Krüppel-like factor gene function in the ctenophore Mnemiopsis leidyi assessed by CRISPR/Cas9-mediated genome editing

Jason S Presnell¹,², William E Browne¹,*

¹Department of Biology, University of Miami, Cox Science Center, 1301 Memorial Drive, Miami, FL 33146, USA

²Present Address: Department of Human Genetics, University of Utah, 15 N 2030 E, Salt Lake City, UT 84112, USA

ORCID ID: 0000-0002-7225-6692

*Corresponding Author:
William E. Browne, Department of Biology, University of Miami, Cox Science Center, 1301 Memorial Drive, Miami, FL 33146, USA
305-284-3319
w.browne@miami.edu

ORCID ID: 0000-0001-8200-6489

Keywords: Ctenophore, Krüppel-like factor, KLF5, endoderm, evolution, lithocyte
Abstract

The Krüppel-like factor (Klf) gene family encodes for transcription factors that play an important role in the regulation of stem cell proliferation, cell differentiation, and development in bilaterians. While Klf genes have been shown to be expressed in various cell types in non-bilaterian animals, their functional role in early diverging animal lineages has not been assessed. Thus, the ancestral activity of these transcription factors in animal development is not well understood. The ctenophore Mnemiopsis leidyi has emerged as an important non-bilaterian model system for understanding early animal evolution. Here we characterize the expression and functional role of Klf genes during M. leidyi embryogenesis. Zygotic Klf gene function was assessed with both CRISPR/Cas9-mediated genome editing knockout and splice-blocking morpholino oligonucleotide knockdown approaches. Abrogation of zygotic Klf expression during M. leidyi embryogenesis results in the irregular development of several organs including the pharynx, tentacle bulbs, and apical organ. Our data suggest an ancient role for Klf genes in regulating endodermal patterning.

Summary Statement (~15-30 words)

Using morpholino oligonucleotide knockdown and CRISPR/Cas9 genome editing, this study shows that in the ctenophore Mnemiopsis leidyi, tissues derived from the endoderm are dependent upon Klf5 ortholog expression for proper development and patterning.
Introduction

Members of the *Krüppel-like factor (Klf)* gene family encode transcription factors with a characteristic DNA binding domain composed of three C-terminal C2H2-zinc fingers (McConnell and Yang, 2010; Presnell et al., 2015). During metazoan diversification, the *Klf* transcription factor gene family expanded via duplication and domain shuffling events (Presnell et al., 2015). *Klf* transcription factors are expressed in a variety of cells and tissues and have roles in many biological processes, including proliferation of stem and progenitor cells, embryonic development, germ layer differentiation, neuronal growth and regeneration, immune system regulation and metabolic regulation (Bialkowska et al., 2017; McConnell and Yang, 2010; Moore et al., 2009; Nagai et al., 2009; Oishi and Manabe, 2018; Pearson et al., 2008; Sweet et al., 2018).

While KLF functional studies have been restricted to bilaterians, *Klf* genes are found in the genomes of all metazoans (Presnell et al., 2015). Within Cnidaria, *Klfs* are expressed in multipotent interstitial stem cells and their various downstream lineages, as well as in ectodermal epithelial stem cells in *Hydra vulgaris* (Hemmrich et al., 2012; Siebert et al., 2019). In *Hydractinia symbiolongicarpus*, *Klf* genes are upregulated in male sexual polyp bodies vs female sexual polyp bodies (DuBuc et al., 2020). In a single-cell RNA-seq dataset for *Nematostella vectensis*, *Klfs* were also shown to be expressed in various cell types, including the gastrodermis and neuronal cells (Sebé-Pedrós et al., 2018a). Within Porifera, *Klfs* are upregulated in the stem-cell like archaeocytes, epithelial pinacocytes, and mesenchymal cells in both *Spongilla lacustris* and *Amphimedon queenslandica* (Musser et al., 2019; Sebé-Pedrós et al., 2018b). Single-cell RNA-seq data for the Placozoan *Trichoplax adhaerens* revealed a single *Klf* gene upregulated in epithelial cells (Sebé-Pedrós et al., 2018b). In ctenophores, three *Klf* genes have been identified in two distantly related species, *Pleurobrachia bachei* and *Mnemiopsis leidyi* (Presnell et al., 2015). The genome of *M. leidyi* contains *MleKlf5a*, *MleKlf5b*, and *MleKlfX* (Presnell et al., 2015). *MleKlf5a* and *MleKlf5b* are the result of a lineage-specific duplication within the Ctenophora, while *MleKlfX* is highly derived with no clear orthology to any known metazoan *Klf* clade (Presnell et al., 2015). To date, single-cell and tissue-specific RNA-seq studies in *M. leidyi* have not established differential expression signatures for *Klf* genes (Babonis et al., 2018; Sebé-Pedrós et al., 2018b).
M. leidyi is a species of the non-bilaterian phylum Ctenophora, one of the earliest-diverging extant metazoan lineages (Dunn et al., 2008; Hejnol et al., 2009; Whelan et al., 2017). M. leidyi has been used extensively as a model for investigating early metazoan developmental patterning, regeneration, and the evolution of animal traits (Babonis et al., 2018; Fischer et al., 2014; Martindale and Henry, 1999; Presnell et al., 2016; Reitzel et al., 2016; Salinas-Saavedra and Martindale, 2020; Schnitzler et al., 2014; Yamada et al., 2010). M. leidyi embryos undergo a ctenophore-specific early cleavage program with gastrulation taking place ~3-5 hours post-fertilization (hpf) followed by tissue organization and organogenesis over the next several hours (Fischer et al., 2014; Freeman, 1976)(Fig. 1A). Four pairs of ctene rows, one pair in each quadrant, are typically among the first differentiated ectodermal structures to appear (Fischer et al., 2014). Each ctene plate is made up of polster cells bearing fused giant cilia (Tamm, 1973). While initial ctene plate development is established by maternal factors (Fischer et al., 2014), new ctene row expansion begins post-hatching during the juvenile cydippid stage (Tamm, 2012). After the formation of the initial ctene rows, the developing embryo rapidly increases in size. This period of rapid growth is accompanied by pharynx elongation along the aboral/oral axis, the development of tentacle bulbs, and deposition of the first lithocytes onto the balancer cilia of the apical organ (Martindale and Henry, 2015). Flanking the apical organ along the tentacular axis, a pair of ectodermal invaginations and internal endodermal cells form the developing tentacle bulb organs and the tentacular lateral and median ridges, respectively (Martindale and Henry, 1997b; Martindale and Henry, 1999). Embryonic and adult tentacle bulb organs contain populations of highly proliferative cells in the lateral ridge and median ridge tissues that give rise to differentiated colloblast and tentacle muscle cells, respectively (Alié et al., 2011; Babonis et al., 2018; Jager et al., 2008; Schnitzler et al., 2014). Moreover, genes associated with germline development and stemness, including Piwi, Vasa, Nanos, and Sox homologs are highly expressed in both the lateral and median ridges of the tentacle bulb, as well as in proliferative cell populations in the developing apical organ and ctene rows, suggestive of the presence of undifferentiated progenitor cells with stem-cell like properties in these tissues. In adult animals, these undifferentiated progenitor cells presumably play a role in the continuous replacement of lost cells (Alié et al., 2011; Jager et al., 2008; Reitzel et al., 2016; Schnitzler et al., 2014). After ~18-20 hpf, the fully developed cydippid hatches and maintains a feeding, pelagic lifestyle.
before transitioning into the adult lobate body plan ~20 days post hatching (Martindale and Henry, 2015).

