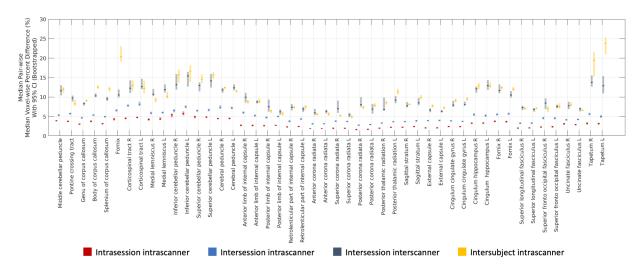
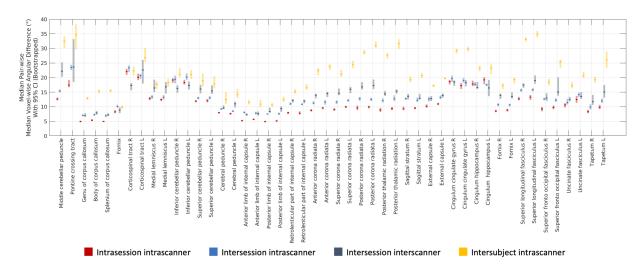
MASiVar: Multisite, Multiscanner, and Multisubject Acquisitions for Studying Variability in Diffusion Weighted Magnetic Resonance Imaging

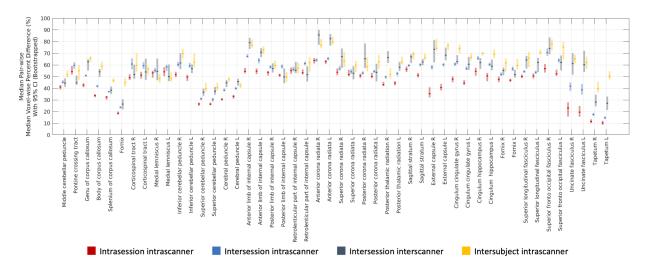
Leon Y. Cai¹, Qi Yang², Praitayini Kanakaraj², Vishwesh Nath², Allen T. Newton^{3,4}, Heidi A. Edmonson⁵, Jeffrey Luci^{6,7}, Benjamin N. Conrad^{8,9}, Gavin R. Price⁹, Colin B. Hansen², Cailey I. Kerley², Karthik Ramadass², Fang-Cheng Yeh¹⁰, Hakmook Kang¹¹, Eleftherios Garyfallidis¹², Maxime Descoteaux¹³, Francois Rheault^{2,13}, Kurt G. Schilling^{3,4}, and Bennett A. Landman^{1,2,3,4}

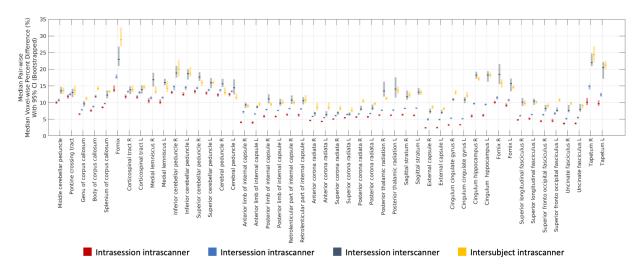

- ¹ Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- ² Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA
- ³ Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- ⁴ Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA
- ⁵ Department of Radiology, Mayo Clinic, Rochester, MN, USA
- ⁶ Department of Biomedical Engineering, The University of Texas at Austin, TX, USA
- ⁷ Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA
- ⁸ Neuroscience Graduate Program, Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, TN, USA
- ⁹ Department of Psychology and Human Development, Peabody College, Vanderbilt University, Nashville, TN, USA
- ¹⁰ Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- ¹¹ Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
- ¹² Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA
- ¹³ Department of Computer Science, Université de Sherbrooke, Sherbrooke, Québec, Canada

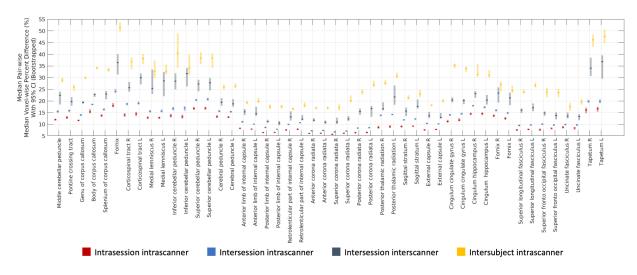
Supplementary Materials

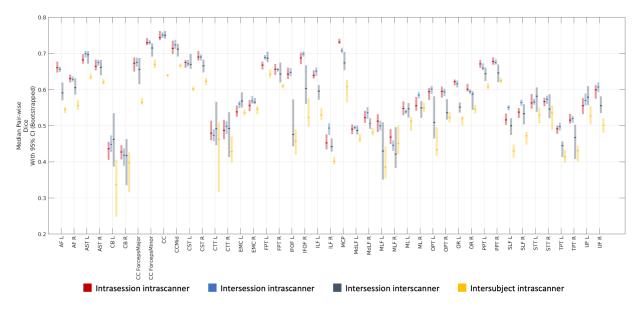

Supplementary Table 1 provides a list of the 43 white matter bundles investigated with the RecoBundles method and their abbreviations. Supplementary Figures 1 through 9 illustrate the region- and bundle-wise bootstrapped scan/re-scan discrepancies for additional analyses in the same vein as in Figure 4 in the manuscript.

