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Abstract

Synchronization is a collective mechanism by which oscillatory networks achieve their
functions. Factors driving synchronization include the network’s topological and dynami-
cal properties. However, how these factors drive the emergence of synchronization in the
presence of potentially disruptive external inputs like stochastic perturbations is not well
understood, particularly for real-world systems such as the human brain. Here, we aim to
systematically address this problem using a large-scale model of the human brain network
(i.e., the human connectome). The results show that the model can produce complex syn-
chronization patterns transitioning between incoherent and coherent states. When nodes in
the network are coupled at some critical strength, a counterintuitive phenomenon emerges
where the addition of noise increases the synchronization of global and local dynamics, with
structural hub nodes benefiting the most. This stochastic synchronization effect is found to
be driven by the intrinsic hierarchy of neural timescales of the brain and the heterogeneous
complex topology of the connectome. Moreover, the effect coincides with clustering of node
phases and node frequencies and strengthening of the functional connectivity of some of the
connectome’s subnetworks. Overall, the work provides broad theoretical insights into the
emergence and mechanisms of stochastic synchronization, highlighting its putative contri-
bution in achieving network integration underpinning brain function.

Keywords: synchronization, connectome, Kuramoto model, brain network model,
hierarchy, functional networks

1. Introduction

Oscillatory networks are ubiquitous in nature and are the core of several biological sys-
tems such as gene-regulatory networks and brain circuits [1, 2]. Their overarching functions
rely on how the collective dynamics of their constituent nodes (often measured in terms of
synchronization) self-organize due to mutual interactions and/or from entrainment to exter-
nal signals. For example, modern power grids can operate normally only if all generators of
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the network are stably synchronized at the same frequency [3]. Similarly, neural synchro-
nization is central to many aspects of brain function, including attention and information
transfer [4, 5, 6].

Network synchronization crucially depends on several factors such as network architec-
ture, intrinsic frequency of the oscillators, strength of the interaction between oscillators,
and external inputs. These factors have been studied in models; perhaps the most famous
is the Kuramoto model [7], which considers the phase synchronization of coupled oscillatory
units. The simplest Kuramoto model, which assumes a fully connected network, can pro-
duce nontrivial transitions into or out of synchronization [8], analogous to phase transitions
studied in statistical physics [9]. Several theoretical works have then leveraged the analytical
tractability of the model to exactly solve synchronization states in small artificial systems [10]
and infinitely-sized systems with a symmetric distribution of oscillator frequencies [11, 8].
Since then, the model has been extended to more realistic systems such as networks with
heterogeneous connectivity, e.g., small-world and random networks [12, 13], networks with
delay-dependent couplings [14], networks with time-delayed interactions [15, 16, 17], and
networks influenced by extrinsic structured or stochastic inputs [18, 19].

In this work, we study synchronization in the human brain, which is considered to be
a large interconnected complex network that operates at multiple scales in space and time
[20]. Macroscopically, the brain comprises anatomical white matter connections between
cortical regions called the connectome [21, 22], serving as the substrate that shapes large-
scale neuronal dynamics. These connections are heterogeneous in nature such that certain
brain regions possess relatively larger number of connections (termed hubs) [23], which have
been shown to facilitate integration of activity [24]. In addition, neuronal dynamics exhibit
heterogeneous timescales [25], such that higher-order brain hubs exhibit slower oscillations
[26]. This structure–dynamics relationship in the brain drives the generation of local and
global network synchronization patterns that support the brain’s vital functions [27, 28].
Indeed, the use of coupled oscillators to generate large-scale brain dynamics has reproduced
many observed features in neuroimaging data [29, 30, 31, 32, 33, 34]. Nevertheless, the
complex links between brain structure and function remain incompletely understood. This
is important to address not just for understanding the workings of normal brain function but
also those of pathologies, such as epilepsy [35] and autism [36], which are linked to excess
or deficits in cortical synchronization.

Network synchronization is also inevitably influenced by noise or stochastic perturba-
tions. Noise is intuitively considered to be detrimental to overall synchronization. However,
paradoxical effects exist in various physical and biological systems, where a moderate amount
of noise can affect the system’s dynamics by inducing or enhancing synchronization. This
is known as noise-induced synchronization or stochastic synchronization [37, 38]; note that
both terms interchangeably used in the literature, and we elect to use the latter in this study.
Such roles for noise bear similarity to the well-known stochastic resonance in physics, where
noise can optimize the response of nonlinear systems to a weak external input [39]. Noise can
also aid the synchronization of periodic [40, 41] and chaotic [42] oscillators and networks of
oscillators with various topologies [43, 44]. Noise can also increase the regularity of activity
in excitable systems [45]. Finally, in neural systems, noise can induce phase-entrainment of
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neural waves [46], synchronize uncoupled neural oscillators [47], improve sensorimotor per-
formance [48], and enhance the firing synchronization of Hodgkin-Huxley neurons [49]. Even
with this evidence of the presence and benefits of noise in physical and biological systems,
stochastic synchronization and its mechanisms have rarely been investigated in the context
of large-scale biological networks, especially in the human connectome, and hence is likely
of interest for the neuroimaging community.

In this work, we aim to systematically understand the effect of stochastic perturbations
to oscillators on the human connectome that follow a hierarchy of timescales. That is, the
model incorporates heterogeneous, hierarchically distributed oscillatory frequencies and a
complex connectivity (weight distribution), such that highly connected hub regions have
slow natural frequencies and peripheral (nonhub) regions have fast natural frequencies [50].
Moreover, we extensively analyze and tease apart the contributions of the connectome’s
topological structure and intrinsic dynamics to the emergence of stochastic synchronization,
elucidating its general mechanisms.

2. Results

2.1. Brain network model

We model whole-brain oscillations using a large-scale network of coupled Kuramoto os-
cillators [7, 8, 51]. The phase dynamics θj of oscillator j are governed by the stochastic
differential equation

dθj(t) =

[
ω0
j + c

N∑
k=1

Ajk sin(θk − θj)

]
dt+ σdWj(t), (1)

where N is the total number of oscillators. The model has three main ingredients: (i)
connectivity matrix A where element Ajk describes the strength of the connection from
oscillator k to j, (ii) natural frequency of oscillation ω0

j , and (iii) noise represented by the
Wiener process dWj. In addition, the model has two parameters: (i) coupling strength c
that scales the connection strengths between oscillators and (ii) noise strength σ that scales
the noise amplitude. Here, all nodes in the network are perturbed by independent Gaussian
noise realizations with the same standard deviation σ.

For the connectivity matrix A, we use a human structural connectome derived from
healthy participants [52, 53]. It is a weighted and symmetric matrix (Fig. 1A), with each
row or column representing a brain region that aggregates populations of neurons, and each
connection Ajk is related to the number of fibers reconstructed between region j and k (see
Materials and Methods for details). It has several features such as a hierarchical-modular
organization [22, 54] (see solid boxes in Fig. 1A) and a spatial embedding characterized by
an exponentially decaying edge weight-fiber length relationship [52, 55].

