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Abstract  33 

Species distributions are recognized to be driven by abiotic factors, but the 34 

importance of biotic interactions that provide critical resources is less well understood, 35 

especially with respect to variation in critical resource quality. Disentangling the relative 36 

importance of these factors – abiotic environment, presence of critical resources and their 37 

quality– may be critical to predicting species response to climate change. We used species 38 

distribution models (SDMs) to address these questions for the western monarch butterfly 39 

(Danaus plexippus), a species that obligately feeds upon plants in the genus Asclepias, and 40 

for which hostplant quality in this region varies among species by an order of magnitude. We 41 

modeled the distribution of 24 Asclepias species to develop and compare three monarch 42 

distribution models with increasing levels of ecological complexity: (i) a null model using 43 

only environmental factors (a climate envelope model), (ii) a model using environmental 44 

factors and Asclepias spp. distribution, (iii) and a model using environmental factors and 45 

Asclepias spp. distribution weighted by hostplant quality assessed through a greenhouse 46 

bioassays of larval performance. Asclepias models predicted that half of the Asclepias spp. 47 

will both expand their ranges and shift their distribution towards higher latitudes while half 48 

will contract within the study region. Our performance analysis of monarch models revealed 49 

that the climate envelope model was the poorest performing. Adding hostplant distribution 50 

produced the best performing model, while accounting for hostplant quality did not improved 51 

model performance. The climate envelope model estimated more restrictive contemporary 52 

and future monarch ranges compared to both hostplants models. Although all three models 53 

predicted future monarch range expansions, the projected future distributions varied among 54 

models. The climate envelope model predicted range expansions along the Pacific coast and 55 
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contractions inland while hostplants models predicted range expansions in both of these 56 

regions and, as a result, estimated 14 and19% increases in distribution relative to the climate 57 

envelope model, respectively. These results suggest that information on biotic interactions 58 

that provide critical resources is needed to predict future species distributions, but that 59 

variation in the quality of those critical resources may be of secondary importance.  60 

 61 

Keywords: Danaus plexippus; monarch, species distribution models; MaxEnt; climate change; 62 

bioclimatic models; hostplant quality; Milkweeds; Asclepias; biotic interactions; specialized 63 

herbivores 64 

Introduction 65 

Climate change is expected to alter the distribution of most species (Parmesan et al. 1999, 66 

Crozier 2004, Bellard et al. 2012, Pauli et al. 2012) with many already experiencing range 67 

contractions or facing extinctions (Sekercioglu et al. 2008, La Sorte and Jetz 2010, Bellard et al. 68 

2012, Pauli et al. 2012). Understanding the underlying drivers is key to predicting such 69 

distributional response and also critical if we are to mitigate these impacts. Species distributions 70 

are presumed to be driven most strongly by abiotic factors, but biotic interactions can also play a 71 

key role (Guisan and Thuiller 2005). Because species often respond differently to abiotic stress 72 

(Schweiger et al. 2008, Van der Putten et al. 2010), producing accurate predictions necessitates 73 

that we also account for climate change effects on interacting species. This is especially true for 74 

species that engage in obligate interactions, as they depend on a few or even a single species to 75 

survive,  and such species may not be available in all areas that are otherwise climatically 76 

suitable (Schweiger et al. 2008).  77 
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Herbivorous insects – the majority of multi-cellular species on earth (Lewinsohn et al. 78 

2005) – are highly host-specific; thus, their response to climate change will likely depend 79 

fundamentally on the responses of the plants upon which they are obligately dependent. Indeed, 80 

most herbivorous insects feed on a single or a few plant families (Bernays 1989, Forister et al. 81 

2015) with fewer than 10% feeding on plants belonging to more than three families (Price 1983). 82 

Furthermore, it has long been recognized that hostplants demonstrate considerable intra- and 83 

inter-specific variation in their resource quality to herbivores, and that resource quality is often 84 

heterogeneously distributed across landscapes (Denno and McClurc 1983, Hunter et al. 1992). 85 

Intra- and inter-specific variation in host-quality can have large effects on herbivore performance 86 

(Singer et al. 2012) and may also play a significant role in determining the spatial distribution of 87 

host-specific herbivorous insects at local scales (Memmott et al. 1995, Mcmillin and Wagner 88 

1998, Egan and Ott 2007). However, the role of hostplant quality as a driver of species 89 

distribution at large spatial scales, and its implications for herbivore’s distributional response to 90 

climate change, are largely unknown.  91 

In this study we investigated the importance of hostplant distribution and quality as 92 

drivers of herbivore contemporary distribution and response to projected future climate change. 93 

We use Species Distribution Models (SDMs), statistical tools that combine observations of 94 

species occurrences with environmental covariates to estimate species distributions. These 95 

models identify the factors driving contemporary species ranges and can also infer species 96 

response to climate change based on projections for how those driving factors will change in the 97 

future (Elith and Leathwick 2009). SDMs have most often assumed that species distributions are 98 

defined by environmental factors alone. This so-called "climate envelope approach" are based on 99 

the Eltonian noise hypothesis, which posits that biotic interactions may be a major driver of 100 
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abundance at smaller spatial resolutions, but at larger and coarser spatial resolutions the effects 101 

of biotic interactions may average out, leaving abiotic factors as the principal drivers (Guisan 102 

and Thuiller 2005, Soberon and Nakamura 2009, Elith and Leathwick 2009). Yet recent 103 

modelling studies have identified biotic factors as important drivers of species distributions 104 