Here we address Klf gene function in ctenophores by examining the expression of the three known Klf homologs in *M. leidyi* during embryogenesis. We show results disrupting the zygotic function for two Klf genes, *MleKlf5a* and *MleKlf5b*, using both morpholino oligonucleotides and CRISPR/Cas9. Knockdown of Klf gene expression is associated with the abnormal development of various organs during ctenophore embryogenesis and our data provides additional insight into the function of the Klf gene family in the animal stem lineage.

Results

MleKlf5a, MleKlf5b, and MleKlfX expression

MleKlf5a and *MleKlf5b* transcripts are maternally loaded in *M. leidyi* (Davidson et al., 2017) similar to maternal loading of a number of Klf genes in other metazoans (Blakeley et al., 2015; De Graeve et al., 2003; Weber et al., 2014). *MleKlf5a* and *MleKlf5b* transcripts are detected in all embryonic cells through gastrulation (Fig. 1B-E). Post-gastrulation, transcripts for both *MleKlf5a* and *MleKlf5b* become spatially restricted to cell populations associated with the developing pharynx, gastrovascular system, tentacle bulb median ridges, and within the developing apical organ (Fig. 1F-Q).

Within the developing pharynx, *MleKlf5a* and *MleKlf5b* expression are initially widespread (Fig. 1G,I). As the pharynx elongates, *MleKlf5a* and *MleKlf5b* expression become restricted to the interior-most cell layers of the medial and aboral pharyngeal regions (Fig. 1K,M,O,Q). The aboral-most region of the pharynx includes cells that form the junction with the central gastrovascular cavity, or infundibulum. *MleKlf5a* and *MleKlf5b* expression is found throughout the endodermal epithelial lining of the presumptive gastrodermis (Fig. 1J-Q). During the initial development of the aboral apical organ, *MleKlf5a* and *MleKlf5b* expression is detected in the apical organ floor epithelia. As the apical organ develops, *MleKlf5a* and *MleKlf5b* expression becomes progressively restricted to cells located along the tentacular axis that are positionally correlated with sites of lithocyte formation (Tamm, 2014; Fig. 1K,O,M,Q). Within the developing tentacle bulbs, both *MleKlf5a* and *MleKlf5b* are expressed in the tentacular median ridge (Fig. 1F-Q). An additional unique *MleKlf5b* expression domain is detected in a
Running Title: Ctenophore Klf gene function

A narrow band of epidermal cells surrounding newly formed ctene row polster cells (Fig. 1H,L,P; Fig. S1A,B).

In contrast to both *MleKlf5a* and *MleKlf5b*, *MleKlfX* expression is restricted to late embryogenesis, first appearing ~16 hpf. Expression of *MleKlfX* transcripts are localized to a small number of cells within the apical organ (Fig. S1C,D). One group of *MleKlfX* expressing cells is located deep within the central epithelial floor of the developing apical organ. These cells are located along the tentacular axis and pharyngeal axis forming a cross-shaped pattern (Fig. S1C). A second shallower group of *MleKlfX* expressing cells is located within each quadrant just medial of the ciliated grooves in the developing apical organ (Fig. S1D). These *MleKlfX* expressing cells correspond positionally with the apical organ lamellate bodies, which may represent putative photoreceptor cells (Horridge, 1964; Schnitzler et al., 2012), suggesting that *MleKlfX* expression may be associated with light sensing neuronal cell types in the apical organ.

Knockdown of zygotic *MleKlf5a* and *MleKlf5b* expression

To characterize zygotic *Klf* gene function in *M. leidyi*, we used both splice-blocking morpholinos (sbMOs) and CRISPR/Cas9-mediated genome editing to knockdown *Klf* gene expression during embryonic development (Fig. 2). *MleKlfX* gene knockdown experiments failed to produce any obvious morphological phenotypes, so we focus here on *MleKlf5a* and *MleKlf5b* knockdown experiments. It has been shown that co-expressed KLFs bind to shared downstream regulatory targets resulting in complex functional outcomes. For example, KLF2, KLF4, and KLF5 have redundant roles in the downstream regulation of Nanog (Jiang et al., 2008), whereas competition between KLF1 and KLF3 for binding sites can result in disparate functional outcomes (Ilsley et al., 2017). For this reason, we sought to maximize the efficiency of generating an observable phenotype by performing simultaneous *MleKlf5a* and *MleKlf5b* knockdown with both sbMO and CRISPR/Cas9 genome editing experiments.

We injected single-cell embryos with either *MleKlf5a+MleKlf5b* sbMOs (KLF-MO embryos) or *MleKlf5a-sgRNA+MleKlf5b-sgRNA* (KLF-Cas9 embryos). Microinjected embryos were allowed to develop to ~20 hpf, stained with vital dyes, live-imaged, and compared to equivalent late-stage wildtype embryos from the same spawns. Microinjections with standard control MO, Cas9 protein alone, or sgRNAs alone had no detectable effect on embryonic development (Fig. S2A). A selection of KLF-MO, KLF-Cas9, and wildtype embryos were
subjected to individual-embryo RNA or DNA analyses, respectively, to validate gene expression knockdown. For both *MleKlf5a* and *MleKlf5b*, sbMOs produced mRNA splicing errors in KLF-MO embryos via exon skipping and/or intron retention (Fig. 2A,B,E,F). An initial set of 4 single guide RNAs (sgRNAs) were designed for *MleKlf5a* and *MleKlf5b* (Table 1) based on the *M. leidyi* reference genome (Moreland et al., 2014; Moreland et al., 2020; Varshney et al., 2015). For each gene, a single sgRNA, *MleKlf5a-sgRNA4* and *MleKlf5b-sgRNA3* (Fig. 2A,E), proved efficient at mediating Cas9 double-stranded break activity at the target loci (Fig. 2C,D,G,H). Sanger sequencing followed by ICE analysis (Hsiau et al., 2019) revealed a clear degradation of sequence trace signal at the target loci in KLF-Cas9 embryos as compared to control embryos (Fig. 2C,G), indicating the presence of indels and putative frameshift mutations generated by sgRNA targeted Cas9 exonuclease activity (Fig. S2B). No evidence of off-target Cas9 exonuclease activity was observed (Table 2). Thus phenotypes generated by both gene abrogation approaches in our study were due to the simultaneous disruption of *MleKlf5a* and *MleKlf5b* gene expression.

KLF-MO and KLF-Cas9 embryos phenocopied one another and displayed phenotypes of varying penetrance (Fig. 3A-P). A higher proportion of severe phenotypes were observed among KLF-Cas9 embryos as compared to KLF-MO embryos (Fig. 3S), reflecting the effects of Cas9-mediated genome editing versus titration of functional mRNAs by sbMOs. In contrast to the observation of predominantly severe phenotypes in KLF-Cas9 embryos injected with *MleKlf5a-sgRNA4+MleKlf5b-sgRNA3* (Fig. 3O-P; Fig. 4E-F, L-M), single gene knockdown using either *MleKlf5a-sgRNA4* or *MleKlf5b-sgRNA3* primarily generated mild phenotypes (Fig. S3).

