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Abstract 16 

In recent years, multivariate pattern analysis (MVPA) has been hugely beneficial for cognitive 17 
neuroscience by making new experiment designs possible and by increasing the inferential power of 18 
functional magnetic resonance imaging (fMRI), electroencephalography (EEG), and other 19 
neuroimaging methodologies. In a similar time frame, “deep learning” (a term for the use of artificial 20 
neural networks with convolutional, recurrent, or similarly sophisticated architectures) has produced 21 
a parallel revolution in the field of machine learning and has been employed across a wide variety of 22 
applications. Traditional MVPA also uses a form of machine learning, but most commonly with 23 
much simpler techniques based on linear calculations; a number of studies have applied deep learning 24 
techniques to neuroimaging data, but we believe that those have barely scratched the surface of the 25 
potential deep learning holds for the field. In this paper, we provide a brief introduction to deep 26 
learning for those new to the technique, explore the logistical pros and cons of using deep learning to 27 
analyze neuroimaging data – which we term “deep MVPA,” or dMVPA – and introduce a new 28 
software toolbox (the “Deep Learning In Neuroimaging: Exploration, Analysis, Tools, and 29 
Education” package, DeLINEATE for short) intended to facilitate dMVPA for neuroscientists (and 30 
indeed, scientists more broadly) everywhere.  31 
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1 Introduction 35 

Although the roots of cognitive neuroscience date to the 1920s (the advent of 36 
electroencephalography, EEG; Berger, 1929), the modern neuroimaging era began in the mid-1990s, 37 
with the development of functional magnetic resonance imaging (fMRI) methodology and the 38 
increasingly widespread availability of (affordable) desktop computing workstations powerful 39 
enough to process fMRI datasets. In those days, data analysis was primarily limited to univariate 40 
investigations such as event-related potentials (ERPs) in EEG and univariate general linear model 41 
(GLM) analyses aimed at detecting “blobs” of activation with fMRI (as well as differences in 42 
activity, e.g. between experimental conditions, within such blobs)1. However, the march of progress 43 
towards ever-more sophisticated models of brain function and the testing of ever-more refined 44 
hypotheses has created a demand for corresponding improvements in analysis techniques. 45 

Thus, somewhat more recently (beginning in the early-to-mid-2000s), a second age in neuroimaging 46 
analysis arose with the advent of multivariate pattern analysis (MVPA; Haxby et al., 2001; Haxby et 47 
al., 2014). Rather than focusing on whether a certain cognitive event elicits activity in a particular 48 
cluster of fMRI voxels (or a voltage peak at a particular temporal latency with ERP), MVPA is 49 
instead concerned with how a neural pattern or multivariate “brain state” comprising multiple voxels 50 
(fMRI) or electrode/timepoint combinations (EEG) might collectively correspond to a certain 51 
cognitive event or state. Numerous MVPA variations exist, including those based on correlation 52 
(either Pearson or rank-based; Haxby et al., 2001), support vector machines (SVMs; De Martino et 53 
al., 2008; Dosenbach et al., 2010), logistic regression (Akama et al., 2012), sparse multinomial 54 
logistic regression (SMLR; Kohler et al., 2013; Krishnapuram et al., 2005), naïve Bayes classifiers 55 
(Kassam et al., 2013), and more. Many of these techniques concern classification of brain patterns 56 
into discrete cognitive states, whereas others examine different aspects of the data (e.g., overall 57 
similarity between brain patterns; Xue et al., 2010; Lim et al., 2019) without explicit categorization, 58 
but all of them represent increases in mathematical and conceptual sophistication over univariate 59 
techniques. Importantly, when compared to earlier univariate techniques, MVPA has enabled us to 60 
examine in a much more nuanced fashion how brain activity patterns encode mental states. 61 

Although traditional MVPA techniques are substantially more advanced than univariate techniques, 62 
they are nonetheless still fairly simple, both mathematically and conceptually. Traditional MVPA is a 63 
form of machine learning (ML), but it is among the simplest forms; most MVPA approaches use 64 
straightforward linear mathematical models. This comparative simplicity certainly confers 65 
advantages – for example, faster computation times than more complex techniques (with some 66 
caveats2), and a generally lower risk of “overfitting”3. However, simpler mathematical formulations 67 

 
1 Although most of our discussion focuses on fMRI and EEG, as those are the most common techniques in our field of 
cognitive neuroscience, most points should translate well to related technologies like structural MRI, 
magnetoencephalography (MEG), or electrocorticography (ECoG), and even to less closely related methods such as 
extracellular recordings (e.g., from rodents or nonhuman primates). 

2 For example, SVMs may take inordinately long to converge on extremely high-dimensional datasets that are handled 
more easily by deep neural networks. As discussed later, deep networks also have better support for GPU-based 
parallelization than simpler linear techniques, which can offset their computational costs. 

3 The creation of a predictive model that is highly customized to the data used to train the model, but generalizes poorly 
to new datasets that do not perfectly match the idiosyncrasies of the training data; a significant concern in ML. A good 
analogy is a bespoke garment perfectly tailored to the contours of a specific individual, which would fit him/her perfectly 
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are necessarily limited in what we call “informational resolution” – the specificity of the neural 68 
patterns and cognitive states that they are able to capture. 69 

How much informational resolution is required to glean as much about brain function as is possible 70 
using current neuroimaging technology? The answer is hard to pin down, partly because it is difficult 71 
to establish firm estimates of the “noise ceiling”4 for these techniques. As neuroimagers, we often 72 
complain that our techniques are “noisy,” but with proper usage, the signal-to-noise ratios of EEG 73 
and fMRI are really rather high, when considering only measurement noise from the instruments 74 
themselves and the surrounding physical environment. Of significantly greater concern are “noise” 75 
sources such as subject head/body motion, physiological artifacts (cardiac, respiratory, muscular, 76 
etc.), and cognitive artifacts (distraction, poor understanding of instructions, falling asleep). Noise 77 
ceilings for certain analytic techniques and datasets can be estimated (Kay et al., 2008; Nili et al., 78 
2014), but ultimately they will depend on which data components are considered “noise”; aside from 79 
the noise that arises from the physics of the measurement itself, other biological and subject-driven 80 
artifacts have some hope of being detected, modeled, and/or removed. And, much like the signal 81 
components we actually care about (i.e., those related to our experimental questions), our ability to 82 
detect and account for noise depends largely on the sophistication of our analytic techniques. 83 

What we do know is that the brain is a highly complex, highly nonlinear system (Koch & Laurent, 84 
1999; Sporns et al., 2000; Buzsaki & Mizuseki, 2014), and the addition of noise sources that are also 85 
complex and nonlinear makes brain data no easier to analyze and interpret. Although the limits of the 86 
usefulness of traditional MVPA, with its relatively low informational resolution, have not yet been 87 
reached, those limits do loom on the horizon. As the size of neuroscience data continues to grow5, 88 
traditional MVPA’s limitations become ever more apparent. It is a statistical truism that more 89 
complex analytic models, with more parameters to fit, allow us to account for a greater proportion of 90 
a dataset’s variance, but they also require larger input data to estimate their parameters reliably. Yet 91 
the sizes of many contemporary datasets are now such that they can potentially accommodate 92 
significantly more sophisticated statistical models than traditional MVPA, with greater power to 93 
identify, extract, and distinguish noise sources and signals of interest. Thus, we believe it is time for 94 
cognitive neuroscience and related fields to place increased emphasis on developing, exploring, and 95 
using more sophisticated techniques, and on producing tools that can be used to perform that 96 
exploration more effectively and efficiently. 97 

1.1 The case for deep learning 98 

There are numerous potential analytic methods of greater complexity and sophistication than 99 
traditional MVPA. One class of ML techniques that has been gaining popularity, and the one we 100 
endorse in this paper, is “deep learning.” Deep learning, briefly defined, refers to the use of artificial 101 

 
but look terrible on most others. Conversely, an off-the-rack outfit with a simpler design would fit many individuals of 
roughly similar proportions reasonably well. 

4 Informally defined, the best we might be expected to do in using statistics to explain variance in the data, accounting for 
the fact that a certain amount of unexplainable variance, aka noise, will always exist. 

5 E.g., from better spatiotemporal resolution due to technological improvements; from increasingly large sample sizes, 
particularly from big-data initiatives such as the Human Connectome Project (Van Essen et al., 2013) and OpenNeuro 
(formerly OpenfMRI; Poldrack et al., 2013); and simply from the ongoing accumulation of data stockpiles from many 
years’ worth of research studies. 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 4, 2020. ; https://doi.org/10.1101/2020.12.03.410910doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.03.410910
http://creativecommons.org/licenses/by-nc/4.0/


  Deep learning and MVPA 

 

4 

neural networks (ANNs), typically with recurrent and/or convolutional architectures, that are more 102 
complex, flexible, and powerful than both earlier generations of ANN architectures and the 103 
techniques used for traditional MVPA. In the last few years, such deep neural networks (DNNs) have 104 
been used increasingly heavily in a number of fields that employ ML for all kinds of purposes. Such 105 
usage includes an ever-growing collection of studies in human neuroscience and related disciplines, 106 
although a relatively small proportion have been devoted to neuroimaging analysis, and fewer still 107 
devoted to decoding cognitive states from functional measurements of brain activity, which is a topic 108 
of great interest to many. We believe the studies so far represent only the tip of the proverbial iceberg 109 
in terms of what is achievable by using DNNs to analyze neuroscience datasets. In fact, we believe 110 
deep learning has the potential to perform most of the tasks for which traditional MVPA is typically 111 
employed, but with greater speed, flexibility, and power, and thus we advocate for the more 112 
widespread use of what we call “deep MVPA,” or dMVPA for short. 113 

