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Abstract 

Age, disease, and exposure to environmental factors can induce tissue remodelling and alterations in 

protein structure and abundance. In the case of human skin, ultraviolet radiation (UVR)-induced 

photo-ageing has a profound effect on dermal extracellular matrix (ECM) proteins. We have previously 

shown that ECM proteins rich in UV-chromophore amino acids are differentially susceptible to UVR. 

However, this UVR-mediated mechanism alone does not explain the loss of UV-chromophore-poor 

assemblies such as collagen. Here, we aim to develop novel bioinformatics tools to predict the relative 

susceptibility of human skin proteins to not only UVR and photodynamically produced ROS but also to 

endogenous proteases. We test the validity of these protease cleavage site predictions against 

experimental datasets (both previously published and our own, derived by exposure of either purified 

ECM proteins or a complex cell-derived proteome, to matrix metalloproteinase [MMP]-9). Our deep 

Bidirectional Recurrent Neural Network (BRNN) models for cleavage site prediction in nine MMPs, 

four cathepsins, elastase-2, and granzyme-B perform better than existing models when validated 

against both simple and complex protein mixtures. We have combined our new BRNN protease 

cleavage prediction models with predictions of relative UVR/ROS susceptibility (based on amino acid 

composition) into the Manchester Proteome Susceptibility Calculator (MPSC) webapp 

http://www.manchesterproteome.manchester.ac.uk/#/MPSC (or http://130.88.96.141/#/MPSC). 

Application of the MPSC to the dermal proteome suggests that fibrillar collagens and elastic fibres will 

be preferentially degraded by proteases alone and by UVR/ROS and protease in combination, 

respectively. We also identify novel targets of oxidative damage and protease activity including 

dermatopontin (DPT), fibulins (EFEMP-1,-2, FBLN-1,-2,-5), defensins (DEFB1, DEFA3, DEFA1B, DEFB4B), 

proteases and protease inhibitors themselves (CTSA, CTSB, CTSZ, CTSD, TIMPs-1,-2,-3, SPINK6, CST6, 

PI3, SERPINF1, SERPINA-1,-3,-12). The MPSC webapp has the potential to identify novel protein 

biomarkers of tissue damage and to aid the characterisation of protease degradomics leading to 

improved identification of novel therapeutic targets.   
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Introduction 

Although the causative mechanisms of ageing are not yet fully understood, there is compelling 

evidence that biochemical pathways, including protein oxidation, proteolysis and protease-mediated 

cleavage, contribute to loss of proteostasis (protein homeostasis) and the age-related decline of 

organs (1). Similarly, oxidative stress and aberrant protease activity are also implicated in pathological 

remodelling of both acute and chronically inflamed tissues and organs (2–4).  

In skin, ultraviolet radiation (UVR), oxidative stress and upregulated protease activity are interlinked 

processes associated with clinical photoageing which manifests in the dermis as profound histological 

remodelling of fibrillar collagen and elastic fibres and the accumulation of protein carbonyls, oxidative 

damage (5–8). Collectively this UV, ROS and protease driven proteolysis in ageing and diseased tissue 

can be termed the degradome (9). A better understanding of the degradomic degeneration of tissue 

proteomes may lead to identification of novel biomarkers of damage and bioactive matrikines which 

can be used to design novel therapeutics (10,11).  

Previous studies from our group suggest that both the in vivo remodelling of the elastic fibre-

associated fibrillin microfibrils, which is a hallmark of early photoageing, and the relative molecular 

and ultrastructural susceptibility of these assemblies in vitro to UVR is likely to be due to specific amino 

acid (AA) compositions of major components such as fibrillin-1 (7,12,13). These proteins, and others 

also enriched in both UVR-absorbing (UV-chromophore) and oxidation-sensitive AA residues (e.g. 

fibronectin and lens crystallins), are susceptible to degradation by environmentally attainable UVR 

doses (14). In contrast, these doses and wavelengths do not affect the electrophoretic mobility of 

collagen I or tropoelastin, which are largely devoid of these AA residues, or the ultrastructure of 

collagen VI which contains fewer UV-chromophores than either fibronectin or fibrillin-1 (13). Recently 

we have also demonstrated, using a newly-developed proteomic peptide location fingerprinting 

methodology, that UVR exposure can induce subtle structure-associated changes in the largest 

collagen VI alpha chain (alpha-3) which are not detectable as changes in global collagen VI microfibril 
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ultrastructure (15) or architecture (16). Therefore, AA composition appears to be a good predictor of 

relative susceptibility to UVR and oxidative damage (which is also a factor in non-UVR exposed tissues) 

(17–20). However, predicting the relative susceptibility of proteins to protease-mediated cleavage is 

a more difficult task, as enzymatic proteolysis is dependent on not only the primary structure (i.e. AA 

sequence) but also on protein folding and interactions between enzymes and the exposed protein 

surface, and hence 2-dimensional (D), 3D or quaternary structure (21).  

The matrix metalloproteinases (MMPs) are a large family of zinc-dependent enzymes which are 

thought to play key roles in skin photoageing and many other age- and disease-related disorders (22). 

Other enzyme families such as serine proteases can also degrade ECM proteins (23,24) but their action 

in skin ageing is not as well characterised. For enzymes such as trypsin (where cleavage occurs at the 

C-terminal side of Arg and Lys AA residues when not followed by Pro) and the Staphylococcus aureus 

protease V8 - GluC (where cleavage occurs on the C-terminal side of Glu in preference to Asp), the 

validated prediction of cleavage sites is well established (25,26). However, the prediction of cleavage 

sites in ECM proteins by proteases such as the MMPs and cathepsins requires the development and 

application of complex mathematical models based on state-of-the-art machine learning and deep 

learning techniques which utilise data available in databases such as MEROPS (27,28). A number of 

bioinformatic tools have been developed to predict cleavage sites in AA sequences. For example, 

PROSPER, which is based on Support Vector Machines (SVMs), utilises some structural features to 

perform the prediction and DeepCleave, developed more recently, uses state-of-the-art deep 

convolutional neural network (CNN) (29–32). However, to our knowledge the predictions of these 

algorithms have not been experimentally validated against native ECM proteins, nor has their 

comparative performance been evaluated in this context. Moreover, although recurrent neural 

networks have shown promising results in protein sequence and function prediction (33), this 

architecture has not previously been evaluated for proteolytic cleavage site prediction (34,35), to our 

knowledge. 
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This first goal of this study was to use the AA sequence information and relevant sequence-derived 

features to: i) predict and stratify the relative susceptibility of dermal ECM proteins (as defined by the 

Manchester Skin Proteome (36)) to UVR/oxidative damage; ii) relate these predictions to published 

experimental data; and iii) identify new potential targets of photodamage and photo-oxidation. The 

second goal was to test the ability of PROSPER and DeepCleave to identify MMP9-determined 

cleavage sites in two exemplar purified proteins (decorin [DCN] and vitronectin [VTN]) and 

subsequently in a complex ECM proteome derived from cultured human dermal fibroblasts (HDFs). 