The natural frequencies ω0 are drawn from a distribution g(ω0), typically chosen as a
symmetric function, such as a Gaussian or Lorentzian distribution, to obtain analytically
tractable solutions [8]. However, the novelty of our study is a more complex but also more
neurobiologically motivated choice of g(ω0). We use an asymmetric hierarchical distribution,
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which is inspired by recent studies showing that cortical areas of primates have intrinsic
timescales that differentiate according to the anatomical hierarchy [25, 56]. We determine
the natural frequency ω0

j of node j as [57, 33]

ω0
j = ωmax − (ωmax − ωmin)

(
sj − smin

smax − smin

)2

, (2)

where sj is the node’s connectivity strength given by sj =
∑

k Ajk, frequency limits ωmin =
0.01 Hz and ωmax = 0.1 Hz are set to match the frequency bandwidth of fMRI, smin is
the minimum of all node strengths, and smax is the maximum of all node strengths. This
distribution, which showed the best fit to empirical resting-state fMRI data [57], allows the
cortical hierarchy to be mapped into a gradient of timescales with slow hub and fast nonhub
regions. The resulting ω0

j–sj relationship for all nodes in the connectome is shown in Fig. 1B.
The above two model ingredients provide the structure and dynamics of the human brain,

which when combined allows phase oscillations of nodes in the connectome to evolve through
mutual interactions without the need for any external input (Fig. 1C). We then thoroughly
explore the effect of coupling strength and noise on these interactions.
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Figure 1: Whole-brain network model. (A) Connectivity matrix. The solid boxes denote modules obtained
via a community detection algorithm. (B) Natural frequency of oscillation ω0 as a function of connectivity
strength s. The distributions of s and ω0 are shown above and to the right of the panel, respectively. (C)
Sample spatial distribution of node phases θ through time using the model ingredients in panels A and B.
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Note that our formulation in Eq. (1) does not include the effects of time-delayed neural
interactions, which are often considered in whole-brain network models to capture delays in
signal transmission between brain regions due to long white matter tracts [16, 17, 26, 34].
However, since time delays in the brain are approximately in the order of 10 ms [17, 34] and
we focus on fMRI dynamics with slow timescales (periods of oscillations in the range of 10
to 100 s), neglecting time delays would not significantly affect the dynamical solutions of
Eq. (1) and the overall network oscillations.

2.2. Network state transitions

We first characterize the effect of the coupling strength c and the noise strength σ on the
collective network dynamics measured in terms of three quantities: coherence R, synchro-
nization S, and metastability M . Briefly, coherence R captures the phase alignment of all
oscillators in the network at each instance in time, with its value varying between 0 (fully
incoherent state) and 1 (fully coherent state). Synchronization S and metastability M are
summary statistics at steady state capturing the mean and variability of R, respectively (see
Materials and Methods for details).

To understand the fundamental behavior of the network without any external influences,
we first neglect noise (i.e., σ = 0). Figure 2A shows the network’s S and M for varying
coupling strengths. Our results reveal that nodes in the network organize into diverse states
of collective dynamics by just tuning c. In particular, weak coupling (c ≤ 0.001) consistently
leads to incoherent states with low S, while stronger coupling (c ≥ 0.006) leads to coherent
states with high S. More importantly, we find a regime placed between the incoherent
and coherent states where partial synchronization emerges. Coherence dynamics in this
intermediate regime have high-amplitude fluctuations, demonstrated by high M with peak
occurring at a critical value c∗ = 0.0027. These fluctuations are clearly demonstrated by
the time evolution of R and local spatiotemporal phase dynamics at c = c∗ = 0.0027 shown
in Fig. 2B and Fig. 2C, respectively (see Fig. S1 to compare R and phase dynamics at
c� c∗, c = c∗, and c� c∗). This critical coupling strength places the network in a flexible
regime that spontaneously accesses both states of order and disorder. Moreover, this critical
coupling strength is very close to the value (i.e., c = 0.003) obtained when the same network
model is fitted to resting-sate fMRI data [57, 33]. Hereafter, unless otherwise stated, we fix
the coupling strength to c = c∗ = 0.0027 to further investigate network dynamics on the
human connectome at this critical point.

To further analyze the effect of placing the network at the critical point, we calculate the
effective node frequency ω (see Materials and Methods for details) [58]. Figure 2D shows
that due to node interactions even without any external influences, nodes in the network
adjust their frequencies and the strength-frequency relationship imposed in Fig. 1B becomes
weaker. In fact, nodes originally oscillating below/above the mean-ensemble frequency [59]
of 〈ω0〉 = 0.0883 Hz tend to speed up/slow down (see inset of Fig. 2D). That is, hubs
speed up and peripheral (nonhub) regions slow down. Moreover, Fig. 2D clearly shows the
formation of frequency clusters, demonstrating that interactions alone force some nodes to
align their frequencies of oscillation (see formation of horizontal lines near the mean-ensemble
frequency).
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Figure 2: Noise-free network dynamics. (A) Network synchronization S and metastability M vs coupling
strength c. The red dashed line highlights the critical coupling strength c∗ where M is maximum. The solid
lines represent ensemble averages of 30 initial conditions. (B) Time evolution of network coherence R at c∗.
(C) Local phase dynamics within the time window highlighted by the red solid box in panel B. (D) Effective
node frequency ω as a function of natural frequency ω0 at zero noise. The markers are colored according to
the order of natural frequencies (blue: low ω0; red: high ω0). The dashed line represents ω = ω0. (Inset)
ω−ω0 as a function of ω0. The solid line represents the sliding-window mean smoothed by a Savitzky-Golay
filter (order 3 and length 15) and the dashed line represents the mean-ensemble frequency 〈ω0〉.

2.3. Emergence of stochastic synchronization

The network responses described above demonstrated the ability of the model to gener-
ate complex patterns of collective dynamics across the human connectome by just tuning
the coupling strength. The dynamics were achieved only via mutual interactions without
the need for external inputs. Hence, the next question we want to address is how the net-
work would respond to inputs. More specifically, how would stochastic perturbations (i.e.,
independent additive noise at each node) affect network dynamics and synchronization? We
systematically answer this question by characterizing the effects of changes in the noise
strength σ.

Initially, we analyze the network’s behavior for three noise strengths: the original case
without noise (σ = 0; Supplementary Movie S1); moderate noise (σ = 0.008; Supplemen-
tary Movie S2); and high noise (σ = 0.2; Supplementary Movie S3). On a node level, visual
inspection of the spatial distribution of node phases (Fig. 3A) reveals that larger clusters of
similar node phases are more apparent for the moderate noise strength. This is quantita-
tively supported by a narrower distribution of phase differences ∆θ centered at ∆θ = 0 (see
Fig. S2B). On a network level, we find that the network’s coherence paradoxically increases
when the noise strength is raised to a moderate value compared to the noise-free case, but
breaks down for a higher value (Fig. 3B). This phenomenon is further demonstrated by the
probability density function (pdf) and the mean of R (Figs 3C and 3D), showing concen-
trations at higher R values for the moderate noise strength (with statistically significant
pairwise differences between the 〈R〉 of the three noise levels via one-way ANOVA and
multiple comparison testing; p < 1× 10−9).
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Figure 3: Node phases and network coherence for various noise strengths. (A) Spatial distribution of node
phases θ at different time points in superior axial brain view. (B) Time evolution of network coherence R.
(C) Kernel density estimate of the probability density function (pdf) of R. The dotted lines represent the
mean values of R. (D) Mean and standard deviation of the pdfs in panel C. For panels B, C, and D, the
lines and markers are colored according to noise strength (blue: without noise; red: moderate noise; yellow:
high noise).

