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Abstract 
Cardiometabolic diseases are an increasing global health burden. While well established           
socioeconomic, environmental, behavioural, and genetic risk factors have been identified, our           
understanding of the drivers and mechanisms underlying these complex diseases remains           
incomplete. A better understanding is required to develop more effective therapeutic           
interventions. Magnetic resonance imaging (MRI) has been used to assess organ health in a              
number of studies, but large-scale population-based studies are still in their infancy. Using             
38,683 abdominal MRI scans in the UK Biobank, we used deep learning to systematically              
quantify parameters from individual organs (liver, pancreas, spleen, kidneys, lungs and adipose            
depots), and demonstrate that image derived phenotypes (volume, fat and iron content) reflect             
organ health and disease. We show that these traits have a substantial heritable component              
(8%-44%), and identify 93 independent genome-wide significant associations, including 3          
associations with liver fat and one with liver iron that have not previously been reported, and 73                 
in traits that have not previously been studied. Overall our work demonstrates the utility of deep                
learning to systematically quantify health parameters from high-throughput MRI across a range            
of organs and tissues of the abdomen, and to generate new insights into the genetic               
architecture of complex traits. 

Introduction 
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The UK Biobank (UKBB) project has gathered lifestyle information, biometric, and genetic data             
for 500,000 individuals aged 40 to 69 years in the UK population with the goal of advancing our                  
understanding of health and disease ​(Sudlow et al., 2015)​. It was expanded to include imaging               
for a 100,000-person sub-cohort, creating the largest and most extensive collection of structural             
and functional medical imaging data in the world ​(Littlejohns et al., 2020)​.  

MRI has become the gold standard for clinical research, including body composition, with             
measurements of visceral adipose tissue (VAT), liver and pancreatic fat content having an             
enormous impact on our understanding of conditions such as type-2 diabetes (T2D) and             
nonalcoholic fatty liver disease (NAFLD) ​(Thomas et al., 2013)​. The MRI protocol in the UKBB               
includes multiple tissues and organs with the potential for a wide variety of clinically-relevant              
variables. However, genetic studies utilising the UKBB MRI-derived features have focused           
mainly on brain and cardiac traits ​(Elliott et al., 2018; Miller et al., 2016; Pirruccello et al., 2020)​,                  
with some limited studies focussed on liver iron (n=8,289) and MRI-based corrected T1             
(n=14,440) ​(Parisinos et al., 2020; Wilman et al., 2019)​. Thus, the full potential of the UKBB                
abdominal MRI data has not been realised, in part due to the lack of suitable automated                
methods to extract the variety and depth of relevant features from multiple organs in very large                
cohorts.  

To address this issue, we trained models using deep learning on expert manual annotations,              
following preprocessing and quality control, to automatically segment key organs from the            
UKBB MRI data from 38,683 subjects (Table 1 and Methods). Additionally, we quantified fat and               
iron content where suitable acquisitions were available (Figure 1, Supplementary Table 1, and             
Methods). In total, we defined 11 Image Derived Phenotypes (IDPs): volume of the liver,              
pancreas, kidneys, spleen, lungs, VAT, and abdominal subcutaneous adipose tissue (ASAT),           
and fat and iron content of the liver and pancreas. By linking these traits to measures of risk                  
factors, genetic variation, and disease outcomes, we are able to better characterise their role in               
disease risk. 

Table 1: Study population characteristics.  

 UK Biobank  
cohort (at  
time of  
baseline visit) 

Imaging 
cohort (at  
time of  
imaging visit) 

GWAS cohort (White British Ancestry and passing QC) 

 

Organ 
volume 
(DIXON) 

Pancreas 
volume 

Pancreas Fat  
and Iron 

Liver Fat and   
Iron 

Number of  
participants 502520 38881 32860 31758 25617 32858 

% Female 54.4 51.8 51.5 51.40% 51.2 51.5 

Age 56.5 (8.1) 63.7 (7.56) 63.9 (7.52) 63.8 (7.52) 64.2 (7.48) 63.9 (7.52) 
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Results 

Characterisation of IDPs in the UK Biobank population 

Previous studies have derived measures of VAT and ASAT, liver fat and iron in the UK Biobank                 
from a subset of the scanned participants ​(McKay et al., 2018; West et al., 2016; Wilman et al.,                  
2017)​. Our IDPs show a correlation of 0.87 (liver iron) to 1.0 (fat volume) (Methods;               
Supplementary Figure 1). The distribution of each organ-specific measure in the scanned            
population is summarised in Figure 1E, F, and G and Table 2.  

Table 2: Mean and standard deviations for 11 IDPs in our study, and number of independent                
GWAS associations found at study-wide significance (p<4.54e-9; see Methods). 

 

BMI (kg/m​2 ​) 27.4 (4.8) 26.5 (4.39) 26.5 (4.37) 26.5 (4.34) 26.5 (4.31) 26.5 (4.36) 

Height (cm) 168 (9.28) 169 (9.3) 169 (9.26) 169 (9.25) 169 (9.26) 169 (9.26) 

% White  
British 
Ancestry 81.5 81.5 100 100 100 100 

Trait Organ Combined Female Male 

# study-wide 
significant 
GWAS hits 

Volume (L) 

VAT 3.92 (2.3) 2.78 (1.6) 5.14 (2.3) 3 

ASAT 8.16 (4.1) 9.57 (4.3) 6.64 (3.2) 1 

Lungs 2.67 (0.73) 2.32 (0.53) 3.03 (0.75) 5 

Spleen 0.17 (0.072) 0.14 (0.054) 0.2 (0.078) 29 

Kidney 0.14 (0.03) 0.12 (0.023) 0.16 (0.028) 9 

Pancreas 0.06 (0.018) 0.06 (0.016) 0.06 (0.019) 11 

Liver 1.38 (0.3) 1.28 (0.25) 1.49 (0.3) 11 

Fat (%) 

Pancreas 10.41 (7.9) 8.34 (6.7) 12.6 (8.5) 8 

Liver 5.06 (5) 4.43 (4.7) 5.73 (5.2) 11 

Iron (mg/g) 

Pancreas 0.77 (0.097) 0.8 (0.1) 0.75 (0.084) 0 

Liver 1.22 (0.26) 1.2 (0.24) 1.24 (0.28) 6* 
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* ​Due to complex LD structure in this region, we were not able to finemap the HFE locus. We count two signals at this locus                        

(rs1800562 and rs1799945). 

All IDPs, except liver fat, showed a statistically significant association with age after adjusting for               
imaging centre and date (Figure 1B), although the magnitudes of the changes are generally              
small (e.g. -8.8ml or -0.03s.d./year for liver volume, -27.7ml or -0.0067s.d./year for ASAT, and              
24.3ml or 0.011s.d./year for VAT). Liver, pancreas, kidney, spleen, and ASAT volumes            
decreased, while VAT and lung volumes increased with age. Liver and pancreatic iron and              
pancreatic fat increase slightly with age. Several IDPs (volumes of liver, kidney, lung, and              
pancreas, as well as liver fat and iron) showed statistically significant evidence of heterogeneity              
in age-related changes between men and women. We found excess liver iron (>1.8mg/g) in              
3.22% of men and 1.75% of women. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 5, 2020. ; https://doi.org/10.1101/2020.07.14.187070doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.14.187070


5 

 

Figure 1. A: Example Dixon image before and after automated segmentation of ASAT, VAT, liver, lungs, left and right                   
kidneys, and spleen. B: Relationship between IDPs and age and sex within the UKBB. Each trait is standardised                  
within sex, so that the y axis represents standard deviations, after adjustment for imaging centre and date. The trend                   
is smoothed using a generalised additive model with smoothing splines for visualisation purposes. C: Relationship               
between IDPs and scan time and sex within the UKBB. Each trait is standardised within sex, so that the y axis                     
represents standard deviations, after adjustment for imaging centre and date. The trend is smoothed using a                
generalised additive model with smoothing splines for visualisation purposes. D: Correlation between IDPs. Lower              
right triangle: Unadjusted correlation (except for imaging centre and date). Upper left triangle: Correlation after               
adjustment for age, sex, height, and BMI. E: Histograms showing the distribution of the eleven IDPs in this study. 

To explore diurnal variation, we investigated correlation between the imaging timestamp and            
IDPs. We find a decrease in liver volume during the day, with volume at 12noon being on                 
average 112ml smaller than volume at 8am, and a return to almost the original volume by 8pm.                 
This has previously been suggested in small ultrasound studies (n=8) which indicated that liver              

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 5, 2020. ; https://doi.org/10.1101/2020.07.14.187070doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.14.187070


6 

volume is at its smallest between 12 and 2pm, attributed to changes in hydration and glycogen                
content ​(Leung et al., 1986)​. We also observe smaller, but still statistically significant,             
associations between time of day and liver and pancreas iron, as well as ASAT, VAT, kidney,                
and lung volume. Although these changes appear to be physiological in nature, we are currently               
unable to rule out other potential sources of confounding, however unlikely (for example,             
different groups of participants being more likely to attend the scanning appointment at different              
times of day). 

IDPs are associated with organ-specific disease outcomes 

To assess which IDPs are associated with health-related outcomes, we defined a set of              
diseases based on inpatient hospital episode statistics (Methods), and assessed the association            
between each IDP and disease diagnoses (Figure 2). Although we were not able to evaluate               
cause and effect, we found evidence that IDPs reflect organ function and health from the               
association with disease outcomes.  