KLF-MO and KLF-Cas9 embryos with mild phenotypes underwent pharyngeal elongation simultaneous with both mesoglea extrusion and a concomitant increase in size similar to that observed in control embryos; however, experimental embryos displayed disorganized patterning at the aboral end of the pharynx and the infundibular gastrovascular cavity (Fig. 3E-F, M-N). Occasionally, we observed pharyngeal bifurcation at the junction of the pharynx with the infundibular gastrovascular cavity (Fig. 3F,N; Fig. S3B; Fig. S4). In contrast, embryos having severe phenotypes (Fig. 3G-H, O-P) failed to increase in size, reflecting a lack of extracellular matrix (ECM) extrusion into the mesoglea space. Thus in severely affected embryos, the internal embryonic space typically occupied by mesoglea is absent and the interior volume is completely occupied by gastrovascular endoderm and abnormally elongated pharyngeal tissue. Both the
stomodeum and oral regions of the pharynx were still visible in severe mutant embryos, indicating that the entire pharyngeal structure was not lost. However, it is unclear whether the observed abnormal pharyngeal elongation is caused by Klf gene abrogation directly or is a spatial effect due to the absence of mesogleal ECM.

The extrusion of ECM correlates with increased squamousity of epidermal cells (Fig. 4O). In severely affected animals we observed reduced epidermal squamousity and significantly closer spacing of epidermal cells relative to normally developing animals (Fig. 4O-T). This suggests reduced lateral tension forces on ectodermal cells in animals lacking mesogleal ECM. Thus despite a decreased total body size, the ectodermal cell contribution to the epidermis appears to be largely unaffected.

Among both KLF-MO and KLF-Cas9 embryos, patterning defects were also observed in the apical organ (Fig. 3; Fig. 4A-G). MleKlf5a and MleKlf5b knockdown resulted in a significant reduction of apical organ lithocytes as compared to control embryos (Fig. 4A-G). By 20 hpf, control embryo statocysts contained an average of ~7 lithocytes (Fig. 4A-B, G). KLF-MO embryos had an average ~4 lithocytes, with three embryos lacking lithocytes entirely (Fig. 4C,D,G). KLF-Cas9 embryos had an average of ~2 lithocytes, with five embryos completely lacking lithocytes (Fig. 4E,F,G). Notably both KLF-MO and KLF-Cas9 embryos lacking lithocytes still possessed phenotypically normal balancer cilia and dome cilia derived from ectoderm (Fig. 4D,F).

The simultaneous abrogation of MleKlf5a and MleKlf5b also resulted in a dramatic reduction in tentacle bulb size, particularly in the tentacular median ridge (Fig. 3; Fig. 4H-N; Fig. S6K). We measured the tentacular median ridge width and found significant differences between control and injected embryos (Fig. 4N; Fig. S5). The control embryo average median ridge width was ~23 µm. KLF-MO and KLF-Cas9 embryo average median ridge width was ~18 µm and ~9 µm, respectively (Fig. 4N). Moreover, we observed that 15% of KLF-MO embryos and 29% of KLF-Cas9 embryos lacked tentacular median ridges altogether (Fig. 4J-N).

The median ridge in adult Pleurobrachia pileus and juvenile M. leidyi cydippids has previously been shown to contain populations of proliferative cells (Alié et al., 2011; Reitzel et al., 2016; Schnitzler et al., 2014). In our MleKlf5a and MleKlf5b knockdown experiments the relative size of the median ridge was consistently reduced, therefore we decided to perform EdU incorporation assays during mid-late embryogenesis to assess cell proliferation. We observed
dramatically reduced EdU incorporation in areas affected by the knockdown of MleKlf5a and MleKlf5b, including the median ridge and pharynx, suggesting that reduced cell proliferation rates are associated with the attenuation of zygotic MleKLF5a and MleKLF5b activity (Fig. 3Q,R; Fig. S6).

Discussion

Our expression analyses of MleKlf5a and MleKlf5b in *M. leidyi* show that transcripts of both genes are maternally loaded and ubiquitously distributed through gastrulation, corroborating previous RNA-seq results which detected abundant transcripts for both MleKlf5a and MleKlf5b during *M. leidyi* early embryonic cleavage stages (Davidson et al., 2017). Knockdown of zygotic MleKlf5a and MleKlf5b expression does not appear to impact early embryonic development. The zygotic expression of MleKlf5a and MleKlf5b display localized spatio-temporal patterns in post-gastrulation embryos. Both MleKlf5a and MleKlf5b are expressed in the developing pharynx, gastrodermis, tentacle bulbs and apical organ. These similar expression patterns could be due to functionally redundant roles (Lynch and Conery, 2000). In contrast, the expression of MleKlfX is restricted to late stages of development in a subset of apical organ epithelial cells. The *M. leidyi* KlfX gene sequence is highly divergent relative to other metazoan Klf genes (Presnell et al., 2015), suggestive of a *Mnemiopsis*-specific functional role for MleKlfX.

The Klf gene complement in *M. leidyi* is reduced compared to other non-bilaterian lineages (Presnell et al., 2015), a trend observed in other gene families (Moroz et al., 2014; Ryan et al., 2013). Klf5-like genes are found in all metazoans (McCulloch and Koenig, 2020; Presnell et al., 2015). Among the non-bilaterian phyla, a Klf5 ortholog in the cnidarian *Nematostella vectensis* genome was shown to be expressed in a cluster of cells associated with digestive filaments and the gastrodermis (Sebé-Pedrós et al., 2018a). In sponges, a Klf5 ortholog was found to be expressed in stem-cell like archaeocytes in the marine sponge *Amphimedon queenslandica* (Sebé-Pedrós et al., 2018b), and in the digestive choanocytes and peptidocytes of the freshwater sponge *Spongilla lacustris* (Musser et al., 2019). In vertebrates, Klf5 orthologs are required for the maintenance of intestinal crypt epithelia in the gut (Gao et al., 2015; Kuruvilla et al., 2015; McConnell et al., 2011; Nandan et al., 2015). While less is known about Klf5 orthologs from invertebrate bilaterians, Klf5 is expressed in several cephalopod embryonic tissues including yolk cells and the developing mouth (McCulloch and Koenig, 2020). In our previous
Running Title: Ctenophore Klf gene function

phylogenetic study, it was unclear whether the few identified invertebrate sequences were either
Klf4 or Klf5, which share high sequence similarity (Presnell et al., 2015). One of these
sequences, Drosophila melanogaster dar1, shares sequence similarity to human Klf5 but has a
functional role more similar to human Klf4, and was shown to play a role in regulation of gut
proliferation (Wu et al., 2018). Based on our expression analysis of MleKlf5a and MleKlf5b and
the observed dysregulation of gastrodermal patterning in MleKlf5a+MleKlf5b knockdown
embryos, our data suggest an evolutionarily conserved role for Klf5-like orthologs in the
regulation and maintenance of gut epithelia among metazoans.