(Dilts et al. n.d., Araújo and Luoto 2007, Preston et al. 2008, Schweiger et al. 2008, de Araújo et 105 

al. 2014, Fraterrigo et al. 2014, Lemoine 2015, da Cunha et al. 2018) and SDMs predictions for 106 

species response to climate change have yielded contrasting results based upon whether or not 107 

biotic factors are included (Preston et al. 2008, Schweiger et al. 2008, Lemoine 2015). 108 

Accordingly, climate envelope modeling may accurately define the potential niche of a species, 109 

but the realized niche – defined in part by species interactions – may be substantially smaller.  110 

Our aim in this study was to assess the importance of hostplant distribution and quality 111 

for driving contemporary and future distributions of dietary specialist herbivores.  To do so, we 112 

studied the monarch butterfly (Danaus plexippus, Lepidoptera: Nymphalidae), the larvae of 113 

which feed exclusively from plants in the Asclepias genus which varies greatly among species in 114 

herbivore-defenses traits, nutrient content, and overall host quality (Agrawal and Fishbein 2006, 115 

Pocius et al. 2017). Monarchs are well known for their migratory and overwintering behavior 116 

(Pelton et al. 2019), and three previous studies have modelled their distribution. Lemoine 117 

(Lemoine 2015) accounted for hostplant distribution in the eastern monarch population response 118 

to climate change, predicting a poleward range expansion facilitated by Asclepias range 119 

expansions. Steven and Frey (Stevens and Frey 2010), and more recently Dilts et al (Dilts et al. 120 

n.d.), examined the role of hostplant availability and climate in determining the contemporary 121 

western monarch distribution and their breeding grounds, again demonstrating the importance of 122 

hostplants availability.  123 
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 In the present study, we investigate the role of both hostplant distribution and quality in 124 

driving contemporary and future distributions of the western monarch population. To do so, we 125 

compared the performance of three species distribution models. In order of increasing 126 

complexity, these three models were: (i) a model using only climatic variables as predictors 127 

(hereafter, climate envelope model); (ii) a model using climatic variables and Asclepias 128 

distribution as predictors (hereafter, hostplant-presence model); and (iii) a model that included 129 

climatic variables, hostplants distribution and hostplant quality, which varied 10-fold among 130 

species as assessed through bioassays of larval performance (hereafter, hostplant quality model). 131 

We compared model performances and identified the variables determining the distribution of 132 

the western monarch breeding ranges. These models were then used to project and estimate 133 

changes in their distribution. Our study adds to past studies of this species and represents the first 134 

to estimate the future breeding range of the western monarch population. More broadly, this 135 

study is, to our knowledge, the first to explicitly test for the importance of hostplant quality of an 136 

obligate resource in driving species contemporary and future distribution.  137 

Materials and methods 138 

Study System 139 

Monarch butterflies occur world-wide and, in their larval stage, feed exclusively from 140 

plants in the milkweed family (Asclepias, Apocyneceae: Asclepiadaceae). In North America, 141 

there are two migratory populations that breed east and west of the Rocky Mountains, with each 142 

of these regions being populated by multiple and largely unique sets of hostplant species (Ladner 143 

and Altizer 2005). Despite its dramatic population decline (Pelton et al. 2019), the western 144 

monarch population has been considerably understudied in comparison to the largest eastern 145 

population and we know little about how this population will be affected by climate change.  146 
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Western monarchs breed west of the Rocky Mountains and overwinter along the Pacific 147 

coast from Bodega Bay in northern California and as far south as Ensenada, Baja California, 148 

Mexico (Stevens and Frey 2010). During the spring, monarchs leave their overwintering sites 149 

and disperse throughout the western U.S. where they breed continuously during the summer. In 150 

the fall, adult monarchs return to their overwintering grounds (Pelton et al. 2019). Within North 151 

America, monarchs have been recorded feeding on 27 different plant species in the genus 152 

Asclepias (Ladner and Altizer 2005); however, adult females may oviposit in any available 153 

Asclepias species. Thus, monarchs may utilize multiple Asclepias species throughout their 154 

migratory paths. 155 

The genus Asclepias, commonly known as milkweeds, consists of over 140 different 156 

species of which 130 are endemic to North America (Agrawal and Konno 2009). Milkweeds 157 

vary in their herbivore defensive strategies, which variously include combinations of 158 

cardenolides, latex, and trichomes, among others traits (Agrawal and Fishbein 2006). Inter-159 

specific variation in the quantity of plant defenses (Agrawal and Fishbein 2006) and nutrient 160 

content (Pocius et al. 2017) have been associated with monarch larval mass, developmental rate, 161 

and early instar survival (Zalucki et al. 2001). In this sense, the quality of the Asclepias species 162 

may be important in determining monarch distributions.  163 

Data Collection  164 

Occurrence data: We retrieved monarch and milkweed records for the United States 165 

using R Studio (R Studio Team 2015) from multiple open source databases using the R 166 

packages SPOCC, Ecoengine, rbison (Chamberlain et al. 2014, Karthik 2014, Chamberlain 167 

2019) and by accessing species occurrences directly from GBIF and iNaturalist databases 168 

