing rate by head direction249

(Kullback-Leibler Divergence (n=91): 0.0067 ± 0.009) with 58.2% (53/91) of cells being individually250

significant (p<0.01). Behaviours that are inhomogeneously distributed or confounded can result251

in spurious neural correlates (Muller et al., 1994). To control for this possibility we repeated the252

analysis using only data from the centre of the environment (>25cm from the long sides of the253

enclosure and >20cm from the short sides). Additionally, to verify stability, we controlled that254

ratemaps generated from the first and second half of the trial were correlated (Pearson correlation,255

p<0.01). Under this more rigorous analysis, we confirmed that a sub-population (36.2%, 33/91) of256

putative hippocampal interneurons were modulated by head direction, a previously unrecognised257

spatial correlate (Figure 3D).258

Multiple electrophysiological features contribute to the decoding of speed259

The frequency influence plots for running speed also showed several local peaks (Figure 3A), that260

in all cases corresponded to established neural correlates. In rodents, theta frequency and power261

are well known to co-vary almost linearly with running speed (McFarland et al., 1975; Jeewajee262

et al., 2008), accordingly analysis of the network identified the 10.4Hz frequency band as the most263

influential. Similarly, the firing rate of place cells increases with speed, an effect captured by the264

peak at 663Hz. Interestingly a clear peak is also evident at 2652Hz, indicating that interneuron265

firing rates are also informative - originating either from CA1 speed cells (Góis and Tort, 2018)266

or from theta-locked interneurons (Huh et al., 2016). Finally, a 4th peak was evident at 3.66Hz267

and 5.17Hz, a range that corresponds to type 2 (’atropine sensitive’) theta which is present during268

immobility (Kramis et al., 1975; Sainsbury et al., 1987). To corroborate this conclusion, we calculated269

the correlation between power in each frequency band and running speed (Figure S6A), confirming270

that the latter band showed the expected negative correlation - higher power at low speeds - while271

the other three peaks were positively correlated.272

Generalization across brain regions and recording techniques273

As a final step, we sought to determine how well our approach generalised to other recording274

techniques and brain areas. Addressing the latter point first, we trained the network using electro-275

physiological recordings (64 channels) from the primary auditory cortex of a freely-moving mouse276

while pure tone auditory stimuli (4 to 64kHz, duration 200 ms) were played from a speaker (Figure277

4A). As above, the raw electrophysiological data was transformed to the frequency domain using278

Morlet wavelets and this wide-band frequency representation was used as input. The model archi-279

tecture and hyperparameters were kept the same, reducing only the number of down-sampling280

steps because of the smaller input size(64 channels vs. 128 channels for CA1 recordings - each down-281
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Figure 4: Model generalizes across recording techniques and brain regions
(A) Overview of auditory recording. We recorded electrophysiological signals while the mouse is freely moving inside a small enclosure

and is presented with pure tone stimuli ranging from 4kHz to 64kHz. (B) R2-score for decoding of frequency tone from auditory cortex

(0.73 ± 0.08). Each dot describes the R2-score for a 5s sample of the experiment. Chance level is indicated by the red line. (C) An

example section for decoding of auditory tone frequencies from auditory electrophysiological recordings, real tone colored in black,

decoded tone in green, the line between real and decoded indicates magnitude of error. (D) Influence plots for decoding of auditory

tone stimuli, same method as used for CA1 recordings. (E) Calcium recordings from a mouse running on a linear track in VR. We record

from 685 cells and use Suite2p to preprocess the raw images and extract calcium traces which we feed through the model to decode

linear position. Overlay shows relative influence for decoding of position calculated for each putative cell. (F) R2-score for decoding

of linear position from two-photon CA1 recordings (0.90 ± 0.03). Each dot describes the R2-score for a 5s sample of the experiment.