M. leidyi endodermal cell lineages stem from early cleavage stage E and M oral
macromeres while ectodermal lineages originate from the aboral micromeres. Fate mapping
experiments show that the ectodermal micromeres contribute to the epidermis, ctene rows,
tentacle epithelia and colloblasts, balancer cilia and the epithelial floor of the apical organ, while
the endodermal macromeres give rise to the gastrodermis and associated endodermal canal
system, muscle, the tentacular median ridge, and the apical organ lithocytes (Henry and
Martindale, 2001; Martindale and Henry, 1997a; Martindale and Henry, 1999). Dysregulation of
MleKlf5a and MleKlf5b show consistent abnormal phenotypes associated with the development
of the apical organ and tentacle bulbs. In the apical organ of MleKlf5a and MleKlf5b
dysregulated embryos, the development of endodermally derived lithocytes is reduced or absent
while the ectodermally derived epithelial floor, balancer cilia, and dome cilia appear normal (Fig.
4A-G). Similarly in the developing tentacle bulb, abrogation of MleKlf5a and MleKlf5b activity
resulted in the absence or reduction in size of the endodermally derived median ridge (Fig. 4H-
N). Remaining tentacle tissue likely represents ectodermal contributions to tentacle epithelia and
colloblasts. The development of other ectodermally derived structures including the stomodeum
and epidermal cells were unaffected (Fig. 3; Fig. 4O-T). These results suggest that MleKlf5a and
MleKlf5b play a functional role in the development and maintenance of endodermally derived
tissues during M. leidyi embryogenesis.

With regard to the unique ectodermal expression domain of MleKlf5b (Fig. S1A-B), no
ectodermal or ctene row patterning phenotypes were observed in KLF-Cas9 embryos. However,
ctene rows showed gross spatial disorganization in phenotypically severe KLF-MO and KLF-
Cas9 embryos, possibly reflecting a requirement for coordinated contact between ectoderm and
underlying endoderm for precise ctene row alignment (Fig. 3G,O). For example, in
phenotypically mild KLF-MO and KLF-Cas9 embryos, ctene row morphogenesis did not occur in ‘quadrants’ in which endodermal tissue failed to contact ectodermal tissue (Fig. 3E,M). This result corroborates prior analyses indicating that ctene row development is at least partially regulated through inductive interactions between endodermal and ectodermal cell lineages (Fischer et al., 2014; Henry and Martindale, 2001; Henry and Martindale, 2004; Martindale and Henry, 1997a). One possible explanation for the observed MleKlf5b expression pattern could be that MleKlf5b is expressed in developing light producing photocytes derived from endodermal 2M macromeres that run subjacent to the ctene rows (Anctil, 1985; Fischer et al., 2014; Freeman and Reynolds, 1973; Martindale and Henry, 1999; Schnitzler et al., 2012). An EdU-positive ring of proliferative cells is situated around the ctene rows (Fig. S6C,G). These proliferative, MleKlf5b positive cells may represent photocyte progenitor cells, as photocytes differentiate relatively early during development (Fischer et al., 2014). Notably, the initial development of differentiated polster cells/ctenes is specified by maternal factors, with additional ctenes generated post embryonically. Therefore zygotic MleKlf5b would not directly impact the specification of the initial ctenes during the stages observed in our study. An alternative explanation is that these MleKlf5b- and EdU-positive ectodermal cells represent progenitor cells that will give rise to new polster cells post-hatching and thus contribute to ctene row expansion.

In mammalian lineages Klf5 orthologs help maintain stem cell renewal and promote proliferation in the intestinal crypt and in pluripotent embryonic stem cells (Jiang et al., 2008; Kuruvilla et al., 2015; Nandan et al., 2015; Parisi et al., 2008; Parisi et al., 2010). However, a recent study suggests that mammalian pluripotency factors are not necessarily conserved in all animals, and the ancestral metazoan stem cell toolkit primarily consists of genes associated with the germline multipotency program (Alié et al., 2015; Juliano et al., 2010). Germline genes, including Piwi, Bruno, Pl-10, have been shown to be expressed in putative progenitor cell populations in the tentacle bulb, ctene rows, and apical organ of adult Pleurobrachia (Alié et al., 2011). In M. leidy cydippids, Piwi, Vasa, as well as Sox pluripotency factors are expressed in these same tissues, suggesting that progenitor cell populations in these tissues express both pluripotency factors as well as germline factors (Reitzel et al., 2016; Schnitzler et al., 2014). Our EdU-staining recapitulates earlier work identifying zones of cell proliferation associated with the developing pharynx, gastrodermis, areas around the ctene rows, and in the apical organ epithelial floor (Reitzel et al., 2016; Schnitzler et al., 2014). These areas of cell proliferation correlate with
the zygotic transcript expression domains of both *MleKlf5a* and *MleKlf5b* (Fig. 1; Fig. 3Q; Fig. S6).

Notably, sponge orthologs to *Klf5, Piwi, Bruno* and *Pl-10* are expressed in archaeocyte and choanocyte cell types recognized as sponge equivalents to pluripotent and multipotent stem cells respectively (Alié et al., 2015; Musser et al., 2019; Sebé-Pedrós et al., 2018b). Although we were unable to perform quantitative analyses, our qualitative assessments show a diminution/loss of EdU-positive cells in the median ridge and apical organ in *MleKlf5a*+*MleKlf5b* knockdown embryos (Fig. 3Q-R; Fig. S6K). One interpretation of our results is that *MleKlf5a* and *MleKlf5b* are expressed in proliferative cells and play a functional role in the maintenance of multipotent endodermal progenitor cell populations.

To resolve whether *MleKlf5a* or *MleKlf5b* expressing cells are both proliferative and multipotent will require additional experimentation. Future experiments involving the knockdown of pluripotency and germline determination genes, such as *Piwi* and *Vasa*, along with EdU assays may reveal further aspects of cellular proliferation and specification associated with *Klf* activity. Alternatively, the observed phenotypes may be due to proliferation-independent mechanisms establishing terminal cell identity. For example *MleKlf5a* and *MleKlf5b* may regulate the terminal specification of lithocyte and tentacle muscle cell types. Based on this work, while the explicit regulatory role of *MleKlf5a* and *MleKlf5b* remains unclear, our results show that *MleKlf5a* and *MleKlf5b* are functionally associated with the formation, developmental patterning and maintenance of endodermally derived structures in *M. leidyi* including the gastrodermis, the tentacular median ridge, tentacle muscle, and apical organ lithocytes.

Conclusions

In this study, we used two independent methods, splice blocking morpholinos and Cas9-mediated genome editing, to singly and coordinately abrogate zygotic *MleKlf5a* and *MleKlf5b* gene function during *M. leidyi* embryonic development. We show that Cas9-mediated genome editing is an effective method for performing combinatorial gene function assays in F0 ctenophore embryos. Along with recent RNA-seq data highlighting candidate genes associated with zygotic gene activation and patterning of specific cell types in ctenophores (Babonis et al., 2018; Davidson et al., 2017; Sebé-Pedrós et al., 2018b), both sbMO and CRISPR/Cas9 based gene function assays in *M. leidyi* will provide much needed insight into the genetic mechanisms...
underlying ctenophore biology and further our understanding of early metazoan evolution (Jokura et al., 2019; Yamada et al., 2010). Our results begin to lay the groundwork for assessing gene function essential for the embryonic development of M. leidyi and thus inform developmental mechanisms unique to Ctenophora for the specification of terminally differentiated cell types (e.g., lithocytes). Furthermore, our functional data suggest that Klf activity is required for the proper development and maintenance of several endodermally derived structures, possibly through the maintenance of multipotent progenitor cell proliferation. This likely represents a conserved ancestral function for this transcription factor gene family in the animal stem lineage.