Liver volume was significantly associated with chronic liver disease and cirrhosis (p=4.5e-06,            
beta=0.389) as well as T2D (p=1.3e-92, beta=0.73) and hypertension (p=3.9e-17, beta=0.18).           
Kidney volume was associated with chronic kidney disease (CKD) (p=8.0e-23, beta=-1.0).           
Interestingly, pancreas volume was associated more strongly with Type 1 diabetes (T1D)            
(p=4.9e21, beta=-0.77), than T2D (p=1.1e-17, beta=-0.27), while pancreatic fat showed a small            
association with T2D (beta=0.181, p=1.16e-07) and not with T1D (p=0.241). Lung volume was             
most strongly associated with tobacco use (p=1.8e-46, beta=0.50) and disorders relating to            
chronic airway obstruction (COPD) (p=3.6e-35, beta=0.61), with larger lung volume          
corresponding to a greater likelihood of respiratory disease diagnosis. Spleen volume was            
associated with myeloproliferative disease (p=2.2e-33, beta=0.74), especially chronic        
lymphocytic leukaemia (p=9.9e-24, beta=0.78). Liver fat was associated with T2D (p=1.4e-34,           
beta=0.29). Liver iron was associated with T2D (p=3.1e-19, beta=-0.43) and iron deficiency            
anaemia (p=5.3e-12, beta=-0.44) 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 5, 2020. ; https://doi.org/10.1101/2020.07.14.187070doi: bioRxiv preprint 

https://paperpile.com/c/FtAWMb/ZPJa
https://doi.org/10.1101/2020.07.14.187070


7 

 

Figure 2: Disease phenome-wide association study across all IDPs and 754 disease codes (PheCodes). The x-axis                
gives the effect size per standard deviation, and the y-axis -log10(p-value). The top 3 associations for each                 
phenotype are labelled. Horizontal lines at disease phenome-wide significance (dotted line, p=6.63e-05) and             
study-wide significance (dashed line, p=6.03e-06) after Bonferroni correction. Note that the PheCodes are not              
exclusive and have a hierarchical structure (for example, T1D and T2D are subtypes of Diabetes), so some diseases                  
appear more than once in these plots. 

VAT was associated with a wide range of cardiometabolic outcomes including hypertension            
(p=1e-49, beta=0.39), T2D (p=8.1e-44, beta=0.69), and lipid metabolism disorders (p=1.9e-33,          
beta=0.42), while ASAT was only associated with cholelithiasis and cholecystitis (p=1.3e-08,           
beta=0.38). This association remained statistically significant, after adjusting for VAT, counter to            
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reports that only VAT is predictive of gallstones ​(Radmard et al., 2015)​. Overall, this supports               
the key role of VAT and liver fat in the development of metabolic syndrome. 

IDPs are associated with organ-specific biomarkers, physiological measures, and         
behavioural traits 

To further explore the extent to which our IDPs reflect organ health, we assessed correlation               
between the IDPs and 87 biomarkers from blood, serum, and urine, chosen to reflect a range of                 
health conditions (Methods, Supplementary Figure 3). We also investigated associations          
between IDPs and 352 lifestyle and exposure factors, 844 self-reported medical history factors,             
500 physical and anthropometric measures, and 769 self-reported diet and exercise measures            
(Supplementary Figures s 4-7).  

Across multiple abdominal organs, we observed strong correlations between IDPs and           
biomarkers reflective of organ function. For example, liver volume was associated with            
triglycerides (p=1.19e-242, beta=0.247) and sex hormone binding globulin (SHBG)         
(p=3.43e-210, beta=-0.216). Kidney volume was associated with serum cystatin C (p<1e-300,           
beta=-0.534), serum creatinine (p<1e-300, beta=-0.48), consistent with observations that         
smaller kidneys function less effectively ​(Jovanović et al., 2013)​. Pancreas volume was            
associated with glycated haemoglobin (HbA1c) (p=8.49e-28, beta=-0.0601), but the association          
with glucose was not statistically significant after Bonferroni correction (p=8.13e-05). Spleen           
volume was associated with multiple hematological measurements, including reticulocyte count          
(p<1e-300, beta=0.25), mean sphered cell volume (p<1e-300, beta=-0.323) and platelet          
distribution width (p<1e-300, beta=0.277). 

Liver fat was associated with multiple liver function biomarkers including triglycerides           
(p=7.66e-219, beta-0.177), SHBG (p=4.75e-189, beta=-0.156) alanine aminotransferase       
(p<1e-300, beta=0.226, and gamma glutamyltransferase (p=1.63e-194, beta=0.162). Consistent        
with disease outcomes, which showed a correlation between hepatic iron, but not pancreatic             
iron, with iron deficiency anaemia, liver iron levels were correlated with measures of iron in the                
blood (e.g. mean corpuscular haemoglobin (MCH), p=1.71e-240, beta=0.174), while pancreatic          
iron did not show any such association (MCH p=0.218). 

Consistent with previous reports ​(Harrison-Findik, 2007)​, we found that liver iron was associated             
with lower alcohol consumption (p=3e-116, beta=-0.247) and higher intake of red meat (beef             
intake p=1.61e-61, beta=0.168; lamb/mutton intake p=7.13e-56, beta=0.165). Liver iron was          
also associated with suppressed T2* derived from neuroimaging in the same UKBB cohort             
(Elliott et al., 2018)​, particularly in the putamen (left: p=1.53e-68, beta=-0.138; right:            
p=1.01e-69, beta=-0.14). There were no such associations for pancreatic iron (left p=0.223;            
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right p=0.194). Additionally, we found that liver fat was associated with lower birth weight              
(p=1.76e-30, beta=-0.0849) and comparative body size at age 10 (p=4.79e-76, beta=-0.22).           
Low birth weight has previously been associated with severity of pediatric non-alcoholic            
steatohepatitis (NASH) ​(Bugianesi et al., 2017)​, abnormal fat distribution ​(Parkinson et al.,            
2020)​ and liver fat levels in adults born prematurely ​(Thomas et al., 2011)​.  

We found strong associations between increased lung volume and smoking status, tobacco            
smoking, COPD and lung disorders, wheeze, diagnosis of asthma and treatment for asthma, a              
decreased lung capacity as well as forced vital capacity (FVC) and forced expiratory volume in 1                
second (FEV1)/FVC ratio (Supplementary Figure 7). This is perhaps surprising in light of the              
age-related decreases in FEV1 and FVC, however it has been shown that lung volume              
increases with both age and as a consequence of obstructive pulmonary diseases​(Lutfi, 2017)​.             
Although lung volume estimated via MRI is not a widely used clinical measure, our data               
suggests it may be a biomarker of ageing-related respiratory complications. 

Genetic architecture of abdominal IDPs 

To explore the genetic architecture of the IDPs, we performed a genome-wide association study              
(GWAS) for each IDP of 9 million single-nucleotide polymorphisms (SNPs) in the approximately             
30,000 individuals of white British ancestry ​(Bycroft et al., 2018) (Methods). We verified that the               
test statistics showed no overall inflation compared to the expectation by examining the             
intercept of linkage disequilibrium (LD) score regression (LDSC) ​(Bulik-Sullivan, Loh, et al.,            
2015) (Supplementary Table 5). The number of individuals included in the analysis for each IDP               
is given in Table 1, together with the number of study-wide significant independent signals for               
each IDP. Utilizing a generalized linear mixed model framework and SKAT-O test implemented             
in SAIGE-GENE ​(Zhou et al., 2020)​, we performed gene-based exome-wide association studies            
in the 11,134 participants with IDP and exome sequencing data. Test statistics were well              
calibrated and we found no study-wide significant associations (Supplementary Figure 12).  

Organ volume, fat, and iron are heritable 

For each IDP, we estimated SNP-heritability using the BOLT-REML model ​(Loh, Bhatia, et al.,              
2015) (Methods). All IDPs showed a significant heritable component, indicating that genetic            
variation contributes substantially to the variation between individuals (Figure 3A). Heritability is            
largely unaffected by the inclusion of height and BMI as additional covariates, indicating that it is                
not a function of overall body size. 
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Figure 3. Genetic architecture of all IDPs. A: Heritability (point estimate and 95% confidence interval) for                
each IDP estimated using the BOLT-REML model. Y-axis: Adjusted for height and BMI. X-axis: Not               
adjusted for height and BMI. The three panels show volumes, fat, and iron respectively. B: Genetic                
correlation between IDPs estimated using bivariate LD score regression. The size of the points is given by                 
-log10(p), where p is the p-value of the genetic correlation between the traits. Upper left triangle: Adjusted                 
for height and BMI. Lower right triangle: Not adjusted for height and BMI. C: Manhattan plots showing                 
genome-wide signals for all IDPs for volume (top panel), fat (middle panel), and iron concentration (lower                
panel). Horizontal lines at 5e-8 (blue dashed line, genome-wide significant association for a single trait)               
and 4.5e-9 (red dashed line, study-wide significant association). P-values are capped at 10e-50 for ease               
of display. 
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Genetic correlation between abdominal IDPs 

To understand the extent to which genetic variation explains the correlation between traits, we              
used bivariate LD score regression ​(Bulik-Sullivan, Finucane, et al., 2015) to estimate the             
genetic correlation between all 55 IDP pairs, with and without including height and BMI as               
covariates (Methods). After Bonferroni correction, we found a statistically significant non-zero           
genetic correlation between 22 of the 55 unadjusted IDP-pairs traits (Figure 3B and             
Supplementary Table 6), the strongest (r​g​=0.782, p=4.60e-137) between ASAT and VAT. There            
was substantial genetic correlation between VAT and liver fat (r​g​==0.58, p=3.7e-38) and            
between VAT and pancreas fat (r​g​=0.569, p=2.79E-16). We found a negative genetic correlation             
between pancreas volume and fat (r​g​=-0.45, p=2.1e-06), and between pancreas volume and            
iron (r​g​=-0.5, p=5.2e-05) 

IDPs share a genetic basis with other physiological traits 

To identify traits with a shared genetic basis, we estimated genetic correlation between IDPs              
and 282 complex traits with a heritable component (Methods). 650 IDP-trait pairs showed             
evidence of nonzero genetic correlation; 347 of these involved with measures of size or body               
composition (Supplementary Table 7 and Supplementary Figure 11). We found substantial           
genetic correlation between ASAT volume and other measures of body fat, such as whole-body              
fat mass (r​g​=0.94, p=3.2e-143) and between VAT and conventional surrogate markers such as             
waist circumference (r​g​=0.75, p=1.6e-109). The strongest genetic correlation with lung volume           
was with FVC (r​g​=0.7, p=3.1e-71), with FEV and height also significant. We also found more               
modest genetic correlation between organ volumes and biochemical measures, such as liver fat             
and ALT (r​g​=0.5, p=4.5e-23), kidney volume and serum creatinine (r​g​=-0.4, p=3.9e-22), and liver             
iron and erythrocyte distribution width (r​g​=-0.33, p=2.1e-14). 