Given the relatively poor performance of these algorithms against native ECM proteins, our third aim 

was to develop and evaluate a new protease cleavage prediction algorithm: Manchester Proteome 

Cleave (MPC) which uses state-of-the-art deep bidirectional recurrent neural network (deep BRNN) 

architecture (34,35). Finally, our last aim was to integrate both UVR/ROS and protease prediction 

methods into a webtool, termed the ‘Manchester Proteome Susceptibility Calculator (MPSC)’ which 

can predict the relative susceptibility of proteins to degradative mechanisms and hence identify 

potential novel biomarkers of age- and disease-induced tissue damage. 

Results  
 

Predicted UVR/ROS susceptibilities correlate well with published experimental data 

and reveal novel potential markers of photodegradation. 

Our first aim was to survey the amino acid composition of all skin proteins to predict relative UVR/ROS 

susceptibility. Ultraviolet radiation can be subdivided into three distinct wavelength ranges - UVC 

(100–280 nm), UVB (280–315 nm), and UVA (315–400 nm); UVC is absorbed by the ozone layer, and 

so solar UVR at the Earth’s surface consists of 5% UVB and 95% UVA. These wavelengths can penetrate 

skin, generating reactive oxygen species (ROS) (7,37). The AA residues Trp, Tyr and double-bonded Cys 

(Cys=Cys) are sensitive to both biologically relevant wavelengths of UVR and oxidation (14), whereas 

Met, His, and Cys are sensitive to oxidation alone (38). We have previously established that proteins 

rich in these AA residues are at risk of degradation by UVR and/or ROS (7). In this study, building upon 
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our initial insights, we have established an effective mathematical model allowing the prediction of 

relative protein susceptibilities to UVR/ROS within a whole skin proteome. To validate the UV/ROS 

model, we reviewed published data from experimental studies which subjected ECM proteins and 

assemblies to physiologically relevant UVR doses and wavelengths and categorised selected proteins 

as susceptible, semi-susceptible or resistant accordingly (Supporting File 1). We show that the 

mathematical model correctly predicts the relative experimental susceptibilities of these proteins 

(Fig.1.a). We have integrated this mathematical model in our webtool, the MPSC, which allows 

analysis of protein sequences for their UV, ROS and UV/ROS susceptibilities. 

Applying the MPSC to ECM proteins in the (as defined by the Manchester Skin Proteome) we predict 

that many elastic fibre-associated proteins which play roles in fibre formation, structure and 

organisation (FBN1, FBN2, FBLN1, FBLN5, LTBP2, LTBP3, LTBP4, EFEMP2, MFAP2 and MFAP4) (39,40), 

will be highly susceptible to degradation by both UVR and oxidation (Fig.1 b). These predictions agree 

well with in vivo observations of dermal remodelling in photoageing. For example, a key hallmark of 

severely photoaged skin is the presence of disorganised material containing multiple elastic fibre 

proteins, termed solar elastosis (41) whilst mildly photoaged skin is characterised by the loss of FBN1 

and FBLN5 microfibrils from the upper dermis which is exposed to the highest UVR dose(42,43). We 

have demonstrated in vitro that chromophore-rich fibrillin-1 (in the form of fibrillin microfibrils) is 

susceptible to low dose UVR whilst chromophore-poor tropoelastin (ELN; the elastin precursor) is 

resistant (12,13). Our analysis predicts that skin collagens would be relatively resistant to both UVR 

and to ROS-mediated oxidation (Fig.1a&b). Previously we have shown that the eletrophoretic mobility 

of collagen I, the most abundant skin protein, is unaffected by physiolgically relevant doses of UVR 

(12). In contrast, it is clear from observational studies that collagen I abundance decreases in aged 

(and particularly in photo-aged) human skin, which leads to dermal thinning (44,45). In additon to 

predicting the relative UVR/ROS suceptibilties of major structural components such as elastin and the 

collagens, our analysis also identifies potential novel markers involved in the regulation of TGFβ and 
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collagen fibril formation (DPT) and ECM development (MGP) which, to our knowledge, have not 

previously been implicated in photoageing (Fig.1.b). 

Extracellularly, MPSC predicts that the defensin family (DEFB1, DEFA3, DEFA1B and DEFB4B) of 

proteins may be UVR/ROS susceptible (Fig.1c). This is consistent with the ability of defensins to act as 

antioxidant proteins (46). Crucially, MPSC not only predicts that known photoageing biomarkers (LOX 

and TIMP3) will be susceptible to UVR/ROS degradation (47–49) but also highlights the potential 

susceptibility (TSHB, CTSB, CTSZ) and resistance (DCD, EMCN, CALM5 and APOC1) of new skin ageing 

biomarker proteins (Fig.1.c). 

Whilst UVR/oxidative damage is clearly an important mediator of protein degradation in skin, 

protease-induced proteolysis is also thought to play a key role. Degradative mechanisms do not act in 

isolation (50,51) and we, and others, have shown that these two mechanisms may interact with UVR 

exposure to enhance subsequent protease action (7,52). Our prediction that dermal collagens I, III, IV, 

V and VII are likely to be highly resistant to UVR and ROS implies that their degradation in vivo must 

be mediated by other mechanisms such as extracellular proteases.  
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Figure 1 Predicted susceptibilites of skin proteins to photo- and oxidative-damage based on AA 
composition. a) Predicted UVR and/or ROS susceptibilities of proteins previously reported as 
susceptible or resistant by experimental observations. Experimentally verified UVR and ROS susceptible 
proteins (red) are enriched in UVR- and ROS-susceptible moieties compared with resistant proteins 
(blue). The predicted UVR- and ROS-susceptibilities exhibited a positive linear correlation (R2 = 0.94). 
Applying thresholds to distinguish between experimentally susceptible and resistant proteins suggest 
that a composition of > 5% UVR AA residues and > 10% oxidation-sensitive AA residues may be 
indicative of UV/ROS susceptibility (susceptible = grey box, resistant = green box). b) Predicted UVR- 
and ROS-susceptibilities of skin’s ECM proteins. Elastic fibre-associated proteins, except for elastin itself, 
and collagens (green) clearly stratify into susceptible and resistant risk categories, respectively. c) 
Predicted UVR and ROS susceptibility of non-ECM extracellular proteins. Defensins (red) are highlighted 
as an example of a susceptible protein family. 
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Accurate prediction of protease cleavage sites in native ECM proteins is challenging. 