(“GBIF Occurrence Download” 2019, “Naturalist [online]. Website” 2019). For monarchs, 169 
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we only selected eggs and larval records because they provide a direct index for the location 170 

of the monarchs breeding grounds as opposed to adult records which may only indicate the 171 

migratory path. Additional monarch larval records were provided by the Monarch Larvae 172 

Monitor Program (MLMP) (Ries and Oberhauser 2015). 173 

The occurrence data archived in open source databases originates mainly from citizen 174 

scientist sightings and some from herbarium records. As opposed to formal survey methods, this 175 

type of data has some limitations such as sampling biases, potential misidentification and 176 

coordinate inaccuracies, and lack species absence records. We controlled for these limitations 177 

whenever possible. For example, when permitted, we used filters that only retrieved records 178 

confirmed by experts and/or records classified as of research quality and spatial filtering to 179 

control for sampling biases. 180 

To focus on the western monarch population, we selected Milkweeds and monarch larval 181 

records from states corresponding to this region: California, Nevada, Colorado, Washington, 182 

New Mexico, Arizona, Utah, Oregon, and Idaho. After removing duplicate records, incorrect (i.e. 183 

over oceans) or inaccurate coordinates (>1000 meters uncertainty) and observations, the final 184 

databases included 7,941 Milkweed records for 51 species (Data S1), and 904 monarch larval 185 

records (Data S2). A. fascicularis and A. speciosa were the most common species with 22% 186 

(2,541) and 12% (1,404) of total Milkweed records, respectively.  187 

Environmental data and climate projections: Contemporary environmental 188 

bioclimatic variables and projections for the year 2070 were downloaded in R from the 189 

WorldClim website (Fick and Hijmans 2017) at 30-sec (approximately 1-km2) grid cells, the 190 

finest spatial resolution available. The current bioclimatic variables represent averages of a 191 

50-year period from 1950 to 2000. Climate change projections for the year 2070 represent 192 
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averages of a 30-year period from 2061 to 2080 based on the Hadley Centre Global 193 

Environmental Model, version 2, Earth System (HadGEM2-ES) model. The HadGEM2-ES 194 

model is recommended for ecological modeling as it accounts for ecologically-meaningful 195 

processes such as dynamic vegetation cover (The HadGEM2 Development Team: G. M. 196 

Martin et al. 2011). These projections are based on Representative Concentration Pathway 197 

(RCP) 8.5.  The RCP 8.5 represents the worst-case scenario for greenhouse gas (GHG) 198 

concentrations, assuming that GHG emissions will continue to increase after the 21st century 199 

in contrast to other scenarios that assume GHG will remain stable or will decline after the 200 

21st century (Collins et al. n.d.).  While a comparison of different projections for future 201 

climate would provide a more nuanced prediction for the future distributions of milkweeds 202 

and monarchs, using this single scenario met our primary purpose of evaluating the 203 

importance of host plant information in predicting specialist herbivore distributions.   204 

Environmental layers were cropped to include the states corresponding to range of the 205 

western monarch population. To reduce multicollinearity among variables, we removed highly 206 

correlated variables based on their Pearson correlation coefficients using a pairwise correlations 207 

approach following Dormann et al. (Dormann et al. 2013) but with a less restrictive threshold of 208 

0.85 as in Elith et al. (Elith et al. 2006). We first removed variables that were correlated with 209 

multiple variables and, when only two variables were correlated, we selected the variable that 210 

was less statistically derived. This process yielded 11 environmental predictors (Table 1).  211 

Species distribution modeling 212 

Because species occurrences in these datasets are available in the form of presence-only 213 

records, we used the maximum entropy method (hereafter MaxEnt) (Phillips et al. 2006) to 214 

model the current and future distribution of Asclepias and monarch breeding ranges. The MaxEnt 215 
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algorithm is a presence-background modeling tool based on Bayesian and maximum likelihood 216 

statistics (Elith et al. 2011). To estimate the probability of distribution of a species, MaxEnt uses 217 

species presence records and a set of environmental predictors (e.g. precipitation, temperature) 218 

across a pre-defined landscape that is divided into grid cells. From this landscape, background 219 

points are randomly selected to represent the species environmental domain or background 220 

environment. MaxEnt estimates the relative probability of occurrence for each grid cell by 221 

maximizing the similarity between the environmental conditions of presence records and that of 222 

the background environment, while constraining the prediction to have the same mean as the 223 

presence records. The relative probabilities (raw output) are transformed to probability of 224 

occurrence using post-logistic transformation (logistic output). Here we report the logistic output 225 

which assigns a probability of presence between 0 and 1 to each grid cell, assuming that typical 226 

presence localities have a probability of presence of 0.5. See Elith et al. (Elith et al. 2011) for a 227 

comprehensive statistical explanation of MaxEnt.  228 

Data collection, data processing, and modeling were performed in R studio (R Studio 229 

Team 2015). Species distribution modeling was executed in MaxEnt using the ‘dismo’ package 230 