To achieve more widespread adoption of deep learning in the neurosciences, notable challenges to 114 
confront include 1) a relatively low level of knowledge/awareness of these techniques, and 2) 115 
insufficient availability of software tools to make dMVPA as approachable as traditional MVPA. In 116 
this paper we address the first challenge by providing a brief review of deep learning techniques, 117 
including how they can be used in neuroscience investigations, and the pros and cons of dMVPA 118 
versus traditional MVPA. We address the second challenge by introducing a new Python-based 119 
software toolbox (the “Deep Learning In Neuroimaging: Exploration, Analysis, Tools, and 120 
Education” package; DeLINEATE for short) that builds upon previous DNN and MVPA tools and 121 
aims to make dMVPA more approachable and efficient for other researchers. 122 

2 dMVPA: A tutorial 123 

2.1 A brief history of neural networks 124 

The techniques we now collectively call “deep learning” are generally extensions of older “shallow” 125 
ANNs, which are significantly less complex and powerful than DNNs but not much different in their 126 
basic principles. The concept behind all ANNs originates from a highly abstracted view of non-127 
artificial neural networks, i.e., the biological nervous system (Figure 1A). In this framework, most 128 
implementation details are stripped away, and what remains is the basic idea of a network of simple 129 
computational units (“neurons”) that receive input (which can typically be excitatory or inhibitory), 130 
perform an operation on their inputs (typically some variation on summation), and produce an output 131 
(typically a single value analogous to an action potential or a firing rate), which might then serve as 132 
input to one or more downstream neurons6. The original and simplest case is the McCulloch-Pitts 133 
neuron (McCulloch & Pitts, 1943; Figure 1B), a processing unit whose input and output values are 134 
exclusively binary (0 or 1). The McCulloch-Pitts neuron sums its inputs, compares the sum to some 135 
threshold value, and outputs a 1 (“action potential”) or 0 according to whether the sum exceeds the 136 
threshold. Although a pioneering idea and an interesting (if highly simplified) early model of neural 137 

 
6 It should be noted up front that the artificial “neurons” used in ML applications bear about as much resemblance to real 
neurons as a paper airplane bears to a commercial airliner. In both cases, the barest core principles are similar between the 
pared-down model and the real thing, but little else. However, despite the low resemblance, ANNs can still be extremely 
useful tools for ML and data processing. Readers are nonetheless cautioned to be as circumspect about over-aggressive 
comparisons between artificial and real neural networks as they would about buying transatlantic tickets on paper 
airplanes. 
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information processing, McCulloch-Pitts neurons can only implement a limited set of functions and 138 
are thus not considered very useful for modern ML applications. 139 

 

 

Figure 1. Comparison of biological and 
artificial neural models.  

(A) A simplified “textbook” model of a biological 
neuron. Inputs come in via the dendrites in the 
form of action potentials (or the lack thereof). The 
inputs are summed in the cell body (soma) and, if 
the threshold voltage is reached, the cell produces 
an action potential as output that is delivered via 
the cell's axon. (B) The original and simplest 
version of an artificial neuron model, the 
McCulloch-Pitts neuron. Similar to the biological 
neuron, inputs (xi) and outputs are binary (although 
we now know this to be an oversimplified view of 
biological neurons). Inputs are summed and the 
result passed to a thresholding function; if the 
threshold is met, an output of 1 is produced, and 
otherwise the output is 0. (C) A perceptron, a more 
sophisticated revision of the McCulloch-Pitts 
neuron that has an important place in modern 
artificial neural networks. The concept of trainable 
weights (wi; mimicking biological potentiation at 
synapses) is introduced, and inputs are now 
multiplied by their corresponding weight before 
summation. In addition, in contemporary 
perceptron models, the threshold function can be 
replaced by any arbitrary function, called the 
“activation function.” Popular activation functions 
like the hyperbolic tangent may still act largely like 
thresholding functions, but with the ability to 
deliver graded rather than strictly binary output 
values. 

 

 

A few years later, though, ANNs took a significant step forward when Rosenblatt (1958) 140 
incorporated Hebb’s theoretical views on the strengthening and weakening of synaptic connections 141 
(Hebb, 1949) into a McCulloch-Pitts-like unit that came to be called the perceptron7. In its simplest 142 
form, a perceptron (Figure 1C) is largely identical to a McCulloch-Pitts neuron with one critical 143 

 
7 As originally conceived, “perceptron” referred to a more complex network of units that could be implemented in a 
physical machine to produce artificial vision, hence the name. However, the most salient feature that researchers latched 
onto was the structure of the neural units, and via synecdoche “perceptron” came to be the name of such a unit, so there is 
some degree of fuzziness around nomenclature and definitions. Here, we use the contemporary sense of “perceptron” to 
refer to the architecture of an artificial neural unit, rather than the original plan for the physical perceptron machine. 
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addition: Each input is now associated with a “synaptic weight” (often denoted w0, w1, etc.) that 144 
determines whether it is excitatory or inhibitory and how strongly it influences the output. 145 
Summation is then performed on the inputs after they have been multiplied by their respective 146 
weights. Statistically inclined readers may recognize this as not-dissimilar-to a regression model, 147 
particularly logistic regression; to conceptually convert between a multiple regression model and a 148 
perceptron, simply rename the weights from the βi typically used in regression equations to wi and 149 
pass the regression output through a thresholding function, logistic function (to essentially replicate 150 
logistic regression), or other function as desired8. This function is known as the artificial neuron’s 151 
activation function; activation functions are a key feature of contemporary ANN designs, and there 152 
are many options to choose from. 153 

In most important ways, the perceptron-like artificial neural units used in some DNNs today are not 154 
substantially different than the classical perceptrons discussed by Minsky and Papert (1969) in their 155 
seminal book some 50 years ago. Yet the original perceptron architectures retained many of the 156 
McCulloch-Pitts neurons’ limitations and still had significant constraints on the classes of problems 157 
they could solve. The key developments that distinguish the powerful deep learning techniques of 158 
today from the toy models of the past are 1) improved methods for establishing what the proper 159 
synaptic weights should be for a given dataset/problem, i.e., training the neural network, and 2) new 160 
and ultimately better ways of digitally connecting groups of artificial neurons together into more 161 
complex structures, i.e., improved ANN architectures9. 162 

2.2 Training algorithms and neural network architectures 163 

The earliest ANN architectures were very simple indeed; either a single artificial neuron or, in the 164 
next major architectural advance after that, a layer of such units. In this latter (still very simple) 165 
architecture, the units are fully connected, meaning that each unit receives a copy of each possible 166 
input value (see Figure 2A). Note that in this figure, as in many neural network diagrams, inputs and 167 
outputs are represented as “layers” of a sort, but there is only one true layer of computational units10. 168 
If the ANN is meant to calculate a classification problem (a common application), the outputs are 169 
typically assumed to each correspond to one of the possible classes, and are interpreted in a winner-170 
take-all fashion (i.e., for a given set of input data, whichever output value is highest is interpreted as 171 
the network’s prediction of the class that the input data belong to). Although the transition from 172 
single-neuron to single-layer architectures laid a critical foundation for later work, single layers of 173 
perceptrons were soon shown not to be terribly useful as artificial intelligence agents, no matter what 174 
their synaptic weights were or how those weights were determined. As Minsky and Papert 175 
demonstrated in Perceptrons (1969), it is mathematically impossible for any single-layer perceptron 176 

 
8 The concept of the perceptron is also somewhat looser than the McCulloch-Pitts neuron regarding whether inputs and 
outputs are constrained to be binary or can be continuously valued, and regarding what kind of thresholding or other 
function the summed inputs are passed through in order to create the output. 

9 Not to mention the ~billion-fold increase in computational power (IBM 704 at 12,000 flops versus a recent desktop 
GPU at ~11 teraflops, for an NVIDIA GeForce GTX 1080 Ti) that helps to make such sophisticated architectures viable. 

10 In a biological neural network, one might relate these to a layer of dendrites, a layer of cell bodies, and a layer of 
axons, but all of those together would comprise a single layer of neurons. 
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network – no matter how many units are in it – to perform certain fundamental computational 177 
operations11. 178 

This revelation may not seem surprising in retrospect; after all, a single layer of neurons, all receiving 179 
the same inputs, is not a very viable architecture for a biological neural network either. Still, it was 180 
enough to significantly dampen enthusiasm for ANN research for over a decade. Although adding 181 
another layer of computational units (known as a hidden layer) would allow the network to maintain 182 
an intermediate representation of the input and enable more complex operations12, the algorithms 183 
available for training single-layer perceptron networks could not be readily extended to multi-layer 184 
architectures. In the 1980s, however, interest was reignited with the popular (re-)discovery of the 185 
backpropagation algorithm (or simply backprop, to its friends). This algorithm was known and even 186 
applied to ANNs previously (Linnainmaa, 1970; Werbos, 1974), but it did not reach mainstream 187 
awareness until the publication of Rumelhart and colleagues’ (Rumelhart et al., 1986a; Rumelhart et 188 
al., 1986b) seminal formulations of it. Backprop proved to be a highly robust method for training 189 
ANNs across many applications, and is still the dominant training algorithm in use today. 190 