To further investigate the above phenomenon, we systematically vary the noise strength
and calculate the percent change in network synchronization ∆S, which measures changes
in synchronization with respect to the baseline noise-free case. Results in Fig. 4A show that
there exists a range of noise strengths (0 < σ < 0.033; this includes the moderate-noise
regime in Fig. 3) where network synchronization is above the baseline (i.e., ∆S > 0). This
is also true even for very low noise strengths (see inset of Fig. 4A). Further increases in noise
strength (this includes the high-noise regime in Fig. 3) lead to decreased synchronization
(i.e., ∆S < 0), in line with the intuition that strong noise disrupts synchrony. Crucially, the
phenomenon only exists when the network is placed around the critical coupling strength
c∗ (see Fig. S3). We further verify that the phenomenon is robustly found on individual
human connectomes from an independent dataset from the Human Connectome Project
(HCP; see Materials and Methods for details) [53] and also for different numbers of nodes
in the parcellation used to construct the connectomes (see Figs S4–S6).

We next want to understand whether stochastic synchronization uniformly occurs in the
whole connectome network or whether its manifestation varies locally within smaller sub-
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Figure 4: Stochastic synchronization. (A) Percent change of global network synchronization ∆S vs noise
strength σ. (Inset) ∆S for very low noise strengths (σ < 1 × 10−3). For panel A and its inset, the solid
line represents an ensemble average of 50 noise realizations and the shaded area represents the standard
error of the mean. (B) ∆S vs σ for different subnetworks. The subnetworks are derived by partitioning the
connectome into five groups according to connectivity strength s, where the top 20% represents strongly
connected hub nodes and the bottom 20% represents weakly connected nonhub nodes. The solid lines
represent ensemble averages of 50 noise realizations.

networks across the connectome’s topological hierarchy (i.e., are some subnetworks more
or less synchronized by noise?). Hence, we subdivide the nodes into five groups according
to the connectivity strength s, such that the first group (top 20%) represents hubs (nodes
with high-strength connections) and the last group (bottom 20%) represents nonhubs (nodes
with low-strength connections), and analyze their synchronization patterns. We find that
stochastic synchronization exists heterogeneously across the connectome’s local subnetworks
(Fig. 4B). In particular, hubs have higher maximum ∆S and a wider range of noise strengths
producing ∆S > 0 as compared to nonhubs. This demonstrates that stochastic synchro-
nization emerges on the connectome both globally and locally (and heterogeneously). More
importantly, these results indicate that stochastic synchronization may be a useful mech-
anism for improving overall network integration facilitated by different subnetworks of the
connectome.

2.4. Drivers of stochastic synchronization

In the above, we showed that noise can increase the synchronization of oscillations on the
human connectome. We dig deeper and investigate the drivers of this phenomenon. Going
back to the ingredients of the model, we conjecture that the paradoxical phenomenon could
be due to the intrinsic node frequencies and/or the rich network topology of the human
connectome. Thus, we explore two scenarios.

The first scenario is using the human connectome but changing the distribution of nat-
ural frequencies to other well-known distributions typically used in the Kuramoto model
literature: (i) Dirac-delta (homogeneous), (ii) random uniform (rand-uniform), (iii) random
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Gaussian (rand-gaussian), and (iv) random Lorentzian (rand-lorentzian). We constrain them
to the same frequency bandwidth as in Fig. 1B (their pdfs are shown in Fig. 5A; see Ma-
terials and Methods for further details). Unlike the hierarchical case, these distributions
have no consistent relationship between the network’s topology and the natural frequencies.
We set the coupling strength to c = 0.0027, which is the c∗ found in Fig. 4, and deter-
mine changes in the coherence patterns in the absence of noise (Fig. 5B). Most notably,
the homogeneous distribution leads to highly coherent dynamics (as it must [8]) and the
rand-lorentzian distribution leads to dynamics that are similar to the original hierarchical
case. However, stochastic synchronization does not occur for the other distributions, in fact
desynchronization is observed with addition of noise (Fig. 5C). We verify that the results
hold even when the number of realizations used in Fig. 5C is increased (see Fig. S7). This
reveals that it is important for the human connectome to have its nodes oscillate according
to their anatomical hierarchy in order for stochastic synchronization to emerge.
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Figure 5: Role of the distribution of natural frequencies on synchronization dynamics. (A) Probability
density function (pdf) of different frequency distributions. (B) Time evolution of network coherence R
without noise. The lines are colored as labeled and according to panel A. (C) Percent change of network
synchronization ∆S vs noise strength σ. The lines are colored according to panel A. The markers repre-
sent ensemble averages of 50 realizations of the frequency distributions and the vertical lines represent the
standard errors of the means.
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We note that thus far we have analyzed the synchronization of network dynamics at the
coupling strength value of c = 0.0027, which is the c∗ specific to the human connectome–
hierarchical distribution pair (obtained from the peak M in Fig. 2A). However, it is possible
that the value of c∗ changes specific to the network–frequency distribution pair used. There-
fore, we ask whether the stochastic synchronization effect would emerge in Fig. 5C if we
properly tune the different human connectome–frequency distribution pairs to their respec-
tive c∗. Hence, we recalculate the S and M vs c curves (similar to Fig. 2A) specific to the
different frequency distributions and measure c∗ corresponding to the peak M (the results
are shown in Fig. S8A). Then, we simulate the network dynamics using the new c∗ and
recalculate the synchronization vs noise strength curves (the results are shown in Fig. S8B).
By doing so, the results in Fig. 5C generally still hold, albeit the rand-lorentzian distribution
weakly showing the effect with maximum ∆S of ≈1%. These results highlight the robustness
of our findings and that the hierarchical frequency distribution is truly an important driver
to strongly produce the effect. Moreover, these results further show that the effect only
exists when the oscillations of a complex network are governed by a complex frequency dis-
tribution near criticality, possibly with some sensitivity to the precise tuning of the coupling.
Note that we did not perform this analysis on the homogeneous distribution case because it
always leads to full network synchronization at steady state; hence, its S vs c curve is flat
at S = 1 without its own critical coupling strength. However, we found some interesting
transient dynamics for this case where noise can hasten the transition to synchrony, similar
to the findings of [12] (this will be explored in a future study).