Heritability is enriched in organ-specific cell types 

In order to identify tissues or cell types contributing to the heritability of each trait, we used                 
stratified LD score regression ​(Finucane et al., 2015) (Methods). Liver fat showed evidence for              
enrichment in hepatocytes (p=4.20e-6) and liver tissue (p=2.2e-5), and pancreatic fat showed            
evidence for enrichment in pancreas tissue (smallest p=9.74e-5). Spleen volume showed           
enrichment in spleen cells (p=7.39e-10) and immune cell types including T cells, B cells, and               
natural killer cells, and neutrophils. VAT, ASAT, and lung volumes did not show evidence of               
significant heritability enrichment in any tissue or cell types (Supplementary Figures  8-10). 

Genome-wide significant associations 
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For each locus containing at least one variant exceeding the study-wide significance threshold,             
we used GCTA COJO ​(Yang et al., 2012) to identify likely independent signals, and map likely                
causal variants (Methods, Supplementary Table 8). To better understand the biology of each             
signal, we explored traits likely to share the same underlying signal (colocalised signals) among              
973 traits and 356 diseases measured in UKBB (Methods, Supplementary Table 9), and gene              
expression in 49 tissues (Methods, Supplementary Table 10). 

Liver IDPs recapitulate known biology and point to new genes of interest 

The strongest association with liver volume (lead SNP rs4240624, p=2.1e-34, beta=-0.15), lies            
on chromosome 8, 175kb from the nearest protein-coding gene, ​PPP1R3B​. ​PPP1R3B is            
expressed in liver and skeletal muscle, and promotes hepatic glycogen biosynthesis ​(Mehta et             
al., 2017)​. Although this variant has been associated with attenuated signal on hepatic             
computed tomography ​(Stender et al., 2018)​; in our study it was not associated with liver fat                
(p=0.007) or iron (p=0.001).  

We also detected an association between liver volume and a missense SNPs in ​GCKR              
(rs1260326, p=5.4e-19, beta=-0.061). This signal colocalised with T2D, hypercholesterolemia         
and hyperlipidemia, gout and gallstones, as well as other lipid and cardiovascular traits in the               
UKBB. This locus has previously been associated with NAFLD ​(Kawaguchi et al., 2018) as well               
as multiple metabolic traits including triglycerides, lipids, and C-reactive protein ​(Wojcik et al.,             
2019)​. 

Of the eight study-wide independent signals associated with liver fat, three (rs58542926 in             
TM6SF2 rs429358 in ​APOE ​; and rs738409 in ​PNPLA3​) have previously been associated with             
NAFLD ​(Kozlitina et al., 2014; Romeo et al., 2008; Speliotes et al., 2011)​, and were also                
reported in a GWAS of liver fat in a subset of this cohort ​(Parisinos et al., 2020)​. The fourth SNP                    
identified in that study, rs1260326 in ​GCKR​, did not reach our stringent threshold of study-wide               
significance threshold (p=1.9e-8, beta=-0.044).  

Two of the remaining five signals have previously been linked to liver disorders or lipid traits,                
although not specifically to liver fat. A signal near ​TRIB1 (lead SNP rs112875651) colocalises              
with hyperlipidemia and atherosclerosis and has been linked to lipid levels in previous studies,              
and SNPs in this gene have an established role in the development of NAFLD ​(Liu et al., 2019)​.                  
A missense SNP in ​TM6SF2 (lead SNP rs188247550) is also associated with hyperlipidemia             
and has previously been linked to alcohol-induced cirrhosis ​(Buch et al., 2015)​. 

Three further signals have not previously been associated with any liver traits, although some              
have been associated with other metabolic phenotypes. On chromosome 1, a SNP intronic to              
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MARC1 (lead SNP rs2642438) colocalises with cholesterol, LDL-cholesterol, and         
HDL-cholesterol levels, with the risk allele for higher fat associated with higher LDL-cholesterol.             
While this variant has not previously been associated with liver fat, missense and protein              
truncating variants in ​MARC1 have been associated with protection from all-cause cirrhosis, and             
also associated with liver fat and circulating lipids ​(Emdin et al., 2020)​.  

We found an association between intronic and ​GPAM​, which encodes an enzyme responsible             
for catalysis in phospholipid biosynthesis (lead SNP rs11446981). This signal colocalises           
aspartate aminotransferase (AST), and HDL cholesterol levels in serum. ​GPAM knockout mice            
have reduced adiposity and its inhibition reduces food intake and increases insulin sensitivity in              
diet-induced obesity ​(Kuhajda et al., 2011)​. Our data suggests that this enzyme may play a role                
in the liver fat accumulation in humans.  

A region overlapping to ​MTTP with 67 variants in the 95% credible set was associated with liver                 
fat. Candidate gene studies have linked missense mutations in ​MTTP to NAFLD ​(Hsiao et al.,               
2015)​. Rare nonsense mutations in this gene cause abetalipoproteinemia, an inability to absorb             
and knockout studies in mice recapitulate this phenotype ​(Partin et al., 1974; Raabe et al.,               
1998)​. Inhibition of MTTP is a treatment for familial hypercholesterolemia and is associated with              
increased liver fat ​(Cuchel et al., 2007)​. 

We replicate previously reported associations with liver iron at ​HFE (rs1800562 and rs1799945)             
and ​TMPRSS6 ​(Wilman et al., 2019)​, although we were unable to accurately finemap at this               
locus. We found evidence for two independent additional signals on chromosome 2 between             
ASND1 and ​SLC40A1 (lead SNP rs7577758; conditional lead SNP rs115380467). ​SLC40A1           
encodes ferroportin, a protein essential for iron homeostasis ​(Donovan et al., 2005) that enables              
absorption of dietary iron into the bloodstream. Mutations in ​SLC40A1 are associated with a              
form of hemochromatosis known as African Iron Overload ​(Mayr et al., 2011)​. This finding is               
consistent with a recent study which highlighted the role of hepcidin as a major regulator of                
hepatic iron storage ​(Wilman et al., 2019)​.  

Novel associations with pancreas IDPs 

We identified 11 study-wide significant associations with pancreatic volume. None were coding            
or colocalised with the expression of protein-coding genes. Two signals (rs72802342, nearest            
gene ​CTRB2​; rs744103, nearest gene ​ABO​) colocalised with diabetic-related traits. This is            
consistent with our findings that T1D was associated with smaller pancreatic volume.  

We identified seven study-wide significant independent associations with pancreatic fat, with           
little overlap with liver-specific fat loci. Surprisingly, we found little evidence that loci associated              
with pancreatic fat were associated with other metabolic diseases or traits, suggesting that it              
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may have a more limited direct role in the development of T2D than previously suggested ​(R.                
Taylor, 2008)​.  

The top association for pancreatic fat (lead SNP rs10422861) was intronic to ​PEPD​, and              
colocalised with a signal for body and trunk fat percentage, leukocyte count, HDL-cholesterol,             
SHBG, total protein and triglycerides. ​PEPD codes for prolidase, an enzyme that degrades             
iminopeptides in which a proline or hydroxyproline lies at the C-terminus, with a special role in                
collagen metabolism ​(Kitchener & Grunden, 2012)​. There was an association at the ​ABO locus              
(lead SNP rs8176685) for pancreatic fat; rs507666, which tags the A1 allele, lies in the 95%                
credible set at this locus. This signal colocalises with lipid and cardiovascular traits and              
outcomes, and is consistent with previous reports that blood group A is associated with lipid               
levels, cardiovascular outcomes ​(H. Zhang et al., 2012) and increased risk of pancreatic cancer              
(B.-L. Zhang et al., 2014)​.  

An association with pancreatic fat (lead SNP rs7405380) colocalises with the expression of             
CBFA2T3 in the pancreas. rs7405380 lies in a promoter flanking region which is active in               
pancreatic tissue (ensemble regulatory region ENSR00000546057). ​CBFA2T3 belongs to a          
family of ubiquitously expressed transcriptional repressors, highly expressed in the pancreas,           
about which little is known. A recent study identified Cbfa2t3 as a target of Hes1, which plays a                  
critical role in regulating pancreatic development ​(de Lichtenberg et al., 2018)​. This SNP was              
not associated with any metabolic phenotypes. 

We identified signals at a locus on chromosome 1 containing ​FAF1 and ​CDKN2C (lead SNP               
rs775103516), and five other loci. In contrast to liver iron, where we identified strong signals at                
regions associated with ferroportin and hepcidin loci, we found no study-wide significant            
associations with pancreatic iron. 