Chance level is indicated by the red line. (G) Example trajectory through the virtual linear track (linearized to [−π, π] with real position
(black) and decoded position (orange)). (H) Influence plots for decoding of position from two-photon calcium imaging. Note that the

range of frequencies is between 0Hz and 15Hz as the sampling rate of the calcium traces is 30Hz.
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sampling layer halves the number of units in previous layer). The auditory stimuli - training target -282

was modelled as a continuous variable with ’-1’ indicating no tone present and the log-transformed283

frequency of the sound at all other time points. As expected, this model architecture was also able284

to accurately decode tone stimuli from auditory cortex (R2-scores of 0.734 ± 0.080, chance model:285

-0.432 ± 0.682, Figure 4B,C). Informative frequencies were concentrated around 663Hz and 165Hz,286

indicating that information content about tone stimuli comes mostly from pyramidal cell activity.287

Having shown that the model generalises across different brain areas we wanted to further investi-288

gate if it generalizes across different recording techniques. Therefore, in the third set of experiments289

we acquired two-photon calcium fluorescence data from mouse CA1 while the head-fixed animal290

explored a 230cm virtual track. Raw data was preprocessed to generate denoised activity traces291

for putative cells (n=685 regions of interest), these were then decomposed to a frequency repre-292

sentation using the same wavelet approach as before - only frequency bands between 0Hz and293

15Hz being used because of the lower data rate (30Hz) (see methods, Figure 5E). As before, wavelet294

coefficients were provided to the network as input and the only change was an increase in the295

number of down-sampling steps to account for the large number of ROIs (685 ROIs vs 128 channels296

for CA1 recordings). The network was able to accurately decode the animal’s position on the track297

(mean error: 15.87 ± 16.33 cm, R2-scores of 0.90 ± 0.03 vs. chance model -0.05 ± 0.127, Figure 4F,G).298

Using the same shuffling technique as before, we generated influence plots indicating the relative299

information provided by putative cells (Fig 4E) and frequencies (Fig 4H) . In the frequency domain,300

the most informative bands were 0.33Hz and 0.46Hz, unsurprisingly mirroring the 1s to 2s decay301

time of GCaMP6s (Chen et al., 2013). Interestingly the relative information content of individual cells302

was highly heterogeneous, a small subset (18.2%) of cells accounted for half (50%) of the influence -303

these units being distributed across the field of view with no discernible pattern (Figure 4E).304

DISCUSSION305

The neural code provides a complex, non-linear representation of stimuli, behaviours, and cognitive306

states. Reading this code is one of the primary goals of neuroscience - promising to provide insights307

into the computations performed by neural circuits. However, decoding is a non-trivial problem,308

requiring strong prior knowledge about the variables encoded and, crucially, the form in which they309

are represented. Not only is this information often incomplete or absent but a full characterisation310

of the neural code is precisely the question we seek to solve. Addressing these limitations, we311

investigated the potential of a deep-learning framework to decode behaviours and stimuli from312

wide-band, minimally processed neural activity. To this end, we designed a model architecture313

using simple 2D convolutions with shared weights, omitting recurrent layers (Bai et al., 2018).314

These intentional design choices resulted in a fast, data efficient architecture that could be easily315

interpreted to discover which elements of the neural code provided information about specific316

variables - a decrease in network performance was accepted as a trade-off. We showed that this317

approach generalised well across brain regions and recording techniques capturing both spatial and318

temporal information in the signal, the only changes necessary to the network being adjustments319

to handle the number of channels in the input matrix.320

In the first instance we validated our model using the well characterised spatial representations of321

rodent CA1 place cells. Decoding performance amply exceeded a Bayesian framework, as well as322

a standard machine learning approach that proved ineffective on the non-linear representation323

of self-location. Importantly, simple analyses of the trained network correctly indicated that place324

cell action potentials were the most informative spatial signal - confirming that this tool can deliver325
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insights into the nature of the neural code. In a further set of experiments we showed that the326

network was able to concurrently identify multiple representations of head direction and running327

speed, including several that were only recently reported and one - interneuron encoding of head328

direction - that was previously unreported. Importantly, this framework can also identify interactions329

between frequency components, an analysis that is intractable to conventional methods which330

consider features independently. Finally, we demonstrated the flexibility of this approach, applying331

the same network and hyper-parameters, with adjustments made only to the input and output332

layers, to two-photon calcium data and extracellular recordings from auditory cortex.333