The main principle behind backprop is to take any errors made by the network during training and 191 
propagate responsibility for them from the output layer (where the error is assessed, by comparing 192 
the network’s decision to the known correct decision13) backwards through the network towards the 193 
input layer, penalizing the synaptic weights most responsible for the error along the way. It is 194 
analogous to the human behavior encapsulated by the vernacular phrase, “Shit rolls downhill.” For 195 
example, imagine that a CEO – the final decision-maker in her company’s chain of command – 196 
makes a decision that loses the company money. She turns to her immediate inferiors and doles out 197 
punishment to them proportional to how influential they were in guiding that decision, and decides to 198 
trust those influential individuals less in the future. In turn, each of those upper-level managers 199 
passes along the punishment and distrust they have received to their immediate inferiors, again 200 
proportional to their influence on the upper managers’ actions, and so on down the corporate 201 
hierarchy. In this way, one hopes that the next time a similar decision is faced, the shift in influences 202 
and communication channels throughout the hierarchy will produce a better outcome. 203 

The advent of effective backprop-based training for ANNs reignited interest in them for a time, and 204 
backprop-trained ANNs were found to perform admirably in a number of ML domains. Still, before 205 
long, interest waned again, as neural nets with many hidden layers were found to present 206 
mathematical difficulties for backpropagation algorithms, and complex networks also took a long 207 
time to train on the CPUs of the era. Concurrently, the 1990s also saw the development of promising 208 
alternative ML algorithms, most notably the modern incarnation of support vector machines (SVMs; 209 
Cortes & Vapnik, 1995; Boser et al., 1992). SVMs were easier to work with than ANNs and 210 
performed nearly equivalently (or even better) in many problem domains of the time. Thus, when 211 
traditional MVPA techniques arose in neuroimaging in the 2000s, it is unsurprising that SVMs and 212 

 
11 Put more formally, single-layer networks cannot solve problems that are not linearly separable, which famously 
includes the relatively simple XOR function. (For binary inputs A and B, respond “yes” if A is true and B is false, or if A 
is false and B is true, but respond “no” if A and B have the same value.) 

12 Including XOR and many others. 

13 As backprop is performed by comparing the performance of a network on a training dataset against an already-known 
ground truth for that dataset, it is thus considered a form of supervised learning, in ML parlance. 
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other similarly robust linear classification algorithms, well-suited to the mid-sized datasets of the 213 
time, dominated within that emerging field. 214 

2.3 The deep learning Renaissance 215 

Research interest in ANNs experienced another upswing, which has continued to the present, 216 
beginning around 2006. This rebirth happened for several reasons, including: 1) solutions to some of 217 
the technical and mathematical problems that had plagued networks with complex, many-layered 218 
architectures (Hinton et al., 2006); 2) methods for training ANNs on desktop workstations using the 219 
GPU instead of the CPU, producing speed improvements of up to ~70x (Raina et al., 2009); 3) the 220 
advent of the so-called “Big Data” era, which provided the larger datasets required to adequately 221 
train more complex neural architectures; and 4) the re-branding of neural net research as “Deep 222 
Learning,” which, despite being more public relations than true substance, still likely helped ignite 223 
new interest in a field formerly seen as relatively tired and unpopular. Since this Renaissance began, 224 
there have naturally been several key architectural and methodological developments14. However, 225 
these newer architectures are still trained and used similarly to the older, simpler networks described 226 
above, and the variations are not too difficult to comprehend once one understands the fundamental 227 
concepts and terminology behind ANNs. 228 

During the early days of this revival, deep learning research had a number of notable successes, 229 
including advances in speech recognition, natural language processing, computer vision, financial 230 
fraud detection, and more. Large technology companies, who had access to Big Data and financial 231 
motivations for finding better ways to process it, also had their interest piqued. Thus they began to 232 
invest in deep learning research themselves, including developing improved software tools (for 233 
example, the TensorFlow toolbox, developed primarily at Google, and PyTorch, developed primarily 234 
at Facebook). These tools typically rely on lower-level driver and software library support for GPU-235 
based computation, most notably NVIDIA’s CUDA libraries for general GPU-accelerated computing 236 
and their cuDNN framework, built atop CUDA, specifically for DNN applications15. Although the 237 
use of such tools has exploded in the technology sphere and in basic computer science research, 238 
adoption in other areas, such as cognitive neuroscience, has been slower. This lag can partly be 239 
attributed to fundamental limitations and difficulties of DNN-based data analysis (e.g., potential for 240 
overfitting), but another large factor is the lack of higher-level software tools that make it convenient 241 
for neuroscience researchers to implement dMVPA without needing to write large amounts of their 242 
own code. And, when better software tools exist, it will be more efficient to explore the space of 243 
possibilities and limitations of dMVPA. In short, neuroscience and related fields need more software 244 
tools that match, or exceed, the versatility and ease-of-use of existing traditional MVPA tools. This is 245 
the goal of the DeLINEATE toolbox (Deep Learning In Neuroimaging: Exploration, Analysis, Tools, 246 
and Education), which we introduce below. 247 

 

 
14 E.g., the use of ReLU activation functions (Maas, Hannun, and Ng, 2013); new approaches to regularization (Zeiler & 
Fergus, 2013); and other architectural elements that were available earlier became more prominently used, once sufficient 
data and computing power existed to use them more effectively (e.g., convolutional network layers). 

15 However, alternatives for other GPU architectures do exist, such as the CoreML library used in Apple devices, which 
use primarily non-NVIDIA GPUs. 
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2.4 Pros, cons, and caveats of dMVPA 248 

Pro: Potentially greater suitability for complex, many-featured datasets. As discussed earlier, one 249 
great promise of dMVPA is the potential to unearth more fine-grained patterns in neuroscience data 250 
than the simpler (and commonly linear) techniques of traditional MVPA. However, a fundamental 251 
principle of statistics is that more powerful (i.e., more complex) models require more parameters16, 252 
and reliably estimating more parameters requires larger input datasets. Hence, why deep learning and 253 
Big Data are commonly associated with each other. Unlike, say, the Google Images team, most 254 
neuroscientists are unfortunately not swimming in training data for sophisticated machine learning; 255 
neuroscience data are frequently “Big,” but more from features17 than from number of examples18. Of 256 
course, in deep learning (and most statistical analyses), the inverse situation is usually more 257 
desirable: A relatively large ratio of examples to features. 258 

Potential solutions to the too-many-features problem include finding ways to intelligently select 259 
(feature selection) or algorithmically condense19 the feature set. However, beyond those options, 260 
most traditional MVPA techniques do not many choices for constraining the feature set, and in 261 
particular lack any built-in ability to take the structure of the input data into account. This is 262 
unfortunate because neuroscience data20 tend to be highly structured (temporally and spatially) in 263 
ways that could be informative for MVPA21. DNNs, on the other hand, have numerous potential 264 
architectural configurations that can be optimized to take advantage of known structure in the input 265 
data. Most notably, certain types of ANN layers (e.g., convolutional layers) can handle multi-266 
dimensional input data, whereas traditional MVPA’s linear classifiers typically just vectorize multi-267 
dimensional inputs. Thus, dMVPA makes it possible to design customized classifiers that are more 268 
suited to a particular shape/dimensionality of input data. 269 

Caveat. Having more architectural options for structuring and condensing complex input data also 270 
leads to a paradox of choice; how can one possibly decide on the best DNN architecture for a given 271 
dataset? Unfortunately, dMVPA is still a young field, and we are still working on establishing good 272 
heuristics for network architectures to handle many-featured datasets. Also unfortunately, this is not 273 
one of those methodological choices where differences between options can be chalked up to 274 

 
16 “Parameters” used in the statistical sense, i.e., numeric values that need to be estimated. 

17 In the machine learning sense; for example, the number of voxels in a trial of fMRI data or the number of (electrodes × 
timepoints) in a trial of EEG data. 

18 Also in the machine learning sense, i.e., instances of a set of features that can be assigned a category label. In 
psychology and neuroscience, such “examples” are generally called “trials” (e.g., of a cognitive task), although in some 
cases examples may correspond to experimental subjects – an even more limited resource. 

19 For example, in techniques like elastic nets (Zou & Hastie, 2005) or SMLR, which use regularization or similar tricks 
to reduce the number of predictor features. 

20 Again, our discussion focuses on neuroscience data, but these techniques, lessons, and software tools can readily be 
translated to related (or even not-so-related) research fields with similarly-structured datasets and classification problems. 

21 For example, it may be useful to condense several spatially adjacent EEG electrodes with similar waveforms into a 
single data channel. Or, if trying to classify whether a subject is viewing faces or houses, to construct a feature detector 
that is sensitive to a certain voltage peak (say, the N170; Bentin 1996) but time-invariant within a ~20ms window, to 
account for trial-to-trial latency variability. 
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rounding error; the wrong dMVPA architecture may completely fail to perform above chance in 275 
situations where a superior architecture classifies the data fairly accurately.  276 

Con: Many potential types of analysis architecture; many of these carry an increased danger of 277 
overfitting. Most conventional MVPA techniques (SVM, SMLR, etc.) have a relatively small number 278 
of hyperparameters22 to adjust, and those hyperparameters can often either be left at default values or 279 
automatically estimated by the algorithm without serious adverse effects on performance. In contrast, 280 
the number of possible hyperparameters to adjust in dMVPA is effectively infinite. These 281 
hyperparameters include the number of layers in the network, the number of units in each layer, the 282 
type of each layer23, and any number of additional layer-type-specific hyperparameters that can be 283 
separately specified for each layer. Thus, even choosing a starting point for how to construct a 284 
dMVPA model can be daunting for inexperienced researchers (and experienced ones, too). 285 
Furthermore, thanks to the No Free Lunch (NFL) theorem(s) (Wolpert & Macready, 1997; Shalev-286 
Shwartz & Ben-David, 2014), we know that no estimation- or optimization-based analysis technique 287 
will be optimal for every dataset or problem domain, and therefore it is impossible to know a priori 288 
whether a given analysis technique will be optimal for a particular problem. Put another way, if we 289 
knew in advance that a particular analysis technique were optimal for our problem, then that 290 
technique would necessarily be exquisitely tailored to the problem – which means we would 291 
essentially already know the structure of the data perfectly, which obviates the need to conduct the 292 
analysis. 293 