Novel associations with other organ volume IDPs 

A locus on chromosome 2 was associated with average kidney volume. This signal colocalises              
with biomarkers of kidney function (cystatin C, creatinine, urate, and urea) and a SNP in the                
95% credible set, rs807624, has previously been reported as associated with Wilms tumor             
(Turnbull et al., 2012)​, a pediatric kidney cancer rarely seen in patients over the age of five.                 
However, this association raises the possibility that this locus plays a broader role in kidney               
structure and function in an adult population and warrants further study. 

We also found a significant association at the ​PDILT​/​UMOD locus (lead SNP rs77924615), ​that              
colocalises with hypertension, cystatin C, creatine, and kidney and urinary calculus in the             
UKBB. This locus has previously been associated with hypertension as well as estimated             
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glomerular filtration rate (eGFR) and CKD ​(Wuttke et al., 2019) in other studies, supporting our               
finding that kidney volume reflects overall kidney function. 

The trait with the most associations was the spleen, with 25 independent signals, of which 18                
colocalised with at least one hematological measurement. We identified one association with            
ASAT volume (lead SNP rs1421085) at the well-known ​FTO locus which colocalised with many              
other body composition traits. The association with VAT volume at this SNP (p=3e-8,             
beta=0.037) was not study-wide significant. We identified three additional signals associated           
with VAT volume. rs559407214 (nearest gene ​CEBPA​) is independent of the nearby pancreatic             
fat signal. rs73221948 lies 150kb from the nearest protein coding gene. This signal colocalizes              
with triglyceride levels and HDL levels. This has previously been reported ​(Richardson et al.,              
2020)​, in addition to an association with BMI-adjusted waist-hip circumference ​(Zhu et al., 2020)              
Finally, rs72276239 which is also associated with trunk fat percentage, diabetes-related traits,            
cardiovascular problems, and lipids, and and has previously been associated with waist-hip ratio             
(Kichaev et al., 2019)​. 

Discussion 
We have developed a pipeline to systematically measure IDPs in the UKBB MRI sub-cohort,              
and to explore epidemiological and genetic associations across seven organs and tissues. Our             
approach scaled to tens of thousands of subjects, and demonstrated the immense value of              
abdominal MRI data acquisition in large cohorts. We leveraged deep learning methods for             
semantic segmentation to address technical challenges, including visual heterogeneity arising          
from deformable tissues and joints. Systematic measurements of IDPs at this scale would have              
otherwise been insurmountable.  

The observed age-related decrease in organ volume (liver, pancreas, kidney, spleen) appears            
to reflect the predicted organ atrophy associated with ageing, likely underpinned by            
mechanism(s) similar to those reported for brain and skeletal muscle ​(Mitchell et al., 2012;              
Svennerholm et al., 1997)​. However, individual organs exhibited distinct patterns of atrophy,            
with liver and pancreas exhibiting the largest reduction, probably reflecting genetic and            
environmental exposures. The continued increase in VAT (but not ASAT) and lung volume are              
interesting and may point at the overriding impact of environmental factors upon these tissues.              
Given that VAT and ASAT are exposed to similar exogenous factors, this suggests that the               
plasticity capacity of their adipocytes (hypertrophy and hyperplasia), and therefore tissue           
lipolysis and inflammation, ectopic fat deposition and insulin sensitivity are differentially affected            
by the ageing process ​(Mancuso & Bouchard, 2019)​. Clearly, access to these IDPs, in              
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combination with the rich clinical and phenotypic data, can be exploited to directly explore the               
impact of accelerated ageing on individual organs. 

The liver plays a pivotal role in the regulation of iron homeostasis, with iron excess to                
requirements stored in hepatocytes ​(Terjung, 2013)​. Epidemiologic studies utilising indirect          
methods based on serum markers (ie. the ratio of serum transferrin receptor to serum ferritin)               
describe an age-related increase in total body iron, declining at a very late age ​(Cook et al.,                 
2003)​. However, studies with direct measurements, although far more limited in scope and size,              
point towards a linear relationship with age ​(Kühn et al., 2017; McKay et al., 2018; Nomura et                 
al., 1988; Schwenzer et al., 2008)​, similar to that observed in our study. The discrepancy               
between total and organ-specific changes with age may relate to the complex relationship             
between liver iron storage and circulating iron, which is known to be compromised by age               
related organ dysfunction and the inflammasome ​(Terjung, 2013)​. Similar patterns for           
pancreatic iron were observed ​(Schwenzer et al., 2008)​, again reflecting the overall iron             
homeostasis in the body.  

Ectopic fat accumulation showed a more complex relationship with ageing. Although pancreatic            
fat increased with age for both men and women ​(Schwenzer et al., 2008)​, liver fat increased                
only up to approximately 60 years of age before plateauing in women and decreasing in men                
(Kühn et al., 2017; Nomura et al., 1988)​. Previous studies have suggested a linear relationship               
(Thomas et al., 2012; Wilman et al., 2017)​; but this may reflect the paucity of older participants                 
(>60 years) in those cohorts, thus lacking the power to detect the true effects of age on liver fat.                   
Both liver fat and iron were associated with T2D, consistent with previous studies ​(McKay et al.,                
2018)​. No association was observed between pancreatic fat or iron content with either T1D or               
T2D, despite the observed association between pancreas volume and T1D. This is surprising             
given its proposed causal role assigned to this fat depot in T2D ​(Roy Taylor, 2013)​.               
Interestingly, although both liver and pancreas volume decreased with age, pancreatic fat did             
not, in agreement with previous observations ​(Majumder et al., 2017)​. Additionally, there was             
considerably greater diurnal variation in liver volume compared with the pancreas. These            
observations add credence to the growing evidence of disparate mechanisms for the            
accumulation of fat in these organs ​(Hellerstein, 1999)​. Furthermore, given the observed diurnal             
variation in organ volume, fat and iron content, coupled to the known effects of feeding on the                 
circadian clock on organ function ​(Kalhan & Ghosh, 2015)​, scheduling of MRI measurements of              
participants may be an important consideration in longitudinal studies.  

Most organ volumes were associated with disease, i.e.: kidney volume with CKD ​(Grantham et              
al., 2006)​, and lung volumes with COPD, bronchitis, and respiratory disease. Liver volume was              
associated with chronic liver disease ​(Lin et al., 1998) and cirrhosis ​(Hagan et al., 2014) as well                 
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as diabetes and hypertension. Although there is a strong correlation between liver volume and              
liver fat, liver volume is not generally measured in relation to metabolic disease. Whilst spleen               
volumes can be enlarged in response to a whole host of diseases such as infection,               
hematological, congestive, inflammatory and neoplastic ​(Pozo et al., 2009)​, we found spleen            
volume to be most strongly associated with leukaemia. Although organ volume is not a              
widely-used measure for disease diagnosis, spleen volume is a useful metric for predicting             
outcome and response to treatment ​(Shimomura et al., 2018)​, and a robust automated measure              
of this IDP could be a powerful auxiliary clinical tool.  

The strong association between VAT and development of metabolic dysfunction is well            
established ​(Lee et al., 2018)​, and confirmed herein on a much larger cohort. No association               
between ASAT and disease, apart from incidence of gallstones, were observed. The overall role              
of subcutaneous fat in disease development is still debated. Viewed as benign or neutral in               
terms of risk of metabolic disease ​(Kuk et al., 2006)​, especially subcutaneous fat around the               
hips, ASAT does appear to be associated with components of the metabolic syndrome, though              
not after correcting for VAT or waist circumference ​(Elffers et al., 2017; Irlbeck et al., 2010)​. It                 
has been suggested that subdivisions of ASAT may convey different risks, with superficial ASAT              
conferring little or no risk compared to deeper layers ​(Kelley et al., 2000)​. These conflicting               
results may reflect different approaches to ASAT and VAT measurement (MRI vs indirect             
assessment), size and make-up of study cohorts. Future studies within the UKBB and other              
biobanks will allow these relationships to be explored in more depth.  

Through GWAS, we identify a substantial heritable component to organ volume, fat and iron              
content, after adjusting for body size. We demonstrate heritability enrichment in relevant tissues             
and cell types, suggesting that there may be specific mechanisms underpinning organ            
morphology and function that warrant further investigation. As well as replicating previous            
observations, we identify several novel associations that may suggest mechanisms for further            
study, including an association between ​GPAM and liver fat, ​PPP1R3B and liver volume (but              
not fat), ​CB2FAT3 and pancreatic fat, and ​SLC40A1 and liver iron. The substantial heritable              
component suggests that the planned studies involving up to 100,000 scanned individuals will             
yield further insights into the basis of organ form, and its relationship to function.  

This study has some limitations. Although recruitment into the UK Biobank study finished in              
2010, scanning began in 2014. The median follow-up period from scanning is 2.5 years, limiting               
our power to evaluate the prognostic value of IDPs, or to evaluate whether they are a cause or                  
consequence of the disease state. Since medical records will continue to be collected             
prospectively, we will be able to assess this more systematically in future studies. Our genetic               
studies were limited to participants of white British ancestry. While this did not greatly affect               
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power due to the demographics of the imaging cohort, future imaging studies which incorporate              
greater diversity of ancestry and environmental exposure will facilitate fine-mapping as well as             
potentially elucidate new mechanisms ​(Wojcik et al., 2019)​. Finally, while this study focussed on              
tractable measures derived from segmentation, we expect that future studies will allow us to              
define more sophisticated traits derived from organ segmentations and will give deeper insight             
into the relationship between organ form and function. 