In sum, we believe deep-learning based frameworks such as this constitute a valuable tool for334

experimental neuroscientists, being able to provide a general overview as to whether a variable335

is encoded in time-series data and also providing detailed information about the nature of that336

encoding - when, where, and in what frequency bands it is present. That is not to say that this337

approach is a complete substitute for conventional analyses - it merely constrains the search space338

for variables that might be present and their plausible format. Indeed, we imagine this network339

might be best used as a first pass analysis, followed by conventional approaches to determine340

explicitly if a variable is present - much as we did for the interneuron representation of head341

direction. While we tested the network with optical and electrophysiological data it is highly likely342

that it will perform well with neural data acquired in most experimental settings, including fMRI,343

EEG, and MEG.344

METHODS345

Tetrode recordings from CA1346

Fivemale Lister Hooded rats were used for this study. All procedures were approved by the UK Home347

Office, subject to the restrictions and provisions contained in the Animals Scientific Procedures Act348

of 1986. All rats (333-386 g/13-17 weeks old at implantation) were implanted with two single-screw349

microdrives (Axona Ltd.) targeted to the right and left CA1 (ML: 2.5 mm, AP: 3.8 mm posterior to350

bregma, DV: 1.6 mm from dura). Each microdrive was assembled with two 32 channel Omnetics351

connectors (A79026-001) and 16 eight tetrodes of twisted wires (either 17 µm H HL coated platinum352

iridium, 90% and 10% respectively, or 12.7 µm HM-L coated Stablohm 650; California Fine Wire),353

platinum plated to reduce impedance to below 150 kΩ at 1 kHz (NanoZ). After surgery, rats were354

housed individually on a 12 hr light/dark cycle and after one week of recovery rats were maintained355

at 90% of free-feeding weight with ad libitum access to water.356

Screening was performed from one week after surgery. Electrophysiological data was acquired357

using Open Ephys recording system (Siegle et al., 2017) and a 64-channel amplifier board per drive358

(Intan RHD2164). Positional tracking performed using a Raspberry Pi with Camera Module V2359

(synchronised to Open Ephys system) and custom software, that localised two different brightness360

infra-red LEDs attached to amplifier boards on camera images acquired at 30 Hz. During successive361

recording sessions in a separate screening environment 1.4 x 1.4 m the tetrodes were gradually362

advanced in 62.5 µm steps until place cells were identified. During the screening session, the animals363

were often being trained in a spatial navigation task for projects outside the scope of this study.364

The experiments were run during the animals’ dark period of the L/D cycle. The recording sessions365

used in this study were around 40 min long, depending on the spatial sampling of the animal,366

in a rectangular environment of 1.75 x 1.25 m, on the second, third or fourth exposure, varying367

between animals. The environment floor was black vinyl flooring, it was constructed of 60 cm368
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high boundaries (MDF) colored matt black, surrounded by black curtains on the sides and above.369

There was one large cue card raised above the boundary and two smaller cue cards distributed on370

the side of the boundary. Foraging was encouraged with 20 mg chocolate-flavoured pellets (LBS371

Biotechnology) dropped into the environment by custom automated devices. The recordings used372

in this study were part of a longer session that involved foraging in multiple other different size373

open field environments.374

Rats were anaesthetised with isoflurane and given intraperitoneal injection of Euthanal (sodium375

pentobarbital) overdose (0.5 ml / 100 g) after which they were transcardially perfused with saline,376

followed by a 10% Formalin solution. Brains were removed and stored in 10% Formalin and 30%377

Sucrose solution for 3-4 days prior to sectioning. Subsequently, 50 µm frozen coronal sections were378

cut using a cryostat, mounted on gelatine coated or positively charged glass slides, stained with379

cresyl violet and cleared with clearing agent (Histo-Clear II), before covering with DPX and coverslips.380

Sections were then inspected using Olympus microscope and tetrode tracks reaching into CA1381

pyramidal cell layer were verified.382

Putative interneurons were classified based onwaveform shape, minimumfiring rate acrossmultiple383

environments and lack of spatial stability. Specifically, classified interneurons had waveform half-384

width less than 0.15 ms, maximum ratio of amplitude to trough of 0.4, minimum firing rate of 4385