Compounding the problem, there is no real upper limit, other than available computing power, to 294 
how complex dMVPA models can be allowed to grow24. For the current status quo of neuroscience 295 
data, most possible dMVPA models would be far too complex; many would even contain more 296 
parameters to estimate than there are data points in the input set! It would be inaccurate to say these 297 
models would fit the data poorly; rather, they would fit the training data too well. It is not uncommon 298 
to see a complex dMVPA model effectively memorize its training data, producing perfect 299 
classification of the training dataset but extremely poor generalization to a test dataset – the classic 300 
problem of overfitting. 301 

Caveat. Much as SVMs provide a fairly robust method for classification across a surprisingly wide 302 
range of data types and problem domains (though they are rarely truly optimal due to NFL), there is 303 
some hope that such “pretty good, most of the time” dMVPA architectures might exist as well. 304 
Again, the field is young, but during development of the DeLINEATE toolbox, we have often found 305 
that relatively simple dMVPA models, consisting of just 1–2 convolutional layers and 1–2 dense 306 

 
22 This term is less commonly used in the MVPA literature than the ANN literature, but it refers essentially to a 
parameter of the algorithm set by the user before running the analysis (for example, the amount of regularization), to 
distinguish those values from plain (non-hyper) parameters, which are the values estimated by the statistical process or 
model-fitting algorithm. 

23 A full rundown of layer types is beyond this article’s scope and better-suited to a general introduction to deep learning, 
but common types include perceptron-style “dense” layers, “convolutional” layers, “recurrent” layers, and supporting 
utility layers that calculate simpler mathematical functions; discussed in more detail below. 

24 Complexity could be defined many ways, but for now, we will use it mainly to refer to how many parameters (not 
hyperparameters) need to be estimated for a given model. 
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layers25, perform comparably to (or better than) the industry workhorse of SVMs. A bit of 307 
customization is often required to fit the size and shape of the input dataset, and it can be useful to 308 
test out different variations of dMVPA architecture on one portion of the dataset before applying the 309 
best-performing architecture to the remaining held-out data, but a satisfactory architecture is typically 310 
not too difficult to find without excessive trial-and-error. We have found that after some experience 311 
using dMVPA, one begins to develop fairly good intuitions about what kinds of architecture might be 312 
best suited to a specific problem, but it is still far from an exact science. 313 

As the field progresses, we hope that it will converge on more heuristics for designing dMVPA 314 
architectures that perform as robustly as SVMs across datasets, while still retaining the flexibility and 315 
other advantages of dMVPA. Still, for many practical applications, it is less important to identify an 316 
optimal model than it is to determine if the data can be reliably classified above chance (Hebart & 317 
Baker, 2018). With properly implemented cross-validation, this can often be achieved by a wide 318 
variety of architectures (assuming the data do contain enough meaningful signal for reliable 319 
decoding), with the accuracy difference between sets of hyperparameters being only a few percentage 320 
points. Conversely, if the input data contain only noise with respect to the classification problem, any 321 
sane architecture should perform at chance on the test set. Thus, while some trial and error may be 322 
necessary before deciding that data cannot be classified, exhaustive model search is seldom required. 323 
When possible, it is often helpful to conduct a traditional MVPA to get a ballpark estimate of how a 324 
reasonably well-configured dMVPA should be expected to perform. 325 

Pro: Intrinsically multiclass classification. One advantage of dMVPA whose value is likely 326 
underestimated is that it is straightforward to design a “true” multiclass classifier, whereas most 327 
traditional MVPA methods are intrinsically binary. Thus, in traditional MVPA, multiclass decisions 328 
must generally be built from a combination of binary classifiers26. While there is nothing 329 
methodologically wrong per se with building multiclass decisions from binary ones, the implications 330 
are slightly different than those of a true multi-way decision, which should be taken into account 331 
when interpreting results. Furthermore, in some commonly-used MVPA tools (e.g., PyMVPA), the 332 
multiclass decision procedure is not always transparent to the end user, which can be a point of 333 
confusion. Conversely, dMVPA classifiers are able to consider all classification options 334 
simultaneously; as a consequence, it is also trivially easy to obtain meaningful prediction scores 335 
across all classes for each example in the testing set, which can then be used in analyses that go 336 
beyond simple winner-take-all accuracy measures. 337 

Pro/Con: Performance. Performance, in the sense of speed, can be either an advantage or a 338 
disadvantage of dMVPA. Although dMVPA network architectures can vary so widely that it is 339 
difficult to generalize, prima facie dMVPA should typically run slower than traditional MVPA, 340 
because the calculations involved in training a dMVPA network are more complex. However, for 341 
larger datasets (in terms of numbers of features and/or examples), the performance of traditional 342 
MVPA techniques may scale more poorly than dMVPA. (See “Benchmarks” below and Table 1 for 343 
details.) Thus, beyond a certain dataset size, dMVPA may be the only feasible choice. Also, because 344 

 
25 Technically, these “deep” MVPA networks would not be very deep in terms of how many layers they contain. Still, a 
fair portion of “deep” learning these days does not use particularly complex network structures; the term now seems to 
refer more to the contemporary era of ANN-based data analysis than any particular network structure. 

26 Typically, if we have classes ABC, the multiclass decision would be made either by training up classifiers “A vs not-
A,” “B vs not-B,” and “C vs not-C,” or by training up classifiers “A vs B,” “A vs C,” and “B vs C,” and then summing up 
the scores in favor of each category across classifiers in order to obtain an overall score for that category. 
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the network architecture of dMVPA can be adjusted, researchers have more options; e.g., whether to 345 
employ a simpler network that may not achieve maximum accuracy but runs quickly, versus a more 346 
complex network that runs slower. 347 

Caveat. As alluded earlier, dMVPA’s computational costs can be somewhat offset by parallelization, 348 
which is better supported by deep-learning software tools than most traditional MVPA tools. This is 349 
true even if parallelizing across CPUs/cores, but especially true if using the computer’s GPU. Results 350 
vary widely depending on dataset size, network architecture, and the specific hardware involved, but 351 
users might roughly anticipate anywhere from a 5x–100x or more speedup for running dMVPA on a 352 
GPU versus a CPU. On one hand, these benefits make dMVPA a more competitive option, speed-353 
wise. On the other hand, GPU-accelerated dMVPA does require more specialized hardware and more 354 
human effort setting up the relevant drivers and software packages. While we have striven in our 355 
toolbox and documentation to keep this process as painless as possible, it is still more effort than is 356 
required to run non-GPU-accelerated analyses; whether that effort is well-spent will heavily depend 357 
on individual users and what tasks they are trying to accomplish. 358 

Pro: Flexibility of applications. Although our focus has been on dMVPA, we should note that 359 
modern neural networks have an ever-increasing number of uses beyond simple classification. For 360 
example, one currently popular strategy is to train a model for categorization within some domain 361 
(e.g., the contents of a photograph) and then interrogate the model’s intermediate layers, in an 362 
attempt to understand what strategy the model is using (Zeiler & Fergus, 2014). Autoencoder-style 363 
architectures allow for, e.g., unsupervised learning of feature structure (Xie et al., 2016), feature-364 
sharpening for degraded inputs (Lore et al., 2017), and principled fusion of multimodal data (Ngiam 365 
et al., 2011). Deep networks can also be used to implement classification techniques that are not well-366 
suited to traditional MVPA – for example, “transfer learning,” in which a network is initially trained 367 
on one dataset, and then refined by training it further on a different dataset. As another example, we 368 
have recently explored using deep networks to create “smarter” similarity/distance metrics tailored to 369 
particular datasets/applications, unlike traditional formula-based metrics (e.g., Pearson correlation, 370 
Euclidean distance), which do not afford such flexibility (Williams et al., 2020). The DeLINEATE 371 
toolbox can, with varying degrees of effort, support many of these advanced applications. 372 

Con: Field and dependencies are in active development. While the software tools for traditional 373 
MVPA will presumably keep receiving periodic updates, the field overall is fairly mature and not 374 
changing particularly rapidly. However, deep learning and dMVPA are newer; as such, the 375 
techniques and their underlying software tools are continually being updated. This means that 376 
documentation can rapidly go out of date, and incompatibilities can arise easily if developers are not 377 
careful. We have aspired to make our own toolbox as robust as possible to the changing software 378 
landscape, but it is still worth being aware of. Of course, there are mitigating strategies: Users can 379 
find one version that works and refuse to update anything, but this deprives them of future 380 
enhancements. Alternately, they can continually update, but this makes it harder to exactly replicate 381 
earlier work run with previous software versions. If only Python toolboxes (our DeLINEATE 382 
toolbox, and the Keras/PyMVPA backends it relies on) are updated, Python’s “virtual environment” 383 
feature can be helpful for maintaining different software setups, each in their own containers. But, if 384 
later updates require newer hardware drivers, and users wish to maintain backward compatibility 385 
with their earlier work, they may wish to do what our lab has done: Purchase several small hard 386 
drives for each machine, set up a fresh operating system for each new major driver version, and 387 
simply reboot from a different boot drive when one wishes to work with current vs. legacy versions 388 
of the software. 389 
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2.5 A brief introduction to network architecture 390 