(Hijmans et al. 2011). 231 

Asclepias models: We developed models for individual Asclepias species and estimated 232 

their distributions within an area restricted to the study region; therefore, our Asclepias 233 

ranges do not represent their full distributions but only represent hostplant availability for the 234 

western monarch. Asclepias species were modelled separately because their distributions 235 

may be delimited by distinct environmental factors. We discarded records identified at the 236 

genus level and species with fewer than 40 records as this limited number of observations 237 

would not allow for an accurate estimation of their distributions. To correct for potential 238 
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sampling biases, we used a spatial filtering approach which consists on randomly selecting 239 

one record per grid cell of a specified size (Kramer-Schadt et al. 2013). Spatial filtering was 240 

performed individually for each Asclepias species. This allowed us to retain records for 241 

multiple species co-occurring within a single grid cell as well as selecting the optimal spatial 242 

resolution that maximizes sample size while correcting for sampling biases. For example, 243 

species with a limited distribution (e.g. high-elevation species), were filtered at a finer spatial 244 

resolution of 1 km2 and more widely distributed Asclepias species were filtered at a 30-km2 245 

resolution. An additional two Asclepias species, A. viridiflora and A. curassavica, were 246 

discarded because their records were clearly subject to sample biases and spatial thinning 247 

decreased their number of records to less than 40. The process of removing incorrect records 248 

and rare species, and spatial filtering, resulted in 24 Asclepias species databases each with a 249 

minimum of 40 records, totaling 3,549 Asclepias records (Table 2). 250 

Spatially filtered data were randomly split into training and test data by withholding 25% 251 

of the occurrences and the remaining 75% was used for model training. To select background 252 

points, we first determined the Asclepias environmental domain, corresponding to an area of 50 253 

km2 surrounding Asclepias occurrences. The environmental domain was then divided into 1 km2 254 

grid cells, and background points were randomly selected from within the monarch 255 

environmental domain in a checkerboard fashion. Individual Asclepias species were modeled 256 

using background points from the environmental domain represented by all Asclepias species. 257 

This process yielded 9000 background points to model Asclepias species. The best-fitted models 258 

for Asclepias with the highest AUC score were used to estimate their current and projected 259 

distribution under climate change.  260 
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Monarch models: The monarch distribution was modeled using a similar approach to 261 

Asclepias. As described above, we used spatial filtering to correct for sampling biases. Monarch 262 

larval records were first filtered at a range of resolutions (1 to 55 km2) and the spatial resolution 263 

yielding the highest AUC was then selected. The final dataset used to model monarch breeding 264 

range was thinned using 30 km2 grid cells (the best-fitted model) and included 110 observations. 265 

As with Asclepias, we withhold 25% of the data for model testing and the remaining 75% was 266 

used for model training. To determined monarch larvae environmental domain, we selected 267 

4,000 background points following the same procedure described in the Asclepias modeling 268 

section, although the number of background points was lower due to the more restricted 269 

distribution of monarchs.  270 

To test for the importance of hostplant availability, we first summarized the resulting 271 

individual Asclepias distribution layers into a single predictor layer representing overall 272 

Asclepias distribution under current and projected environmental conditions (Fig 1, A and B). 273 

The values assigned to grid cell in the genus-level hostplant distribution layer were determined 274 

by: 275 

P(𝐴𝑠𝑐) = p(𝐴𝑠𝑐1) + p(𝐴𝑠𝑐2) + ⋯p(𝐴𝑠𝑐24) 276 

Where ‘P’ represents the summarized genus-level probability and ‘p’ probability of 277 

distribution of individual Asclepias species numbered from 1 to 24. Because the ranges of many 278 

Asclepias species overlapped, forming the Asclepias distribution layer by summing probabilities 279 

captures not only the mean probability of distribution but also reflects species richness. We 280 

choose this approach under the assumption that higher species richness is associated with 281 

increased milkweed abundance and thus higher habitat quality for monarchs. Although a direct 282 

assessment of milkweed abundance would be preferable, no such data is readily available. This 283 
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process is mathematically equivalent to averaging species probabilities and then multiplying by 284 

species richness.  285 

To assess hostplant quality, we used the average monarch larval weight supported by 286 

each Asclepias species grown under greenhouse conditions (Table 2). These protocols are 287 

described in detail by Petschenka and Agrawal (Petschenka and Agrawal 2015). Briefly, 288 

Asclepias plants were grown from seed in a greenhouse and after a period of 4-7 weeks neonate 289 

monarch caterpillars were placed individually upon the leaves of potted plants and weighed after 290 

5 days. Assessing hostplant quality under controlled greenhouse conditions controls for 291 

extraneous factors such as natural predator, competition with other herbivores, induced plant 292 

defenses and environmental variation that are necessarily associated with a field bioassay.  293 

We weighted each Asclepias species distribution layer according to its host quality. The 294 

Milkweed with the greatest larval weight (A. sololana) was given a value of 1, and all other 295 

species were assigned values as proportions of this value, with the lowest quality weight being 296 