Hz and maximal 0.75 spatial correlation of ratemaps from first and last half of the recording in386

any environment (Klausberger et al., 2003; Csicsvari et al., 1999). Note that we used the spatial387

stability in order to differentiate interneurons from place cells or grid cells, with no influence on the388

directional stability of the head direction cell analysis.389

Calcium recordings from CA1390

All procedures were conducted in accordance to UK Home Office regulations.391

One GCaMP6f mouse (C57BL/6J-Tg(Thy1-GCaMP6f)GP5.17Dkim/J, Jacksons) was implanted with an392

imaging cannula (a 3mm diameter x 1.5mm height stainless-steel cannula with a glass coverslip at393

the base) over CA1 (stereotaxic coordinates: AP=-2.0, ML=-2.0 from bregma). A 3mm craniotomy394

was drilled at these coordinates. The cortex was removed via aspiration to reveal the external395

capsule of the hippocampus. The cannula was inserted into the craniotomy and secured to the skull396

with dental cement. A metal head-plate was glued to the skull and secured with dental cement. The397

animal was left to recover for at least one week after surgery before diet restriction and habituation398

to head-fixation commenced.399

Following a period of handling and habituation, the mouse was head-fixed above a styrofoam wheel400

and trained to run for reward through virtual reality environments, presented on 3 LCD screens that401

surrounded the animal. ViRMEn software (Aronov and Tank, 2014) was used to design and present402

the animal with virtual reality linear tracks. Movement of the animal on the wheel was recorded403

with a rotatory encoder and lead to corresponding translation through the virtual track. During the404

experimental phase of the training, the animal was trained to run down a 230cm linear track and405

was required to lick at a reward port at a fixed, unmarked goal location within the environment406

in order to trigger release of a drop of condensed milk. Licks were detected by an optical lick407

detector, with an IR LED and sensor positioned on either side of the animal’s mouth. When the408

animal reached the end of the linear track, a black screen appeared for 2 seconds and the animal409

was presented with the beginning of the linear track, starting a new trial.410

Imaging was conducted using a two-photon microscope (resonant scanning vivoscope, Scientifica)411

using 16x/0.8-NA water-immersion objective (Nikon). GCaMP was excited using a Ti:sapphire laser412
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(Mai Tai HP, Spectra-Physics), operated with an excitation wavelength of 940nm. ScanImage software413

was used for data collection / to interface with the microscope hardware. Frames were acquired at414

a rate of 30Hz.415

The Suite2p toolbox (Pachitariu et al., 2017) was used to motion correct the raw imaging frames416

and extract regions of interest, putative cells.417

Tetrode recordings from auditory cortex418

Sound-evoked neuronal responses were obtained via chronically-implanted electrodes in the right419

hemisphere auditory cortex of one 17-week-old male mouse (M. musculus, C57Bl/6, Charles River).420

All experimental procedures were carried out in accordance with the institutional animal welfare421

guidelines and a UK Home Office Project License approved under the United Kingdom Animals422

(Scientific Procedures) Act of 1986.423

During recordings, the animal was allowed to freely move within a 11x21 cm cardboard enclosure,424

with one wall consisting of an acoustically-transparent mesh panel to allow unobstructed sound425

stimulation. Acoustic stimuli were delivered via two free-field electrostatic speakers (Tucker-Davis426

Technologies, FL, USA) placed at ear level, 7 cm from the edge of the enclosure. Recordings were427

performed inside a double-walled soundproof booth (IAC Acoustics), whose interior was covered428

by 4-cm thick acoustic absorption foam (E-foam, UK). Pure tones were generated using MATLAB429

(Matlab version R2015a; MathWorks, Natwick, MA, USA), and played via a digital signal processor430

(RX6, Tucker Davis Technologies, FL, USA). The frequency response of the loudspeaker was ±10431

dB across the frequency range used for stimulation. Pure tones of a duration of 200ms (including432

5 ms linear rise and fall times) of variable frequencies (4-64 kHz in 0.1 octave increments) were433

used for stimulation. The tones were presented at 65dB SPL at the edge of the testing box. The434

41 frequencies were presented pseudo-randomly, separated by a randomly varying inter-stimulus435

interval ranging from 500 to 510ms, for a total of 20 repetitions.436

Extracellular electrophysiological recordings were obtained using a custom chronically-implanted437

64-channel hyperdrive with two 32-channel Omnetics connectors (A79026-001) and 16 individually438

movable tetrodes (FlexDrive, (Voigts et al., 2013)). Tetrodes were made from 12.7 µm tungsten wire439