Materials and methods

Cloning and in situ hybridization

RNA was extracted using Trizol (Thermo Fisher Scientific) from Mnemiopsis embryos collected at different developmental stages and used to generate cDNA libraries (SMARTer kit, Clontech). The coding sequences of MleKlf5a, MleKlf5b, and MleKlfX were amplified from cDNA (Table 1) and cloned into pGEM-T Easy vector (Promega). The cloned fragments were used as templates for in vitro transcription (MEGAscript, Ambion) of antisense digoxigenin-labeled (Digoxigenin-11-UTP, Roche) riboprobes.

In situ hybridization followed (Pang and Martindale, 2008). Riboprobes were used at a final concentration of ~0.5 ng/µl and hybridized with embryos for 24 hours. After color development, nuclei were labeled with either DAPI (Molecular Probes) or Hoechst 33342 (Molecular Probes) in 1x PBS. Embryos were immediately imaged or stored at -20°C in 70% glycerol in 1x PBS. Images were acquired using a Zeiss Axio Imager.Z2, Zeiss AxioCam MRm Rev3 camera, and Zeiss Zen Blue software. Fluorescent Z-stacks were deconvolved, post-processed for brightness and contrast and assembled in Adobe Photoshop. Monochrome brightfield images were inverted, pseudo colored and overlaid onto fluorescent images of labeled nuclei.

Vital Dye staining

Live embryos were incubated in filtered seawater (FSW) containing a final concentration of 100 nM MitoTracker (Deep Red FM, Molecular Probes), 100 nM LysoTracker (Red DND-99,
Molecular Probes), and 10 ng/µl Hoechst 33342 for one hour at room temperature. Live embryos were then placed on glass slides in a drop of FSW and relaxed with a drop of 6.5% MgCl₂ (in dH₂O) on a coverslip positioned with clay feet. Images were acquired using a Zeiss Axio Imager.Z2, Zeiss AxioCam MRm Rev3 camera, and Zeiss Zen Blue software. Fluorescent Z-stacks were deconvolved, post-processed for brightness and contrast, and assembled in Adobe Photoshop.

EdU labeling

Click-iT® EdU Alexa Fluor® 647 Imaging Kit (ThermoFisher Scientific) was used for identification of proliferating cells. Embryos were collected at different developmental stages and pulse incubated for 25 minutes with 100 µM EdU in a solution of a 1:1 volumetric ratio of FSW to 6.5% MgCl₂ (dissolved in dH₂O) at room temperature. The EdU solution was washed out and embryos were either fixed immediately or allowed to continue to develop during a 24-hour chase and subsequently fixed. Embryos were fixed with 4% PFA in FSW for 30 minutes at room temperature, washed with 3% BSA in 1x PBS, and incubated with 0.5% Triton X-100 in 1x PBS for 20 minutes at room temperature. Fixed embryos were washed with 3% BSA in 1x PBS and stored at 4°C until used for EdU detection as per manufacturer protocol. Embryos were subsequently washed with 1x PBS and mounted on glass microscope slides. Images were acquired using a Zeiss Axio Imager.Z2, Zeiss AxioCam MRm Rev3 camera, and Zeiss Zen Blue software. Fluorescent Z-stacks were deconvolved, post-processed for brightness and contrast, and assembled in Adobe Photoshop or FIJI (Schindelin et al., 2012).

Microinjection

Laboratory cultures of adult Mnemiopsis leidyi on a ~12 hr:12 hr light:dark cycle were spawned ~4 hours post darkness (hpd). At ~3.5 hpd individual adult M. leidyi were placed into 8-inch glass bowls and screened for mature sperm and eggs. Freshly fertilized eggs were collected by pipette.

Microinjection needles were pulled with a Brown micropipette puller (P-1000, Sutter Instrument Company) using aluminosilicate glass capillaries (AF100-64-10, Sutter Instrument Company). Pulled capillaries were beveled using a microelectrode beveler (BV-10, Sutter Instrument Company). Beveled capillary needles were loaded via backfilling with injection.
cocktails mixed with fluorescently-conjugated dextran (Invitrogen) (used to assess injection success). Loaded capillary needles were mounted to a Xenoworks microinjection system (Sutter Instrument Company) paired to a Zeiss Discovery V8 epifluorescence stereomicroscope. Fertilized *M. leidyi* eggs were collected and passed sequentially through a 500 µm and a 400 µm cell strainer (pluriSelect Life Science) to remove excess mucus and egg jelly. Embryos were then washed with 1x Penicillin/Streptomycin:FSW (PS:FSW). The embryonic vitelline membranes were removed in gelatin-coated dishes with acid-sharpened tungsten needles. Embryos were then carefully transferred to an injection dish. After microinjection, embryos were kept at room temperature until reaching the desired development stage for further analyses. To determine if removing the vitelline membrane had an effect on embryogenesis, we scored the percentage of normal development in embryos that were removed from the vitelline membrane but not injected. There was no significant difference in the percentage of normal development between embryos kept in their vitelline membrane (85%, *n*=161) and those that were devitellinized but un-injected (80%, *n*=217; $\chi^2=1.5272$, $p=0.217$; S3a).
oligo to a sgRNA-specific oligo that consisted of a T7 promoter, followed by the sgRNA target sequence, and a complementary sequence to the tracrRNA oligo (Table 1). These templates were then *in vitro* transcribed (MEGAscript, Ambion) to generate sgRNAs. The CasOT program (Xiao et al., 2014) and *M. leidyi* reference genome (Moreland et al., 2014; Moreland et al., 2020) were used to identify sgRNA target sites for *MleKlf5a* (*ML00922a*), *MleKlf5b* (*ML25776a*), and *MleKlfX* (*ML20061a*). We selected sgRNAs that had no fewer than four mismatches to alternative genomic sites to minimize potential off-target site (OTS) activity (Table 1; Table 2). Recombinant Cas9 protein (PNA Bio) and sgRNAs were injected at concentrations of 400 ng/µl of Cas9 protein and 100 ng/µl for each sgRNA. After phenotypic analysis, genomic DNA was extracted from individual embryos (QIAamp DNA Micro, Qiagen) and each sgRNA target site was amplified and Sanger sequenced. The ICE analysis tool (Hsiau et al., 2019) was used to determine Cas9 efficiency for each sgRNA. ICE analysis gives two scores: an ICE score which reflects the percentage of indels found and a KO score which reflects the percentage of indels that produce a frameshift mutation.

Epidermal nuclei counts

Live images of wildtype, KLF-MO, and KLF-Cas9 embryos were used. Individual Z-sections from Hoechst channels were focused on the outer epidermal layer for each embryo oriented along the tentacular axis (TA). A 100 µm² region of interest (roi) was positioned medially and oral of the ctene rows. Nuclei within the roi were manually counted. Nuclei counts were quantified and plotted using R (http://shiny.chemgrid.org/boxplotr/).

ACKNOWLEDGEMENTS

This work was supported in part by startup funds from the University of Miami College of Arts and Sciences to WEB. JSP was supported by the University of Miami College of Arts and Sciences. We thank Ricardo Cepeda for additional animal support.

AUTHOR CONTRIBUTIONS

WEB originally conceived the study and designed the research. JSP and WEB performed experiments, collected and analyzed data, and wrote the manuscript. JSP and WEB read and approved the final manuscript.
AUTHOR INFORMATION

Correspondence and requests for materials should be addressed to WEB.