0.078 (A. asperula) (Table 2). Five species with no information on larval weight were weighted 297 

by the average host quality weight of 0.55. Weighted layers were then summarized into a single 298 

predictive layer representing the hostplant probability of distribution and species richness 299 

weighted by hostplant quality (Fig 1, C and D).  The values assigned to grid cells of the overall 300 

hostplant quality layer were calculated as follow: 301 

P𝑞(𝐴𝑠𝑐) = [p(𝐴𝑠𝑐1) ∗ (𝑞1)] + [p(𝐴𝑠𝑐2) ∗ (𝑞2)] + ⋯ [p(𝐴𝑠𝑐24) ∗ (𝑞24) 302 

Where ‘Pq’ represents the summarized genus-level probability of distribution weighted 303 

by hostplant quality, ‘p’ the probability of distribution of individual Asclepias species numbered 304 

from 1 to 24, and ‘q’ the host-quality weight estimated for each Asclepias species. This approach 305 

is parallel to that used for the Asclepias distribution layer (above), capturing the effects of both 306 
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the mean probability of distribution and species richness for all co-existing Asclepias species, but 307 

now weighting each species according to its relative hostplant quality. 308 

Lastly, we used the summarized Asclepias layers as predictors to generate and compared 309 

three models: a null model (climate envelope model) using only environmental factors as 310 

predictors; a model using environmental factors and hostplant distribution represented by the 311 

summarized Asclepias distribution (hostplant-presence model); and a second model using 312 

environmental factors and Asclepias distribution weighted by host quality (hostplant-quality 313 

model).  314 

To identify the variables contributing more to each model, in addition to the “Analysis of 315 

Variable Contribution” reported by MaxEnt, we performed a jackknife test of variable 316 

importance. In a jackknife test, models are re-run using a single variable in isolation to identify 317 

the variables that yield the highest model gain when used in isolation. This test also identifies 318 

those variables that, when removed, decrease the model gain the most by re-running the models 319 

excluding one variable at a time.  320 

Since there is currently no consensus regarding a single most appropriate metric to 321 

evaluate SDMs performance (Peterson et al. 2008, 2011, Warren and Seifert 2011), we evaluated 322 

model performance based on several criteria. The area-under-the-curve (AUC) statistic provides 323 

an estimate for the accuracy of predictions, with 0 indicating no predictive accuracy and 1 324 

perfect predictive accuracy. An AUC score of 0.5 indicates that the model performs no better 325 

than random. We also estimated performance metrics based on the Akaike Information Criterion 326 

corrected for small sample sizes (AICc). The AICc metric have the advantage of balancing both, 327 

model goodness-of-fit and model complexity. Furthermore, compared to AUC and BIC 328 

(Bayesian-Information-Criterion) based methods, AICc evaluation methods have been shown to 329 
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favor models that more accurately estimate the relative importance of variables and habitat 330 

suitability, both in the training region and when models are extrapolated to a different time 331 

period (Warren and Seifert 2011).  We calculated the AICc, delta AICc (∆AICc), and Akaike 332 

weights (wAICc) for each model using the ENMeval package (Muscarella et al. 2014). The 333 

model with the lowest AICc value is considered the best model out of various candidate of 334 

models. The ∆AICc is the difference between the best AICc and other candidate models. The 335 

best candidate model has a ∆AICc of 0 and models with ∆AICc lower than 2 are generally 336 

considered to have substantial support and should not be discarded (Muscarella et al. 2014). 337 

Akaike weights (wAICc) represents the likelihood of a model given the data. The weights are 338 

normalized to sum 1 and are interpreted as probabilities (Burnham and Anderson 2004).   339 

Finally, we estimated suitable breeding area for monarchs and for Asclepias distribution 340 

from polygons drawn around areas with grid cell values higher than 0.5 from the output logistic 341 

layers projected from the final models.  342 

Results  343 

Asclepias models and estimated distribution 344 

All Asclepias final models had AUC scores higher than 0.8, except for A. speciosa model 345 

which yielded an AUC score of 0.74, indicating that these models are a good fit for the 346 

observations (Table 2). The current estimated distributional ranges (Appendix S1, left panels.) 347 

were consistent with Asclepias spp. distributions published by the Biota of North America 348 

Program (BONAP) (Kartesz 2015).  349 

Overall, within the study area, half of the Asclepias species are projected to expand their 350 

ranges by a mean of 88% (i.e. nearly doubling their distributions) whereas the other half will 351 

contract their ranges by a mean of 42% (i.e. more than halving their distributions) (Table 2 and 352 
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Appendix S1). Of the 24 Asclepias species, 19 species are predicted to shift their distributions to 353 

higher latitudes (79%) both along the Pacific coast and inland, with 11 of these also expanding 354 

their distributions. Of the 4 species not shifting their distributions northward, 3 will contract their 355 

ranges.  356 

Monarch models and estimated distribution 357 

 The AUC scores did not differ considerably among the three models, but AUC values 358 

were slightly higher for the hostplant-presence model (0.803) compared to both the hostplant-359 

quality (0.800) and climate envelope model (0.799). However, the AIC-based metrics preferred 360 

the hostplant-presence model (∆AICc=0, wAICc=1.00) over the hostplant-quality 361 

(∆AICc=123.50, wAICc=1.515-27) and climate envelope models (∆AICc=168.52, wAICc=2.545-362 

37). The ∆AICc for the competing climate envelope and hostplant quality model was much larger 363 

than 2 indicating that these two models had limited support. Likewise, the wAICc of the 364 

hostplant model was nearly 1 suggesting that the likelihood of this model being the best-fitted 365 

model was high (Table 3).  366 

The environmental variables that contributed the most to the climate envelope model 367 

were the “minimum temperature of the coldest month” (43.4% contribution; (Fick and Hijmans 368 

2017) and “precipitation seasonality” (25.2% contribution, Fig. 3 A ; (Fick and Hijmans 2017)). 369 