In conclusion, by systematically quantifying eleven IDPs covering several abdominal organs in            
the largest imaging cohort to date, we have been able to unravel the hitherto unexplored               
relationships between organ form and function, genetic and environmental exposures, and           
disease outcomes. Exploration of the UKBB cohort through the application of models trained             
using deep learning is thus enhancing our understanding of health and disease.  

Materials and Methods 

Abdominal imaging data in UK Biobank 

All abdominal scans were performed using a Siemens Aera 1.5T scanner (Syngo MR D13)              
(Siemens, Erlangen, Germany). We analyzed four distinct groups of acquisitions: (1) the Dixon             
protocol with six separate series covering 1.1 m of the participants (neck-to-knees), (2) a              
high-resolution T1-weighted 3D acquisition of the pancreas volume, (3a) a single-slice           
multi-echo acquisition sequence for liver fat and iron, and (3b) a single-slice multi-echo             
acquisition sequence for pancreas fat and iron. Additional details of the MRI protocol may be               
found elsewhere ​(Littlejohns et al., 2020)​. The protocol covers the neck-to-knee region,            
including organs such as the lungs outside the abdominal cavity. For consistency with the UK               
Biobank terminology, we used the term “abdominal” throughout the text.  

The UK Biobank has approval from the North West Multi-centre Research Ethics Committee             
(MREC) to obtain and disseminate data and samples from the participants           
(http://www.ukbiobank.ac.uk/ethics/), and these ethical regulations cover the work in this study.           
Written informed consent was obtained from all participants. 

Image Preprocessing  

Analysis was performed on all available datasets as of December 2019, with 38,971 MRI              
datasets released by the UK Biobank, where a total of 100,000 datasets are the ultimate goal                
for the imaging sub-study. We focus here on four separate acquisitions, with one sequence              
being applied twice (once for the liver and once for the pancreas). 
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Dixon pipeline 

The Dixon sequence involved six overlapping series that were acquired using a common set of               
parameters: TR = 6.67 ms, TE = 2.39/4.77 ms, FA = 10° and bandwidth = 440 Hz. The first                   
series, over the neck, consisted of 64 slices, voxel size 2.232 x 2.232 x 3.0 mm and 224 x 168                    
matrix; series two to four (covering the chest, abdomen and pelvis) were acquired during 17 sec                
expiration breath holds with 44 slices, voxel size 2.232 x 2.232 x 4.5 mm and 224 x 174 matrix;                   
series five, covering the upper thighs, consisted of 72 slices, voxel size 2.232 x 2.232 x 3.5 mm                  
and 224 x 162 matrix; series six, covering the lower thighs and knees, consisted of 64 slices,                 
voxel size 2.232 x 2.232 x 4 mm and 224 x 156 matrix. 

The six separate series associated with the two-point Dixon acquisition were positioned            
automatically after the initial location was selected by the radiographer ​(Littlejohns et al., 2020)​.              
Reconstruction of the fat and water channels from the two-point Dixon acquisition was             
performed on the scanner console. Four sets of DICOM files were generated for each of the six                 
series in the neck-to-knee Dixon protocol: in-phase, opposed-phase, fat and water.  

Bias-field correction ​(Tustison et al., 2010) was performed on the in-phase volume and the              
resulting bias field applied to the other channels (opposed-phase, fat, water) for each series.              
The series were resampled to a single dimension and resolution to facilitate merging the six               
series into a single three-dimensional volume (size = [224, 174, 370], voxel = 2.232 x 2.232 x                 
3.0 mm). To reduce the effect of signal loss when blending the series, we identified the fixed set                  
of slices that form an overlap (inferior-superior direction) between adjacent series and applied a              
nonlinear function to blend the signal intensities on these regions of overlap. Slices in the               
interior of the volume were heavily weighted and slices near the boundary were suppressed. We               
repeated the bias-field correction on the blended in-phase volume and applied the estimated             
bias field to the other channels.  

Fat-water swaps are a common issue in the reconstruction of Dixon acquisitions, where the fat               
and water labels attributed to the reconstructed images are reversed for all voxels in the               
acquired data series or cluster of voxels associated with separate anatomical structures (e.g.,             
legs or arms). Once corrected, the fat and water channels are consistent. We used a               
convolutional neural network (CNN) model to detect swaps, with six individual models trained for              
each of the six acquired series. Only fat-water swaps that involved the entire series or the                
left-right halves in the final two series were considered. Partial fat-water swaps (e.g., the top of                
the liver) will be considered in future work. Each model used a sequential architecture with six                
layers that assigned a label to each of the series when given a central 2D slice from the series.                   
Each convolution block (C​n​) was made up of ​n convolutions that were 3 x 3 spatial filters applied                  
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with stride of length two, followed by a leaky rectified linear unit (ReLU) activation with slope 0.2                 
and batch normalization. The final layer had stride of length three and a sigmoid activation for                
binary classification of the input as either water or fat. The number of convolution filters was                
doubled in each layer down the network as follows: C​64 - C​128 - C​256 - C​512 - C​1024 - C​1​. The two                      
models covering the bottom two series that include the legs checked the right and left half of the                  
input image separately to accommodate for the legs being separate structures with increased             
likelihood of swaps. Each of the six series for 462 subjects were individually inspected to ensure                
no swaps occurred and used to train the models. The ten central coronal slices of each subject                 
were selected by checking the image profile of the slice in each volume, where the largest                
profile was assumed to be the centre of the body. Thus, a total of 4620 images were available                  
for training each of the networks. No additional data augmentation was performed. Each 2D              
slice was normalized. The model was trained with a binary cross entropy loss function using the                
Adam optimizer and a batch size of 100 until convergence, which was between 150 and 200                
epochs depending on the series. The models were validated on a separate set of 615 subjects,                
resulting in 4,920 individual swap detection operations performed as every set of Dixon data is               
subject to eight classification tests. The validation, via visual inspection of all the series and the                
swap detection results, revealed only two instances of the second series (the chest) and one               
instance of the fifth series (one of the two legs) were mislabeled out of the total 4,920 checks                  
performed. A single false positive, in the second series, was observed. 

Anomaly detection of the final reconstructed volumes was performed to identify potential data             
issues such as image artifacts, positioning errors or missing series. This was achieved checking              
the dimensions of the final reconstructed volume and edge detection performed on the binary              
body mask. To generate the body mask, we applied multiscale adaptive thresholding to the              
flattened in-phase signal intensities, keeping only the largest connected component, then           
performed a binary closing operation. The presence of sharp edges in the body mask              
highlighted discontinuities in the data and was used as an indicator of data inconsistencies. We               
used Canny edge detection on a central coronal slice and a sagittal slice of the body mask                 
containing both background and subject labels. In a normal subject, edge detection should not              
highlight anything other than the vertical contour of the body from neck to knee. Presence of                
discontinuities or horizontal features in the body mask were indicators of anomalies. Clusters of              
voxels in the edge image corresponding to horizontal edges exceeding a threshold 10 voxels in               
the sagittal and coronal slice, or 25 in either slice, triggered the anomaly detection. Those               
values were selected based on results of 1,000 subjects. Field of view errors in positioning the                
subject were identified if the head or chin were partly or fully visible, or if the total volume did not                    
match the standard 224 x 174 x 370 dimension of the correctly assembled Dixon acquisition.               
Signal dropout artifacts were caused by metal objects such as knee or tooth implants and               
identified when discontinuities appeared inside the body mask.  
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3D pancreas pipeline 

A high-resolution T1w acquisition sequence for determining pancreas volume was acquired           
under a single expiration breath hold with TR = 3.11 ms, TE = 1.15 ms, FA = 10°, bandwidth =                    
650 Hz, voxel size 1.1875 x 1.1875 x 1.6 mm and 320 x 260 matrix. Two versions were                  
provided, with and without normalization, from the scanner. Bias-field correction was performed            
to reduce signal inhomogeneities in the normalized volume. No additional preprocessing was            
applied to the high-resolution 3D T1w pancreas volumes. 

Multiecho pipeline (Gradient Echo and IDEAL) 

Two types of acquisitions were performed to quantify fat in the liver and pancreas: 

1. A single-slice gradient echo acquisition sequence, for both the liver and pancreas, was             
acquired using the common set of parameters: TR = 27 ms, TE =             
2.38/4.76/7.15/9.53/11.91/14.29/16.67/19.06/21.44/23.82 ms, FA = 20°, bandwidth =       
710 Hz, voxel size 2.5 x 2.5 x 6.0 mm and 160 x 160 matrix. This acquisition was                  
stopped for the liver after the first 10,000 subjects (approximately) and replaced by the              
IDEAL sequence, but was continued for the pancreas for all subjects. 

2. A single-slice IDEAL sequence ​(Reeder et al., 2005) for the liver used the following              
parameters: TR = 14 ms, TE = 1.2/3.2/5.2/7.2/9.2/11.2 ms, FA = 5°, bandwidth = 1565               
Hz, voxel size 1.719 x 1.719 x 10.0 mm and 256 x 232 matrix. 

We applied bias-field correction to each echo time separately to facilitate 2D segmentation.             
Software (​https://github.com/marcsous/pdff​) available from Dr Mark Bydder, specifically the         
PRESCO (Phase Regularized Estimation using Smoothing and Constrained Optimization)         
algorithm ​(Bydder et al., 2020)​, was used to simultaneously estimate the proton density fat              
fraction (PDFF, referred to as fat in results) and transverse relaxivity (R2*) values voxelwise              
from the single-slice gradient echo (GRE) and IDEAL acquisitions. Essentially, a multi-peak            
spectrum was constructed from the echo times in the acquisition protocol and used to perform               
nonlinear least squares under multiple regularization constraints that extends the IDEAL           
(Iterative Decomposition of Water and Fat with Echo Asymmetry and Least-Squares Estimation)            
algorithm ​(Reeder et al., 2005; Yu et al., 2008)​. 

