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Abstract:  
Networks in neuroscience determine how brain function unfolds. Perturbations of the network 
lead to psychiatric disorders and brain disease. Brain networks are characterized by their 
connectomes, which comprise the totality of all connections, and are commonly described by 
graph theory. This approach is deeply rooted in a particle view of information processing, based 
on the quantification of informational bits such as firing rates. Oscillations and brain rhythms 
demand, however, a wave perspective of information processing based on synchronization. We 
extend traditional graph theory to a dual particle-wave-perspective, integrate time delays due to 
finite transmission speeds and derive a renormalization of the connectome. When applied to the 
data base of the Human Connectome project, we explain the emergence of frequency-specific 
network cores including the visual and default mode networks. These findings are robust across 
human subjects (N=100) and are a fundamental network property within the wave picture. The 
renormalized connectome comprises the particle view in the limit of infinite transmission speeds 
and opens the applicability of graph theory to a wide range of novel network phenomena, 
including physiological and pathological brain rhythms.  

 
One Sentence Summary: Spatiotemporal and topological network properties are unified within 
a novel common framework, the renormalized connectome, that explains the organization of 
fundamental frequency-specific network cores.  

 
Main Text: 

Introduction. Network theory significantly advanced our understanding of complex processes in 
nature, ranging from gene regulation of protein interactions (1), coordination of brain activity (2) 
to social networks (3). Connectivity is the dominant concept shaping the information 
transmission capacity of a network (4) and is described by its topological and statistical 
properties (5). In neuroscience, network theory has been applied on several scales, including 
microscopic neocortical microcircuitry (6), macroscopic structural connectivity (7), and 
networks of coordinated brain activity, so-called functional connectivity (8). A connectome is the 
comprehensive map of neural connections in the brain and maybe thought of as its wiring 
diagram (9). Models of brain networks based on human connectomes (10) have demonstrated 
individual predictive power in resting state paradigms  (11), cognitive tasks (12) and brain 
disease such as epilepsy (13, 14). In all these network applications, there remains a deeply rooted 
understanding of signal transmission in the sense of Shannon (15), in which bits of information 
are transmitted between network nodes. Useful insights about information processing are 
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obtained by descriptors such as information capacity (15), transfer entropy (16), mutual 
information (17) or graph theoretical quantities such as centrality, modularity and hubs (18). In 
Physics, such a picture corresponds to the particle view of classical mechanics, in which the 
dynamics of particles is a powerful means of describing extended processes and interactions. 
But, as the particle picture is complemented by a wave picture in physics, similarly in 
neuroscience there are oscillatory processes deeply implicated in healthy and pathological brain 
activations, such as cognitive functions (19) or aberrant discharges in epilepsy (20). Such 
rhythms and, for spatially extended oscillations, waves can fundamentally not be described 
within a particle view of information processing and are dual to the current view of 
connectomics in neuroscience, which supports only the particle picture. In the latter network 
processes are described by activations, whereas the wave picture imposes a language in terms of 
synchronization. The importance of the particle-wave duality in neuroscience becomes evident 
when considering signal transmission delays, present in large scale brain networks and ranging 
on the order of 10-200 ms (21). As physiological rhythms in the brain are in the same range (22), 
shifts in arrival time due to delays have only minimal to no effects in the particle view, but 
consequential frequency dependent effects in the wave view, where a synchronized pair of 
oscillators may switch from full synchrony to anti-synchrony only due to changes in time delays. 
As such, frequency and time delays become inseparable properties of the network and determine, 
together with the connectome, the information processing capacity of a network (23–25), 
confirming previous computational studies about the effects of the space-time structure of the 
brain in its emergent dynamics (26, 27). Current state of the art network neuroscience does not 
reach beyond the topological aspects in describing the connectivity of the brain (2, 28), thus 
limits itself to the particle view only and omits space and physical distances between the 
interacting units (29). In the rare cases when actual lengths of the links are studied (30), it is still 
done in static manner, without consideration for the impact of the delays on the emerging 
dynamics, thus critically demanding the extension of network neuroscience to the wave picture. 

Particle versus wave representation for network dynamics. The particle-wave dichotomy 
appears in networks dynamics due to the finite transmission velocities for the signals between 
spatially distributed network nodes. Within the particle view, the general network dynamics is 
governed by   

 𝑟! = 𝑔!(𝑟!)+ 𝑤!"𝑔!(𝑟!(𝑡 − 𝜏!"))! .      (1) 

Here 𝑟! is any scalar variable such as the firing rate, weights of the links are 𝑤!" and their time-
delays are 𝜏!", and 𝑔! and 𝑔! are functions for the intrinsic dynamics and the coupling 
respectively. This type of particle-like interactions is frequency-independent and here the 
information and the activity always flow along the links with the strongest coupling weight.  