(99.95%, HFV insulation, California Fine Wire, USA) gold-plated to reduce impedance to 200kΩ at440

1kHz (NanoZ, Multichannel Systems). Neuronal signals were collected and amplified using two441

32-channel amplifier boards (Intan RHD 2132 headstages) and an Open Ephys recording system442

(Siegle et al., 2017) at 30kHz.443

Data Preprocessing444

Raw electrophysiological traces as well as calcium traces were transformed to a frequency repre-445

sentation using discrete-wavelet transformation (DWT). We decided to use wavelet transformation446

instead of windowed Fourier transform (WFT) as we expected a wide range of dominant frequencies447

in our signal for which the wavelet transformation is more appropriate (Torrence and Compo, 1998).448

For the wavelet transformation, we used the morlet wavelet:449

ψ0(η) = π−
1
4 ∗ exp(i ∗ ω0 ∗ η) ∗ exp(−η2/2) (1)

with a non-dimensional frequency constant w0 = 6. We noticed that downscaling the wavelets450

improved our model performance, prompting us to use an additional preprocessing step which451

effectively decreased the sampling rate of the wavelets to ψS Ra f ter = ψS Rbe f ore/M by a factor of M. This452
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can also be seen as an additional convolutional layer with a kernel size of M, a stride of M and453

weights fixed to
1
M . We performed a hyperparameter search for M with a simplified model and454

found the best performing model with M = 1000, thus effectively decreasing our sampling rate from455

30000 to 30 (Figure S7).456

As additional preprocessing steps we applied channel and frequency wise normalization using a457

median absolute deviation (MAD) approach. We calculated the median and the corresponding458

median absolute deviation for each frequency and channel on the training set and normalized our459

inputs as follows:460

Xc, f =
Xc, f − X̃c, f

median(|Xc, f − X̃c, f |)
(2)

where X̃i is the median of Xi. This approach turned out to be more robust against outliers in461

the signal than simple mean normalization. Additional min-max scaling did not further improve462

performance.463

Bayesian decoder464

As a baseline model, we used a Bayesian decoder which was trained on manually sorted and465

clustered spikes. Given a time window T and number of spikes K = (k1, ...kN) fired by N place cells,466

we can calculate the probability P(K|x), estimating the number of spikes K at location x:467

P(K|x) =
∏

Poisson(ki,Tαi(x)) =

N∏
i=1

(Tαi(x))ki

ki!
(3)

where αi(x) is the firing rate of cell i at position x. From this we can calculate the probability of the468

animals location given the observed spikes:469

P(x|K) = P(x)
N∏

i=1

αi(x)ki exp(−T
N∑

i=1

αi(x)) (4)

where P(x) is the historic position of the animal which we use to constrain P(x|K) to provide a fair470

comparison to the convolutional decoder. The final estimate of position is based on the peak of471

P(x|K):472

x̂ = argmaxxP(x|K) (5)

We used the same cross-validation splits as for the convolutional model and calculated the Euclidean473

distance between the real and decoded position. We performed grid search on one representative474

rat to find the optimal parameters regarding bin size and bin length for the Bayesian decoder. The475

optimized Bayesian decoder uses a Gaussian smoothing kernel with sigma = 1.5, a bin size of 2cm476

for binning the ratemaps, and uses a bin length of 0.5s.477

Convolutional neural network478

The model takes a three-dimensional wavelet transformed signal as input and uses convolutional479

layers connected to a regression head to decode continuous behaviour. We use a kernel size of480

3 throughout the model and keep the number of filters constant at 64 for the first 8 layers while481
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sharing the weights over the channel axis, while then doubling them for each following layer. For482

downsampling the input we use a stride of 2, intermixed between the time and frequency dimension483

(Table S1, Fig 1B). As regularization we apply gaussian noise N(µ, σ2) with µ = 0 and σ = 1 to each484

input sample.485

We extensively investigated the use of a convolutional long-short-term-memory (LSTM) after the486

initial convolutions, where we used backpropagation through time on the time dimension. In a487

simplified model this led to a small decrease in decoding error for the model trained on position.488