The second scenario is retaining the hierarchical frequency distribution but changing the
topology of the network. We explore five alternative connectome topologies. They include
traditional surrogate networks [60] as well as recently developed surrogates that respect (or
partially respect) the spatial embedding of the human brain, enabling tests of the extent to
which network phenomena depend on weight–distance relationships and the positions of hubs
[52, 55]. The tested topologies are: (i) fully connected network; (ii) weight-preserving ran-
dom network, randomizing 50% of the connections; (iii) weight-preserving random network,
randomizing 100% of the connections; (iv) geometry-preserving random network, preserving
the node strengths; and (v) geometry-preserving random network, preserving the node-
strength sequence. Their edge weight–fiber length relationships are shown in Fig. 6A (see
Materials and Methods for further details). Topology (i) is used by the simplest Kuramoto
model in the literature, topologies (ii) and (iii) are surrogates commonly used in network
science, and topologies (iv) and (v) are more biologically realistic surrogates [52, 55]. As
above for the different frequency distributions, we set the coupling strength to c = 0.0027.
We find that changing the network’s topology leads to various coherence patterns in the ab-
sence of noise (Fig. 6B). Most notably, the fully connected and fully randomized topologies
(i and iii) lead to highly coherent dynamics, while the topology with preserved node-strength
sequence (v) leads to dynamics that are similar to the human connectome. However, in-
terestingly, we find that only the human connectome yields the stochastic synchronization
effect (Fig. 6C). Despite the geometry- and strength-sequence-preserving surrogate network
(light blue) having the same weight–distance relationship and hub locations as the original
brain network, and exhibiting similar coherence dynamics, noise does not enhance its syn-
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chronization, implying that more subtle topological features of the brain’s wiring contribute
to the effect such as possibly the brain’s small-world topological structure (see Fig. S9 and
Materials and Methods for details) [43]. These results reveal that the heterogeneity in the
connectivity pattern, the hierarchy of the connectivity strengths of each node (Fig. 1B),
and, more importantly, the topology of the human connectome are crucial for driving the
emergence of stochastic synchronization. The same conclusions remain even if we tune the
different network-hierarchical frequency pairs to their respective critical coupling strengths
(see Fig. S10).
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Figure 6: Role of the network’s topology on synchronization dynamics. (A) Log of edge weight vs fiber
length for all pairs of regions of different network topologies. (B) Time evolution of network coherence R
without noise. The lines are colored as labeled and according to panel A. (C) Percent change of network
synchronization ∆S vs noise strength σ. The lines are colored according to panel A. The markers represent
ensemble averages of 50 surrogates of the network topologies and the vertical lines represent the standard
errors of the means. (D) Percent change of network synchronization ∆S of different weight-preserving
networks (with a small to moderate fraction of randomized weights) at moderate noise. The markers
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standard errors of the means.
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We next sought to determine how far from the empirical network the stochastic syn-
chronization effect persists by rewiring a subset of edges. In particular, we generate weight-
preserving network surrogates of the human connectome [similar to topologies (ii) and (iii)]
but only randomize a small fraction of edges than before [52, 55], that is, a range of random-
izations of ≤20%, to delineate the robustness of the effect with distance from the human
connectome’s topology. Figure 6D shows that the effect can be robustly produced when we
randomize a small to moderate fraction of weights (0.1%, 1%, and 10%) albeit it is not as
strong as what we have found for the human connectome in Fig. 4A where the maximum
∆S was ≈16%. Then, as we increase the randomization to 20% [and beyond, e.g., topologies
(ii) and (iii)], the effect disappears and ∆S becomes negative. These results demonstrate
that it is possible to produce the effect using other network topologies, especially networks
that closely resemble the human connectome. In addition, we find that these networks that
also produce the effect have similar levels of “small-worldness” as the human connectome
(Fig. S9), which could be an important topological property shared by these networks that
is informative of the emergence of the effect.

2.5. Mechanisms of stochastic synchronization

At this point, we have explored the role of the connectome’s structure and the nodes’
intrinsic frequencies on the emergence of stochastic synchronization. Alongside these im-
portant ingredients, we ask what general mechanisms might explain the occurrence of this
phenomenon. We investigate two lines of inquiry, one based on local node dynamics and the
other based on large-scale network dynamics.

To investigate the phenomenon based on local node dynamics, we analyze two things:
the nodes’ phases and the nodes’ effective frequencies of oscillations.

We first analyze how the nodes’ phases cluster together in line with standard phase-
locking calculations for oscillators [61] and clustering analyses in neuroimaging studies [62].
We do this by placing node j on a unit circle at location (xj, yj) defined by its phase θj at time
t such that (xj, yj) = (cos θj, sin θj) (Fig. 7A). We perform this for all nodes in the network
through time and quantify the tendency of nodes with similar phases to cluster (Fig. 7B). We
investigate phase-clustering using a density-based clustering algorithm that groups together
points that are close to each other within a threshold based on a distance measurement; in
our case, we use the cosine distance to take into account distances on a circle (see Materials
and Methods for details). We then calculate the average number of clusters formed and the
average size (number of nodes) of the largest cluster across time after transients have been
removed, and compare the trends of these values to the synchronization of the network for
different noise strengths. In agreement with Fig. 4, the network synchronization improves for
most of the noise realizations tested when the network is perturbed by noise with moderate
strength and then significantly deteriorates for noise with high strength (Fig. 7C). Moreover,
stochastic synchronization coincides with the entrainment of node phases to align with each
other, resulting, on average, in fewer phase clusters (Fig. 7D) but with bigger sizes (Fig. 7E).
Comparing the statistics of the high-noise case with those of two null models (i.e., uncoupled
and random; see Materials and Methods for details), we find that a high noise strength allows
noise to dominate the dynamics of the network such that synchronization ceases and the
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Figure 7: Synchronization and phase-clustering statistics for various noise strengths and null models. The
two null models are uncoupled, where all nodes are disconnected and node phases evolve independently,
and random, where all node phases are randomly distributed. (A) Schematic of a node j with phase θj at
location (xj , yj) on a unit circle. (B) Schematic of phase clustering, where the nodes are colored according
to the cluster they belong to. Uncolored nodes do not belong to any cluster. (C) Synchronization S. (D)
Number of clusters. (E) Size of largest cluster. For panels C, D, and E, the clouds of points represent 50
noise realizations, the thick markers represent ensemble averages of all noise realizations, and the vertical
lines represent standard deviations. The two null models are in bold face. ∗∗∗∗ and ∗∗∗ denote a statistically
significant difference with p < 10−4 and p < 10−3, respectively, while ns denotes no significant difference.

network is pushed to a configuration as if the nodes are disconnected and the phases of their
oscillations are purely random. This finding for the high-noise case is further corroborated
in Fig. S11, showing that the nodes return to their respective natural frequencies.

Next, we analyze the nodes’ effective frequencies for the range of noise strengths in-
vestigated in Fig. 4. Figure 8A shows that, in general, noise influences nodes to change
their frequencies, with the changes dependent on the strength of input noise. Moreover,
the changes in frequencies are more clearly observed from ω = 0.08 to 0.1 Hz, where the
mean-ensemble frequency 〈ω0〉 = 0.0883 Hz sits. Hence, to better understand Fig. 8A, we
focus on the ω = 0.08–0.1 Hz range for very low noise (σ = 0–1× 10−6; Fig. 8B) and for the
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entire noise range (Fig. 8C).
Recall from Fig. 2D that at σ = 0, we found that interactions between nodes alone

result in the formation of several frequency clusters (i.e., alignment of frequencies), arising
due to the network being posed in a state of high metastability. We see from Fig. 8B that
turning on the noise, albeit at very low strengths, reorganizes the frequency clusters. That
is, noise perturbs the nodes asymmetrically such that some stay at their noise-free effective
frequencies and some move faster or slower to aggregate with existing clusters (e.g., the
predominantly upward shift in the blue clusters in Fig. 8B), resulting in the formation of
larger clusters (see higher occurrence of internode frequency differences near 0 compared
to the noise-free case in Fig. 8D). These larger clusters persist from very low to moderate
noise strengths (Fig. 8C), which is why synchronization increases for moderate noise (the
stochastic synchronization effect). Increasing noise further, especially beyond the cut-off
where ∆S in Fig. 4 becomes negative (represented by the dashed line in Fig. 8C), dissolves
the clusters and the nodes continuously change their frequencies until they return to their
natural frequencies (which agrees with the findings in Fig. S11).

Nodes that changed their frequencies in Fig. 8B to join existing frequency clusters, which
we call as the movers, can be identified by taking the pdf of the difference of ω at a chosen
low to moderate σ value (in our case, we choose σ = 1× 10−6) and ω at σ = 0, as shown in
Fig. 8E. These movers play a crucial role in increasing the network synchronization (due to
them making frequency clusters bigger and shifting the clusters toward the mean frequency).
Interestingly, we find that several of the biggest movers belong the the hub network (the
first 20%) defined in Fig. 4B; hence, this could be why the effect is most pronounced in
that network. Moreover, we note that the frequency-clustering mechanism described above
persists only when there are already several frustrated clusters to begin with (at σ = 0). Most
importantly, we find that the network topologies investigated in Fig. 6C are not conducive
to the creation of these frustrated clusters (Fig. S12); hence, why they cannot produce the
stochastic synchronization effect.