For consistency with previous studies ​(McKay et al., 2018; Wood et al., 2005)​, we convert R2*                
into iron concentration (mg/g) using the formula: 

iron concentration = 0.202 + 0.0254 x R2*. 
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Liver iron concentrations were not adjusted for the potential effects of hepatic cellular             
pathologies ​(Li et al., 2018) but we would expect it to be minimal given the relatively low level of                   
hepatocellular clinical diagnosis in the UKBB cohort. 

To minimise error and confounding effects, we applied one voxel erosion to the 2D mask prior to                 
summarising fat and iron content. If the final size was < 1% of the organ’s 3D volume, or < 20                    
voxels, we excluded the mask from analysis. 

To account for systematic differences between the IDEAL and GRE acquisitions, we used the              
acquisitions of 1,487 subjects that both had GRE and IDEAL acquisitions to fit a linear model                
relating these two measurements. If both acquisitions were available, we used the IDEAL             
measurement. For those with only GRE, we used the following formulae: 

PDFF​IDEAL​ = 1.09 + 0.763 * PDFF​GRE 

Iron ​IDEAL​ = 0.196 + 0.855 * Iron ​GRE 

Manual annotation of abdominal structures for model training data 

For each organ, we defined a standard operating procedure and provided training to a team of                
radiographers, utilising MITK, a free open-source software system for development of interactive            
medical image processing software (mitk.org). All annotations were visually inspected at           
multiple stages by experienced analysts before use in modelling. 

Segmentation of organs, for volume assessment, from Dixon data 
 
We re-purposed an updated 3D iteration of the U-net architecture ​(Ronneberger et al., 2015)              
based on label-free segmentation from 3D microscopy ​(Ounkomol et al., 2018)​. In order to              
produce sensible segmentations for QC purposes on minimal data, we made the following             
choices. Training data is intrinsically scarce, and performance can always be improved with             
additional data. We pursued a multi-task approach ​(Y. Zhang & Yang, 2017) so as to improve                
data efficiency. The supervision loss consists of binary heads as opposed to multi-class             
classification because compartments can overlap spatially. We annotated multiple         
compartments and organs on the same individuals. Although not intrinsically novel, we are the              
first to scale this application to a very large UKBB imaging cohort. All weights and pipelines and                 
data augmentation details are available to download (https://github.com/calico/ukbb-mri-sseg).        
This is the first time that segmentations for multiple major organs and compartments have been               
published on the UKBB dataset. Comparisons across datasets are also difficult because            
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evaluation would be confounded by the specifics of how individuals are chosen, the conventions              
of annotation, and specifics of data acquisition or processing. 
 
Our implementation of U-net had 72 channels on the outside, and we capped the maximum               
number of channels in deeper layers of the network to 1152. We used concatenation on skip                
connections, and convolution-transposes when upsampling. A heavily-engineered system was         
used to stream large datasets efficiently and perform data augmentation on demand. To             
address computational bottlenecks, we encoded the 3D multichannel images as urolled PNGs            
inside TFrecords. We relied on TensorFlow best practices to parallelise and streamline random             
batching during training. Data augmentation was performed on the fly on the GPU, and not               
pre-computed. We used a batch size of six, and some customized engineering was needed to               
accommodate very large tensors and total GPU memory use. 
 
Input voxels were encoded into five channels: fat, water, in-phase, out-of-phase, and body             
mask. The body mask indicated whether a given voxel was inside the body The neural network                
branched into a different logit head for supervision on each organ. Supervision included the sum               
of Dice coefficient ​(Milletari et al., 2016)​ and binary cross-entropy across all organs.  
 
Inspection of validation loss curves indicated that use of batch normalization and data             
augmentation provided sufficient regularization. During training, the model utilised 80,000          
96x96x96 patches as subsequently described, and the Adam optimizer learning rate was            
reduced from 1e-5 to 1e-7 following a quadratic decay. During inference, we used Otsu              
thresholding ​(Otsu, 1979) to decode a binary decision for each voxel as to whether it was part of                  
each given organ or not.  

Data augmentation 
Data augmentation included a 3D deformation to locally transform 3D data smoothly as a whole,               
rather than by slice. We iteratively batched a small number of individual voxels, assigned              
random Gaussian values and convolved noise with random width Gaussian filters. The summed             
result was treated as a noise vector and added to the raw image dynamically. We also used a                  
smooth elastic warp to augment the data. This augmentation assigned a different smooth 3D              
optical flow offset to each voxel in any spatial direction, which was effective since it could locally                 
subsume a heterogeneous combination of commonly used spatial distortions. The same           
warping function was applied to training masks to ensure that supervision was consistent with              
input data.  
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Each final voxel obtained its value from a location offset by an optical flow vector sampled from                 
a Gaussian process. To preserve visual details, voxels that were close together were sampled              
with strongly correlated optical flow offsets, while pairs further away were less correlated. To              
reduce the computational load in the optical flow sampling process, we cropped the image to a                
174x174x174 window and placed a 4x4x4 lattice of equispaced points centered inside it. These              
64 lattice points had fixed relative spatial positions. Based on pairwise distances, we created a               
(4x4x4)-by-(4x4x4) covariance matrix to describe how correlated distortions should be in the            
warping. We applied a Gaussian kernel with a width of 24 voxels. These 3x64 values were                
multiplied by a random scaling chosen uniformly in [0, 4], treated as optical flow values and                
applied to the image in the distortion along three spatial directions for each of the 64 lattice                 
points. Next, we extrapolated optical flow values to each underlying voxel position with a              
polyharmonic spline, and applied the warp by resampling the image at each voxel with its own                
floating point offsets in 3D. From the center of the warped and resampled image, we cropped a                 
96x96x96 patch and used this as training data. When interpolating supervision segmentation            
masks, we converted the masks to floating-point probabilities and applied clipping heuristics            
after the warp and resampling to ensure that probabilities were valid. Finally, we obtained              
volume measurements by thresholding the model output, removing disconnected structures,          
and multiplying the number of mask voxels by the image resolution.  

Quality control consisted of iterations of visual inspection of extreme volumes for each distinct              
organ/structure, as well as spot checks of hundreds of random subjects. The training data was               
regularly enriched to include problematic cases. We repeated this procedure and retrained the             
model until results did not display outliers for extreme subjects nor any of the random spot                
checks. Performance metrics are available in Supplementary Table 1. 

Abdominal Subcutaneous Adipose Tissue (ASAT) and Visceral Adipose Tissue         
(VAT) 

Two structures, the ‘body cavity’ and ‘abdominal cavity’, were segmented using neural-network            
based methods from the Dixon segmentation to estimate ASAT and VAT. For estimation of              
VAT, the abdominal cavity was used to isolate only tissue in the abdomen and pelvis. The fat                 
channel was thresholded, small holes filled, and segmentations of abdominal organs (e.g., liver,             
spleen, kidneys) were removed to produce the final mask of VAT. For ASAT estimation, the               
body cavity was used to exclude all tissue internal to the body. A bounding box was computed                 
based on the abdominal cavity, where the upper and lower bounds in the superior-inferior (z)               
direction were used to define the limits of the ASAT compartment.  

Segmentation of the liver, for fat and iron content assessment, from single-slice            
data 
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We applied a standard 2D U-net to segment the IDEAL and GRE liver data, training one model                 
for each of the two liver acquisitions. We split 507 annotations of the IDEAL acquisition into a                 
training set of 456 training images and 51 validation images. Similarly, we split 373 annotations               
of the GRE acquisition into 335 training images and 38 validation images. The raw data               
consisted of complex numbers in six channels in IDEAL and 10 in GRE, resulting in input                
shapes of (256, 232, 18) for IDEAL and (160, 160, 30) for GRE. We encoded the complex                 
number as a triplet: magnitude, sine and cosine of the angle. We applied mild data               
augmentation in the form of small rotations, translations, zoom, shears, and flips. We used the               
Adam optimizer on 100 steps with batch size 32 for each of the following learning rates in the                  
schedule: [1e-4, 1e-5, 1e-5, 1e-6, 1e-7]. To ensure high specificity at the cost of recall during                
inference (and thus ensure that our derived values do not include non-liver tissue), we used               
Otsu to propose a threshold based on the voxelwise prediction probabilities and adjusted the              
threshold to further ablate the 25% of the foreground 25%. 

Pancreas segmentation from T1w MRI (volume) and extraction (fat and iron           
content assessment), from single-slice data 

We performed pancreas 3D segmentation on the high-resolution T1w 3D acquisition based on a              
recent iteration of the U-net architecture used in label-free microscopy ​(Ounkomol et al., 2018)​,              
using 123 manual annotations. Segmentation was not performed using the Dixon data since the              
pancreas has a complex morphology and benefited from improved contrast and resolution. The             
network trunk ranged from 16 channels in the outer layers and grew to 256 in the deepest layer.                  
Skip layers were added rather than concatenated. The learning rate was reduced by a factor of                
10 and 100 after 12 and 25 epochs, respectively, starting with an initial learning rate 1e-3. We                 
optimized with Adam, using an L2-regularization coefficient of 1e-4, on batch size six, and              
supervised segmentation with the mean of the Dice similarity coefficient and binary            
cross-entropy. For data augmentation, we translated the pancreas randomly. The segmented           
volume was resampled to extract an equivalent 2D mask for the single-slice data ​(Basty et al.,                
2020)​. 

Statistical analysis of IDPs 

All statistical analysis was performed using R version 3.6.0. 