On the other hand, networks of oscillators are often used to conceptualize and to study dynamical 
systems for which the local activity is multidimensional and nonlinear (31), and these have been 
conceptualized to be responsible for the communication in the brain through coherence (32) and 
synchronization (33, 34). Dynamics at oscillatory network nodes are governed as  

𝒙! = 𝐹(𝑥!)+ 𝑤!"ℎ(𝒙!(𝑡 − 𝜏!"))! ,    (2) 

where 𝒙! is a vector, F is a non-linear function, and ℎ is a coupling function. For negligible 
delays compared to the time-scale of the system, the interactions are still governed by the 
weights only, similarly as in the particle case. Mainly due to the better tractability and the readily 
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applicable tools from the graph theory, this has been the default network representation in 
neuroscience. However, once the time-delays are comparable to the time-scale of the intrinsic 
oscillations, they need to be included in the analysis of network dynamics. As a consequence, 
besides solving the system numerically, there is no alternative graph theoretical approach that 
would integrate the topology with the impact of the time-delays on the oscillations at a given 
frequency. Hence the systematic effect of the time-delays to the emergent dynamics is concealed 
and even the full representation of network interactions in Eq. (2), with separated 𝑤!" and 𝜏!" is 
inadequate to identify the skeleton of the wave synergy. 
Dynamics of the system Eq. (2) for weak couplings is captured by phase models, simplest and 
most elaborated of which is the Kuramoto model (35). It is widely utilized for describing 
emergent phenomena in complex systems (36), with a structure often represented via complex 
networks (37). The model reads (38) 

𝜃! = 𝜔! − 𝑤!"sin 𝜃! − 𝜃! 𝑡 − 𝜏!"! ,      (3) 

where 𝜃! denotes the phase of the i-th node oscillating with a natural frequency 𝜔!. For the phase 
difference between each pair of Kuramoto oscillators synchronized at frequency Ω, the direct 
impact of its link and parameters, can be separated from the effect of the rest of the network (see 
the Supplementary Material), leading to solutions given as 

∆𝜑!" = sin!! ∆!!"!!!"
!!" !"#!!!"

= ∆!!"!!!"
!!"
(!) .     (4) 

Here ∆𝜔!" = 𝜔! − 𝜔! is the frequency mismatch between the two oscillators, 
𝑤!"
(!) = 𝑤!" cosΩ 𝜏!" is the impact of the direct link between the pair of oscillators, and 𝐼!" 

contains the influence of all the other links towards these two nodes. For particle-like 
communication in the limit Ω𝜏!" → 0 the cosine term and 𝐼!" vanish, simplifying Eq. (4) to 
∆𝜑!" = sin!!(∆𝜔!"/𝑤!") and making coupling weights the only factor in shaping the network 
dynamics, consistently with the case of no delays.  

Graph theoretical metrics for wave interactions. To go beyond the static networks 
representation, from Eq. (4) naturally comes the motivation for network wave coupling, 𝑤!"

(!). It 
modulates the weight with the impact of the time-delays at each frequency, hence unifying 
spatio-temporal aspects of each link. More importantly the term 𝐼!" in Eq. (4) vanishes for many 
symmetric cases (see the Supplementary Material) rendering the wave-couplings the sole 
network determinant for the synchronization.  

As illustrated in Fig. 1 (A) top, two delay-coupled Kuramoto oscillators can synchronize either 
in- or anti-phase (24, 31) depending on the sign of cosΩ𝜏. The former is stable for positive wave 
couplings, the latter for negative. The same is true for networks (23, 24) and not limited to phase  
oscillators (25). Time-delays can be perfectly spatially distributed to cause maximum 
synchronization at a given frequency as in the middle plot of panel (A), or a more realistic 
scenario is when the time-delays are distributed in such a manner that some links decrease the 
network synchronization (if 𝑤!"