We next aimed to predict the location and number of protease cleavage sites within skin-expressed 

proteins. As the relative abundance of AA residues can predict protein susceptibility to UVR/ROS, we 

hypothesise that protease cleavage site load can determine the relative susceptibility of proteins to 

enzymatic degradation. In skin, MMPs and other proteases such as elastase and members of the 

cathepsin and granzyme families play a significant role in tissue maintenance and remodelling (50,51). 

Prediction of proteolytic cleavage sites is dependent on not only the 1o AA sequence but also the 

higher order 2o-4o structures which determine features such as solvent accessibility and disordered 

regions (53,54). Although currently available algorithms such as PROSPER and DeepCleave can predict 

cleavage sites with a good degree of accuracy (29,30), these predictions are: i) often limited to a 

specific subset of proteases, and; ii) lack experimental validation both in a simple and complex model 

systems. In this study, we used SDS-PAGE and mass spectrometry to characterise protein degradation 

and to validate and compare protease cleavage site predictions (by PROSPER and DeepCleave) for two 

purified native ECM proteins. 

Initially, we used a simple model system, digesting purified DCN and VTN with recombinant MMP9 

(chosen as an exemplary enzyme due to its importance in skin photoageing process (55)). By gel-

electrophoresis we confirmed that both DCN and VTN are MMP9 substrates (56,57). In quadruplicate 

experiments, following MMP9 exposure, the band corresponding to VTN was absent and there was 

evidence of substantial aggregation. In contrast, the DCN band remained detectable following MMP9 

exposure although there was some evidence of degradation (Fig.2.a) (Supporting File 2). Cleavage 

sites in these two proteins were characterised experimentally by performing subsequent in-gel 

digestion of the same gels with trypsin and liquid chromatography tandem mass spectrometry (LC-

MS/MS) followed by a bioinformatic analysis pipeline which searched for non-tryptic (assumed to be 

MMP9-derived) sites in the digested samples. Using LC- MS/MS, we identified 33 putative cleavage 

sites in VTN compared with 18 in DCN (Fig, 2b). LC-MS/MS revealed that cleavage sites in VTN were 

predominantly densely packed between AAs 300-400, corresponding to the heparin-binding domain 
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which has proven involvement in fibronectin deposition (58). In contrast, DCN cleavage sites were 

distributed throughout the AA sequence (Fig.2.b). We next compared these experimentally 

determined cleavage sites with those predicted by PROSPER and DeepCleave. While PROSPER and 

DeepCleave achieve excellent performance against data available in MEROPS, their accuracy in 

predicting MMP9 cleavage sites in native VTN and DCN (as evaluated by AUC score) was only slightly 

better than random (PROSPER AUC: 0.55; DeepCleave AUC: 0.64) (Fig.2.c).  

In a parallel set of experiments, we generated a complex ECM proteome by decellularizing a post-

confluent culture of HDFs and digesting the deposited matrix with MMP9. In the baseline (non-MMP9 

digested) matrix we identified over 60 proteins, many of which (COL6A1, COL6A2, COL6A3, EMILIN1, 

COL1A1, COL1A2) are found in human dermis (36,49). LC-MS/MS identified putative MMP9 cleavage 

sites in 40 out of 60 proteins including (COL6A1, EMILIN1, FBLN2, COL1A2) resulting in 390 putative 

MMP9 cleavage sites (Fig.2.d). As with their performance against individual purified native proteins, 

both PROSPER and DeepCleave struggled to accurately predict cleavage sites in this a complex mixture 

of native ECM proteins (PROSPER AUC: 0.56; DeepCleave AUC: 0.6) (Fig.2.e). This may be due to the 

experimental training data relevance: 1) different methods used in determining cleavage sites in our 

experiment vs MEROPS; 2) the quantity of the data available in such databases and/or; 3) the need 

for a more sophisticated algorithm. For example, all cleavage site identities were generated by these 

algorithms using MEROPS data which contains only 53 MMP9 human protein substrates 

corresponding to 301 cleavage sites derived from a mixture of experimental designs and tissues (27). 

These performance results highlight the need for better proteolysis models which utilise not only 

state-of-the-art machine learning approaches but also more expansive, up-to-date training datasets 

of native protein substrates, calibrated against experimental data. 
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Figure 2 Prediction and validation of protease cleavage sites. a) Gel-electrophoresis and associated 
densitometry profiles for control (black) and MMP9-digested (red) DCN and VTN proteins (although 
the predicted molecular weight (mw) of this recombinant DCN is 39 kDa, as a the attached 
glycosaminoglycan chain shifts it mw to 50 kda, as described by the manufacturers). MMP9 exposure 
led to the disappearance of the VTN main band (~30 kDa) and the formation of a heavier protein 
aggregation band (~45 kDa) whereas MMP9 exposure led to a reduced staining of the DCN main band 
density and the formation of a lower molecular weight degradation product. This suggests that VTN 
may be more susceptible to MMP9 than DCN. b) Differential degradation of VTN and DCN was 
confirmed by LC-MS/MS on bands excised from same gel. Pins on protein amino acid scale schematics 
represent experimentally determined cleavage sites and the heat maps illustrate the number of 
experimental cleavage sites per 50 AA window (darker red = more sites per window). c) receiver 
operating characteristic (ROC) curves evaluating experimentally detected MMP9 cleavage sites (by LC-
MS/MS) from purified VTN and DCN proteins against PROSPER- and DeepCleave-predicted cleavage 
sites. Both algorithms struggled to accurately predict experimental sites in native proteins. d) MMP9-
digested proteins detected by LC-MS/MS in a complex cell-derived matrix. A total of 60 proteins were 
detected from which 40 had at least one non-tryptic cleavage site (assumed to be due to MMP9). e) 
ROC curves evaluating experimentally detected MMP9 cleavage sites (by LC-MS/MS) from a complex 
cell derived matrix against PROSPER- and DeepCleave-predicted cleavage.  
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Protease cleavage site prediction performance can be improved using a deep 

bidirectional recurrent neural network architecture 

 

Given the relatively poor performance of existing algorithms in predicting MMP9 cleavage in native 

ECM proteins we next aimed to develop and evaluate a new protease cleavage prediction algorithm. 

In order to better understand the complex proteolysis in a tissue such as ageing/inflamed skin, it is 

important that developed computational models are capable of accurately predicting cleavage sites 

for a wide range of proteases for which there is limited experimental evidence. Recurrent neural 

network (RNN) architectures, initially developed for natural language processing, are particularly 

suited to model genomic and proteomic sequences (59). This is particularly important for modelling 

proteolysis, as the AAs surrounding the cleavage sites play a significant role in determining the 

cleavage specificity (60). RNNs have recently achieved notable success in the field of proteomics, but 

have not yet been used to model proteolysis (35,61). Here we adapted the methodologies employed 

by both PROSPER and DeepCleave to develop a novel, deep bidirectional recurrent neural network 

(deep BRNN) based proteolysis prediction algorithm calibrated against inhouse experimental datasets. 