Comparison with previous studies 

We compared the values extracted in our study with those from previous studies, available from               
the following UK Biobank fields: 
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● VAT (Field 22407) and ASAT (Field 22408) ​(West et al., 2016) 
● Liver fat (22400) and liver iron (22402) ​(Wilman et al., 2017) 

Relationship between age, scan time, and IDPs 

For fitting linear models, we used the R function `lm`. For fitting smoothing splines, we used the                 
`splines` package. To determine whether a coefficient was statistically significant in a set of              
models, we adjusted the p-values for each coefficient using Bonferroni correction. We compared             
models with and without scan time using ANOVA. 

We looked for systematic differences between scanning centre, and trends by scan date             
(Supplementary Figure 2). Because there were some minor differences unlikely to be of             
biological interest, we included scanning centre and scan date as covariates in all subsequent              
analyses. 

Disease phenome defined from hospital records 

We used the R package PheWAS ​(Carroll et al., 2014) to combine ICD10 codes (Field 41270)                
into distinct diseases or traits (PheCodes). The raw ICD10 codes were grouped into 1283              
PheCodes; of these, 754 PheCodes had at least 20 cases for all IDPs dataset allowing for a                 
meaningful regression model. For each IDP-PheCode pair, we performed a logistic regression            
adjusted for age, sex, height, and BMI, and imaging center and imaging date, scan time, and                
ethnicity. 

We defined two Bonferroni-adjusted p-values: a single-trait value of 6.63e-5, and a study-wide             
value of 6.03e-6. As many of the diagnoses are correlated, we expect this threshold to be                
conservative. 

Other traits 

We used the R package PHESANT ​(Millard et al., 2018) to generate an initial list of variables                 
derived from raw data. We manually curated this list to remove variables related to procedural               
metrics (e.g., measurement date, time and duration; sample volume and quality), duplicates            
(e.g., data collected separately on a small number of participants during the pilot phase), and               
raw measures (e.g., individual components of the fluid intelligence score). This resulted in a              
total of 1824 traits. For each trait, we performed a regression (linear regression for quantitative               
traits, and logistic regression for binary traits) on the abdominal IDP, including imaging center,              
imaging date, scan time, age, sex, BMI, and height, and ethnicity as covariates.  

We defined two Bonferroni-adjusted p-values: a single-trait value of 2.75e-5, and a study-wide             
value of 2.49e-6. As many traits are correlated, we expect this threshold to be conservative. 
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Genetics 

We follow the methods described in a previous study ​(Sethi et al., 2020) 

Genome-wide association study 

We used the UKBB imputed genotypes version 3 ​(Bycroft et al., 2018)​, excluding single             
nucleotide polymorphisms (SNPs) with minor allele frequency < 1% and imputation quality <             
0.9. We excluded participants not recorded as Caucasian, exhibiting sex chromosome           
aneuploidy, with a discrepancy between genetic and self-reported sex, heterozygosity and           
missingness outliers, and genotype call rate outliers ​(Bycroft et al., 2018)​. We used BOLT-LMM              
version 2.3.2 ​(Loh, Tucker, et al., 2015) to conduct the genetic association study. We included               
age at imaging visit, age squared, sex, imaging centre, scan date, scan time, and genotyping               
batch as fixed-effect covariates, and genetic relatedness derived from genotyped SNPs as a             
random effect to control for population structure and relatedness. The genomic control            
parameter ranged from 1.05-1.15 across eleven IDPs (Supplementary Table 4). We verified that             
the test statistics showed no overall inflation compared to the expectation by examining the              
intercept of linkage disequilibrium (LD) score regression (LDSC) ​(Bulik-Sullivan, Loh, et al.,            
2015) (Supplementary Table 5). In addition to the commonly-used genome-wide significance           
threshold of p=5e-8, we defined an additional study-wide significance threshold using Bonferroni            
correction for the number of traits, p=5e-8/11=4.5e-9. For this analysis and all other analyses              
using LDSC, we followed the recommendation of the developers and (i) removed variants with              
imputation quality (info) <0.9 because the info value is correlated with the LD score and could                
introduce bias, (ii) excluded the major histocompatibility complex (MHC) region due to the             
complexity of LD structure at this locus (GRCh37::6:28,477,797-33,448,354; see         
https://www.ncbi.nlm.nih.gov/grc/human/regions/MHC​), and (ii) restricted to HapMap3      
SNPs​(International HapMap 3 Consortium et al., 2010)​.  

For each IDP, we performed a secondary analysis with height and BMI as additional covariates. 

Exome-wide association study 
 
Exome sequencing variant calls from the raw FE variant calling pipeline ​(Regier et al., 2018)               
were downloaded from the UK Biobank website       
(http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=23160). QC was performed in PLINK v.1.90       
using the following criteria: removal of samples with discordant sex (no self-reported sex             
provided, ambiguous genetic sex, or discordance between genetic and self-reported sex),           
sample-level missingness <0.02, European genetic ancestry as defined by the UK Biobank            
(Bycroft et al., 2018)​. Variant annotation was performed using VEP v100, filtered for rare              
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(MAF<0.01) putative loss-of-function variants including predicted high-confidence       
loss-of-function variants, predicted using the LOFTEE plugin ​(Karczewski et al., 2020)​. 11,134            
samples and 11,939 genes were analyzed in a generalized linear mixed model as implemented              
in SAIGE-GENE ​(Zhou et al., 2020)​. A filtering step of at least five loss-of-function carriers per                
gene was applied, resulting in 6,745 genes. Outcome variables were inverse normal            
transformed and regressed on gene carrier status, adjusted for genetic sex, age, age ​2​, the first               
ten principal components of genetic ancestry, scaled scan date, scaled scan time, and study              
center as fixed effects and genetic relatedness as a random effects term. A kinship matrix was                
built in SAIGE off of a filtered set of array-genotyped variants (r​2​<0.2, MAF>=0.05, HWE              
p>1e-10 in European population).  

Heritability estimation and enrichment 

We estimated the heritability of each trait using restricted maximum likelihood as implemented in              
BOLT version 2.3.2 ​(Loh, 2018)​.  

To identify relevant tissues and cell types contributing to the heritability of IDPs, we used               
stratified LD score regression ​(Finucane et al., 2018) to examine enrichment in regions of the               
genome containing genes specific to particular tissues or cell types. We used three types of               
annotations to define: (i) regions near genes specifically expressed in a particular tissue/cell             
type, (i) regions near chromatin marks from cell lines and tissue biopsies of specific cell types,                
and (iii) genomic regions near genes specific to cells from immune genes. For functional              
categories, we used the baseline v2.2 annotations provided by the developers           
(​https://data.broadinstitute.org/alkesgroup/LDSCORE​). Following the original developers of this       
method ​(Finucane et al., 2018)​, we calculated tissue-specific enrichments using a model that            
includes the full baseline annotations as well as annotations derived from (i) chromatin             
information from the NIH Roadmap Epigenomic ​(Roadmap Epigenomics Consortium et al.,           
2015) and ENCODE ​(ENCODE Project Consortium, 2012) projects (including the EN-TEx data            
subset of ENCODE which matches many of the GTEx tissues, but from different donors), (ii)               
tissue/cell type specific expression markers from GTEx v6p ​(GTEx Consortium et al., 2017) and              
other datasets ​(Fehrmann et al., 2015)​; ​(Pers et al., 2015)​, and (iii) immune cell type expression                
markers from the ImmGen Consortium ​(Heng et al., 2008)​. For each annotation set, we              
controlled for the number of tests using the Storey and Tibshirani procedure ​(Storey &              
Tibshirani, 2003)​. Although heritability is non-negative, the unbiased LDSC heritability estimate           
is unbounded; thus, it is possible for the estimated heritability, and therefore enrichment, to be               
negative (e.g., if the true heritability is near zero and/or the sampling error is large due to small                  
sample sizes). 
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To enable visualization, we grouped tissue/cell types into systems (e.g., "blood or immune",             
"central nervous system") as used in Finucane et al. ​(Finucane et al., 2018)​. 

Genetic correlation 

We computed genetic correlation between traits using bivariate LDSC ​(Bulik-Sullivan, Finucane,           
et al., 2015)​.  

Statistical fine-mapping 

We performed approximate conditional analysis using genome-wide complex trait analysis          
(GCTA) ​(Yang et al., 2012)​, considering all variants that passed quality control measures and              
were within 500kb of a locus index variant. As a reference panel for LD calculations, we used                 
genotypes from 5,000 UKBB participants ​(Bycroft et al., 2018) that were randomly selected after              
filtering for unrelated, participants of white British ancestry. We excluded the major            
histocompatibility complex (MHC) region due to the complexity of LD structure at this locus              
(GRCh37::6:28,477,797-33,448,354; see  
https://www.ncbi.nlm.nih.gov/grc/human/regions/MHC​). For each locus, we considered variants       
with genome-wide evidence of association (Pjoint<10−8) to be conditionally independent. We           
annotated each independent signal with the nearest known protein-coding gene using the            
OpenTargets genetics resource (May 2019 version). 