We nevertheless decided to employ a model with only simple convolutions as one important aspect489

of this model is the simplicity of use for a neuroscientist. Moreover we experimented with using a490

wavenet (Oord et al., 2016) inspired model directly on the raw electrophysiological signal but noticed491

that the model using the wavelet transformed input outperformed the wavenet approach by a492

margin of around 20cm for the positional decoding. The wavenet inspired model was considerably493

slower to train and therefore a full hyperparameter search could not be performed.494

Previous models contrasting recurrent vs. convolutional networks (Bai et al., 2018), find that495

convolutional layers outperform recurrent ones when trained directly on minimally processed496

data. The benchmarks typically used in classical sequence learning are one-dimensional, whereas497

we record two-dimensional raw input (time x channels) with a high sampling rate, complicating498

the amount of experimentation we could perform as the unprocessed data for a 2s time window499

exceeds the capacity of GPU memory (30000 x 128 time points per sample). In the related field of500

speech processing with sampling rates up to 48000Hz, the input is processed using log-mel feature501

banks which are computed with a 25ms window and a 10ms shift (Bahdanau et al., 2016; Chan et al.,502

2016; Prabhavalkar et al., 2017). We therefore opted for a similar approach by using downsampled503

wavelet transformed signals, resulting in a 33.3ms window given a downsampling size of z=1000.504

Note that with further downsampling there might be a risk of losing decoding precision, with some505

of the behaviours coming close to the downsampled rate (e.g. head direction can be up to 40deg/s)506

(Figure S7).507

Model training508

The model takes as input a three-dimensional wavelet transformed signal corresponding to time,509

frequency and channels, with frequencies logarithmically scaled between 0Hz-15000Hz. An optimal510

temporal window of T=64 (corresponding to 2.13s) was established by hyperparameter search511

taking into account the tradeoff between speed of training and model error. For training the model512

across the full duration of the experiment we divided the experiment into 5 partitions and used513

cross-validation for testing the model on before unseen data partitions, i.e. we first used partitions514

2 to 5 for training and 1 for testing, then 1,3,4 and 5 for training and 2 for testing and so on. The515

last partition uses 1 to 4 for training and 5 for testing. Importantly, the overlap introduced by using516

2s long samples was accounted for by using gaps (2s) between the training partitions, making sure517

that training and test set are fully independent of each other. We then randomly sampled inputs518

and outputs from the training set. Each input had corresponding outputs for the position (X, Y519

in cm), head direction (in radians) and speed (in cm/s). We used Adam as our learning algorithm520

with a learning rate of 0.0007 and stopped training after we sampled 18000 samples, divided into521

150 batches for 15 epochs, each batch consisting of 8 samples. During training we multiplied the522

learning rate by 0.2 if validation performance did not improve for 3 epochs. We performed random523

hyperparameter search for the following parameters: learning rate, dropout, number of units524

in the fully connected layer and number of input timesteps. For calculating the chance level we525

used a shuffling procedure in which the wavelet transformed electrophysiological signal is shifted526
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relative to its corresponding position. After shuffling we trained the model with the same setting as527

the unshuffled model and for the same number of epochs. The training was performed on one528

GTX1060 using Keras with Tensorflow as backend.529

Model comparison530

In order to compare the performance of the network against the Bayesian decoder we simulated531

both models in a setting with artificially reduced inputs. We used 1 to 32 tetrodes as input for both532

decoders, with tetrodes taken top to bottom in order of the given tetrode number. The input of533

run 1 was then comprised of tetrodes 1 to 32, while run 2 used tetrodes 1 to 31. The last run uses534

only the first tetrode as input to both models. We then retrained both models with the artificially535

reduced number of tetrodes making sure both models have the same cross-validation splits and536

report decoding errors as the average of each cross-validation split.537

Model evaluation538

For adjusting the model weights during training we use different loss terms depending on the539

behaviour or stimuli which we decode.540

LED =

√√√ M∑
i=1

(ŷi − yi)2 LMAE =
1
M

M∑
i=1

|ŷi − yi| LCMAE = min[|ŷi − yi|, |ŷi − yi| + π, |ŷi − yi| − π] (6)