For data collection, the training, testing and validating datasets for serine proteases and MMPs were 

collected from the MEROPS database (27) and supplemented with additional MMP cleavage sites from 

a 2016 study (62) by Eckhard et al. Data were collected for two groups: MMPs (-1, -2, -3, -7, -8, -9, -12 

and -13) and other proteases (Elastase 2, Granzyme B, Cathepsin -K, -G, -B, -D). These published 

datasets were also supplemented with the cleavage site information generated from our MMP9 

LC/MS-MS experiments (Fig.3.a). 

In addition to the primary AA sequences, secondary structure, disordered regions and solvent 

accessibility may also play significant roles in determining the probability of protease cleavage (30). 

We therefore used the methods previously employed by PROSPER (PSIPRED (63), DISOPRED2 (64) and 

ACCPRO 5.2 (65,66)) to predict these structural features for the whole human proteome prior to 
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sequence encoding and model training. Each AA for every protein, in combination with these 

structural features, was encoded in a format suitable for RNNs. For sequence encoding, a sliding 8 AA 

window (4 AAs upstream and 4 AAs downstream of the predicted cleavage site) was utilised (Fig.3.b).  

To build a cleavage site prediction model we needed to address two challenges: i) there is limited data 

available that reports MMP9 substrate specificity (e.g. MEROPs containing only 53 protein substrates 

corresponding to 301 cleavage sites), which can be used to develop deep learning models (Supporting 

File 3) and; ii) the large imbalance between cleavage sites vs non-cleavage (i.e. the number of non-

cleavage sites vastly outweighs the number of cleavage sites) resulting in unbalanced datasets. The 

first challenge was addressed by: 1) complimenting the MEROPS cleavage data with data available in 

the Eckhard 2016 study (62) and; 2) using transfer learning approaches, where a general protease 

cleavage model was pretrained using all the available data (separately for MMPs and other proteases) 

and subsequently used as a starting point to train protease-specific models (using only the cleavage 

data for a specific protease) (67). The second issue was addressed by weighting the model prior to 

model training to “pay more attention” to the minority (cleavage sites) class. For model training, 

different architectures, depths and hyperparameters of deep learning networks were evaluated in 

terms of AUC, F1 and MCC scores against cleavage sites sourced from three test sets: i) protein 

substrate identities for each protease from the MEROPS and the Eckhard 2016 study which were 

excluded from the training datasets (consisting of 15% of the total number, randomly selected); ii) the 

DCN, VTN and; iii) HDF MMP9 cleavage datasets as previously described. The best performing 

architecture was composed of four bi-LSTM layers, one dense layer and one fully connected layer 

(Fig.3.c). Crucially, the best performing setup, after adjusting various parameters, could more 

accurately predict cleavage sites in ECM proteins compared to PROSPER and DeepCleave for all test 

sets evaluated by AUC, F1 and MCC scores. The AUC scores for MMP9 for: i) the 15% protein test set 

were MPC: 0.809, DeepCleave: 0.779 and PROSPER: 0.778; ii) the DCN & VTN test set were MPC: 0.650, 

DeepCleave: 0.603 and PROSPER: 0.561 and; iii) the HDF data were MPC: 0.71, DeepCleave: 0.640 and 

PROSPER: 0.554 (Fig.3.d), respectively. Similarly, MPC performed better for the 15% protein test set 
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than PROSPER and DeepCleave for all other modelled proteases. For each of the proteases there was 

some agreement between MPC, DeepCleave and PROSPER predicted cleavage sites; however, each 

algorithm had also identified cleavage sites unique to the model (Supporting File 3).  
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Figure 3 Manchester Protease Cleavage prediction model: architecture and testing. a) We have 
developed a novel protease prediction algorithm – termed Manchester Proteome Cleave (MPC) based 
on the state-of-the-art deep learning methodologies. The development of MPC involved five major 
steps: a) Data Collection: integration of data from publicly available protease cleavage databases 
(MEROPs), the Eckhard 2016 dataset and our own in-house experiments. b) Sequence encoding: MPC 
utilised primary AA sequence and structural features derived by in silico modelling with PSIPRED, 
DISOPRED and ACCPRO. One-hot encoding was used to represent the protein sequences in the format 
required for recurrent neural networks. c) Model training: the MPC model consisted of 4 bidirectional 
long-short term memory (Bi-LSTM) layers, one fully connected dense layer and an output layer. A 
general protease model was first pretrained and the resultant weights were transferred to train a 
protease-specific model. d) Model evaluation: Hyperparameters were tuned against 15% of excluded 
proteins and for MMP9 also against our experimental DCN/VTN and HDF cleavage site dataset utilising 
a grid search strategy. e) Webserver Development and Protein Susceptibility analysis: the best-
performing architecture was used to train an additional four models which were integrated into our 
MPSC webtool. Hence MPSC used 5 model averaged ensembles to infer the final cleavage scores for 
each of the proteases. MPSC webtool is also capable in performing UV and ROS assessment of proteins. 
The MPC Webserver is publicly available on http://manchesterproteome.manchester.ac.uk/#/MPSC.  
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The MPSC webtool can distinguish between protease susceptible and resistant 

proteins and reveal novel potential targets of proteolytic degradation distinct to 

UVR/ROS. 

 

Having developed both a model capable of predicting oxidative and/or UVR susceptibility and a new 

algorithm capable of predicting individual protease cleavage sites, we next aimed combine these into 

a webtool suited to predicting all these aspects of protein susceptibility to damage. In a similar 

approach to UV/ROS calculations, we calculated the number of protease cleavage sites per length of 

the protein which we correlated to protein susceptibility. To create a more encompassing statistical 

output with a better generalisation capability, the final output of MPSC consists of an ensemble model 

averaging five MPC model outputs (Fig.3d). The Manchester Proteome Susceptibility calculator (MPSC) 

is available on http://manchesterproteome.manchester.ac.uk/#/MPSC (or 

http://130.88.96.141/#/MPSC ) where users can perform their own analyses of relative protein 

susceptibility to UVR/ROS and selected proteases.  