In an abstract sense, all feedforward27 neural networks may be viewed as a collection of 391 
mathematical operations to be applied in sequence to an input of some fixed size, along with rules for 392 
updating the parameters of those operations during training. In a classic perceptron, the core 393 
operations are multiplication (input data times weight values), summation, and then activation (a 394 
thresholding operation, traditionally). In a multi-layer perceptron network (Figure 2A), this complete 395 
multiplication-summation-activation sequence is repeated, with each layer’s outputs becoming the 396 
next layer’s inputs. A typical, slightly simplified mental model for such networks treats those 397 
multiplication-summation-activation operations as all occurring within a self-contained unit or node, 398 
like in a biological neuron; a number of such units in parallel constitutes a layer of the network, and 399 
the main free parameter chosen by the designer of the network is the number of units in each layer. 400 
However, unlike a biological neuron, in an ANN this set of operations is not immutable – one might 401 
opt to omit activation, invert values after every step, or do any other sort of mathematical 402 
transformation, at any step of the sequence. One could also adopt a different mental framework in 403 
which every individual operation is a layer of the network, such that each layer of a perceptron 404 
network expands into three sequential computational layers: a multiplication layer, a summation 405 
layer, and an activation layer. In Keras, the Python framework upon which the DeLINEATE 406 
toolbox’s deep-learning functionality rests, it is possible to work with either of these 407 
conceptualizations – e.g., there are individual layer types that can perform thresholding/activation, 408 
but the activation operation can also be specified as an argument of other layer types, with the 409 
understanding that activation is applied last, after that layer’s primary operation. 410 

In lay terms, when sufficiently tortured and beaten into submission, contemporary deep learning 411 
frameworks can be mangled into performing virtually any kind of mathematical operation or 412 
transformation on the input data. A full discussion of all the possibilities could fill several books, and 413 
is thus beyond the introductory scope of this paper. However, there are a few broadly useful kinds of 414 
operation/layer that are particularly worth understanding; novices to deep learning should focus on 415 
understanding the basic gist of these fundamental tropes before getting lost in the details. Here, they 416 
are described briefly in broad categories; Keras has several subtypes of each depending on details of 417 
the desired implementation. 418 

2.5.1 Classic 419 
Called “Dense” layers in Keras, these are layers made of perceptrons (Figure 2A). They compute 420 
weighted sums and apply an activation function. Varying the number of computational units in such a 421 
layer allows one to increase (e.g., consider more potential weightings) or decrease (e.g., prune less 422 
informative features) the dimensionality of the data as it passes through the layer. By default, these 423 
layers are fully-connected, meaning that all outputs from one layer are used as inputs for each 424 

 
27 “Feedforward” meaning that all outputs from earlier (closer to the input) layers are fed “forward” into later (closer to 
the output) layers; outputs are never fed back into earlier layers. Feedforward networks are generally easier to work with 
and design. Our toolbox currently supports only networks with a broadly feedforward design (implemented via the 
“Sequential” model class in Keras) when using the graphical interface or text-based job files; however, when using it as a 
collection of Python functions, other network types are possible. One exception is recurrent layers, which feed their 
output back into themselves; thus networks containing recurrent layers are not strictly feedforward. However, as 
implemented in our toolbox and the Keras backend we rely on, the recurrency can be viewed as something that recurrent 
layers handle within themselves; the user does not have to think about this recurrency in terms of their network 
architecture. From the user’s point of view, the layers of the network still follow a feedforward/sequential structure, even 
if the individual units within some layers have recurrency built-in. 
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computational unit in the next layer of the network. As noted earlier, a neural network made entirely 425 
of dense layers is sometimes called a “multi-layer perceptron” network architecture. 426 

 

 

Figure 2. Examples of artificial neural 
network architectures.  

(A) A simple fully-connected multi-layer perceptron 
model with 12 input values, a middle layer comprising 
three perceptrons, and an output layer with two 
perceptrons. Line lightness is used to represent synaptic 
weight strength. (B) An example of a convolutional 
neural network layer that might be used to analyze 2-D 
input. Here, the layer looks less like a set of artificial 
neurons and more like a digital filter used in image 
processing. Two-dimensional input is convolved with a 
2-D filter to yield a 2-D output, sized similarly to the 
input. During training, it is the values in the 
convolutional filter that get adjusted. Square lightness 
represents the numeric values in the cells of each 2-D 
matrix. (C) An example of a simple recurrent neural 
network. There are many types of recurrent neural 
network structures with varying degrees of complexity, 
but all share the property that recurrent units' output gets 
passed back into them (represented here by curved 
arrows), giving them some form of “memory” for 
previous input values. (D) An example of a complete 
neural network architecture that might be used to 
analyze 3-D input such as MRI data for a two-class 
classification problem. In this simple example, 12 input 
values in a 2×2×3 array are first passed through a 2×2×2 
convolutional filter, yielding another 2×2×3 array as 
output. This is then passed through a “flattening” layer 
to convert it to a 12×1 vector, which then passes through 
a 3-unit dense layer to a 2-unit output layer (as shown in 
panel A). 

 

 

 

2.5.2 Convolutional 427 
Convolutional layers (Figure 2B) may be conceptualized as collections of filters that are swept across 428 
(in mathematical terms, convolved with) their input. When used to process 2-D photographic data, 429 
their function is often likened to visual neurons, which take input from a spatially restricted receptive 430 
field, extract some feature if present, and pass along the result to the next layer of the visual 431 
processing hierarchy. For readers familiar with digital image processing, they are essentially like 432 
other kinds of digital filters (e.g., a blur filter, an edge detector), except that convolutional layers can 433 
work with any dimensionality of data (not just 2-D images) and their parameters are learned over the 434 
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course of training, rather than being pre-defined. The combination of filter shape and input data 435 
structure will determine what kinds of feature may be selected for and passed along as output. For 436 
example, if each example of input data is a 32 × 1000 array of EEG voltages (e.g., 2 seconds of 32-437 
channel data sampled at 500 Hz), a set of 1 × 10 filters would be capable of detecting high-frequency 438 
patterns within individual channels (in this example, patterns that fit inside a 20 ms time window), 439 
but insensitive to lower-frequency or purely spatial patterns. Conversely, a set of 10 × 1 filters could 440 
detect patterns distributed across multiple channels, but only those that occur instantaneously. 441 
However, one could instead employ, for example, a set of 8 × 20 filters, which would be capable of 442 
detecting patterns spread across up to eight adjacent channels over a 40 ms time window. Choices 443 
about data structure are consequently more important for this class of layers than for a multi-layer 444 
perceptron; the input examples would contain identical information if flattened from 32 channels × 445 
1000 timepoints to a single 1 × 32,000 vector, but the meaning of a 1 × 10 filter bank’s outputs would 446 
be very different. 447 

2.5.3 Recurrent 448 
Recurrent layers (Figure 2C) are named for their property of having their outputs fed back into 449 
themselves as inputs. By maintaining an internal state determined by previous inputs, recurrent units 450 
develop a form of memory for sequential data. For example, a 1 × 10 vector input to a classic dense 451 
unit would be combined to a single value in only two steps – multiplying each element of the vector 452 
by its weight and then summing the results. If the same vector were fed into a recurrent unit 453 
(typically called a cell), the first element would be handled in isolation, but evaluation of the second 454 
element would include the output of the cell’s operation on the first element. The result of this would, 455 
in turn, update the unit’s state to influence its response to the third element, and so on until each 456 
element of the input is consumed. Recurrent networks are frequently used to process natural language 457 
data (both audio and text) and in general are considered good choices for timeseries data. In our own 458 
work, we have not observed any significant benefit over convolutional layers when working with 459 
human neuroscience data, and have found recurrent-based networks to take longer to train than 460 
convolutional-based networks; however, these findings are likely highly dependent on details of the 461 
dataset and research question. As alluded earlier, for common types of recurrent cells, the recurrency 462 
is handled within the cell as a form of internal “memory” that is not visible to the rest of the network, 463 
so network architectures using recurrent layers can still be considered broadly “sequential” or 464 
feedforward, and are thus supported by our toolbox. 465 

2.5.4 Supporting 466 
This is a broad category of operations that, for various reasons, are generally thought of as secondary 467 
or historically baked-in to more interesting operations. In Keras, this includes activation layers, 468 
various purely utilitarian data-reshaping or simple mathematical operations, dropout (an operation in 469 
which some percentage of a layer’s units are ignored; thought to mitigate overfitting), etc. Some of 470 
these operations (e.g., activation functions) can be specified either as distinct layers or as parameters 471 
to a primary layer, whereas others (e.g., a layer that downsamples the output of the previous layer via 472 
averaging) can only be specified as distinct layers. 473 

2.5.5 Practical advice 474 
The following is a combination of our experience and advice we have received from other 475 
colleagues. We hope it is helpful as a starting point, but readers should not feel overly constrained by 476 
it. While the modern leaders in image recognition involve dozens of layers (Szegedy et al., 2016), in 477 
our experience the aim of dMVPA can typically be accomplished with much smaller networks. When 478 
working with minimally-processed fMRI/EEG/eye-tracking data, we have found that a good starting 479 
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point often consists of 1–2 convolutional layers followed by 2–3 dense layers; based on preliminary 480 
results from that architecture, one could add or remove layers, adjust the layers’ sizes, or tweak other 481 
hyperparameters. See Figure 2D for an example. For maximal effectiveness and interpretability, 482 
consideration should be given to the match between the shape of the per-example input data and 483 
shape of convolutional filters (e.g., should the filters look across EEG channels, or only within? If 484 
across, are channels arranged to be spatially adjacent in the data?). Leaky ReLU is usually our 485 
preferred activation function, and we have often found dropout values of ~0.3 in dense layers to be 486 
beneficial. We have found Stochastic Gradient Descent (SGD) with the momentum parameter 487 
(classical or Nesterov) set to something on the order of 0.9 to be a generally successful optimizer, 488 
although the Adam optimizer (Kingma & Ba, 2014) also performs well in some situations28. New 489 
users are encouraged to experiment with everything and keep track of the results; soon, you will 490 
likely develop your own favorite architectures and hyperparameters. Do not be afraid to experiment 491 
broadly; dMVPA has some powerful advantages, but we are also in a more exploratory phase for this 492 
kind of research, and designing a sufficiently performant dMVPA architecture can take significant 493 
trial-and-error. Of course, the extent to which that exploration might constitute p-hacking depends on 494 
your research aims; if that is a potential concern, you may want to design your analysis based on an 495 
independent dataset (e.g., one of the sample datasets included in our toolbox), or consider a split-half 496 
design in which one half of your data is used to explore analysis architectures and the other half is 497 
used for confirmatory purposes. 498 