(!) > 0 for anti-phase nodes, or if 𝑤!"
(!) < 0 otherwise) for any 

phase arrangement. One possibility here is the oscillators to rearrange their phases to minimize 
this disturbance (bottom plot). 
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Fig. 1. Spatio-temporal network organization and the wave coupling weights for synchronized 
networks. (A) Particle and wave type communication over a link with delay 𝜏 (top left). In-and anti-
phase synchronization for fixed frequency and different time-delays for 2 oscillators (top right), and for 
networks with a resonant (middle) and non-resonant (bottom)  spatio-temporal alignment of the 
oscillators. Nodes with same color are in-phase with each other, and anti-phase otherwise. Time-delays 
are illustrated in number of periods of the frequency of synchronization and the renormalization factor is 
shown for some of the links. (B) Wave coupling weights for a static case (top) and for a suboptimal 
(middle) and optimal (bottom) phase arrangements of nodes. Links contributing positively to the 
synchronization are yellow, and green are negative contributions. The width of the lines corresponds to 
the absolute value of the wave coupling weights of the links (shown next to the links) and the size of the 
circles corresponds to the nodes spectral capacity (dark) and strength (colored), both shown for each 
node. 

Following these insights from synchronization in delayed networks, we define a spectral strength 
and capacity for each network node  

𝑆!
(!) = 𝑤!"

(!) !∈!! −  𝑤!"
(!) !∉!! ,    (5) 
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𝐶!
(!) = |𝑤!"

(!)| ! .      (6) 

In the static case both metrics are identical to the topological node strength, Fig. 1 (B) top plot. 
The spectral strength, 𝑆!

(!), is adapted from a particle case node strength (29) by accounting for 
possible negative contribution of some links, i.e. negative wave coupling from an in-phase node, 
or a positive one from an anti-phase node (Fig. 1 (A) bottom plot and (B) middle and bottom 
plots). The cluster 𝑄! thus contains all the nodes that are in phase with the node i. Related to this, 
the spectral node capacity, 𝐶!

(!), gives the higher bound for the synchronizabillity of a given 
node and thereof of its 𝑆!

(!), Fig. 1 (B) middle and bottom plots. It hence shows the strength of 
the node in a case of its entire links contributing positively to its dynamics. As shown in the 
middle and bottom plots of Fig. 1 (B), different phase arrangements of the nodes change their 
spectral strength, so a hub in one situation can become a more peripheral node with other 
arrangement, whilst still being constrained by their spectral capacity given by the spatio-
temporal structure. In the same way, the spectral capacity of each node does not change for a 
given frequency, as different phase arrangements are realized.  
Implications for the spectral dependent brain activity. Network-wave couplings reflect 
duality in the network interactions, which can be particle or wave based. The latter is reliant on 
the timings of the waveforms arriving from the distant nodes and the wave coupling weights 
change with the frequency. In the case of the connectome this causes activation of different 
network cores that could support the differentiation of the brain activity for various processes 
and frequency bands (39–42). The time delays that are crucial for the spatiotemporal network 
organization, are defined by the lengths of the links for homogeneous propagation velocity, i.e. 
𝜏!" = 𝑙!"/𝑣, which is often used as a first approximation for the actual delays (10, 26, 27) in 
absence of more realistic whole-brain information (43). The cosine term modulates the strength 
of the links, which can even change the sign, reverting once positive interactions to become 
negative depending on the frequency. This is demonstrated for structural brain networks of 
humans and mice, Fig. 2 (upper panel).  
The human data is from 100 healthy subjects (44) with volumetric parcelations performed using 
the Desikan-Killiany (45) atlas with 68 cortical and 16 subcortical regions, whereas the mouse 
connectome is from the Allen Institute tracing experiments (46) yielding 540 brain regions out of 
which 86 are part of the isocortex. The realistic range for the conduction velocity has been 
reported in the range of 1-10m/s for humans (21, 43, 47, 48) and 0.1-1m/s for mice (48). Here we 
use 3.333m/s and 0.3333m/s respectively, so that the peak of the occipital activity would be 
within alpha frequency band for humans, Fig. 3. For both cases natural logarithm of the number 
of streamlines is used as a metric of the weights.  
The mean spectral strength and capacity are also shown in the bottom of Fig. 2 for three different 
frequencies, where the phase arrangement of the nodes is obtained from an algorithm that 
maximizes the overall spectral strength of the network (see SI for more details). If not specified 
otherwise, all the results below for the spectral strength refer to a phase arrangement that 
maximizes it over the network. The two graph theoretical metrices in Fig. 2 illustrate for 
example that for most of the occipital regions the capacity at 20 Hz is smaller than at 10 Hz or 40 
Hz, whilst the spectral strength for the same regions generally decreases with increasing the 
frequency. 
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Fig. 2. Network wave couplings at different frequencies for human and mouse connectome, 
and spectral strength and. Upper panel shows the matrices of 𝑤!"