The HDF-derived matrix experiment not only provided information on MMP9 substrates but also 

revealed 20 proteins which did not appear to have LC-MS/MS-detectable MMP9 cleavage sites. These 

20 proteins included COL3A1, COL12A1, LTBP2, VCAN and others (Fig.2.d). We have used the identities 

of these cleaved and non-cleaved proteins to determine whether predicted MMP9 protease 

susceptibilities differed statistically between these two groups. The MPSC score for MMP9 was set to 

0.8 which corresponds to highly confident cleavage sites. Using this approach, proteins with no 

experimentally detected MMP9 cleavage in the HDF-derived proteome also had a significantly lower 

predicted MMP9 susceptibility than the proteins that had at least one MMP9 cleavage site (p = 0.005, 

student’s t test). This analysis suggests that novel substrates for proteolytic degradation may be 

identified using in silico proteolytic modelling. 
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We next applied MPSC webtool calculations to every ECM and extracellular protein in the Manchester 

Skin Proteome (36) in order to predict their susceptibility to UVR/ROS and to UV-upregulated skin 

proteases (interstitial collagenase (MMP1), 92kDa gelatinase (MMP9), stromelysin-1 (MMP3), 

Cathepsin K, and Granzyme B) (55,68).  

Using the MPSC webtool, we initially analysed skin ECM proteins for the predicted protease and 

UVR/ROS susceptibilities using MPSC-MPC models. This analysis suggests that tropoelastin (the elastin 

precursor) will be particularly susceptible to MMP-mediated cleavage which agrees well with 

experimental observations (69). In addition, multiple proteins involved in elastic-fibre formation and 

organisation (FBLN1, FBLN2, FBLN5 EFEMP1, EFEMP2, MFAP4 and FBN2) were also predicted to be 

susceptible to not only MMP proteolysis but also to UVR/ROS. These predictions suggest that both 

protease mediated and UVR/oxidative damage may play a role in the deterioration of the elastic fibre 

architecture which is characteristic of photodamage in human skin (70). We have previously shown an 

interplay between these mechanisms whereby UVR exposure enhances the degradation of fibrillin 

microfibrils (52). 

In addition to elastic fibres, collagens also undergo profound remodelling in photo-exposed skin. 

Protease-mediated activity has long been suspected as a driver of age-related degradation of skin 

collagens (44,45) but given the intermittent and/or chronic low-level action of these mechanisms, the 

causative link has yet to be established. Whilst the protease susceptibility of these major collagens 

has been confirmed experimentally (71), our computational techniques also suggest that many skin 

collagens (i.e. II, III, IV, V, VI, XII, and XV) will be degraded by proteases (MMP -1, -3, -9, Granzyme-B, 

and Cathepsin K) but not by UVR/ROS. For the ubiquitous microfibrillar collagen VI assemblies, protein 

abundance and architecture is resistant to photodamage (16). The in vivo resistance of collagen VI to 

photodamage (16) suggests that this ECM assembly is resistant to multiple degradative agents. 

However, the alpha 5 chain of COL6 is degraded by Cathepsin K (72,73) and we have shown subtle UV-

induced changes in the structure-associated features by mass spectrometry (15). We therefore 
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conjecture that differential mechanisms may drive the degradation of elastic fibre components and 

skin collagens, necessitating different preventative and/or therapeutic approaches. 

In addition to predicting the relative susceptibility of major structural ECM assemblies, our analysis 

also suggests that protease-mediated proteolysis of basement membrane proteins including laminins 

(LAMB-1, -2, -3, -4, LAMA-3, -4) and nidogen (NID1) may be a contributing factor to the remodelling 

of the dermal-epidermal junction in photoexposed skin (74). Other proteins predicted to be highly 

susceptible to MMP degradation include several proteoglycans (OGE, ASPN, KERA, and DPT), retinoic 

acid receptor responder protein 2 (RARRES2), matrix Gla protein (MGP), procollagen C proteinase 

enhancer (PCOLCE), TGFβ1, apolipoprotein E (APOE) and Von Willebrand Factor (VWA5B1). Some 

proteins appear to be susceptible to only a single enzyme, such as collagen triple helix repeat-

containing protein 1 (CTHRC1: Granzyme B) and adiponectin receptor protein 1 (ADPOQ: cathepsin K) 

(Fig.4.b-f). 
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Figure 4 UVR/ROS vs protease susceptibilities of MMP-1, 3 and 7, Granzyme B and Cathepsin K of 
skin proteome-derived ECM components. a) Using the protein identities in the MMP9 degradation 
dataset, which had no MMP9 cleavage sites or had at least one cleavage site, allowed the evaluation 
of MPC model’s performance to predict novel substrates. Proteins that had no experimental cleavage 
sites yielded significantly lower predicted MMP9 susceptibility scores. Having defined that 
susceptibilities could be analysed using the MPC model, we used these models and analysed the 
susceptibilities for MMP– 1 (c), 3 (d), and 9 (b), Granzyme B (e), and Cathepsin K (f). Proteins which 
were predicted as highly susceptible by PROSPER or DeepCleave only are labelled in red text. Proteins 
that are predicted as highly susceptible by MPC only are labelled in green text. Throughout, we have 
highlighted (boxed text) important skin proteins COL1A2, FBN2, ELN and COL6A3 which merit 
discussion. 
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In addition to structural ECM components, photoageing may also affect non-structural extracellular 

proteins such as growth factors, antioxidants and enzymes which play key roles in the maintenance 

and regeneration of normal healthy skin. Our analysis suggested that MMPs, Cathepsin-K and 

Granzyme-B are capable of digesting (or self-digesting) each other in addition to other catalytic 

proteins and inhibitors; such as Cathepsins themselves (A, C, K, H, B, Z, V), Kallikreins (KLK5, KLK6, KLK7, 

KLK13), MMPs (MMP10, MMP11, MMP19, CPA3), PLAU, ADAMTS17, CFI, and protease inhibitors 

TIMP1 and 2, SPINK6, CST6, PI3, SERPINF1, SERPINA1, 3, 12, SERPINB5. It has been shown previously 

that proteases exhibit complex synergetic relationship, cleaving one another to amplify protease 

cascades such as those mediated by the so-called “cysteine switch”. (75). This consistent prediction of 

such catalytic proteins being protease susceptible markers and the extensive literature of protease 

activation mechanisms strengthens our confidence in the predictions of the MPC. Defensin family 

members (DEFA1B, DEFB1, DEFB4B) - which play antimicrobial roles in skin - are predicted by the MSPC 

to be highly susceptible to both UVR/ROS and proteases, thereby suggesting their role not only as 

antimicrobial peptides but also potential sacrificial sunscreen-like proteins and antioxidants (46,76). 