3 dMVPA: A toolbox 499 

3.1 The DeLINEATE Toolbox 500 

One major purpose of the DeLINEATE toolbox is to enable rapid exploration of model 501 
architectures/hyperparameters while maintaining an accurate record of what was done and how it 502 
turned out. These are conflicting goals in common practice – a researcher attempting to iterate on an 503 
analysis is often tweaking a script or working directly with a command-line interpreter, perhaps in a 504 
Notebook type environment (Grus, 2018), and discarding fruitless branches of exploration along the 505 
way. Maintaining an accurate record of each tweak and its results during such rapid prototyping is 506 
not easy, and can take more time and coding discipline than many of us have. 507 

Our solution to this problem was a processing pipeline in which a single JSON (JavaScript Object 508 
Notation) format29 job configuration file fully specifies an analysis: the input data, how it will be 509 
divided for cross-validation and rescaled, the model architecture to be trained and evaluated, and the 510 
outputs to be saved (Figure 3A). The toolbox translates this JSON file into Python code to execute 511 
the specified analysis (or analyses), and saves all desired outputs into .tsv (tab-separated values) files 512 
with names that include a user-defined prefix linking them to the original JSON file. A copy of that 513 
original JSON file can also be saved alongside the other output, so that even if the original is 514 

 
28 We realize that all this terminology can be overwhelming at first, but readers unfamiliar with deep learning should try 
not to feel discouraged by the sheer number of architecture/hyperparameter choices available. Rest assured that it does 
become more familiar and accessible after some hands-on experience. 

29 JSON is a format that allows data structures to be written to plain text files with human-readable syntax. Although not 
as intuitive as a graphical interface, editing JSON-formatted job files is certainly easier for beginners than writing their 
own Python code. There are also JSON modules available for many popular text editors and a handful of standalone 
JSON editing programs to make the task even easier. 
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subsequently overwritten during the exploration process, the “output” copy remains a pristine record 515 
of what was run to create a particular set of results. 516 

 
Figure 3. Ways that users can configure an analysis in the DeLINEATE toolbox.  

(A) Most users will likely configure analyses using a text-based JSON (JavaScript Object Notation) format job file. In 
this example, the file is open in a generic text-editor program, but JSON-format-specific editing software also exists. 
Each job has four main sections: “model,” “data,” “analysis,” and “output,” corresponding to the major object types in the 
toolbox. The file shown is configured to run 10 iterations of a PyMVPA-based SMLR analysis using a sample face-
scene-object-viewing EEG dataset, using a randomly selected 95% of trials as training data and 5% as test data on each 
iteration. (B) A basic graphical user interface (GUI) that allows users to configure a job file without having to edit the text 
directly. The most frequently used options for several common analysis types are available (although editing the text file 
directly will always allow more flexibility than is possible to express in a GUI). The GUI also contains sections for data, 
analysis, model, and output, as well as buttons for loading in an existing job file and saving the settings configured in the 
dialog box to a new JSON file. The settings shown are configured to run 20 iterations of a Keras-based deep learning 
analysis, using 70% of trials as training data, 15% as validation data, and 15% as test data on each iteration. 

A secondary goal was to facilitate comparison of dMVPA approaches to traditional MVPA while, as 517 
much as possible, maintaining parity in data handling. To this end, classic MVPA is also supported 518 
alongside the dMVPAs that are our primary focus. This is currently implemented with a PyMVPA 519 
backend. Traditional MVPA uses the same JSON job file format as dMVPA, as well as similar 520 
output file formats, cross-validation/rescaling options, etc., making it a simple task to conduct 521 
parallel MVPA and dMVPA on the same data. Currently we support SVM (Support Vector Machine) 522 
and SMLR (Sparse Multinomial Logistic Regression) classifiers for traditional MVPA, although our 523 
framework is readily extensible to most other classifiers in the PyMVPA toolbox. 524 

For a typical user, the primary entry point to the toolbox is delineate.py, a simple script that accepts 525 
one or more JSON-format configuration files as arguments, validates their contents, and uses them to 526 
create and run one or more analysis job(s). This allows users to run analyses without requiring them 527 
to write any code of their own. To further increase accessibility, we have recently developed a simple 528 
graphical user interface (GUI) that some find more approachable than a text editor (Figure 3B). GUI 529 
users can click on a collection of interactive menus to create properly-formatted job configuration 530 
files, which can then be used as input to the main delineate.py script. The GUI can also auto-populate 531 
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selections based on an existing job configuration file for users who have a starting point (such as one 532 
of the included sample job files) they wish to modify for future analyses. 533 

For Python-proficient users who want more complex or flexible analysis options, the toolbox can 534 
also be used as a Python programming library, and users can write their own code instead of creating 535 
JSON files. JSON functionality and code-library functionality can also be mixed-and-matched (e.g., 536 
JSON files can be used to create a template analysis, which can then be tweaked and iterated upon 537 
with custom code). For users who wish to write their own Python code as well as JSON users who 538 
simply want some familiarity with the toolbox’s underlying functionality, we next present a brief 539 
overview of the code structure; more detail is available in the toolbox documentation. 540 

3.2 DeLINEATE Toolbox structure 541 

The DeLINEATE Toolbox is an object-oriented collection of Python modules, each responsible for a 542 
different aspect of the (d)MVPA process. It comprises five main object classes and a small number of 543 
supporting files that contain utility functions or facilitate batch analysis. Each main class is housed in 544 
a .py file named for that class. In typical usage, the toolbox follows a minimum-import philosophy; 545 
to use it as a code library, one simply needs to navigate to its main directory and directly import the 546 
desired class file(s). The primary classes are: 547 

1. DTJob, responsible for parsing JSON files that define DeLINEATE jobs and passing the 548 
appropriate information to constructors for the other object types. In typical usage, a DTJob is 549 
responsible for creating one of each other object type and then triggering the DTAnalysis 550 
object to actually run the analysis. However, users can also eschew DTJob entirely if they 551 
prefer to instantiate the other objects manually in their own Python code. 552 

2. DTAnalysis, a parent class that contains one instance each of DTModel, DTData, and 553 
DTOutput; it is responsible for coordinating the operations of those other objects. This 554 
includes dividing data into training/validation/testing sets, iterating through portions of the 555 
data when desired (e.g., to loop through individual subjects), and initiating the model 556 
training/testing procedures. 557 

3. DTModel, responsible for constructing the model in the appropriate machine learning 558 
backend (currently, either Keras or PyMVPA). The “model” in this sense refers either to the 559 
artificial neural network (Keras) or an object representing a simpler classifier, e.g., a support 560 
vector machine with a linear kernel and parameter C=1 (PyMVPA). 561 

4. DTData, responsible for loading the dataset from a data file, storing it, and performing certain 562 
operations on it (such as scaling/normalization or slicing it up into smaller training, 563 
validation, and/or test subsets). 564 

5. DTOutput, responsible for writing analysis results to output files. 565 

The four main sections of a JSON-format job file are the analysis, model, data, and output sections, 566 
which map directly onto the corresponding Python classes; each section contains the parameters 567 
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necessary to instantiate an object of the appropriate class30. Another (purely optional) class, DTGui, 568 
implements the aforementioned GUI. 569 

3.3 Current functionality 570 

3.3.1 Model types and backends 571 
At present, the DeLINEATE toolbox has been used in-house for approximately two years to conduct 572 
analyses across a number of studies. It is a high-level toolbox with a flexible, extensible architecture 573 
that potentially allows it to sit atop multiple underlying machine-learning libraries. Currently, we 574 
support a subset of functionality for two backends: Keras (Chollet et al., 2015) for dMVPA and 575 
PyMVPA (Hanke et al., 2009) for traditional MVPA. With our heavy focus on providing a flexible 576 
architecture, it is relatively easy to add support for additional backends in the future, as well as 577 
enhancing the breadth of support for features of Keras and PyMVPA, enabling new data types to be 578 
imported, etc. The relative prioritization of such extensions will be guided by user demand. 579 

3.3.2 Cross-validation 580 
We currently support two approaches to cross-validation. The first is a “universal” approach 581 
(specified in configuration files with the name “single”) in which all data are treated as belonging to a 582 
single pool, which is randomly divided into training/validation/test sets according to percentages 583 
specified in the configuration file. The second divides the data according to some attribute of the 584 
samples31 and iterates through each value of this property, dividing the data within each iteration into 585 
training/validation/test sets (specified in configuration files as “loop_over_sa”). Regardless of which 586 
scheme is used, because classification performance can be influenced by a model’s initial 587 
conditions32, it is common practice to run multiple complete cross-validation iterations in order to 588 
ensure a stable estimate of the architecture’s performance. With properly configured input data (see 589 
below), these two cross-validation schemes can cover most common MVPA use cases; however, 590 
additional schemes can be added in the future according to demand. 591 

3.3.3 Rescaling 592 
Although some MVPA methods are invariant to the scaling of the input data, others, such as many 593 
dMVPA applications, require data to be on a certain scale for good classification. The issue is 594 
slightly complicated by the need to prevent features of the test data from influencing the training 595 
data. We support several methods for rescaling data that avoid this issue by calculating necessary 596 
parameters solely on the training data, and using those parameters to adjust validation/test data as 597 

 
30 Although a non-Python-savvy user does not need to know these implementation details, the parity between job file 
sections and Python classes makes it easy for more experienced coders to switch back and forth between job files and 
their own Python scripts. As noted above, it is also possible to mix-and-match the two approaches. 