Finally, to investigate the phenomenon based on large-scale network dynamics, we parti-
tion the connectome into 12 empirically derived functional network subdivisions of the brain
[63] (Fig. S13). Then, we calculate within and between subnetwork functional connectivity
FC by averaging the cosine correlations between all pairs of regions within the subnetworks
(see Materials and Methods for details); a positive FC means that the concerned subnet-
works have correlated dynamics, hinting a positive functional relation. Figures 9A–9C show
that the overall qualitative pattern of FC is similar for the noise-free and moderate-noise
cases, but abolished for the high-noise case. However, quantitatively, in general, the mod-
erate noise strength increases functional connectivity. The increases are more apparent by
measuring the change in functional connectivity ∆FC with respect to the baseline (i.e., the
noise-free case), as shown in Fig. 9D. However, we emphasize that the changes are nonuni-
form across all pairs of subnetworks, with some pairs exhibiting a decrease (e.g., FC of
MEM–AUD and SUB–MEM) or no change (e.g., FC of VIS–VIS and FP–SH) in functional
connectivity, as shown in Fig. 9E. Moreover, a high noise strength destroys the functional
connectivity of all subnetworks and the global network, ultimately leading to almost zero FC,
which corroborates our previous point that the action of high noise pushes the oscillations

14

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 30, 2020. ; https://doi.org/10.1101/2020.02.09.940817doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.09.940817
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 8: Frequency clustering. (A) Effective node frequency ω vs noise strength σ. (B) Same as panel A
but for very low noise strengths (σ = 0–1×10−6). The y-axis is zoomed to show the range ω = 0.08–0.1 Hz.
(C) Same as panel B but for the entire noise range (σ = 0–0.2). For panels A, B, and C, the lines are
colored according to the order of natural frequencies (blue: low ω0; red: high ω0). The lines also represent
ensemble averages of 50 noise realizations. For panels A and C, the dashed line represents the σ where ∆S
in Fig. 4A becomes negative (i.e., desynchronization). (D) Pdf of internode frequency difference (ωi - ωj).
The blue square markers are for σ = 0 and the red circle markers are for σ = 1 × 10−6. (E) Pdf of the
difference of ω at σ = 1 × 10−6 and σ = 0. This identifies the movers, which are nodes that speed up and
slow down.

into an incoherent random state, hence becoming uncorrelated. Moreover, in the context
of these functional networks, we find that majority of the significant frequency movers in
Fig. 8C (i.e., nodes that sit at the tails of the pdf) belong to DM and VIS networks.

Overall, these results show that stochastic synchronization manifests on the human con-
nectome as a reconfiguration of functional integration between regions and subnetworks:
noise can merge functional modules through increased phase and frequency clustering and
alter the functional connectivity of the connectome’s subnetworks.

2.6. Synthetic models

In Sec. 2.5, we showed that one of the necessary ingredients for stochastic synchronization
to occur is for the noise-free network to be in a state where noise allows the system to access
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Figure 9: Functional connectivity of subnetworks for various noise strengths. (A) Functional connectivity
FC within and between subnetworks for dynamics without noise for one realization. (B) Same as panel A but
with moderate noise. (C) Same as panel A but with high noise. (D) Change in functional connectivity ∆FC
from dynamics without noise to dynamics with moderate noise. Exemplar FC of subnetworks enclosed by
the solid boxes are shown in panel E. (E) Exemplar FC between subnetworks (black solid lines and labeled).
The magenta dashed lines represent the global FC of the whole connectome. The markers represent ensemble
averages of 50 noise realizations and the vertical lines represent standard deviations.

a less-frustrated and more-synchronized state. Hence, we next investigate a scenario with
strongly frustrated frequencies such that noise can effectively speed up slow oscillations and
slow down fast oscillations, leading to increased synchronization.

We construct an instructive synthetic model with a fully connected (all-to-all) network
and frustrated distinct natural frequencies (i.e., linearly spaced from 0.01 to 0.1 Hz; the same
frequency range used above). Moreover, the dynamics are placed at a highly metastable
state at zero noise (similar to the method in Fig. 2). We find that this network can strongly
produce the effect (Fig. S14A) via a frequency-clustering mechanism. Low to moderate noise
noise enhances synchronization as the slowest nodes move faster and the fastest nodes move
slower towards a mean field (Fig. S14B). In the limit of strong noise, the nodes tend to follow
their natural frequencies (similar to the results in Fig. 8). These results demonstrate that
stochastic synchronization can indeed occur in simple networks provided they intrinsically
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have frustrated frequency distributions.
The effect also occurs for two connected oscillators (Figs S15A and S15C; with natural

frequencies set to ω0
1 = 0.08 Hz and ω0

2 = 0.093 Hz to mimic nodes on either side of the mean-
ensemble frequency of the human connectome model), even though it is well-known that
noise monotonically degrades frequency locking (Fig. S15B) [42]. In this two-oscillator case,
the effect is produced via a phase-clustering mechanism, where noise assists in producing
more phase slips that increase synchronization (see [61] for a thorough analysis).

Finally, we study another synthetic model with a random modular network (Fig. S16A;
network with four modules) and frustrated natural frequencies (the natural frequencies of
each module are set to ω0 = 0.01, 0.04, 0.07, and 0.1 Hz). By construction, this synthetic
model induces the frequency clustering mechanism discussed in Fig. 8 and can also produce
the effect as predicted (Fig. S16B).

Overall, all our results and analyses demonstrate that stochastic synchronization is partly
driven by a frequency-clustering mechanism and partly by a phase-clustering mechanism,
which are both embodied in our human connectome network with an anatomically-based
hierarchy of natural frequencies because of the existence of dynamically frustrated states.

3. Discussion

In this work, we used a computational brain network model to investigate the syn-
chronization of cortical oscillations on a large-scale human connectome. We revealed the
existence of a counterintuitive phenomenon (i.e., stochastic synchronization) where the ad-
dition of disorder (random noise) to the brain can yield a more ordered (synchronized) state.
We then teased apart and explained the network and dynamical origins of this phenomenon.

One of the advantages of the Kuramoto-based brain network model is its low complexity,
relying on only two parameters; i.e., the coupling strength c and noise strength σ. This
is why the Kuramoto literature has a wide range of available analytical results for well-
defined networks (e.g., random networks) and frequency distributions (e.g., Gaussian or
Lorentzian). However, since these analytical results cannot be straightforwardly applied to
more biological networks and frequency distributions (such as ours) in the presence of noise
[64], we extensively investigated via numerical methods how network dynamics change with
respect to the two parameters c and σ. Varying the coupling strength parameter alone, which
scales the overall influence of activity between connected regions, can produce transitions
between incoherent dynamics and coherent global synchronization patterns [8, 12]. At a
critical coupling strength, network coherence is highly metastable such that the network
spontaneously and transiently visits incoherent and coherent states. Our investigations
focused on this near-critical regime because it has consistently been found to be where
network models best fit neuroimaging data [29, 30, 31, 32, 57, 33]. As a side note, shifts
in the location of the critical point or being tuned to coupling strengths farther away from
the critical point may be a fingerprint of suboptimal brain function or neurological and
psychiatric disorders (e.g., [65, 66]), which could be an interesting avenue to investigate in
the future. Our results reveal a new role for near-critical metastable dynamics in stochastic
synchronization. Moreoever, we extend earlier results on synchronization transitions in
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Kuramoto models on the connectome to the case of neurobiologically-realistic heterogeneity
in local oscillator frequencies.