(!) for a human (top) and 
mouse (bottom) connectomes. Lower panel shows spectral strength (blue or red, indicating anti-
phase arrangements) and capacity (grey) for the cortical regions of a human brain at different 
frequencies. The links with positive impact are yellow, and others are blue (c.f. Fig. 1 (B)). 

The spatially dependent spectral affinity of the brain regions is better illustrated in Fig. 3, where 
the activity of different brain regions is shown normalized per frequency and per region. The 
cortical activation patterns are showing the regions with stronger activity than the overall mean.  
Studies of functional magnetic resonance imaging (fMRI) have demonstrated that in the absence 
of an apparent task, fluctuations in the blood oxygenation-level dependent (BOLD) fMRI signals 
correlate across brain regions. These are otherwise functionally related regions in different task 
conditions, hence the notion of resting state networks (49) (RSNs). Such networks have been 
regularly identified across subjects using spatial independent component analysis. The most 
consistent network representation has been obtained for six of them (50):  default mode network 
(DMN), visual, sensory/motor (SensMot), auditory, executive control (ExecCont) and frontal-

f = 0 Hz f = 10 Hz f = 40 Hzf = 20 Hz log(wij)cos 2πfτij

f=10Hz f=40Hzf=20Hz
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parietal (FronPar) network. We checked if any of the RSNs or lobes subnetworks have more 
preferred frequency range of occurrence, based on their spatiotemporal structure encompassed by 
the wave network coupling. For this the spectral activity is projected across different RSNs and 
lobes, and from RSNs and lobes into frequency bands, Fig. 3. Interestingly, some of the most 
remarkable activation patterns, such as alpha activity in visual/occipital regions and the beta peak 
of DMN and frontal regions, are in agreement with the strongest empirically observed 
phenomena (51). 

Fig. 3. Mean cortical activation patterns over 100 subjects for different frequencies. (A) 
Spectral strength is shown for different cortical regions and frequency bands, and activation of 
RSNs is projected in the frequencies. (B) Relative contribution of the frequency bands per RSN. 
Boxplots contain the scatter plots of all 100 subjects. (C) Mean spectral strength and capacity 
(lines) and regions of two standard deviations (shaded) calculated in step of 1Hz for each lobe. 
The values per given RSN and lobe are normalized by the number of regions in that subnetwork.  
Numerical confirmation for forward modeling and Linear Stability Analysis (LSA). The 
renormalization of the connectome also allows straightforward application of LSA for the 
dynamics close to a critical state for a given forward model of the oscillatory activity. In this case 
the obtained eigenvectors of the largest positive eigenvalue are guaranteed to fully capture the 
amplitude and the sign of the activation patterns. We choose Landau Stuart oscillators (35) to 
build our brain network model (BNM) (25), over the same 100 human connectomes. The local 
dynamics from Eq. 2 is then given as 𝐹 𝑋! = 𝑋!(𝑟 + 𝑗𝜔 −  |𝑋!|!), where 𝑋! is a complex 
number, and the coupling is linear additive with 𝑤!"ℎ(𝑋! 𝑡 − 𝜏!" = 𝑤!"

(!)𝑋!. All the parameters, 
including the frequency 𝜔 and the distance from the local bifurcation 𝑟 are identical for every 
oscillator, and for each frequency the latter is set to keep the system at the edge of criticality with 
two positive eigenvalues (both variables of the 2D oscillator lose stability simultaneously, see SI 
for more information). In this dynamical setting the observed activation pattern for the network 
coupled through the renormalized connectome is guaranteed to be fully captured by the values of 
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the first eigenvector of the LSA (27, 52). Note that the signs of the eigenvectors correspond to 
the in-/anti- phase arrangements of the nodes. For consistency, in the simulated powers at 
different regions, the signs are also assigned as assigned by the empirical in-/anti- phase 
arrangements of the simulated data. Similarly, for consistent comparison between the metrices, 
the phase arrangements either from the data, or from the connectome, or from the eigenvalues, 
are explicitly assigned spectral strengths and capacities.   