(w.browne@miami.edu)

Competing financial interests: The authors declare no competing financial interests.
References

Running Title: Ctenophore Klf gene function

Running Title: Ctenophore Klf gene function

21

Schnitzler, C. E., Simmons, D. K., Pang, K., Martindale, M. Q. and Baxevanis, A. D. (2014). Expression of multiple Sox genes through embryonic development in the ctenophore Mnemiopsis leidyi is spatially restricted to zones of cell proliferation. Evodevo 5, 15.

Figure Legends

Fig 1. Zygotic MleKlf5a and MleKlf5b are primarily expressed in endodermally derived tissues during embryogenesis in Mnemiopsis leidyi. A) Schematics highlighting major morphological landmarks (e.g., ctene rows, pharynx, tentacle bulbs, apical organ) during M. leidyi embryogenesis. Gastrulation typically occurs within 6 hours post-fertilization (hpf), followed by rapid tissue remodeling and organogenesis over the next several hours. By 24 hpf embryos are ready to hatch as cydippid larvae and have fully developed organ systems. The top row is an aboral view. The bottom row is a lateral view with oral up and aboral down. (B-Q) Whole-mount in situ hybridization for MleKlf5a and MleKlf5b during embryogenesis. Orientation follows schematics from A. Aboral views in C, E, F, H, J, L, N, P. Lateral views in D, G, I, K, M, O, Q. (B-E) Maternal transcripts for both MleKlf5a and MleKlf5b are found ubiquitously in zygotes (B), early cleavage stages (D) and gastrulae (C,E). (F-Q) Zygotic MleKlf5a and MleKlf5b transcript expression domains with corresponding schematics. (F-I) Initially, expression of MleKlf5a and MleKlf5b zygotic transcripts are localized to the forming tentacular median ridges (arrowheads) and the developing pharynx (oph + aph). (J-M) Later in development, MleKlf5a and MleKlf5b transcript expression are also found in the developing apical organ (arrows) and epithelia of the newly formed gastrovascular cavity (gvc). (N-Q) In cydippids, MleKlf5a and MleKlf5b transcripts are found in the tentacular median ridge (arrowheads) and lateral ridge (lr), on either side of the apical organ floor (arrows), localized towards the aboral end of the pharynx (aph), and throughout the gastrovascular cavity epithelium (gvc). (L, P) MleKlf5b transcripts are also expressed in an additional domain around the ctene rows (asterisks). See also Fig. S1a-b. Scale bars: 50 µm. oph, oral end of the pharynx; TA, tentacular axis; PA, pharyngeal axis.

Fig 2. Validation of independent methods used to abrogate MleKlf5a and MleKlf5b gene function. MleKlf5a (A) and MleKlf5b (E) exon-intron schematics show the location of splice-blocking morpholino oligonucleotide (sbMO) targets (blue boxes) and single-guide RNA (sgRNA) targets (black triangles) used in this study. The orange bars indicate the location of the DNA binding domain. (B,F) Electrophoretic gels of PCR products obtained using MleKlf5a and MleKlf5b sbMO RT-PCR primers (arrows in predicted splice form schematics to the right) on cDNA obtained from a whole individual KLF-MO embryo exemplar (n = 21 KLF-MO embryos).
and control embryo exemplar. A 2-log DNA ladder was used for band size reference. Wildtype (wt) and mis-spliced transcripts due to exon-skipping (-E) and/or intron retention (+I) were present in KLF-MO embryos. (C-G) Discordance plots produced using ICE software show elevated sequence discordance downstream of the Cas9 cut site relative to control genomic sequence. (D,H) Corresponding Sanger sequence traces from genomic DNA extracted from a whole individual KLF-Cas9 embryo exemplar show signal degradation downstream of the Cas9 cut site as compared to a wildtype embryo. Sanger sequencing signal degradation is caused by the introduction of indels in KLF-Cas9 embryos (n = 17 KLF-Cas9 embryos; also see S2b). The sgRNA target site is underlined, the position of the Cas9 cut site is represented by a vertical dashed line.

Fig 3. MleKlf5a and MleKlf5b double gene knockdown via sbMO and sgRNA-Cas9 genome editing. (A-P) Live imaging showing morphology of 20 hpf cydippids. Aboral view in A, C, E, G, I, K, M, O. Lateral view, oral up, in B, D, F, H, J, L, N, P, Q, R. Schematic depiction of tentacular axis (TA) and pharyngeal axis (PA) orientation are located in panel upper right. (A, B) Un-injected wildtype embryo. Hoechst (blue) marks nuclei. Mitotracker (red) preferentially marks the position of ctene row polster cells, one pair per embryonic quadrant. Lysotracker (yellow) preferentially stains epithelial cells lining the gastrovascular cavity (gvc). Tentacular median ridges (arrowheads) are positioned medially along the tentacular axis and contacted by gvc epithelial cells. The pharynx (ph) is positioned centrally and joins with the gvc aborally. The apical organ (arrow) is located at the aboral pole of the embryo. Morphology is unaffected in embryos sham injected with control morpholino (MO) (C, D), sgRNA only (I, J) or Cas9 protein only (K, L). In contrast, mild phenotypes in double gene knockdown KLF-MO embryos (E, F) and double gene edited KLF-Cas9 embryos (M, N) display aberrant distributions of gvc epithelial cells (Lysotracker signal), aberrant patterning of the pharynx (ph) including aboral bifurcations (F, N; refer to Fig. S4, Fig. S5), aberrant patterning of the tentacle bulb and tentacular median ridges (arrowheads), and atypical apical organ (arrow) morphology. Severe phenotypes in double gene knockdown KLF-MO embryos (G, H) and double gene edited KLF-Cas9 embryos (O, P) are reduced in size due to lack of mesoglea ECM extrusion, display collapsed pharynx with gvc junction defects, significantly reduced tentacle bulbs and tentacular median ridges (arrowheads), and apical organ defects (arrow). (Q) 25 min EdU pulse in wildtype
16-20 hpf embryo. Strong EdU incorporation signal (orange) is found in the oral and aboral regions of the developing pharynx (oph and aph respectively), epithelial cells lining the gastrovascular cavity (gvc), the developing tentacular median ridges (arrowheads) and lateral ridges (lr) of the tentacle bulbs. (R) 25 min EdU pulse in 16-20 hpf KLF-Cas9 embryo. EdU incorporation signal (orange) is diminished in regions that also express MleKlf5a and MleKlf5b (refer to Fig. 1, Fig. S6) including the pharynx, gvc and tentacular median ridges. Note that lr cell proliferation is not affected. (s) Comparison of phenotypic proportions in KLF-MO embryos (51% no phenotype, 29% mild phenotype, 20% severe phenotype, n = 45) vs KLF-Cas9 embryos (6% no phenotype, 19% mild phenotype, 75% severe phenotype, n = 16). Scale bars are 50 µm.