31 A “sample attribute,” if you will, which is the terminology used by other MVPA toolboxes for a tag or property 
associated with each data sample/example. For instance, a subject ID or session ID. 

32 Especially for dMVPA; for a given architecture, a classification might sometimes perform well and sometimes at 
chance depending on the random values assigned to weights at the beginning of training, which is generally a sign that 
the architecture needs adjusting. Other classification techniques, such as SVMs, are deterministic; as such, they may or 
may not benefit from multiple cross-validation iterations, depending on dataset and cross-validation scheme. 
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well. Again, these methods are readily extensible with additional options, or users can always pre-598 
scale their own data however they like. Currently supported methods are: 599 

1. “percentile”, which identifies the value at a specified percentile of the data and divides all 600 
data by that value, 601 

2. “standardize”, which mean-centers and divides all values by the standard deviation of the 602 
data, 603 

3. “mean_center”, which subtracts the mean of the data from all values, 604 

4. “map_range”, which translates values into the range between a user-specified minimum and 605 
maximum (0 and 1, by default). 606 

3.3.4 Input data and loaders 607 
By far, the most common question we have received from potential users concerns the necessary 608 
format for input data. The toolbox operates on, at minimum, one NumPy array and one Python 609 
dictionary. The former contains the actual data to be analyzed in a two-or-more-dimensional array, 610 
where one dimension represents examples (e.g., trials) and the other dimension(s) are feature 611 
dimensions. For instance, an fMRI dataset might be shaped as (examples × voxels), whereas an EEG 612 
dataset might be (examples × electrode × timepoint). Higher-dimensional structure is ignored in 613 
traditional MVPA and simply collapsed into a 2-D (examples × features) array, as those simple 614 
classifiers can only operate on vectors of data. However, dMVPA, when run with an appropriate 615 
network architecture, can operate on any dimensionality of data and can potentially take that 616 
information into account for classification. If the spatiotemporal structure of the data is meaningful, 617 
this may produce superior performance. The Python dictionary contains the metadata needed to 618 
interpret the data array, in the form of one or more “sample attributes” (defined earlier; e.g., 619 
experimental condition, participant identity) for each sample. These sample attributes may be used as 620 
targets for classification (i.e., the class labels to be predicted) or as grouping variables in cross-621 
validation (e.g., for leave-one-subject-out cross-validation). 622 

Data are read into the toolbox by a “loader” Python function specified in the job configuration file. 623 
Loaders can reside in a specific subdirectory of the toolbox or in an arbitrary user-specified location. 624 
We include several example datasets and corresponding loader functions that should be easily 625 
modifiable by researchers to fit their own needs. This is the main place where a typical user might 626 
need to write their own Python code; because of the many idiosyncratic formats used to store 627 
experimental data, some users may need to write a short function to read their files in and reshape 628 
them into the expected format. However, if the format is well-supported by NumPy or other Python 629 
libraries, these functions can typically be quite short (on the order of 10 lines of code). We also 630 
provide generic functions included for data in the NumPy and MATLAB native file formats, which 631 
will accept any .mat or .npy file containing one array variable of data examples and at least one 632 
variable of sample attributes. Thus, if users are able to save their data in one of those formats 633 
beforehand, there may be no need for a custom loader function. 634 

Because neuroscience data vary widely in format, we recognize that a need for additional loader 635 
options could still present a barrier to some researchers. We encourage such individuals to reach out 636 
to us so that we can offer assistance and expand the range of formats we are able to support natively. 637 
On the other hand, the overall flexibility in format means that with just a few lines of code, any 638 
dataset that can be represented as a multi-dimensional array is a candidate for analysis with our 639 
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toolbox, not limited to neuroscience data; for instance, we have used the toolbox to analyze eye-640 
tracking data (Cole et al., under review), photographic images, and more. 641 

3.3.5 Graphical User Interface 642 
As described earlier, the GUI currently allows users to generate a job configuration structure via 643 
menu selections and free-entry fields (Figure 3B) that can be auto-populated by loading an existing 644 
job file. For frequently used Keras layer types, some reasonable default hyperparameters are 645 
provided; however, there are minimal defaults available for less common layer types, and in general 646 
it is still recommended for users to have some baseline knowledge of Keras’s workings and 647 
hyperparameter options, even when using the GUI. As the number of potential analysis 648 
configurations is effectively limitless and this module is a relatively recent addition, error checking is 649 
currently somewhat limited. Still, we recognize that a usable GUI is a critical feature for some users, 650 
and we expect this to be a primary target for expansion and refinement in upcoming releases. 651 

3.4 Availability 652 

All toolbox code is currently hosted at https://bitbucket.org/delineate/delineate and is freely 653 
accessible and open-source under the MIT License. There is also a project website at 654 
http://www.delineate.it/ that hosts older releases, documentation, links to video tutorials, and more. 655 

3.5 Hardware/software requirements 656 

The DeLINEATE toolbox has few software dependencies of its own. However, as noted earlier, it 657 
requires either a Keras or PyMVPA backend to perform dMVPA or traditional MVPA, respectively, 658 
and those packages have their own corresponding dependencies. Fortunately, both Keras and 659 
PyMVPA are well-documented and readily available; we also provide start-to-finish setup guides on 660 
the toolbox website. In brief, DeLINEATE is compatible with any recent version of either backend, 661 
and in principle can be run on any Python version from 2.7 onward, including all versions of Python 662 
3; however, specific Python version compatibility may depend on which version of Keras/PyMVPA 663 
the user is running, and which Python versions those libraries are compatible with. The only 664 
additional dependency of DeLINEATE is Python support for Tcl/Tk (a graphical interface toolkit) if 665 
one wishes to use DTGui; most Python installations include Tcl/Tk libraries, but some might require 666 
a separate installation. As Python is available on all major operating systems (Windows, macOS, and 667 
Linux), DeLINEATE will also run on any of them, although hardware choices may constrain 668 
operating system options. 669 

In terms of hardware, a bare-bones DeLINEATE installation will run on any computer with enough 670 
RAM to hold the user’s dataset in memory, as long as the user only wishes to run analyses on the 671 
CPU. Traditional MVPA via PyMVPA does not presently employ GPU acceleration, but most 672 
dMVPA users will want to enable GPU acceleration for a dramatic increase in speed (see 673 
“Benchmarks” below). As Keras relies on the TensorFlow library for its own backend (or the older 674 
Theano library; now deprecated in recent Keras versions but still supported by DeLINEATE), which 675 
in turn relies on the CUDA (Compute Unified Device Architecture) and cuDNN (CUDA deep neural 676 
network) libraries from NVIDIA, effectively this means that an NVIDIA-compatible GPU is required 677 
for accelerated dMVPA. Different GPUs will have different compatibility with various versions of 678 
CUDA, cuDNN, TensorFlow/Theano, and Keras; however, as long as compatible versions of those 679 
tools are installed, DeLINEATE should work with any of them. At the time of writing, we 680 
recommend midrange to high-end GPUs from the GeForce 10 series or higher; our lab’s workstations 681 
mostly use GeForce GTX 1070 through GeForce GTX 1080 Ti cards, but other users may have 682 
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higher or lower requirements. Currently, a reasonably powerful workstation for many dMVPA 683 
applications could be built from parts for $1500–2000 US33, although prices can vary widely 684 
depending on users’ specific requirements and budgets. Since no current Apple computers support 685 
compatible NVIDIA GPUs, GPU-accelerated dMVPA is currently unavailable on macOS. Generally, 686 
for scientific computing, we recommend Linux-based operating systems for their widespread 687 
compatibility and open-source nature; however, GPU-accelerated dMVPA will work on Windows as 688 
well. In the future, if the macOS/NVIDIA compatibility situation changes, or if DeLINEATE adds 689 
support for additional backends, GPU-accelerated dMVPA may become available on macOS. 690 

It has historically been difficult to implement large neural networks without setting up dedicated 691 
hardware, largely because the virtualization approaches favored for cloud-based computing do not 692 
provide sufficient access to GPUs. However, we have recently seen the emergence of an option that 693 
may be useful to those who lack either the budget or the technical confidence to set up their own deep 694 
learning environments. Google Colab (https://colab.research.google.com) is a browser-based Python 695 
environment akin to Jupyter Notebooks with some access to GPUs. Because the provided 696 
environment includes Keras/TensorFlow and allows interaction with files stored on Google Drive, it 697 
is relatively straightforward to execute DeLINEATE-based analyses by importing some of the classes 698 
and manually calling the method that begins an analysis. An example IPython notebook is provided 699 
in the Colab subfolder of the DeLINEATE repository. This approach requires some proficiency in 700 
Python and is subject to fluctuating resource limitations, so no promises can be made about speed or 701 
stability; however, it may be a good jumping-off point for beginning users wishing to explore the 702 
toolbox before investing in their own equipment. 703 