With the generative model we confirm that these spectral patterns of activity are predicted by the 
graph theoretical metrics on the renormalized connectome, i.e. the spectral strength and capacity. 
The former depends on the actual phase arrangement of the oscillators. For this besides the 
arrangement that maximizes the overall 𝑆(!) that is based only on the renormalized connectome, 
we also use the signs of the eigenvectors to inform the spectral strength metric about the in/anti 
phase organization for the specific model. In Fig. 4 (A), we show the correlation of eigenvectors 
of the leading eigenvalue with spectral strength calculated using the both arrangements, for the 
100 HSP subjects. The arrangement implied by the signs of the eigenvectors takes into account 
the specificity of the model, and hence this case better predicts the activation of a given node. 
This means that the network is not always arranged in such a manner to yield a maximal possible 
synchronization. The patterns are similar across the subjects, and for frequencies larger than 
40Hz, there seem to be specific frequencies for different subject, for which the arrangement of 
the signs of the eigenvectors is quite different from those maximizing 𝑆(!). Spectral capacity on 
the other hand has generally lower predictability than 𝑆!"##

(!) , but it is never too low or non-
significant. As shown in the third column of the panel (A), all three spectral metrices exhibit 
much better correlation than the null metric, which is constructed assuming particle-like 
interactions at 0Hz. Thus, only the weights of the links are considered, giving the in-strength of 
the nodes 𝐶!

(!) = 𝑤!"  ! . Since the null model cannot yield anti-phase nodes, for more 
conservative comparison we assign to it the signs as predicted by the arrangements of the nodes 
with which it is being compared.  

In Fig. 4 (B) the predictability of the spectral metrices is tested by comparing them with the 
power obtained by simulating the model built with the same oscillators but over the full 
connectome, containing both weights and the delays, Eq. (2). Moreover, this is extended for the 
sub- and super-critical regimes of the system, when the noise is also added. The comparison 
shows that each of the wave interactions metrics has consistently higher predictability than its 
particle-like counterpart across all the frequencies. This holds even for noisy systems far from 
the criticality, where the correlation is generally larger than 0.5 if the phase arrangements are 
taken from the data. It is worth noting that for the full system the spectral capacity seems to be 
more informative than the spectral strength, because the dynamics often becomes non-stationary 
and multi-stable due to the explicit time-delays (23). Nodes might switch from in- to anti-phase 
and back, and different phase arrangements lead to different spectral strengths over time. As a 
result, each node’s average relative strength within the network might be better captured by its 
capacity, than by one given realization of the phase arrangements that has occurred at some 
point, even if that is the most dominant one. This is especially pronounced if the noise is added 
in the system, when the spectral capacity becomes more informative for the relative activity of 
the nodes almost for all the frequencies.  
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Fig. 4. Comparison with forward models based on the renormalized and the full 
connectome. The power across regions from the forward model is compared with the spectral 
capacity and strength, where the latter is calculated either using the signs of the eigenvectors or 
using arrangements that maximize its value, and with the null metrics assuming particle-like 
interactions. The power is calculated (A) using LSA of the brain network model at criticality, 
constructed over the renormalized connectome or (B) with numerical simulations performed for 
the full connectome, with the BNM being, sub- and super-critical, and at the criticality, with and 
without noise. (B) For the full simulations, the most prominent phase arrangement of the 
simulated data is also used to set the in-/anti-phase arrangements. Correlations of the powers 
across frequencies (A) for all 100 subjects, as well as the p values, and the difference with the 
correlations assuming particle-like interactions, and  (B) for one subject. Correlations with p< 
0.01 are transparent in the first 2 columns of (A), and thinner lines for (B). 
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Conclusion. Wave metrics offer a new perspective and tools for characterizing dynamic 
networks. They integrate the wave component of information processing, which was missing in 
network metrics based solely on the connection topology (2). The incorporation of signal 
transmission delays in the connectome’s metrics completes the characterization of the 
spatiotemporal skeleton, within which oscillatory brain activity can be amplified by the 
properties of the medium supporting it, i.e. it provides a corpus resonantiae. We have here 
demonstrated that the brain connectome has such properties and allows for selective and 
frequency dependent information processing. Notably, the wave perspective naturally leads to 
the formation of overlapping, albeit functionally independent, subnetworks, which cannot be 
derived within the particle picture. Functional independence is achieved by frequency separation 
of the information transmission channels. The implementation of selective communication 
through selective coherence has been previously hypothesized by various authors for select 
cognitive (53) and sensorimotor paradigms (54) and generalized to Communication Through 
Coherence (CTC) (32), however with no explanation to the origin of the selection of frequency 
bands or the spatial organization of the neuronal populations involved. The wave-particle picture 
of connectomics completes this view mechanistically. We propose that the activation of the 
certain parts of the brain during different tasks can be explained as being prewired in the 
anatomy. It is the frequency dependent renormalized links that then facilitate CTC, making the 
visual network areas to be more prominent at alpha frequencies, as contrary to the sensory motor 
and auditory at gamma, whilst DMN is more prominent at beta frequency band, associated with 
the idleness of the cognitive and motor setup. 
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