For decoding of position from tetrode CA1 recordings we try to minimize the Euclidean loss between541

predicted and ground truth position (LED). We use the mean squared error for the decoding of542

speed (LMAE) and the cyclical absolute error for decoding of head direction (LCMAE). For all other543

behaviours or stimuli we use LMAE as the default optimizer.544

We decided to use R2 scores to measure model performance across different behaviours, brain545

areas and recording techniques. We use the formulation of fraction of variance accounted for (FVAF)546

instead of the squared Pearson’s correlation coefficient. Both terms are based on the fraction of547

the residual sum of squares and the total sum of squares:548

R2 = 1 −
∑M

i=1(yi − αŷi − β)2∑M
i=1(yi − ȳ)

(7)

with yi the ground truth of sample i, ŷi the predicted value and ȳ the mean value. Here, Pearson’s549

correlation coefficient tries to maximize R2 by adjusting α and β while FVAF uses α = 1 and β = 0550

(Fagg et al., 2009). This provides a more conservative measure of performance as FVAF requires551

that prediction and ground truth fit without scaling the predicted values. FVAF in turn has no lower552

bound as the prediction can be arbitrarily worse with a given scaling constant (i.e. given a ground553

truth value of 10, a prediction of 1000 has a lower (worse) R2 score than a prediction of 100).554

Influence maps555

To investigate which frequencies, channels or timepoints were informative for the respective556

decoding we performed a bootstrapping procedure after training the models. For each sample in557

time we calculated the real decoding error eo for each behaviour by using the wavelets as input. We558

then shuffle the wavelets for a particular frequency and re-calculate the error. We then define the559

influence of a given frequency or channel as the relative change:
es−eo

eo
where eo is the original error560

and es the shuffled error. We repeat this for the channel and time dimension to get an estimate of561

how much influence each channel or timepoint has on the decoding of a given behaviour.562
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We also tried calculating sample gradients with respect to our inputs (Simonyan et al., 2013). For563

this we calculated the derivative w by back-propagation for each sample and with respect to the564

inputs. In contrast to class saliency maps, we obtain a gradient estimate indicating how much each565

part of the input strongly drives the regression output. We calculate saliency maps for each sample566

cross-validated over the entire experiment. For deriving influence maps from the raw gradients we567

calculate the variance across the time dimension and use this as an estimate of how much influence568

each frequency band or channel has on the decoding. This method however introduces a lot of569

high-frequency noise in the gradients, possibly coming from the strides in the convolutional layers570

used throughout the model (Olah et al., 2017).571
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SUPPLEMENTARY MATERIAL721

Figure S1: Effect of weight sharing on model performance
We evaluated two models on the same dataset, using either shared weights and 2D-convolutions (blue) or independent weights using

3D-convolutions (grey). The model using shared weights reaches a lower validation loss and generalizes better (smaller overfit).

Figure S2: Decoding performance across different models
We calculated the Euclidean distance between the real behaviour and decoded behaviour across five rats and 4 different models. Full

model has access to all frequency bands from 2-15000Hz, Spikes model has access to frequencies >250Hz, while LFP model uses

frequencies <250Hz. Bayesian decoder was trained on spike sorted data. Chance level is indicated as red line.
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Figure S3: Influence of decoding across channels
(A) Channel influence scores for positional decoding (left). The most influential channel for the positional decoding has a high number

of place cells (right). Average ratemap of all clusters (top, n=21) and four example clusters (bottom) shown. (B) Influence scores per

tetrode (average influence over 4 channels) highly correlates with number of place cells on the tetrode, indicating that the network is

correctly identifying place cells as the spatially most informative neural correlate.

Figure S4: Performance of standard model compared with models trained on single frequency bands.
To determine if the frequencies identified as important by our complete model matched those that were most informative on their

own, we compared the influence plots (top row, same as Figure 3A in manuscript) generated for the standard model with accuracy

plots from models trained on individual frequency bands (bottom row). In all cases 128 channel recordings from rodent CA1 were used

to decode position (left column), head direction (middle column), and speed (right column). Influence plots were constructed as before.

Accuracy (bottom row) is simply defined as 1/decoding error and is not normalised relative to chance or ceiling performance, values

were generated using the same convolutional neural network while only providing a single frequency band for training and testing.