For both hostplant-presence and hostplant quality models, the hostplants variable was the second 370 

most important factor for predicting the western monarch breeding range. The hostplants 371 

variable contributed most to the hostplant distribution model (22.5%), after the “minimum 372 

temperature of the coldest month” (33.1%) (Fig. 3 B and C). Although the hostplant quality 373 

model did not produce the best-fit model, weighting the hostplant layer by host-quality increased 374 

the contribution of the hostplant variable by 3% and decreased “minimum temperature of the 375 
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coldest month” variable contribution by 7% compared to the hostplant distribution model (Fig 3, 376 

B and C). Both hostplants layers (weighted by host-quality and unweighted) exhibited the 377 

highest gain (>0.40) in the jackknife test for variable importance in both hostplant models 378 

(Appendix S2). This indicates that hostplants provided the most useful information for predicting 379 

where monarch breeding grounds occur. For all three models the “average precipitation of the 380 

warmest quarter” (Fick and Hijmans 2017) decreased model gain the most when omitted 381 

suggesting that this environmental variable has the most information that is not present in other 382 

variables (Appendix S2). 383 

The process of weighting the Asclepias distribution layer by quality did not dramatically 384 

altered the hostplant layer, and mainly rescaled the values of the layer (Fig 1, lower panels). This 385 

was probably due to large range overlaps among Asclepias species as it can be observed by 386 

overlaying the polygons corresponding to Asclepias suitable habitat (Appendix S3). Thus, a grid 387 

cell occupied by multiple Asclepias with variable host-quality may have the same value as a grid 388 

cell occupied by a few high-quality Asclepias species. The only area where weighting hostplants 389 

by quality appeared to change the grid cell values of the hostplant quality layer was the 390 

southwest region of Arizona and Utah which appeared to be occupied mostly by lower quality 391 

species, predominantly by A. asperula, our lowest quality hostplant (Fig 1, lower panels and 392 

Table 2).  393 

The climate envelope model estimated more restricted ranges for the contemporary and 394 

future monarch distributions. Both hostplants models estimated nearly identical contemporary 395 

distributions for monarchs that were ~18% larger than the estimated by the climate envelope 396 

model (Fig 2, left panels and Table 2). Although all three models predicted future range 397 

expansions that nearly doubled their corresponding contemporary estimates, the hostplant-398 
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presence and hostplant-quality models projected an increased in habitat suitability 14 and 19% 399 

larger than that of the climate envelope model, respectively (Fig 2, right panels and Table 2). 400 

This difference was primarily due to the fact that the climate envelope model predicted range 401 

contractions inland whereas both hostplants models predicted range expansions in this region. 402 

Finally, we detected some slight differences in the areas where hostplants models predicted that 403 

such range expansions will occur. For example, the hostplant quality model predicted a smaller 404 

range for monarchs in western New Mexico and a larger range in central Nevada, Utah and 405 

western Colorado. (Fig 2, right panels). 406 

Discussion 407 

Predicting herbivore response to climate change requires incorporating future hostplant 408 

availability, but hostplant quality may play a secondary role. While climate envelope projected a 409 

more restrictive current monarch distributions than hostplant models, model comparisons 410 

suggested that hostplant information provided superior predictive power. Furthermore, the three 411 

models differed in their future monarch projections under climate change with models including 412 

hostplant information predicting an increased in habitat suitability 14-19% larger than that of the 413 

climate envelope model. Despite the importance of hostplant information, models including 414 

hostplant quality did not prove superior to the model based on hostplant presence. Our study 415 

suggests that information on critical biotic interactions is essential to predict future species 416 

distributions under climate change.  417 

The hostplant model was preferred by AIC-based metrics over a traditional climate 418 

envelope model and hostplant quality model. Hostplant availability, together with the minimum 419 

temperature of the coldest month, contributed over fifty percent to the hostplant model and over 420 

forty percent to the model gain when used in isolation. This suggests that the western monarch 421 
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breeding ranges are co-limited by both cold temperatures and hostplant availability. These 422 

findings are consistent with past work by Lemoine (Lemoine 2015) who found that models 423 

incorporating hostplants and environmental factors most accurately estimated the eastern 424 

monarch distribution. Additionally, our results are also supported by previous studies from 425 

Steven and Frey (Stevens and Frey 2010) and Dilts et al. (Dilts et al. n.d.) who identified 426 

Asclepias availability as well as climatic variables, including minimum temperature of the 427 

coldest month, as key for structuring the western monarch breeding grounds. These findings add 428 

to the increasing body of evidence suggesting that biotic interactions may govern species 429 

distributions as strongly as environmental conditions (Dilts et al. n.d., Araújo and Luoto 2007, 430 

Preston et al. 2008, Schweiger et al. 2008, de Araújo et al. 2014, Fraterrigo et al. 2014, Lemoine 431 

2015, da Cunha et al. 2018).   432 

Hostplant quality varied ten-fold among Milkweed species but did not have a large effect 433 

on the overall estimates for the contemporary distribution of monarchs. We speculate this result 434 

may be due to the fact that our genus-level distribution layer also reflected species richness. 435 

Asclepias ranges exhibit substantial range overlaps in the American West (Appendix S3), thus, 436 

adult monarchs may preferentially oviposit on higher quality milkweeds in areas with mixed 437 

quality resources (Gripenberg et al. 2010), diminishing the influence of low-quality species. 438 

Hostplants model projected similar monarch distributions under a climate change scenario; 439 

however, their projections differed in some regions of the inland states of Utah, Nevada, New 440 