It is usually expected that the behavior or function of a physical system should deteriorate
in the presence of stochasticity such as noisy inputs. However, we showed that this is not the
case for the human connectome. We demonstrated that stochastic synchronization emerges,
where moderate levels of noise can synchronize global and local dynamics on the network,
but only around the critical coupling strength (Fig. S3). Moreover, we found that structural
hubs can benefit the most from the addition of noise, exhibiting much higher increases in
synchronization as compared to nonhubs. Hubs are well known to be critically important for
brain network integration, enabling efficient neural signaling and communication to foster
complex cognitive functions [67, 23, 68, 55]. Our results imply that hubs are the regions
most able to facilitate stochastic synchronization. This suggests a new role for hubs in
orchestrating brain network integration in the face of noisy inputs.

Given that the brain is constantly bombarded with stochastic influences across multiple
spatiotemporal scales [69], stochastic synchronization offers an explanation as to how the
brain, as a whole, can robustly adapt to and utilize randomness to achieve normal function
and/or to engender emergent behavior. By systematically evaluating the contributions of
network topology and local node characteristics to the emergence of stochastic synchroniza-
tion, we found strong evidence for the important role of hierarchy and heterogeneity in the
brain. In particular, we uncovered that (i) the hierarchy of timescales imposed by intrinsic
neuroanatomy [25, 56] and (ii) the heterogeneous complex topology of the connectome with
hubs and nonhubs positioned across the brain [21, 22] provide a substrate for the brain
to attune to stochastic influences and maintain/enrich its overall dynamics. Moreover, we
emphasize that the effect emerges due the complex synergy of the brain’s network topology
and hierarchy of natural frequencies via the creation of dynamically frustrated states. Pre-
vious studies have shown that atypical neural timescales [70], fragility and volatility of hubs
in the connectome [55], and interactions between noise and hubs [71] are associated with
neuropsychiatric disorders. Hence, these dynamical and topological perturbations in brain
disorders and diseases likely also manifest in the extent of the brain network’s stochastic
synchronization, which could be measured using the framework developed in this study. In
fact, it would be interesting to investigate in the future whether the optimal working point
(corresponding to values of c and σ that better fit fMRI data) changes for each individual,
over time (e.g., dynamic functional connectivity [62, 72]) different brain states (e.g., resting
vs task, sleep vs wake), or clinical conditions (e.g., healthy vs diseased, young vs old). It is
also plausible that the optimal set point varies dynamically in line with internal (e.g., neu-
romodulation [73]) and environmental factors, which could ultimately influence the brain’s
ability to support diverse functional processing [74].

We then revealed that the action of a moderate level of noise, where stochastic synchro-
nization thrives, is three-fold. First, moderate noise entrains node phases to align with each
other, resulting in fewer phase clusters with predominantly bigger sizes. That is, increased
integration within functional modules (clusters of regions). This translates to changes in
the level of synchronization, with a stronger stochastic synchronization effect arising from a
minimal number of clusters. Second, moderate noise pushes some nodes to move faster or
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slower to temporally lock their oscillations with other nodes. Thereby resulting in large frus-
trated frequency clusters that eventuate higher levels of synchronization. Third, moderate
noise alters the functional connectivity between subnetworks in the brain, either boosting
or diminishing it. These actions of noise could in principle be tested experimentally. For ex-
ample, pharmacological manipulations that increase/decrease neuronal noise could be used
to investigate changes in integration and functional network architecture. These manipu-
lations could include the administration of psychedelic drugs, such as LSD and psilocybin,
that target underlying neuroreceptors and have been hypothesized to increase the entropy of
the brain, resulting in a more disordered state of consciousness [75]. In fact, recent studies
have hinted the ability of these psychedelics to influence reorganization of functional brain
networks [76, 77] but the actual mechanisms of this action are unclear. Our work may
provide insights into these mechanisms. However, the precise protocols to test the effects
of these drugs in the future must be carefully considered because they could potentially
simultaneously affect multiple physiological properties (e.g., neuronal excitability, coupling,
frequencies of oscillation, and noise within local circuits). Our study also has potential
clinical applications. The stimulant methylphenidate has been linked to decreased neuronal
noise in the treatment of attention-deficit/hyperactivity disorder [78]. Moreover, our mea-
surements of network response (i.e., coherence, synchronization, and metastability) can be
easily adopted by future clinical studies, for example, in diagnostic or treatment monitoring
purposes such as tracking of network excitability in response to antiepileptic drugs [79].

Finally, we emphasize that the formulation of this study is general because at the core of
our computational brain network model is the paradigmatic Kuramoto-type phase oscillator,
which can conveniently represent coupled oscillatory units in many neural and nonneural
systems. Hence, the stochastic synchronization phenomenon demonstrated in this study
may be generalized to other systems (including outside neuroscience) as long as the system’s
network topology and intrinsic dynamics exhibit some sort of heterogeneity and hierarchy,
as discussed above. Moreover, the effect could also be explored using more complex and
realistic neural mass models [30, 80, 34].

In summary, our study demonstrates the use of a simple mesoscopic brain network model
in providing a mechanistic understanding of the synchronization dynamics of cortical oscil-
lations. It allowed us to easily generate diverse patterns of synchronization on the human
connectome that may represent various functional states of the brain. Moreover, using this
approach, we revealed that when the connectome operates near a critical coupling, the novel
phenomenon of stochastic synchronization emerges driven by the topological and dynami-
cal properties of the brain. This can be exploited to study its relation to normal and/or
pathological brain function, which would be an exciting avenue to test in the future.
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Materials and Methods

Connectomic data

The whole-brain human structural connectome was derived from 75 healthy participants
(aged 17-30 years, 47 females) using diffusion weighted MRI [52, 34]. MRI data were acquired
using a Philips 3 T Achieva Quasar Dual MRI scanner with a single-shot echo-planar imaging
(EPI) sequence (TR = 7767 ms, TE = 68 ms). High-resolution whole-brain fiber tracks were
generated via a probabilistic streamline algorithm with constrained spherical deconvolution,
as implemented in the MRtrix software [81]. Undirected structural connectivity matrices
for all participants were constructed from densely seeded tractography and parcellated into
N = 513 cortical and subcortical regions of approximately uniform size [82]. The weights
of the matrices represent the number of streamlines linking each pair of regions divided by
the streamline length. Finally, to filter out idiosyncratic variations, the final connectivity
matrix in Fig. 1 refers to a group-averaged connectome. Further details of MRI scanner
properties, data preprocessing, parameters of the tractography algorithm, and parcellation
are provided in our previous study [52].

For replication of results, minimally preprocessed diffusion weighted MRI data from 2
unrelated healthy young adult participants (participant IDs: 100206, 100307) were obtained
from the Human Connectome Project (HCP) [53, 83]. The data were acquired on a cus-
tomized Siemens Magnetom Skyra 3T MRI system according to the following parameters:
TR = 5520 ms, TE = 89.5 ms, 3 diffusion-weighted shells (b = 1000, 2000, and 3000 s/mm2),
145×145 matrix, 174 slices, and 1.25×1.25×1.25 mm3 voxel size. The diffusion images were
further processed using the MRtrix software [81] by applying bias-field correction and multi-
shell multi-tissue constrained spherical deconvolution to model white matter, gray matter,
and cerebrospinal fluid. For each HCP participant, tractograms were generated using 10
million probabilistic streamlines, 2nd-order Integration over Fiber Orientation Distributions
algorithm (iFOD2), anatomically-constrained tractography (ACT) [84], dynamic seeding
[85], backtracking, streamline lengths of 5–250 mm, and spherical-deconvolution informed
filtering of tractograms (SIFT2) [85]. Each participant’s tractogram was used to create
connectomes parcellated into two commonly used FreeSurfer atlases: Desikan-Killiany Atlas
(N = 164 cortical and subcortical regions) [86] and Destrieux Atlas (N = 84 cortical and
subcortical regions) [87]. The weights of the connection matrices represent the streamline
density, with each streamline multiplied by the appropriate weighting factor generated by
the SIFT2 method, scaled by the inverse of the streamline length.