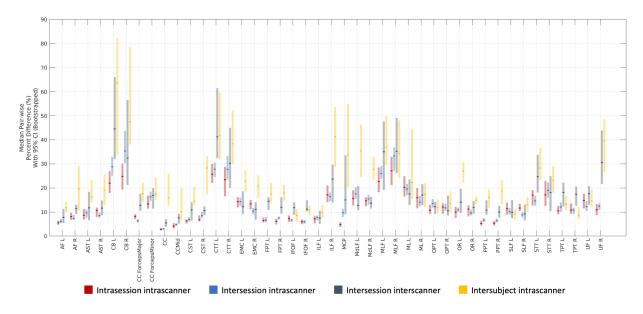
Name	Abbreviation
Arcuate Fasciculus (Left)	AF L
Arcuate Fasciculus (Right)	AF R
Frontal Aslant Tract (Left)	AST L
Frontal Aslant Tract (Right)	AST R
Cerebellum (Left)	CB L
Cerebellum (Right)	CB R
Corpus Callosum, Major Forceps	CC ForcepsMajor
Corpus Callosum, Minor Forceps	CC ForcepsMinor
Corpus Callosum, Full	CC
Corpus Callosum, Mid	CCMid
Corticospinal Tract (Left)	CST L
Corticospinal Tract (Right)	CST R
Central Tegmental Tract (Left)	CTT L
Central Tegmental Tract (Right)	CTT R
Extreme Capsule (Left)	EMC L
Extreme Capsule (Right)	EMC R
Fronto-pontine Tract (Left)	FPT L
Fronto-pontine Tract (Right)	FPT R
Inferior Fronto-occipital Fasciculus (Left)	IFOF L
Inferior Fronto-occipital Fasciculus (Right)	IFOF R
Inferior Longitudinal Fasciculus (Left)	ILF L
Inferior Longitudinal Fasciculus (Right)	ILF R
Middle Cerebellar Peduncle	MCP
Middle Longitudinal Fasciculus (Left)	MdLF L
Middle Longitudinal Fasciculus (Right)	MdLF R
Medial Longitudinal Fasciculus (Left)	MLF L
Medial Longitudinal Fasciculus (Right)	MLF R
Medial Lemniscus (Left)	ML L
Medial Lemniscus (Right)	ML R
Occipito-pontine Tract (Left)	OPT L
Occipito-pontine Tract (Right)	OPT R
Optic Radiation (Left)	OR L
Optic Radiation (Right)	OR R
Parieto-pontine Tract (Left)	PPT L
Parieto-pontine Tract (Right)	PPT R
Superior Longitudinal Fasciculus (Left)	SLF L
Superior Longitudinal Fasciculus (Right)	SLF R
Spinothalamic Tract (Left)	STT L
Spinothalamic Tract (Right)	STT R
Temporo-pontine Tract (Left)	TPT L
Temporo-pontine Tract (Right)	TPT R
Uncinate Fasciculus (Left)	UF L
Uncinate Fasciculus (Right)	UF R

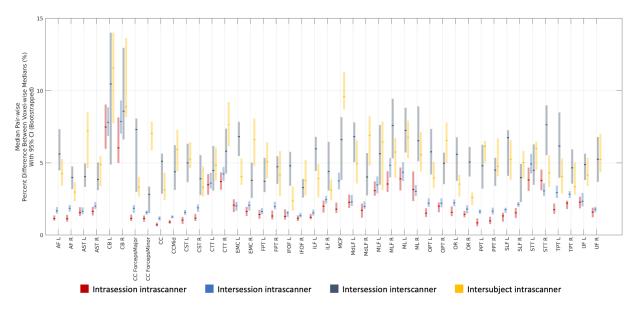

Supplementary Table 1. List of 43 white matter bundles investigated with the RecoBundles method.

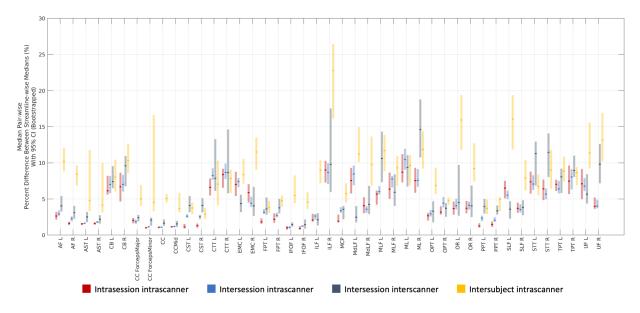

Supplementary Figure 1. Bootstrapped scan/re-scan discrepancies of MD across 48 Johns Hopkins white matter atlas regions.


Supplementary Figure 2. Bootstrapped scan/re-scan discrepancies of V1 across 48 Johns Hopkins white matter atlas regions.


Supplementary Figure 3. Bootstrapped scan/re-scan discrepancies of cVF across 48 Johns Hopkins white matter atlas regions.


Supplementary Figure 4. Bootstrapped scan/re-scan discrepancies of iVF across 48 Johns Hopkins white matter atlas regions.


Supplementary Figure 5. Bootstrapped scan/re-scan discrepancies of ODI across 48 Johns Hopkins white matter atlas regions.


Supplementary Figure 6. Bootstrapped scan/re-scan discrepancies of bundle shape across 43 bundles identified with RecoBundles.

Supplementary Figure 7. Bootstrapped scan/re-scan discrepancies of bundle volume across 43 bundles identified with RecoBundles.

Supplementary Figure 8. Bootstrapped scan/re-scan discrepancies of bundle FA across 43 bundles identified with RecoBundles.

Supplementary Figure 9. Bootstrapped scan/re-scan discrepancies of bundle length across 43 bundles identified with RecoBundles.