Mexico and Colorado. This implies that the importance of hostplant quality in determining 441 

herbivore distributions should not be discarded altogether as it may play a significant role in 442 

instances where herbivores rely on hostplant with less geographic overlap, and therefore, fewer 443 

food choices.  444 
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Our results demonstrate how climate envelope models that accurately represent current 445 

distributions may provide poor prediction for the future. This can occur when critical 446 

distributional drivers (e.g. hostplant distributions) correlate strongly with environmental factors 447 

under contemporary conditions (Wharton and Kriticos 2004) but not under climate change. 448 

These mechanistically-flawed models thus provide inaccurate predictions (Brewer and Gaston 449 

2003, Soberon and Nakamura 2009). In our study, the climate envelope model– although more 450 

restricted– estimated very similar monarch contemporary ranges than hostplant models (Fig 2, 451 

left panels) but differed in their future projections (Fig 2, right panels). Specifically, the two 452 

hostplant models predicted larger range expansions of monarchs than the climate envelope model 453 

inland. This suggests that the climate envelope model over predicted monarch climatic 454 

limitations due to contemporary correlations between climatic factors and milkweed 455 

distributions, but that this correlation may not persist in the future. Accordingly, models based 456 

solely on climatic factors may be adequate for estimating contemporary species distributions but 457 

nevertheless produce misleading projections under novel circumstances where abiotic conditions 458 

and biotic interactions do not respond in tandem to climate change.  459 

The importance of incorporating the climatic response of hostplants into models is 460 

underscore by the fact that only models including hostplant information predicted range 461 

expansion inland while the climate-envelope model did not (Fig 2, right panels). The predicted 462 

inland range expansions of the western monarch breeding range appeared to be driven by higher 463 

hostplant availability in the regions of central Nevada, Utah and Colorado under future climatic 464 

conditions, which was identified by our models as one of the most important factors delimiting 465 

monarch distributions. Our results are congruent with previous findings by Lemoine (Lemoine 466 
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2015) whose study predicted northern range expansion of the eastern monarch population 467 

resulting from projected Asclepias range expansions under future climate change scenarios.  468 

Lastly, it is worth noting that our model projections do not consider factors that were 469 

beyond the scope of our study but that may significantly impact monarch future distributions. 470 

For example, pesticide and land-use practices, specially overwintering habitat loss to housing 471 

development, is an existing threat to monarchs habitat (Pelton et al. 2019) that is likely to persist 472 

in the upcoming years. Furthermore, dams and human-facilitated invasions, may alter riparian 473 

areas potentially disrupting monarch migration patterns and monarch breeding grounds. Autumn 474 

migrants often follow riparian corridors (Dingle et al. 2005) and riparian vegetation has been 475 

associated with habitat suitability for some western Milkweed species (A. subulata, and A. 476 

asperula) (Dilts et al. n.d.).  477 

Conclusions  478 

In summary, this study shows that accounting for biotic interactions– and their 479 

distributional response to climate change– is required to predict the future distributions of 480 

species obligately dependent on such interactions. A climate-envelope approach may be effective 481 

for estimating contemporary species distributions but may produce misleading future projections 482 

as climate change may uncouple suitable climate from essential biotic interactions. Hostplant 483 

quality did not play a significant role in delimiting monarch distribution in the American West 484 

where Asclepias ranges overlapped substantially. However, there were slight differences in some 485 

regions suggesting that host-quality may still be important for predicting distributions of species 486 

dependent on a fewer number of resources. These results are relevant, not only for most 487 

herbivorous insects which are highly host-specific, but also for all organisms incurring in 488 

obligate biotic interactions (e.g. parasitic or mutualistic interactions). Ultimately, accurate 489 
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projections for the future will require better incorporating inter-specific dynamics into our 490 

models.  491 
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Tables  714 

 715 

Table 1. Selected environmental variables 716 

Worldclim Code Environmental Variable* 

Bio1 Annual Mean Temperature 

Bio5 Max Temperature of Warmest Month 

Bio6 Minimum Temperature of Coldest Month 

Bio7 Temperature Annual Range 

Bio8 Mean Temperature of Wettest Quarter 

Bio9 Mean Temperature of Driest Quarter 

Bio12 Annual Precipitation 

Bio15 Precipitation Seasonality 

Bio17 Precipitation of Driest Quarter 

Bio18 Precipitation of Warmest Quarter 

Bio19 Precipitation of Coldest Quarter 

*Selected environmental variables with Pearson correlation 

coefficient of 0.85 or lower. 
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Table 2. Milkweeds models summary and estimated habitat suitability  733 

 734 
Asclepias species Spatial 

filtering 

(Km2) 

Records AUC 

best 

model 

Estimated Habitat 

(Km2) 