Other examples of proteins predicted to be susceptible to both proteolysis and UV/ROS include IGF1, 

TGFα, INHBA, NTF3, VEGFC, HGFAC, TSHB, and SLURP1. Markers predicted to be susceptible to 

proteolysis but resistant to UVR/ROS include Galectins (LGALS1, LGALS7B, LGALSL) and Annexins-1, 3, 

5 (ANXA1, ANXA3, ANXA5) potentially indicating their need to be resistant to environmental factors 

(Fig.5.a-e). 
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Figure 5 UVR/ROS vs protease susceptibilities of MMP-1, 3 and 7, Granzyme B and Cathepsin K of 
skin proteome-derived extracellular components. Similarly to the ECM components we have also 
investigated proteins in the extracellular space important in maintaining the ECM. We analysed 
extracellular components for MMP-1 (b), 3 (c), 9 (a), Granzyme B (d) and Cathepsin K (e). Proteins 
which were predicted as highly susceptible by PROSPER or DeepCleave only are labelled in red text. 
Proteins that are predicted as highly susceptible by MPC only are labelled in green text. Throughout, 
we have highlighted (boxed text) important skin proteins which merit discussion. 
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Discussion 

Degradomics is an ever-expanding field with the potential to impact translational research by 

deepening our understanding of tissue regeneration processes as well as contributing to drug 

discovery efforts (9,77). In this work we show that analysis of AA sequence and extracted structural 

features, in combination with state-of-the-art deep BRNN, is capable of predicting proteolytic cleavage 

sites with a better degree of accuracy. 

Furthermore, we can use these predictions and sequence chromophore counts to identify not only 

known protein targets of photodamage but also potential novel protein targets and the relative 

susceptibilities within key protein families. With this work, we have stratified proteins within the 

entire human skin proteome to reveal their predicted susceptibilities to UV, ROS and proteolysis 

providing significant novel insights in skin research. Particularly, we have highlighted the fact that 

fibrillar collagens are predicted to be preferentially degraded by proteases alone whereas elastic fibres 

are likely to be susceptible to UVR/ROS and proteases in combination. We also demonstrate that 

proteins involved in catalytic processes have a high percentage of predicted confident cleavage sites 

per protein length. Moreover, we have made this analysis applicable to any AA sequence of interest. 

Beyond the field of dermatology, the concordance between our computational analyses and 

previously reported observations of both in vitro and in vivo protein degradation suggests that this 

approach has the potential to identify novel protein biomarkers for tissues subjected to inflammation 

or ageing-related disease. 

Whilst the MPC model performed better than existing models, its success in predicting experimental 

cleavage sites in native proteins still requires further improvement. Furthermore, while we have 

attempted initial experimental MMP9 cleavage site detection in a complex HDF proteome using LC-

MS/MS approaches, it is clear that many cleavage sites may have been missed, particularly for low 

abundance proteins, where the peptide-coverage of the protein is also low; therefore, experimental 

approaches and sample preparation methods require even further improvement. The difficulty in 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 29, 2020. ; https://doi.org/10.1101/2020.11.29.402446doi: bioRxiv preprint 

https://doi.org/10.1101/2020.11.29.402446
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 
 

predicting cleavage sites in native proteins may be partly due to the heterogeneous nature of the data 

currently available in public databases such as MEROPS upon which the algorithms were built. For 

example, elastin degradation by proteases is very well-defined, but well-known MMP substrates (such 

as FBN1) are not been necessarily reflected in the available databases (27,69,78). Also data referenced 

in these databases is drawn from multiple experimental methods applied to disparate biological 

samples including peptide libraries, extracted cartilage proteins, post mortem brain tissue, and many 

others which may not necessarily translate to a different in vitro systems (27). Critically, we have 

shown using an LC-MS/MS peptide location fingerprinting approach that ECM proteins can exhibit 

tissue-dependent structures (79). Furthermore, higher order structures play a crucial roles in 

determining proteolysis; however, currently the accurate prediction of protein secondary and tertiary 

features remains challenging (80). In this context, improved algorithms trained on expanded 

experimental datasets with additional informative features would benefit proteolytic cleavage site 

prediction. Future development of these techniques will depend on the availability of training data 

encompassing key target proteomes and proteases and improved prediction by taking into 

consideration the impact of local protein structures on the protease-specific cleavage outcomes.  

Overall, MPSC webtool builds upon the success of the Prosper and DeepCleave algorithms which have 

contributed significantly to the degradomics fields and can further assist in novel biomarker discovery, 

reveal the primary AA sequence susceptibilities to UV/ROS and proteases and even assist in a novel 

bioactive matrikine discovery (81).  
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Materials and Methods 
 

Dataset collection 
 

FASTA sequences and disulphide bonds for each protein in the Manchester Skin Proteome (MSP) were 

retrieved from the Uniprot database in Jan 2020 (82). For MPSC development, experimentally 

validated protein substrate annotations were collected from Eckhard 2016 and MEROPS (v12.2) in Jan 

2020 (27,62). Only human protein cleavage sites were retrieved. The entire MSP (36) and proteins 

present in the Eckhard 2016 were digested using locally installed PROSPER and full proteome digestion 

by DeepCleave was provided by our Monash collaborators. 

Deep RNN protease model  

Evaluation Metrics 

As the dataset is highly imbalanced containing thousands of non-cleavage sites vs only hundreds of 

cleavage sites, and thus in order to evaluate the performance of PROSPER, DeepCleave and MPC, we 

used F1 score representing the harmonic mean of precision and recall; the Matthews’ Correlation 

Coefficient (MCC), Precision, Recall and Area Under the Curve (AUC) scores. Performance differences 

of classifiers are visualised with receiver operating characteristic (ROC) curves (sensitivity - [true 

positive rate] against the 1-specificity [false positive rate] and evaluated with area under the curve 

(AUC) score. MCC and F1 score are defined as follows: 

𝑀𝑀𝑀𝑀𝑀𝑀 =
𝑇𝑇𝑇𝑇 ∗ 𝑇𝑇𝑇𝑇 − 𝐹𝐹𝐹𝐹 ∗ 𝐹𝐹𝐹𝐹

�(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)
 

𝐹𝐹1 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  
2𝑇𝑇𝑇𝑇

2𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹
 

where TP represents the number of true positives, TN represents the number of true negatives, FN 

represents the number of false negatives, and FP represents the number of false positives, 

respectively. 
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Feature extraction 

PROSPER revealed that not only the AA sequence context surrounding cleavage sites, but also protein 

secondary structure, disordered regions and solvent accessibility play important roles in proteolytic 

cleavage site prediction (30). The whole human proteome was annotated with PSIPRED (63), 

DISOPRED2 (64) and ACCPRO 5.2 (65,66) to retrieve these different types of sequence-derived 

structural features. 

One-Hot encoding 

Each AA was encoded using the one-hot encoding, resulting in a 20-dimenisonal vector where each 

dimension represents one of the 20 common AAs. To gain the insights from the surrounding AAs a 

sliding window of -4 and +4 AAs additional to the cleavage site was used for each sequence. At the N- 

and C- termini where there are no following AAs, each position of 20-dimensional vector contained 

only zeros. Furthermore, we complemented each of these vectors with three-dimensional coordinates 

retrieved from SCRATCH (x, y, z), one-hot encoded representation of whether amino acid was part of 

coil, strand or helix, two-dimensional one-hot vector encoding whether it was exposed or buried, as 

well as two-dimensional one-hot vector of whether AA was disordered or not.  