Although influence is not expected to be a simple linear function of accuracy, the results from the two methods were highly correlated:

position, Spearman’s Rho=0.88 (p<0.001); head direction, Rho=0.82 (p<0.001); running speed, Rho=0.47 (p=0.02). For each frequency

band we show the average cross-validation performance across five animals for three different behaviours and loss functions. Data

from all animals, the shaded area indicates the 95% confidence interval.
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Figure S5: A subset of frequency pairs exhibit greater than expected decoding influence We evaluated 325 frequency pairs to
investigate the relative influence of conjoint frequencies versus the sum of their individual influence on the decoding of position. (A)

For each frequency pair the combined influence - calculated by shuffling both together ( fxy) - is compared to the summed influence of

each alone ( fx + fy). Lower triangle shows fxy − ( fx + fy), upper triangle shows ( fx + fy) − fxy. Positive, red, entries in lower triangular

indicate frequency pairs with a combined influence greater than the sum of their individual influences. (B) Same a left matrix with

non-significant entries removed. (C) P values for the data in the left matrix determined using the Wilcoxon signed rank test, Holm-Sidak

corrections were applied for n=325 comparisons. There was a limited subset of frequency pairings in which the combinatorial influence

on position decoding significantly exceeded the sum of individual frequencies - these were focused on the bands associated with place

cell action potential (331.5Hz to 937.5Hz) and to a lesser extent on the ones associated with putative interneurons.

Figure S6: Running speed linearly correlates with power in multiple frequency bands
To identify simple relationships between behavioural variables and frequency bands we calculated the Spearman Rank Order Correlation

Coefficient (speed and position) and Circular Correlation (head direction) between the wavelet transformed electrophysiological signal

and the position, head direction and speed of the animal. (A) In the case of running speed, multiple frequency bands exhibited

moderate correlations. In particular, as previously reported, the strongest relationship was present in the theta-band (10.36Hz, rho =

0.415), a relationship that was present in all five rats (p < 0.01). (B,C) In contrast no such relationship was found for the other spatial

variables. Indeed, the strongest correlation identified was a negative relationship between x-axis position and power in the theta-band

(10.36Hz, rho=-0.0759, but which was not significant, p = 0.9803). Grey points indicate correlation for each animal (n=5), bold line shows

the mean of those.
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Figure S7: Effect of downsampling on model performance
We ran fully cross-validated experiments for different downsampling values of the wavelet transformed electrophysiological signal (z =

[10...10000]). Data from one animal (R2478), the shaded area indicates the 95% confidence interval.

Layer Layer Type Input Dimension Kernel Size Strides Filters

1 2D - Convolution (64, 26, 128) (3,3) (2,1) 64

2 2D - Convolution (32, 26, 128) (3,3) (1,2) 64

3 2D - Convolution (32, 13, 128) (3,3) (2,1) 64

4 2D - Convolution (16, 13, 128) (3,3) (1,2) 64

5 2D - Convolution (16, 7, 128) (3,3) (2,1) 64

6 2D - Convolution (8, 7, 128) (3,3) (1,2) 64

7 2D - Convolution (8, 4, 128) (3,3) (2,1) 64

8 2D - Convolution (4, 4, 128) (3,3) (1,2) 64

9 2D - Convolution (4, 2, 128) (3,2) (1,2) 64

10 2D - Convolution (4, 2, 64) (3,2) (1,2) 128

11 2D - Convolution (4, 2, 32) (3,2) (1,2) 128

12 2D - Convolution (4, 2, 16) (3,2) (1,2) 128

13 2D - Convolution (4, 2, 8) (3,2) (1,2) 128

14 2D - Convolution (4, 2, 4) (3,2) (1,2) 128

15 2D - Convolution (4, 2, 2) (3,2) (1,2) 128

16 Fully Connected (4, 512) - - 1024

17 Fully Connected (4, ) - - 2/1

Table S1: Layer by layer architecture of the convolutional model
Note that the first layers 1-8 share the weights over the channel dimension while layers 9-15 share the weights across the time

dimension. Layers 9 to 15 depict the kernel sizes and strides for the tetrode recordings with 128 channels. For recordings with different

number of channels we adjust the number of downsampling layers to match the dimension of layer 15. Order of dimensions: Time,

Frequency, Channels.
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