3.6 Benchmarks 704 

For both traditional MVPA and dMVPA, performance (both accuracy and computation time) will 705 
vary drastically across datasets, hardware, and choice of MVPA classifier or neural network 706 
architecture. Thus, the generalizability of any benchmarks is limited. However, to give readers a 707 
rough sense of the computational advantages of dMVPA and how running times scale for different 708 
dataset sizes, we prepared several datasets and analyzed them with both traditional MVPA and 709 
dMVPA. These benchmark datasets emulate the format of an fMRI dataset, but are entirely synthetic. 710 
The code to generate them is included in the toolbox. 711 

We simulated datasets with three conditions (classes). Datasets ranged from 200 features (e.g., 712 
voxels) to 25,600 features in a doubling progression (200, 400, 800, …). The number of examples 713 
(trials) per condition ranged from 100 to 10,000 in the progression: 10^2, 20^2, 30^2, …. Full details 714 
are given in the code. Briefly, for each condition, a random signal with the appropriate number of 715 
features was generated. Then, supposing for this example that we are generating 900 trials/condition, 716 
30 variations on the “canonical” signal for that condition would be generated by blending the 717 
canonical signal with a certain proportion of random noise. Then, for each of those 30 variations, 30 718 
sub-variations were generated by the same process. Although we did not particularly strive for 719 
biological verisimilitude, the intent was to somewhat mimic a circumstance where brain patterns had 720 
a small number of “true” variations (e.g., if the condition were “faces,” subjects might have slightly 721 
different voxel response patterns for different genders/races) as well as trial-to-trial variations due to 722 

 
33 Based on market prices for parts to build a system similar to ours at the time they were built, with an eight-core Intel 
i7-9700K CPU, GeForce GTX 1070 GPU, 32GB RAM, 1TB SSD primary storage, 4TB HDD secondary storage, and a 
compatible CPU cooler, motherboard, case, and power supply, for a total of $1750 US. Newer GPUs and other parts have 
been released since those were built, but pricing for current parts is in a similar range. 
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stimulus exemplar effects and/or measurement noise. To make the classification more challenging, 723 
each trial’s signal was also blended with a proportion of the signal of a trial from each of the other 724 
two conditions. 725 

The datasets were analyzed with three classifier models: a simple CNN, SMLR, and SVM. The CNN 726 
used GPU acceleration (NVIDIA GeForce GTX 1080 Ti), whereas the other models used only the 727 
CPU (Intel Xeon X5650 @ 2.67GHz). Each analysis was typically run for 10 iterations (cycles of 728 
training/test with different randomly-selected training/test sets) except when running times became 729 
prohibitive, in which case the analysis was terminated after as few as five iterations. 730 

Mean running times (Table 1) ranged drastically, from less than one second to several days. As 731 
expected, running times for all model types generally increased with greater numbers of features and 732 
trials. SVMs had both the shortest and longest running times. Compared to SVMs, SMLR had both a 733 
longer shortest running time and a shorter longest running time (i.e., the range was compressed on 734 
both ends), and CNNs continued this trend with an even longer shortest running time and a still 735 
shorter longest running time (i.e., the range was even more compressed). Notably, the CNN never 736 
took less than 10 seconds (largely due to a relatively fixed start-up time for Keras models) but its 737 
longest running times, for the most complex datasets, were still under 15 minutes. By comparison, 738 
SMLR’s longest running times were over four hours, and SVMs’ were multiple days. (And a few 739 
SVM models never converged in any reasonable amount of time.) Thus, as expected, deep learning 740 
models were less time-efficient than traditional MVPA for simpler datasets but were vastly more 741 
scalable for large datasets. 742 

Benchmark datasets were intended to be classifiable at moderate accuracies but not particularly 743 
designed to be benchmarks of accuracy, so we do not report comprehensive accuracy results, which 744 
could invite misleading extrapolations to real data. However, generally all methods performed above 745 
chance, in a comparable range. Typically, the CNN had the lowest accuracy of all three models on 746 
datasets with few trials but usually had the highest accuracy with large trial counts, especially when 747 
feature counts were low. Conversely, SVM had the highest accuracy when trial counts were low or 748 
with very high feature counts, although in those high-feature-count analyses, the SVM running time 749 
was long enough to be unusuable in many real-world scenarios. SMLR accuracy almost always fell 750 
between CNN and SMLR. Again, we do not expect these accuracies on synthetic data to perfectly 751 
reflect performance on real-world data, but they do fit general expectations of how models of varying 752 
complexity might be expected to overfit or underfit datasets of varying sizes. 753 

4 Discussion 754 

4.1 Future development 755 

Toolbox development is ongoing and will largely be steered by community feedback. Current goals 756 
include adding support for non-sequential Keras models (e.g., those including feedback connections), 757 
transfer learning, model introspection, Generative Adversarial Networks (GANs), and additional 758 
built-in data loaders and cross-validation schemes. We also plan to make the GUI more informative 759 
and intuitive for users who are less familiar with Keras, and to include some tools for visualization 760 
and potentially analysis of results (although this remains an unsettled topic; see Hebart & Baker, 761 
2018, for relevant discussion). Although we have kept discussion in this paper fairly general, 762 
information is still liable to go out-of-date quickly due to the rapid pace of deep learning methods 763 
development; users are encouraged to consult our website for the most updated details. 764 
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4.2 Summary 765 

Deep learning continues to grow and offer new possibilities for computation in many areas of 766 
research and private industry. While it is being increasingly used in neuroimaging and other 767 
neuroscience applications, adoption has been hampered by the complexity of the topic and the lack of 768 
approachable software tools. We hope that this tutorial review will help researchers new to deep 769 
learning address the former, and that the DeLINEATE software toolbox will help address the latter. 770 
In years to come, we expect dMVPA to enable a forward leap in neuroscience discoveries 771 
comparable to, or exceeding, that of traditional MVPA over older analyses.  772 
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5 Tables 773 

5.1 Table 1. Running times on synthetic benchmark datasets, in minutes 774 

CNN  Trials/ 
condition 

100 400 900 1600 2500 3600 4900 6400 8100 10000 

 Features            
 200  .207 .231 .244 .250 .258 .295 .365 .363 .438 .475 
 400  .216 .227 .238 .240 .249 .278 .297 .322 .428 .520 
 800  .213 .231 .242 .248 .262 .279 .305 .341 .421 .437 
 1600  .202 .258 .270 .282 .298 .337 .367 .414 .499 .532 
 3200  .205 .322 .357 .372 .376 .430 .499 .564 .683 .709 
 6400  .195 .326 .505 .542 .657 .678 .724 .900 1.18 1.15 
 12800  .292 .503 .914 1.20 1.61 1.99 2.35 2.97 2.17 2.28 
 25600  .360 .920 1.32 2.49 3.71 7.41 7.73 9.43 13.5 12.1 
             
SMLR  Trials/ 

condition 
100 400 900 1600 2500 3600 4900 6400 8100 10000 

 Features            
 200  .024 .049 .053 .086 .081 .112 .127 .137 .178 .219 
 400  .047 .326 .321 .382 .292 .358 .447 .484 .541 .676 
 800  .087 .329 1.49 1.74 1.70 1.77 1.89 1.94 2.19 2.57 
 1600  .137 .563 1.70 5.40 7.78 9.09 10.1 10.3 10.8 10.8 
 3200  .194 1.37 2.53 6.06 12.6 24.4 30.0 41.3 50.8 54.2 
 6400  .258 2.59 5.59 9.57 16.6 29.4 46.9 70.7 112 140 
 12800  .354 4.19 13.7 20.5 28.3 42.9 64.6 91.2 128 170 
 25600  .456 5.90 23.6 52.8 63.8 76.6 104 144 192 253 
             
SVM  Trials/ 

condition 
100 400 900 1600 2500 3600 4900 6400 8100 10000 

 Features            
 200  .003 .103 .516 1.09 2.28 6.37 20.6 47.5 88.1 148 
 400  .004 .067 1.25 3.71 5.67 16.7 65.1 155 304 502 
 800  .008 .090 .710 5.32 10.4 32.0 159 439 920 1663 
 1600  .014 .216 .950 2.76 9.70 36.9 240 855 2302 4794 
 3200  .031 .438 2.03 5.64 12.1 22.7 109 1098 3168 ∞ 

 6400  .068 .892 4.32 13.2 28.3 55.2 134 392 2065 ∞ 

 12800  .134 1.85 9.11 28.0 65.5 133 357 1241 ∞ ∞ 

 25600  .263 3.72 18.5 57.1 138 314 1048 3699 ∞ ∞ 

 

Table 1. Running times on synthetic benchmark datasets, in minutes 

We processed a synthetic benchmark dataset with three models: a convolutional neural network (CNN), Sparse 
Multinomial Logistic Regression (SMLR), and Support Vector Machines (SVM). Average running time is listed in 
minutes. A few SVM models never converged in any reasonable amount of time and are represented in the table with the 
infinity symbol ∞. See text for further details. 
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6 Nomenclature 775 

ANN: artificial neural network 776 

CNN: convolutional neural network 777 

CUDA®: NVIDIA Compute Unified Device Architecture 778 

cuDNN: NVIDIA CUDA® Deep Neural Network library 779 

DeLINEATE: Deep Learning In Neuroimaging: Exploration, Analysis, Tools, and Education 780 

dMVPA: deep multivariate pattern analysis 781 

DNN: deep neural network 782 

GAN: generative adversarial network 783 

JSON: Javascript object notation  784 

ML: machine learning 785 

MVPA: multivariate pattern analysis 786 

SMLR: sparse multinomial logistic regression  787 

SVM: support vector machine 788 
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