Construction of genetic credible sets 

For each distinct signal, we calculated credible sets ​(Wellcome Trust Case Control Consortium             
et al., 2012) with 95% probability of containing at least one variant with a true effect size not                  
equal to zero. We first computed the natural log approximate Bayes factor ​(Wakefield, 2007) Λj ,                
for the j-th variant within the fine-mapping region: 

n  Λj = l (√ V j

V j + ω) ωβ2

2V (V +ω)j j
 

where βj and Vj denote the estimated allelic effect (log odds ratio for case control studies) and                 
corresponding variance. The parameter ω denotes the prior variance in allelic effects and is set               
to (0.2)​2 for case control studies ​(Wakefield, 2007) and (0.15σ)​2 for quantitative traits             
(Giambartolomei et al., 2014)​, where σ is the standard deviation of the phenotype estimated              
using the variance of coefficients (Var(βj)), minor allele frequency (fj), and sample size (nj; see               
the sdY.est function from the coloc R package): 
n f (1 )2 j j − f j ~ σ2 1

V ar(β )j
− 1  

Here, σ2 is the coefficient of the regression, estimating σ such that .σ = √σ2  
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We calculated the posterior probability, πj, that the j th variant is driving the association, given l                 
variants in the region, by: 

πj =
l ∑

l

k=0
Λk

(1−γ)Λj  

where γ denotes the prior probability for no association at this locus and k indexes the variants                 
in the region (with k=0 allowing for the possibility of no association in the region). We set γ=0.05                  
to control for the expected false discovery rate of 5%, since we used a threshold of P marginal                  
<5x10−8 to identify loci for fine-mapping. To construct the credible set, we (i) sorted variants by                
increasing Bayes factors (natural log scale), (ii) included variants until the cumulative sum of the               
posterior probabilities was >=1−c, where c corresponds to the credible set cutoff of 0.95. 

Colocalization of independent signals 

To identify other traits potentially sharing the same underlying causal variant, we downloaded a              
catalog of summary statistics using the UK Biobank cohort from          
http://www.nealelab.is/uk-biobank (Version 2). For disease phenotypes, we additionally        
downloaded summary statistics computed using SAIGE ​(Zhou et al., 2018) from           
https://www.leelabsg.org/resources​. After de-duplication, removal of biologically uninformative       
traits, and removal of traits with no genome-wide significant associations, we considered a total              
of 974 complex traits and, and 356 disease phenotypes. To identify potentially causal genes at               
each locus, additionally explored expression QTL data from GTEx (version 7, dbGaP accession             
number dbGaP accession number phs000424.v7.p2) to seek evidence for colocalization with           
expression in one of 49 tissues. 

We performed colocalization analysis using the coloc R package ​(Giambartolomei et al., 2014)             
using default priors and all variants within 500kb of the index variant of each signal. Following                
previous studies ​(Guo et al., 2015)​, we considered two genetic signals to have strong evidence               
of colocalization if PP3+PP4≥0.99 and PP4/PP3≥5.  

Identifying other associations with our lead signals 

In addition to the colocalization analysis with UK Biobank traits, order to identify GWAS signals               
tagged by any of our associations from previous studies (not including the UK Biobank traits               
described above), we queried the Open Targets Genetics Resource ​(Carvalho-Silva et al.,            
2019)​, version 190505. We identified for studies where our lead variant was in LD (r>0.7) with                
the lead SNP of a published study. We also searched for our lead SNPs in the NHGRI-EBI                 
GWAS catalog ​(Buniello et al., 2019)​ in October 2020.  
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Supplementary Tables 
Supplementary Table 1: Segmentation performance metrics. 

Supplementary Table 2: Significant PheWAS associations. Only associations which are 
statistically significant after correction for multiple testing are shown. 

Supplementary Table 3: Significant PHESANT associations. Only associations which are 
statistically significant after correction for multiple testing are shown. 

Supplementary Table 4: Genomic control parameter for each trait. 

Supplementary Table 5: LDSC intercept. 

Supplementary Table 6: Genetic correlations between abdominal IDPs. 

Supplementary Table 7: Genetic correlation between abdominal IDPs and other heritable 
complex traits. Only associations which are statistically significant after correction for multiple 
testing are shown. 

Supplementary Table 8: Genome-wide significant lead SNPs. Columns are as follows 

● trait: One of: volume, fat or iron 
● organ: Organ 
● var_index Index variant (in the format chr:pos:ref:alt:build (All index variants are 

listed in GRCh37 coordinates) 
● rs_id: dbSNP ID 
● var_conditional: If a conditional signal, variants conditioned on, in the same 

format as var_index 
● pv P-value 
● pp: Probability that the lead SNP is the causal variant 
● beta: Effect size (in standard deviations) 
● closest_gene: Closest protein-coding gene 
● closest_gene_dist: Distance to TSS of closest gene 

Supplementary Table 9: Significant colocalization with complex trait GWAS signals.  
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Supplementary Table 10: Significant colocalization with gene expression 
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Supplementary Figures 

 
Figure S1. A. Correlation between multiple measurements of liver fat, liver iron, ASAT volume, and VAT                
volume in the UK Biobank. B. Scatter plots showing the relationship between multiple measurements of               
liver fat, liver iron, ASAT volume, and VAT volume in the UK Biobank. 
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Figure S2. A. Organ volume IDPs, split by imaging centre. B. Fat IDPs, split by imaging centre. C. Iron                   
IDPs, split by imaging centre. D. Relationship between scan date and IDPs. 
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Figure S3. Phenome-wide associations across all IDPs and 83 biomarkers. The x-axis gives the effect               
size per standard deviation, and the y-axis -log10(p-value). The top 3 associations for each phenotype               
are labelled. Horizontal lines at phenome-wide significance (dotted line, p=2.7e-05) and study-wide            
significance (dashed line, p=2.48e-06) after Bonferroni correction for the total number of measures.             
Abbreviations: SHBG: Sex hormone binding globulin. MSCV: Mean sphered cell volume. MCH: Mean             
corpuscular hemoglobin. RC: Reticulocyte count. PDW: Platelet distribution width. ALT: alanine           
transaminase. ALP: Alkaline phosphatase. HLSRC: High light scatter reticulocyte count. GGT: Gamma            
glutamyl transferase. 
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Figure S4. Phenome-wide associations across all IDPs and 199 lifestyle and history traits. The x-axis               
gives the effect size per standard deviation, and the y-axis -log10(p-value). The top 3 associations for                
each phenotype are labelled. Horizontal lines at phenome-wide significance (dotted line, p=2.7e-05) and             
study-wide significance (dashed line, p=2.48e-06) after Bonferroni correction for the total number of             
measures.  
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Figure S5. Phenome-wide associations across all IDPs and 770 medical history traits. The x-axis gives               
the effect size per standard deviation, and the y-axis -log10(p-value). The top 3 associations for each                
phenotype are labelled. Horizontal lines at phenome-wide significance (dotted line, p=2.7e-05) and            
study-wide significance (dashed line, p=2.48e-06) after Bonferroni correction for the total number of             
measures.  
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Figure S6. Phenome-wide associations across all IDPs and 444 traits measured in online follow-up. The               
x-axis gives the effect size per standard deviation, and the y-axis -log10(p-value). The top 3 associations                
for each phenotype are labelled. Horizontal lines at phenome-wide significance (dotted line, p=2.7e-05)             
and study-wide significance (dashed line, p=2.48e-06) after Bonferroni correction for the total number of              
measures.  
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Figure S7. Phenome-wide associations across all IDPs and 335 physical measures. The x-axis gives the               
effect size per standard deviation, and the y-axis -log10(p-value). The top 3 associations for each               
phenotype are labelled. Horizontal lines at phenome-wide significance (dotted line, p=2.7e-05) and            
study-wide significance (dashed line, p=2.48e-06) after Bonferroni correction for the total number of             
measures. Abbreviations: FVC forced vital capacity. FEV1 Forced expiratory volume in 1 second. FF              
fat-free. 
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Figure S8. Heritability enrichment in tissues and cell types for annotations based on gene expression (see                
Methods). The top 3 enrichments for each phenotype passing a trait-wide significance threshold are              
labelled. Horizontal lines and trait-wide (dotted line) and study-wide (dashed line) significance after             
Bonferroni correction. 
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Figure S9. Heritability enrichment in tissues and cell types for annotations based on chromatin              
accessibility (see Methods). The top 3 enrichments for each phenotype passing a trait-wide significance              
threshold are labelled. Horizontal lines and trait-wide (dotted line) and study-wide (dashed line)             
significance after Bonferroni correction. 
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Figure S10. Heritability enrichment in tissues and cell types in immune cell types (see Methods). The top                 
3 enrichments for each phenotype passing a trait-wide significance threshold are labelled. Horizontal lines              
and trait-wide (dotted line) and study-wide (dashed line) significance after Bonferroni correction. 
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Figure S11. Genetic correlation between IDPs and complex traits. Only IDPs and traits with statistically               
significant genetic correlation (p< 1.61e-05 after Bonferroni correction for multiple testing) are shown. 
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Figure S12. Rare association studies in the subcohort with both exome sequence data and              
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imaging-derived quantitative phenotypes. Left: Manhattan plot shows the association between each gene            
organised by genomic coordinates. Right: QQ-plot showing calibration of SKAT-O test statistics. λ​GC​:             
Genomic control parameter for each trait. Blue dashed line indicates Bonferroni significance threshold             
genome-wide (p = 7.4e-06). Red dashed line indicates overall study significance threshold (p = 6.7e-07).               
(A) volume of visceral fat (n=11,069 samples) (B) volume of spleen (n=11,134) (C) volume of the lungs                 
(n=11,134) (D) liver volume (n=11,134) (E) kidney volume (n=11,134) (F) abdominal subcutaneous fat             
(n=11,134). One gene achieved genome-wide significance but not study wide significance (​RRNAD1​:            
p ​SKAT-O = 6.5e-06; beta ​burden = -0.08).(G) pancreas volume (n=11,093) (H) pancreas iron level (n=5,525) (I)               
liver iron (n=11,069) (J) pancreatic fat (n=5525) (K) liver fat (n=11,069).  
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