Train, test and validate data split 

In contrast with previously published models, which split the data in train, test and validate datasets 

on the cleavage site basis regardless of the protein source, we have ensured that the testing, training 

and validating data all come from independent proteins. We used TensorFlow random seed to ensure 

the consistency of evaluations and ensured that the same protein identities were selected each time 

when evaluating the model performance; 70% of the proteins were used for the training, 15% for 

testing and 15% for validating.  

Architecture of the Deep RNN 

We used the Python 3.8 TensorFlow Keras package to implement our MPC model. There are many 

more non-cleavage sites than the cleavage sites resulting in a very imbalanced dataset. To overcome 
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this, we assigned larger weights to cleavage sites than non-cleavage sites, enforcing the classifier to 

“pay more attention” to the underrepresented class. We also utilised transfer learning to overcome 

the issue with limited amounts of data available for certain proteases (67). We ensured that the 

general model and protease-specific model contained the same identities for testing, training, and 

validating. MPC protease models consists of four bidirectional LSTM layers, fully connected Dense 

layer and an output layer. We set epochs to a very large number (>10 000) and monitored the early 

stopping by measuring the maximum F1 score with patience of 20 epochs. A generic model utilised all 

the MMPs or other proteases. We then used transfer learning to convert the generic model into 

protease-specific model by loading the initial weights, freezing the initial layer and continuing the 

training process with the data that only had protease specific entries. Our experimental DCN/VTN and 

HDF MMP9 datasets were used to tune the hyperparameters (the number of AAs surrounding 

cleavage site, learning rate, batch size etc.) to achieve the optimal performance in the skin-relevant 

model system. Subsequently, based on the optimised hyperparameters we trained 5 models for each 

of the proteases and took the average output score as the final prediction.  

UVR/ROS and protease MPSC susceptibility model calculations 

Previous analysis has revealed clear agreement between experimental UV and ROS susceptibility and 

chromophore content of the FASTA sequence. To implement the UV, ROS and combined UVR/ROS 

model, simple mathematical equations were derived which quantify the number of UV and ROS 

chromophore AAs per length of the sequence. For proteolysis susceptibility calculations highly 

confident (score > 0.8), MPC cleavage sites were selected and the number of cleavage sites per protein 

length calculated. The calculations employed in MPSC are: 

𝑈𝑈𝑈𝑈 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
∑(𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇𝑇𝑇 + [𝐶𝐶𝐶𝐶𝐶𝐶 = 𝐶𝐶𝐶𝐶𝐶𝐶]/2

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ
∗ 100 

𝑅𝑅𝑅𝑅𝑅𝑅 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
∑(𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑀𝑀𝑀𝑀𝑀𝑀 + 𝐶𝐶𝐶𝐶𝐶𝐶 + 𝐻𝐻𝐻𝐻𝐻𝐻)

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ
∗ 100 
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𝑈𝑈𝑈𝑈 − 𝑅𝑅𝑅𝑅𝑅𝑅 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
∑(𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑀𝑀𝑀𝑀𝑀𝑀 + 𝐶𝐶𝐶𝐶𝐶𝐶 + 𝐻𝐻𝐻𝐻𝐻𝐻 + [𝐶𝐶𝐶𝐶𝐶𝐶 = 𝐶𝐶𝐶𝐶𝐶𝐶]/2)

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ
∗ 100 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
∑�𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(>0.8)�
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡ℎ

∗ 100 

where Trp represents tryptophan, Tyr represents tyrosine, Met represents methionine, Cys represents 

cysteine, His represents histidine and Cys=Cys represents disulphide bound cystine. 

 

LC-MS/MS methods for generating experimental testing dataset 

Cell culture 

Human dermal fibroblasts (HDFs) were cultured from a scalp biopsy, obtained from a hair transplant 

procedure. Ethical approval was obtained from the National Research Ethics Committee (ref 

19/NW/0082) and the tissue donor provided written, informed consent prior to the procedure. Skin 

biopsies were cultured dermis-side down in Dulbecco's modified Eagle's medium (DMEM) (Thermo 

Fisher) containing 20% (v/v) foetal bovine serum (FBS), GlutaMAX (2 mM), penicillin (100 U/mL), 

streptomycin (0.1 mg/mL) and amphotericin-B (2.5 µg/mL), until HDFs were observed migrating out 

of the explant. Culture medium was changed every 2-3 days until cells reached 80% confluence 

(approx. 3 weeks), at which point explanted tissue was aseptically removed from the culture and HDFs 

were sub-cultured using trypsin (0.05% w/v) - ethylenediaminetetraacetic acid (EDTA; 0.02% w/v). 

Subsequent culture of HDFs used supplemented DMEM containing 10% (v/v) FBS. For extracellular 

matrix (ECM) deposition, HDFs at passage 4 were seeded at 1.2X105 cells/mL, in 0.5 mL medium 

containing 50 µg/mL ascorbic acid (final concentration), in a 24-well plate, and cultured until 

confluence (approx. 2 days). At this point, 0.25 mL medium was removed and replaced with fresh 

medium. Medium was replaced every 2-3 days.  
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HDF-deposited ECM in vitro 

The procedure for obtaining HDF-deposited ECM was carried-out as previously described (83). Briefly, 

medium was removed from cultures on day 9 post-confluency and the cell layer washed twice with 

phosphate buffered saline (PBS). To remove cells, 0.5 mL of extraction buffer (20 mM ammonium 

hydroxide solution, 0.5% v/v triton-X 100, in PBS without Ca2+/Mg2+) was added to HDFs for 5 min and 

cell depletion was determined by repeatedly checking cultures under a light microscope. Extraction 

buffer was diluted by addition of PBS and HDF-depleted ECM was incubated at 4°C overnight. 

Following removal of diluted extraction buffer, the remaining cell debris was removed by three 

successive washes in PBS. The presence of deposited, HDF-depleted ECM was determined by light 

microscopy. 