Host 

quality 

weight1 Total Filtered Current Projected 

A. albicans 1 434 209 0.977  37,937    28,444 0.554 

A. asperula* 30 586 244 0.815    614,502  678,420 0.078 

A. californica* 1 607 277 0.945      84,794  124,187 0.306 

A. cordifolia* 30 683 173 0.848    230,690  215,368 0.621 

A. cryptoceras 30 210 128 0.839    416,872  246,545 0.218 

A. engelmanniana* 30 90 70 0.915 277,368  230,811 0.502 

A. eriocarpa 30 878 145 0.888 147,561  235,229 0.541 

A. erosa* 30 524 145 0.885    285,506  466,099 0.671 

A. fascicularis* 30 2259 399 0.859 306,140  512,078 0.545 

A. halli 1 48 48 0.915 197,755         2,896 0.898 

A. incarnata* 1 144 94 0.805    113,426       64,869 0.823 

A. labriformis 1 68 57 0.945     22,126      4,863 0.554 

A. latifolia* 30 162 102 0.858 415,185   412,476 0.394 

A. linaria* 1 127 75 0.962 376,557     382,289 0.427 

A. macrosperma 1 71 62 0.965 624,888  124,259 0.554 

A. macrotis* 1 46 44 0.925 196,251     151,159 0.554 

A. nycatginifolia* 1 154 100 0.958 112,228     233,621 0.554 

A. pumila* 1 89 73 0.985 69,502         5,581 0.660 

A. soloanoana* 1 132 68 0.995 17,704    65,588 1.00 

A. speciosa 30 1359 478 0.746 958,479      937,320 0.768 

A. subulata* 30 627 114 0.927 114,507  379,000 0.606 

A. subverticillata* 30 545 286 0.809 594,885   674,988 0.505 

A. tuberosa* 30 184 88 0.831 305,144   470,641 0.681 

A. vestita* 1 159 70 0.983 34,449     80,731 0.286 

*Species marked with an asterisk are projected to shift their distribution to higher latitudes (S1 735 

File.) 736 
1Hostplant quality weight determined by the average weight of monarch larvae reared on 24 737 

Asclepias species within a 5-day period. Bold numbers indicate the average weight assigned to 738 

species with missing hostplant quality information. 739 
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Table. 3 Monarch model performance comparison and estimated habitat suitability 749 

Model  n1 AUC AICc ∆AICc wAICc 

Estimated habitat (km2) * 

Current Projected 

(2070) 

Climate envelope 60 0.799 25,694.99 168.52 2.545-37 214,245 409,091 

Hostplant-presence 61 0.803 25,526.46 0.000 1.00 252,464 466,306 

Hostplant-quality 61 0.800 25,649.97 123.50 1.515-27 252,465 486,200 

*Estimated habitat was calculated by summarizing areas with probability of distribution higher 750 

than 0.5 from the logistic output layers produced by each model. 1 n gives the number of 751 

parameters of each model.  752 
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Figures 776 

 777 

Figure 1.  Contemporary and projected genus-level milkweeds distribution 778 

 779 

Fig 1. Genus-level Asclepias predictor and projection layers used in the monarch hostplant 780 

distribution and quality models. The unweighted layers reflect the summed probability of 781 

occurrence of all Asclepias species, thus reflecting mean probability of occurrence and species 782 

richness, while the weighted layer additionally weighs each species by hostplant quality. ‘Green’ 783 

indicate high probability of distribution, species richness and/or host-quality, and ‘white’ low 784 

probability of distribution, species richness and/or low quality. 785 
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Figure 2. Monarch contemporary and projected future breeding ranges 790 

  791 
Fig 2. Left panels (A, C, E) indicate the current probability of distribution of the monarch 792 

breeding grounds estimated by the three models, with ‘light yellow’ representing low probability 793 

and ‘dark blue’ high probability. Right panels (B, D, F) indicate the projected probability of 794 
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distribution of the monarch breeding grounds for the year 2070 estimated by the three models. 795 

Suitable habitat for monarch breeding is delineated in black and represent areas with a 796 

probability of distribution greater than 0.5. 797 
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Figure 3. Analysis of variable importance 826 
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Fig. 3. Percent contribution that each variable contributes to the models in decreasing order from 855 

left to right.  856 
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Appendices 866 

 867 

Appendix S1. Milkweeds species contemporary and projected distributions. Estimated 868 

contemporary distribution of 24 species of Asclepias (left panels) and projections under a climate 869 

change scenario for 2070 (right panels), with ‘green’ indicating high probability of distribution 870 

and ‘white’ low probability. Suitable habitat for each Asclepias spp. is delineated in black and 871 

represent areas with a probability of distribution greater than 0.5. 872 

Appendix S2. Jackknife Test of Variable Importance. Jackknife test of variable importance. 873 

Blue bars indicate model gain when each variable is used in isolation, turquoise bars represent 874 

model gain when a single variable is excluded, and red bars represent model gain when all 875 

variables are included.  876 

Appendix S3. Milkweeds range overlaps in the Western United States. Each overlaid layer 877 

represents the range of individual Asclepias species estimated by drawing a polygon around 878 

areas with areas with a probability of distribution greater than 0.5. Regions in white represent 879 

areas with no Milkweeds, ‘light green’ represent low range overlap, and ‘dark green’ high range 880 

overlap.   881 

Metadata S1. R code for monarch and milkweed species distributions modeling.  882 

Data S1. Milkweed species records retrieved from various open source databases within the 883 

study region.  884 

Data S2. Monarch larval records retrieved from open source databases and the MLMP 885 

(Monarch Larvae Monitoring Project) within the study region. 886 

 887 

 888 

 889 

 890 

 891 

 892 

 893 

 894 

 895 

 896 

 897 

 898 

 899 

 900 

 901 

 902 

 903 

 904 

 905 

 906 

 907 

 908 

 909 

 910 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 4, 2020. ; https://doi.org/10.1101/2020.12.03.410225doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.03.410225