Simulation details

The simulations were performed in MATLAB (version 2018b, MathWorks Inc.) by nu-
merically integrating the stochastic differential equation in Eq. (1) via the Euler-Maruyama
scheme with a timestep of dt = 0.25 s for a total time of 15000 s. We verified that using
a different integration scheme (Heun) and shorter timesteps (i.e., dt = 0.05, 0.1 s) does not
change the results of the study (Fig. S17). Unless otherwise stated, the results refer to
ensemble averages of either 30 different initializations (i.e., initial conditions) or 50 noise
realizations using the same initial condition.

20

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 30, 2020. ; https://doi.org/10.1101/2020.02.09.940817doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.09.940817
http://creativecommons.org/licenses/by-nc-nd/4.0/


Measures of network dynamics

The phase solutions of Eq. (1) were wrapped into the interval [0, 2π], where 0 maps
to 0, positive multiples of 2π map to 2π, and negative multiples of 2π map to 0. To
quantify instantaneous collective dynamics at time t, we used the order parameter R(t) =∣∣∣∑N

j=1 exp[iθj(t)]/N
∣∣∣, which measures global network coherence and varies between 0 (fully

incoherent state) and 1 (fully coherent state). To ensure that our results only captured
steady-state dynamics, we discarded transients and only kept data for the time period T =
5000–15000 s. All subsequent measurements in this study were performed on this steady-
state time period.

Network synchronization S was calculated by taking the time average of R(t), while net-
work metastability M was calculated by taking the standard deviation of R(t). To highlight
changes in the synchronization of a system with noise strength σ, the percent change in net-
work synchronization ∆S was calculated as [S(σ)− S(σ = 0)] /S(σ = 0)× 100. To quantify
changes in the nodes’ oscillation frequencies, we calculated the effective frequency of node i

as ωi =
1

T

∫ τ+T

τ

θ̇i(τ)dτ , where T is the steady-state time period defined above [58]. We also

measured the correlation of oscillations between nodes i and j called functional connectivity
FC calculated as FC = 〈cos(θi− θj)〉, where the brackets denote steady-state time average;
FC varies from −1 (anticorrelated), 0 (uncorrelated), and 1 (correlated). The metric was
extended to capture the functional connectivity between subnetworks of the connectome by
taking the average FC among all pairs of nodes in the subnetworks.

Frequency distributions

The other distributions of natural frequencies in Fig. 5 were: (i) Dirac-delta (homoge-
neous); (ii) random uniform (rand-uniform); (iii) random Gaussian (rand-gaussian); and
(iv) random Lorentzian (rand-lorentzian). The distributions were bounded to the frequency
bandwidth of fMRI (i.e., 0.01–0.1 Hz) similarly to Eq. (2). Distribution (i) comprised
frequencies that were all set to ωmean = 0.055 Hz. Distribution (ii) comprised uniform-
distributed random frequencies. Distribution (iii) comprised Gaussian-distributed random
frequencies centered at ωmean with a standard deviation of ωmean/5. Distribution (iv) com-
prised Lorentzian-distributed random frequencies with a median of ωmean and a half width
at half maximum of ωmean/5.

Network topologies

The other network topologies used in Fig. 6 were: (i) fully connected; (ii) weight-
preserving random network, randomizing 50% of the connections; (iii) weight-preserving
random network, randomizing 100% of the weights; (iv) geometry-preserving random net-
work, preserving the node strengths; and (v) geometry-preserving random network, preserv-
ing the node-strength sequence. Topology (i) was a fully-connected network with all-to-all
connections and weights equal to the average weight of the human connectome. Topology
(ii) was a surrogate of the human connectome with 50% of the weights randomly shuffled.
Topology (iii) was a surrogate of the human connectome with 100% of the weights randomly
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shuffled. Topology (iv) was a surrogate of the human connectome with randomly shuf-
fled weights but preserving the weight–distance relationship and the distribution of node
strengths, which means that the surrogate network has hubs with the same node strengths
as those in the empirical connectome but now positioned randomly. Topology (v) was a
surrogate of the human connectome with randomly shuffled connections but preserving the
weight–distance relationship and the node strengths in their original order, which means
that all nodes have the same strengths and positions as those in the empirical connectome.
The algorithms to create topologies (ii)–(v) were taken from [52, 55]. To quantitatively
compare the structure of these topologies, we calculated their small-world propensity [88],
which is a recently developed graph-theory measure that quantifies the extent to which a
weighted network displays small-world characteristics inspired by [89].

Phase-clustering algorithm

Phase clustering was analyzed using a density-based clustering algorithm DBSCAN [90].
The advantage of DBSCAN against other popular community detection algorithms, such
as the Louvain and k-means algorithms, is that it is robust to outliers and does not need
an a priori value for the number of clusters. The algorithm requires two parameters to
be defined: cluster radius and minimum cluster size. The cluster radius ε specifies the
maximum distance between nodes for them to be considered as part of a cluster. Since the
nodes were placed on a unit circle (see Fig. 7A), the cosine distance was used, which is one
minus the cosine of the phase difference between nodes. The minimum cluster size minPts
specifies the minimum number of nodes needed to form a cluster. We set ε = 0.0011 and
minPts = 10 to optimize the number of clusters formed (see optimization in Fig. S18), but
we verified that changing the values of these parameters does not change the results of the
study.

Null models

Two null models, i.e., uncoupled and random, were generated for comparing the syn-
chronization and phase-clustering statistics resulting from the high-noise case in Fig. 7. The
uncoupled model was generated using our brain network model but with coupling strength
set to c = 0, which effectively simulated a network with disconnected nodes and node phases
evolving independently. On the other hand, the random model was generated by randomly
choosing node phases from a uniform distribution [0, 2π], disregarding any kind of structured
dynamics.

Statistical analysis

Pair-wise differences in the synchronization and phase-clustering statistics in Fig. 7 were
tested using a one-way ANOVA and corrected for multiple comparisons using the Bonferroni-
Holm procedure.

Code availability

MATLAB codes to perform sample simulations and generate the figures of this study
are available at https://github.com/brain-modelling-group/stochastic-sync.
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Figure S1: Network coherence and spatiotemporal dynamics for various coupling strengths. (A) Time
evolution of network coherence R for c � c∗ (yellow), c = c∗ (red), and c � c∗ (blue). (B) Local phase
dynamics for c� c∗. (C) Same as panel B but for c = c∗. (D) Same as panel B but for c� c∗. For panels
B, C, and D, the dynamics shown are within the time window highlighted by the black solid box in panel
A.