 

MMP9 degradation of ECM and DCN/VTN in vitro 

Human recombinant MMP9 (hrMMP9; R&D Systems) was activated by adding 1 mM (final 

concentration) ρ-aminophenylmercuric acetate (APMA) and incubating for 24h at 37°C. HrMMP9 

activity was confirmed by measuring cleavage of the fluorogenic peptide, Mca-PLGL-Dpa-AR-NH2 (R&D 

Systems), according to manufacturer’s instructions. HDF-depleted ECM was incubated with 10 µg/mL 

of active hrMMP9 whereas DCN (ab167743, abcam) and VTN (ab94369, abcam) was incubated at a 

1:2 protein to active hrMMP9 ratio, diluted in MMP buffer (50 mM Tris, 150 mM NaCl, 10 mM CaCl2 

and 0.05% (w/v) Brij-35, pH 7.5) at 37°C with agitation, for 24h. For HDF ECM assay buffer was 

removed and dialysed for 4 h against ddH2O (Thermo Fisher) and samples freeze-dried overnight. DCN 

and VTN samples were ran on 4-12% NuPAGE Novex Bis-Tris Gels (1 µg of protein per well) using 

standard SDS PAGE procedures. Non-digested control bands and digested bands were excised using 

a scalpel blade. ECM or DCN and VTN incubated with MMP buffer alone served as protease negative 

controls respectively.  
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HDF laid down-matrix sample preparation 

Each sample’s aliquot was added to SMART Digest™ trypsin (Thermo Fisher) beads and shaken at 1400 

rpm overnight at 37°C. The next day, reduction and alkylation was performed. Next, SMART Digest 

Beads were removed using TELOS MicroPlate™ filter tips (Kinesis; Cheshire, UK) into 1.5 ml 

Eppendorf® LoBind tubes (Eppendorf; Stevenage, UK) to minimise electrostatic loss of peptides and 

acidified with 5 µl of 10 % formic acid (FA). Biphasic extraction was performed to partition organic 

molecules and surfactants. To do this, 200 μl of ethyl acetate (EA; Sigma) was added to each sample 

in Eppendorf® LoBind tubes and vortexed for 1 min. Samples were then centrifuged to ensure phases 

were separated and the upper layer removed using gel-loading pipette tips. These steps were 

repeated twice with a further 200 μl of EA and then the resultant aqueous bottom phase was vacuum 

dried for 2 hours in room temperature. Once dry, 200 μl of injection solution (5% (v/v) acetonitrile, 

0.1% formic acid) was added to the tube and peptide desalting performed. For all desalting of peptide 

preparations, OLIGO™ R3 Reversed Phase Resin (Thermo Fisher) beads were used. Beads were wetted 

to be activated using 50 μl OLIGO™ R3 beads plus 50 μl of wet solution (50% acetonitrile in ultrapure 

water; 1:1). Twenty (20) μl of this mix were placed in detached TELOS filter tips and liquid was pipetted 

out using a standard p1000 Gilson pipette (Gilson; Middleton, Wisconsin, USA) and process repeated 

twice more. Twice beads were washed by adding 50 μl of wash solution (0.1 % FA in ultrapure water) 

and liquid pipetted out. Once the beads were activated 100 μl of sample was gently added to TELOS 

filter tips containing activated OLIGO R3 beads, allowing the peptides from the sample to stick to the 

beads. Liquid is pipetted out and the ‘flow through’ retained. The process was repeated with the 

remaining sample. Twice beads with bound peptides were gently re-suspended in 50μl of wash 

solution and the flow through discarded. Twice, beads were gently suspended in 50 μl of elute solution 

(50 % (v/v) acetonitrile, 0.1% formic acid) to release the peptides from the beads and liquid was 

pipetted out and retained. The collected eluted sample contained the peptides for analysis. Eluted 

samples were transferred to mass spectrometry vials and vacuum dried using Speed Vac (Heto-Holten; 

Frederiksborg, Denmark), ensuring peptide stability until mass spectrometer was available. 
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DCN and VTN gel sample preparation 

Excised bands were first placed into a perforated well plate, and then shrunk by washing in acetonitrile 

for five minutes. To remove the acetonitrile from the samples these were centrifuged for one minute 

at 1500 rpm. Sample gel pieces were then dried in a vacuum centrifuge for 15 minutes. Next, samples 

were covered completely by 10 mM dithiothreitol (DTT) in 25 mM ammonium bicarbonate and 

incubated at 56°C for one hour to reduce the proteins. Samples were cooled to room temperature, 

then centrifuged to remove the DTT. Iodoacetamide (55 mM) in 25 mM ammonium bicarbonate was 

added, and the samples were incubated for 45 minutes in the dark at room temperature. The 

iodoacetamide solution was removed by centrifugation, and the samples were washed with 25 mM 

ammonium bicarbonate for 10 minutes. Samples were then washed with acetonitrile, followed by 

another wash with ammonium bicarbonate, then a final wash with acetonitrile, centrifuging in 

between steps to remove the previous wash. The samples were then centrifuged again, then dried 

out in a vacuum centrifuge. Next, 5 μl of a 12.5 ng/μl solution of trypsin along with 45 μl of a 25 mM 

ammonium bicarbonate solution was added to the dried samples. Samples were kept at 4°C for 45 

minutes for samples to absorb the buffer. After this time, samples were covered completely in 25 mM 

ammonium bicarbonate. Samples were incubated at 37°C overnight. The following day, peptides were 

extracted by incubating with 20 mM ammonium carbonate for 20 minutes, then centrifuging into a 

fresh storage plate. Peptides were extracted a further two times (20 minutes each) using 5% formic 

acid in 50% acetonitrile, using the same storage plate to pool all the supernatant into the same tube 

per sample. samples were transferred to mass spectrometry vials and vacuum dried using Speed Vac 

(Heto-Holten; Frederiksborg, Denmark). 

 
 
Peptide preparation for mass spectrometry 

For LC-MS\MS analysis, 20 µl of Injection Solution (5% acetonitrile (ACN) + 0.1% formic acid (FA) in 

ultrapure water) was added to each dried peptide samples. Peptide concentration in solution was 

measured using Direct Detect Infrared Spectrometer (Millipore). According to the concentration 
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detected for each sample, they were diluted to have 12 µl of solution with a concentration of 800 

ng/µl, and samples were submitted to the Biological Mass Spectrometry Core Facility (University of 

Manchester). 

Liquid chromatography tandem mass spectrometry 

Mass spectrometry was performed according to the Facility’s protocols (84,85). Digested samples 

were analysed by LC-MS/MS using an UltiMate® 3000 Rapid Separation LC (RSLC, Dionex Corporation, 

Sunnyvale, CA) coupled to a Q Exactive HF (Thermo Fisher Scientific, Waltham, MA) mass spectrometer. 

Peptide mixtures were separated using a multistep gradient from 95% A (0.1% FA in water) and 5% B 

(0.1% FA in acetonitrile) to 7% B at 1 min, 18% B at 58 min, 27% B in 72 minutes and 60% B at 74 

minutes at 300 nl min-1, using a 75 mm x 250 μm i.d. 1.7 µM CSH C18, analytical column (Waters). 

Peptides were selected for fragmentation automatically by data dependent analysis. 

Webserver development and data visualisation 
 

MPSC webtool was developed using the ReactJS framework for the front end and Python Django as 

the backend for the API development. Data powering the MPSC webtool was stored on the Apache 

server on the mySQL database. Data for this publication were visualised using Graphpad Prism 8, 

Adobe Illustrator and python matplotlib libraries. 
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