Fig 4. MleKlf5a and MleKlf5b double gene knockdown disrupts the development of endodermally derived cell types and structures including lithocytes and the tentacular median ridge. Live images of embryos at ~20 hpf. Schematic depiction of tentacular axis (TA) and pharyngeal axis (PA) orientation are located in panel upper right. Aboral view in A, C, E, H, J, L. Lateral view, oral up, in B, D, F, I, K, M, O-S. (A, B) Wildtype embryo with view of the apical organ (ao) showing position of lithocytes (arrow) and dome cilia (arrowhead). (C, D) Representative double gene knockdown KLF-MO embryo and (E, F) representative double gene edited KLF-Cas9 embryo lacking lithocytes. Dome cilia (arrowheads) and balancer cilia are present in both KLF-MO and KLF-Cas9 embryos. (G) Quantification of lithocyte production. MleKlf5a and MleKlf5b double gene knockdown significantly reduces lithocyte production. Centerlines show the medians; box limits indicate the 25th and 75th percentiles; whiskers extend 1.5 times the interquartile range from the 25th and 75th percentiles; * = two-tailed t-test, t = 3.47, p<0.005; ** = two-tailed t-test, t = 6.52, p<0.00001. Individual counts are plotted as black dots where n = 14, 33, and 15 samples respectively. (H, I) Wildtype tentacular median ridge (arrowhead) and lateral ridge (lr). (J, K) Representative double gene knockdown KLF-MO embryo and (L, M) representative double gene-edited KLF-Cas9 embryo with dramatically reduced tentacular median ridge. The tentacle bulb lateral ridge remains present in both KLF-MO and KLF-Cas9 embryos. (N) Quantification of median ridge width. MleKlf5a and MleKlf5b double gene knockdown significantly reduces tentacular median ridge width. Centerlines show the medians; box limits indicate the 25th and 75th percentiles; whiskers extend 1.5 times the interquartile range from the 25th and 75th percentiles; * = two-tailed t-test, t = 4.01, p<0.0005;
** = two-tailed t-test, t = 8.32, p<0.00001. Individual measurements are plotted as black dots where n = 28, 61, and 34 samples respectively. Each measurement represents a single tentacular median ridge width, with a maximum of 2 (i.e., 2 tentacular median ridges) from each embryo. A measurement of 0 indicates the absence of a tentacular median ridge and/or tentacle bulb. (O-S) Representative images with a 100 μm² region of interest focused on the outer epidermal cell layer of wildtype (O), KLF-MO mild (P) and severe (Q), and KLF-Cas9 mild (R), and severe (S) embryos. (T) Quantification of epidermal nuclei cell counts. Centerlines show the medians; box limits indicate the 25th and 75th percentiles; whiskers extend 1.5 times the interquartile range from the 25th and 75th percentiles; crosses represent sample means; * = two-tailed t-test, t=-5.35225, p<.005; ** = two-tailed t-test, t=-4.99757, p<.005. Area nuclei counts are plotted as black dots where n = 5, 5, 4, 5, and 5 area count samples respectively. KLF-MO severe (M = 100.40, SD = 10.7) and KLF-Cas9 severe (M = 106.40, SD = 17.4) both had a significantly higher density of epidermal nuclei counts per 100 μm² area than control embryos (M = 51.20, SD = 17.5). There was no significant difference in epidermal nuclei counts for KLF-MO mild (M = 54.60, SD = 11.0) or KLF-Cas9 mild (M = 53.25, SD = 22.8) relative to control embryos. Scale bars are 50 μm.

Figure S1. Additional MleKlf5b and MleKlfX transcript expression domains. Schematic depiction of tentacular axis (TA) and pharyngeal axis (PA) orientation are located in panel upper right. Scale bars are 50 μm. (A, B) organogenesis stage 7-15 hpf embryos, lateral view, oral up. Dashed lines bound MleKlf5b ectodermal expression (magenta) in rapidly dividing cells (compare with Fig. S6c, g) that flank developing ctene row pairs (visible as aligned columns of DAPI stained nuclei bounded by MleKlf5b expression). (C, D) Magnified aboral views of MleKlfX expression (magenta) in epithelial floor cells of the apical organ. (C) Initially MleKlfX expression is detected at 16 hpf in four small clusters of cells at the boundary of each developing embryonic quadrant converging in the center of the apical organ. (D) Expression of MleKlfX resolves into several cell clusters by 18 hpf in both the tentacular (TA) and pharyngeal (PA) axes.

Figure S2. ICE analysis of KLF-Cas9 embryos. (A) Sham injection has no effect on embryonic development. Bar graph comparison of percentage of normal development in
wildtype $n = 161$ (24 abnormal); devitrellinized but uninjected $n = 217$ (42 abnormal), two-tailed Fisher’s exact test $P = 0.2761$; control MO injected $n = 49$ (10 abnormal), two-tailed Fisher’s exact test $P = 0.379$; Cas9 only injected $n = 7$ (1 abnormal), two-tailed Fisher’s exact test $P = 1$; sgRNA only injected $n = 4$ (1 abnormal), two-tailed Fisher’s exact test $P = 0.4851$. (B)

Distribution of ICE scores (estimate of indel proportion in signal trace from genomic DNA of individual KLF-Cas9 embryos) and KO scores (estimate of indel proportion that result in frameshift mutation) for $Mle\text{Klf5a-sgRNA4}$ ($n = 14$) and $Mle\text{Klf5b-sgRNA3}$ ($n = 17$). Cas9 cut sites were PCR amplified from genomic DNA prepared from individual KLF-Cas9 embryos and subsequently Sanger sequenced. Each cut site data point represents Sanger trace analyses from an individual embryo. Box plot center lines show the median, box limit at 25th and 75th percentiles, whiskers extend 1.5 times interquartile range from the 25th and 75th percentiles, data points are plotted as open circles.

Figure S3. Cas9 mediated genome editing of either $Mle\text{Klf5a}$ or $Mle\text{Klf5b}$ resulted in reduced phenotype penetrance. Schematic depiction of tentacular axis (TA) orientation located in panel upper right. Lateral view, oral up, scale bars are 50 µm. Single gene editing produced primarily mild phenotypes for both $Mle\text{Klf5a}$ KLF-Cas9 embryos (A) and $Mle\text{Klf5b}$ KLF-Cas9 embryos (B). (C) Bar graph comparison of distribution of mild (gray) vs severe (black) phenotypes in $Mle\text{Klf5a}$ KLF-Cas9 embryos ($n = 5$, 80% mild) and $Mle\text{Klf5b}$ KLF-Cas9 embryos ($n = 5$, 80% mild).

Figure S4. Aberrant pharyngeal patterning. Schematic depiction of tentacular axis (TA) and pharyngeal axis (PA) orientation located in panel upper right. Lateral views, oral up, scale bars are 50 µm. (A, B) 20 hpf double gene KLF-MO embryo with bifurcated (arrow) pharynx (ph). (C, D) Same individual KLF-MO embryo 3 days post fertilization (dph) showing persistence of pharyngeal bifurcation patterning defect just anterior of the pharyngeal-gastrovascular junction resulting in a deletion of the pharyngeal folds.

Figure S5. Cydippid tentacle bulb schematic. Aboral view: top; Lateral view: bottom. Tentacular median ridge colored light gray. Tentacular lateral ridges colored darker gray. Tentacle (not shown) is rooted at the aboral medial base of the tentacle bulb. Location of
measurement taken for the tentacular median ridge width (refer to Fig. 4n) is denoted with red dashed line.