A B C

Figure S2: Time evolution of the distribution of phase differences for various noise strengths. (A) Pdf of
phase difference ∆θ for dynamics without noise. (B) Same as panel A but with moderate noise. (C) Same
as panel A but with high noise. The pdf at t = 7800 s highlighted by the red dashed line is shown above
the panels.
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Figure S3: Synchronization for various coupling and noise strengths. (A) Synchronization S for c � c∗.
(B) S for c = c∗. (C) S for c � c∗. For panels A, B, and C, the cloud of points represent 50 noise
realizations, the thick markers represent ensemble averages of all noise realizations, and the vertical lines
represent standard deviations. (D) Percent change of network synchronization ∆S vs noise strength σ
(yellow: c � c∗; red: c = c∗; yellow: c � c∗). The solid lines represent ensemble averages of 50 noise
realizations and the shaded areas represent the standard errors of the means.

29

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 30, 2020. ; https://doi.org/10.1101/2020.02.09.940817doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.09.940817
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 40 60 80

20

40

60

80

0 1 2 3

0

0.02

0.04

0.06

0.08

0.1

0.0001 0.001 0.01 0.1 0.5

0

0.2

0.4

0.6

0.8

1

0

0.05

0.1

5000 7500 10000

0

0.5

1

8500 8750 9000

20

40

60

80

0 0.1 0.2 0.3

-50

-40

-30

-20

-10

0

10

A B

C D

E

F

Figure S4: Replication of results on HCP participant 100206’s connectome with N = 84 regions. (A)
Connectivity matrix with the solid boxes denoting modules. (B) Natural frequency of oscillation ω0 as a
function of connectivity strength s. The distributions of s and ω0 are shown above and to the right of the
main panel, respectively. (C) Network synchronization S and metastability M vs coupling strength c. The
red dashed line highlights the critical coupling strength c∗ where M is maximum. The solid lines represent
ensemble averages of 30 initializations. (D) Time evolution of network coherence R at c∗. (E) Local phase
dynamics within the time window highlighted by the red solid box in panel D. (F) Percent change of network
synchronization ∆S vs noise strength σ at c∗. The solid line represents an ensemble average of 50 noise
realizations and the shaded area represents the standard error of the mean.
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Figure S5: Replication of results on HCP participant 100206’s connectome with N = 164 regions. The
details of each panel are the same as those in Fig. S4.
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Figure S6: Replication of results on HCP participant 100307’s connectome with N = 84 regions. The
details of each panel are the same as those in Fig. S4.
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Figure S7: Percent change of network synchronization ∆S vs noise strength σ for different frequency
distributions. The markers represent ensemble averages of 500 realizations of the frequency distributions
and the vertical lines represent the standard errors of the means.
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Figure S8: Network dynamics tuned to the critical coupling strength for different frequency distributions.
(A) Network synchronization S and metastability M vs coupling strength c. The red dashed line highlights
the critical coupling strength c∗ where M is maximum. The magenta dotted line highlights the original
critical coupling strength in Fig. 1D for ease of comparison. The solid lines represent ensemble averages of
30 initial conditions. (B) Percent change of network synchronization ∆S vs noise strength σ. The markers
represent ensemble averages of 50 realizations of the frequency distributions and the vertical lines represent
the standard errors of the means. Each row shows the results for the distribution labeled on the left.
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Figure S9: Small-world propensity of different network topologies (excluding the fully connected network).
The thick markers represent ensemble averages of 50 surrogates of the network topologies and the clouds of
points represent all the surrogates.
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Figure S10: Network dynamics tuned to the critical coupling strength for different network topologies. The
details of each panel are the same as those in Fig. S8. Each row shows the results for the network topology
labeled on the left.
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Figure S11: Effective node frequency ω as a function of natural frequency ω0 at a high noise strength. The
markers are colored according to the order of natural frequencies (blue: low ω0; red: high ω0). The dashed
line represents ω = ω0.
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Figure S12: Effective node frequency ω as a function of natural frequency ω0 at the noise-free case for
different network topologies. For all panels, the markers are colored according to the order of natural
frequencies (blue: low ω0; red: high ω0). The dashed lines represent ω = ω0. The insets show a zoomed
version of the main panels, restricting the frequencies from 0.07–0.1 Hz (for both ω0 and ω).
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Figure S13: Spatial map of the connectome’s functional subnetworks (in superior axial
view). SH=Somatomotor Hand, SM=Somatomotor Mouth, CO=Cingulo-Opercular, AUD=Auditory,
DM=Default Mode, MEM=Memory, VIS=Visual, FP=Fronto-Parietal, SAL=Salience, SUB=Subcortical,
VA=Ventral Attention, and DA=Dorsal Attention.
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Figure S14: Synthetic model of a fully connected network (N = 51) with linearly-spaced natural frequencies
from ω0 = 0.01 to 0.1 Hz. (A) Percent change of network synchronization ∆S vs noise strength σ. The
solid line represents an ensemble average of 50 noise realizations and the shaded area represents the standard
error of the mean. The inset shows the natural frequencies, where the markers are colored according to their
order (blue: low ω0; red: high ω0). (B) Effective node frequency ω vs noise strength σ. The lines are
colored similarly to the inset of panel A. The lines also represent ensemble averages of 50 noise realizations.
The dashed line represents the σ where ∆S in panel A becomes negative.
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Figure S15: Synthetic model of two connected oscillators with natural frequencies of ω0
1 = 0.08 Hz and

ω0
2 = 0.093 Hz. (A) Synchronization S vs coupling strength c for two noise strengths (blue: without noise;

red: moderate noise). (B) Difference in effective node frequencies ∆ω (= ω1 − ω2) for two noise strengths
(blue: without noise; red: moderate noise). For panels A and B, the red solid line represents an ensemble
average of 50 noise realizations. (C) Percent change of synchronization ∆S vs noise strength σ at c = 0.003.
The solid line represents an ensemble average of 50 noise realizations and the shaded area represents the
standard error of the mean.
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Figure S16: Synthetic model of a random modular network (N = 64). (A) Network with four modules.
Within-module connectivity is all-to-all, while between-module edges are randomly created until the entire
network has 1200 edges (network density ∼ 30%). The colors represent nodes belonging to the same module.
All nodes within each module oscillate at the same intrinsic natural frequency (i.e., ω0 = 0.01, 0.04, 0.07,
0.10 Hz for each of the modules). (B) Percent change of global network synchronization ∆S vs noise strength
σ. The solid line represents an ensemble average of 50 network surrogates and the shaded area represents
the standard error of the mean.
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Figure S17: Robustness of the stochastic synchronization effect to the choice of (A) numerical integration
scheme and (B) timestep dt. The markers represent ensemble averages of 50 noise realizations.
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Figure S18: Optimization of the DBSCAN clustering algorithm. The number of clusters for the noise-
free case is calculated for each combination of cluster radius ε and minimum cluster size minPts. (Inset)
Number of clusters vs ε at minPts = 10. The solid line represents the time average and the shaded area
represents the standard deviation.

Movie S1: Network coherence and node phases for dynamics without noise. (Top) Time evolution of
network coherence R from t = 9000–10000 s. (Bottom) Spatial distribution of node phases θ in different
conventional brain views (left: superior axial; middle: sagittal; right: posterior coronal).

Movie S2: Network coherence and node phases for dynamics with moderate noise. (Top) Time evolution
of network coherence R from t = 9000–10000 s. (Bottom) Spatial distribution of node phases θ in different
conventional brain views (left: superior axial; middle: sagittal; right: posterior coronal).

Movie S3: Network coherence and node phases for dynamics with high noise. (Top) Time evolution of
network coherence R from t = 9000–10000 s. (Bottom) Spatial distribution of node phases θ in different
conventional brain views (left: superior axial; middle: sagittal; right: posterior coronal).
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