Figure S6. Regions of rapid cell proliferation. A) Schematics highlighting major morphological landmarks (e.g., ctene rows, pharynx, tentacle bulbs, apical organ) during *M. leidy* embryoogenesis. The top row is an aboral view. The bottom row is a lateral view with oral up and aboral down. Schematic depiction of tentacular axis (TA) and pharyngeal axis (PA) orientation are located in panel upper right. (B-I) Edu incorporation after 25 min pulse during embryoogenesis. Orientation follows schematics from A. Aboral views in B,D,F,H. Lateral views in C,E,G,I. Edu incorporation is localized to two cell clusters in the apical organ (B,F), epithelial cells flanking the developing ctene rows bounded by dashed lines (C,G), epithelial cells lining the gastrovascular cavity (gvc) (E,I) in the developing tentacular median ridges (arrowheads), and the oral (oph) and aboral (aph) regions of the pharynx (E). (H,I) Later in development, Edu incorporation is found in the tentacular median ridge (arrowheads) and lateral ridges (lr) of the tentacle bulbs and in both oral (oph) and aboral (aph) regions of the pharynx. (L) tentacle bulb after 25 min pulse:0 min chase. (M,N) tentacle bulb after 25 min pulse:24 hr chase. Edu incorporation is primarily detected in emergent tentacle muscle cells. Scale bars: 50 µm. TA, tentacular axis; PA, pharyngeal axis.
Table 1. Primers and Oligonucleotides used in this study. All sequences are oriented 5’-3’.
Italicized nucleotide sequences correspond to T7 promoter. **Bold** nucleotide sequences correspond to genomic *MleKlf* targets and include addition of two 5’ G residues to aid T7 polymerase binding. **Underlined** nucleotide sequences denote region of complementary between templated primers and Universal tracrRNA primer, which are annealed to the form the sgRNA transcription template.

<table>
<thead>
<tr>
<th>Name</th>
<th>Use</th>
<th>Forward</th>
<th>Reverse</th>
</tr>
</thead>
<tbody>
<tr>
<td>MleKlf5a</td>
<td>ISH probe</td>
<td>ATGAGTGCTATGA</td>
<td>AAACGTGTTCAA AATTTTAAGT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CATG</td>
<td>TGCCTCTT</td>
</tr>
<tr>
<td>MleKlf5b</td>
<td>ISH probe</td>
<td>ATGGACGTTTCCA</td>
<td>AGACGAGCTAGG GGGGAACG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CGC</td>
<td></td>
</tr>
<tr>
<td>MleKlfX</td>
<td>ISH probe</td>
<td>GGCAGTGTAGTT</td>
<td>TGCAGTGAGTTGTT AGGTT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GC</td>
<td></td>
</tr>
<tr>
<td>MleKlf5a sbMO#1</td>
<td>sbMO</td>
<td>TCTCGTGTCGAA</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ACAATTTTAAGT</td>
<td></td>
</tr>
<tr>
<td>MleKlf5a sbMO#2</td>
<td>sbMO</td>
<td>GTCTACCACCTGC</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AAGATTTTAAGT</td>
<td></td>
</tr>
<tr>
<td>MleKlf5b sbMO#1</td>
<td>sbMO</td>
<td>CAGTTGACCTTC</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ACCTGGAAGA</td>
<td></td>
</tr>
<tr>
<td>MleKlf5b sbMO#2</td>
<td>sbMO</td>
<td>CAAACAGACCTT</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ACCTCAATGTGA</td>
<td></td>
</tr>
<tr>
<td>Standard Control</td>
<td>sbMO</td>
<td>CCTCTACCTCAG</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TTACAATTTTA</td>
<td></td>
</tr>
<tr>
<td>MleKlf5a sbMO RT-PCR</td>
<td>sbMO validation</td>
<td>CCCCTTGAAAACCT</td>
<td>TCTTCGTTGAAAC CTTTCG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GAGCA</td>
<td></td>
</tr>
<tr>
<td>MleKlf5b sbMO RT-PCR</td>
<td>sbMO validation</td>
<td>GACAAGTTCCAAA</td>
<td>TACAGTAGATGAG GAGGTTT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GACTAAC</td>
<td></td>
</tr>
<tr>
<td>Universal tracrRNA</td>
<td>sgRNA synthesis</td>
<td>AAAACGACCGACT</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CCGTGGCCACTTTT</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TCAAGTGGATAAC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>GGACTAGCCTTTA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TTTAACTTGCTAT</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>TTCTAGCTCTAAA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>AC</td>
<td></td>
</tr>
</tbody>
</table>
Running Title: Ctenophore *Klf* gene function

<table>
<thead>
<tr>
<th>sgRNA template</th>
<th>sgRNA synthesis</th>
<th>GAAATTAATA CGAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>MleKlf5a sgRNA #1</td>
<td>sgRNA synthesis</td>
<td>GCAACGGG TTCG</td>
</tr>
<tr>
<td>MleKlf5a sgRNA #2</td>
<td>sgRNA synthesis</td>
<td>AAATAGC</td>
</tr>
<tr>
<td>MleKlf5a sgRNA #3</td>
<td>sgRNA synthesis</td>
<td>GG[Nxx]</td>
</tr>
<tr>
<td>MleKlf5a sgRNA #4</td>
<td>sgRNA synthesis</td>
<td>GGTAGGACG</td>
</tr>
<tr>
<td>MleKlf5b sgRNA #1</td>
<td>sgRNA synthesis</td>
<td>TTGTGATATACCA</td>
</tr>
<tr>
<td>MleKlf5b sgRNA #2</td>
<td>sgRNA synthesis</td>
<td>ATCTTTACGGC</td>
</tr>
<tr>
<td>MleKlf5b sgRNA #3</td>
<td>sgRNA synthesis</td>
<td>CGCTTGAGGG</td>
</tr>
<tr>
<td>MleKlf5b sgRNA #4</td>
<td>sgRNA synthesis</td>
<td>CTGAAACACCGG</td>
</tr>
</tbody>
</table>

840
<table>
<thead>
<tr>
<th>Locus ID</th>
<th># Mismatches</th>
<th>Target Sequence</th>
<th>Forward Sequence</th>
<th>Reverse Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>ML090223a</td>
<td>4 (MleKlf5a-sgRNA4)</td>
<td>AAATTGTTTGTGTTC</td>
<td>ACACT</td>
<td>AGTTTTCTTTTGTTTT</td>
</tr>
<tr>
<td>ML021138a</td>
<td>5 (MleKlf5a-sgRNA4)</td>
<td>CAGCTTCATTGTAAA</td>
<td>GAGTC</td>
<td>TTAGTTCTTTATGGTTT</td>
</tr>
<tr>
<td>ML200217a</td>
<td>5 (MleKlf5b-sgRNA3)</td>
<td>GGATACTAGTTCCAT</td>
<td>AGCAG</td>
<td>CTCCTTGTTGATAT</td>
</tr>
<tr>
<td>ML00363a</td>
<td>6 (MleKlf5b-sgRNA3)</td>
<td>TATGATTCTTTTAC</td>
<td>CAGGG</td>
<td>ACATAACGTATCTCT</td>
</tr>
<tr>
<td>ML02979a</td>
<td>7 (MleKlf5b-sgRNA3)</td>
<td>CTGCATGATTACAA</td>
<td>AGGTTT</td>
<td>ATGCTAAGAAGGAT</td>
</tr>
</tbody>
</table>

Table 2. Off-target CRISPR/Cas9 loci with mismatches to either MleKlf5a or MleKlf5b target sequence and primers used for Sanger sequencing. All sequences are oriented 5’-3’.