

Deep-Learning-Based Multivariate Pattern Analysis (dMVPA): A
Tutorial and a Toolbox

Karl M. Kuntzelman1,2, Jacob M. Williams3, Phui Cheng Lim1,4, Ashok Samal3, Prahalada K. 1
Rao5, & Matthew R. Johnson1,4* 2

1Center for Brain, Biology and Behavior, University of Nebraska-Lincoln, Lincoln, NE, USA 3

2Office of Technology Development and Coordination, National Institute of Mental Health, National 4
Institute of Health, Bethesda, MD, USA 5
3Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE, 6
USA 7
4Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE, USA 8
5Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, 9
NE, USA 10

* Correspondence: 11
Matthew R. Johnson 12
matthew.r.johnson@gmail.com 13

Keywords: deep learning, cognitive neuroscience, machine learning, EEG, fMRI, neural 14
networks, Python, MVPA 15

Abstract 16

In recent years, multivariate pattern analysis (MVPA) has been hugely beneficial for cognitive 17
neuroscience by making new experiment designs possible and by increasing the inferential power of 18
functional magnetic resonance imaging (fMRI), electroencephalography (EEG), and other 19
neuroimaging methodologies. In a similar time frame, “deep learning” (a term for the use of artificial 20
neural networks with convolutional, recurrent, or similarly sophisticated architectures) has produced 21
a parallel revolution in the field of machine learning and has been employed across a wide variety of 22
applications. Traditional MVPA also uses a form of machine learning, but most commonly with 23
much simpler techniques based on linear calculations; a number of studies have applied deep learning 24
techniques to neuroimaging data, but we believe that those have barely scratched the surface of the 25
potential deep learning holds for the field. In this paper, we provide a brief introduction to deep 26
learning for those new to the technique, explore the logistical pros and cons of using deep learning to 27
analyze neuroimaging data – which we term “deep MVPA,” or dMVPA – and introduce a new 28
software toolbox (the “Deep Learning In Neuroimaging: Exploration, Analysis, Tools, and 29
Education” package, DeLINEATE for short) intended to facilitate dMVPA for neuroscientists (and 30
indeed, scientists more broadly) everywhere. 31

Word Count: 11929 32

Figures: 3 33

Tables: 1 34

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 4, 2020. ; https://doi.org/10.1101/2020.12.03.410910doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.03.410910
http://creativecommons.org/licenses/by-nc/4.0/

 Deep learning and MVPA

2

1 Introduction 35

Although the roots of cognitive neuroscience date to the 1920s (the advent of 36
electroencephalography, EEG; Berger, 1929), the modern neuroimaging era began in the mid-1990s, 37
with the development of functional magnetic resonance imaging (fMRI) methodology and the 38
increasingly widespread availability of (affordable) desktop computing workstations powerful 39
enough to process fMRI datasets. In those days, data analysis was primarily limited to univariate 40
investigations such as event-related potentials (ERPs) in EEG and univariate general linear model 41
(GLM) analyses aimed at detecting “blobs” of activation with fMRI (as well as differences in 42
activity, e.g. between experimental conditions, within such blobs)1. However, the march of progress 43
towards ever-more sophisticated models of brain function and the testing of ever-more refined 44
hypotheses has created a demand for corresponding improvements in analysis techniques. 45

Thus, somewhat more recently (beginning in the early-to-mid-2000s), a second age in neuroimaging 46
analysis arose with the advent of multivariate pattern analysis (MVPA; Haxby et al., 2001; Haxby et 47
al., 2014). Rather than focusing on whether a certain cognitive event elicits activity in a particular 48
cluster of fMRI voxels (or a voltage peak at a particular temporal latency with ERP), MVPA is 49
instead concerned with how a neural pattern or multivariate “brain state” comprising multiple voxels 50
(fMRI) or electrode/timepoint combinations (EEG) might collectively correspond to a certain 51
cognitive event or state. Numerous MVPA variations exist, including those based on correlation 52
(either Pearson or rank-based; Haxby et al., 2001), support vector machines (SVMs; De Martino et 53
al., 2008; Dosenbach et al., 2010), logistic regression (Akama et al., 2012), sparse multinomial 54
logistic regression (SMLR; Kohler et al., 2013; Krishnapuram et al., 2005), naïve Bayes classifiers 55
(Kassam et al., 2013), and more. Many of these techniques concern classification of brain patterns 56
into discrete cognitive states, whereas others examine different aspects of the data (e.g., overall 57
similarity between brain patterns; Xue et al., 2010; Lim et al., 2019) without explicit categorization, 58
but all of them represent increases in mathematical and conceptual sophistication over univariate 59
techniques. Importantly, when compared to earlier univariate techniques, MVPA has enabled us to 60
examine in a much more nuanced fashion how brain activity patterns encode mental states. 61

Although traditional MVPA techniques are substantially more advanced than univariate techniques, 62
they are nonetheless still fairly simple, both mathematically and conceptually. Traditional MVPA is a 63
form of machine learning (ML), but it is among the simplest forms; most MVPA approaches use 64
straightforward linear mathematical models. This comparative simplicity certainly confers 65
advantages – for example, faster computation times than more complex techniques (with some 66
caveats2), and a generally lower risk of “overfitting”3. However, simpler mathematical formulations 67

1 Although most of our discussion focuses on fMRI and EEG, as those are the most common techniques in our field of
cognitive neuroscience, most points should translate well to related technologies like structural MRI,
magnetoencephalography (MEG), or electrocorticography (ECoG), and even to less closely related methods such as
extracellular recordings (e.g., from rodents or nonhuman primates).

2 For example, SVMs may take inordinately long to converge on extremely high-dimensional datasets that are handled
more easily by deep neural networks. As discussed later, deep networks also have better support for GPU-based
parallelization than simpler linear techniques, which can offset their computational costs.

3 The creation of a predictive model that is highly customized to the data used to train the model, but generalizes poorly
to new datasets that do not perfectly match the idiosyncrasies of the training data; a significant concern in ML. A good
analogy is a bespoke garment perfectly tailored to the contours of a specific individual, which would fit him/her perfectly

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 4, 2020. ; https://doi.org/10.1101/2020.12.03.410910doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.03.410910
http://creativecommons.org/licenses/by-nc/4.0/

 Deep learning and MVPA

3

are necessarily limited in what we call “informational resolution” – the specificity of the neural 68
patterns and cognitive states that they are able to capture. 69

How much informational resolution is required to glean as much about brain function as is possible 70
using current neuroimaging technology? The answer is hard to pin down, partly because it is difficult 71
to establish firm estimates of the “noise ceiling”4 for these techniques. As neuroimagers, we often 72
complain that our techniques are “noisy,” but with proper usage, the signal-to-noise ratios of EEG 73
and fMRI are really rather high, when considering only measurement noise from the instruments 74
themselves and the surrounding physical environment. Of significantly greater concern are “noise” 75
sources such as subject head/body motion, physiological artifacts (cardiac, respiratory, muscular, 76
etc.), and cognitive artifacts (distraction, poor understanding of instructions, falling asleep). Noise 77
ceilings for certain analytic techniques and datasets can be estimated (Kay et al., 2008; Nili et al., 78
2014), but ultimately they will depend on which data components are considered “noise”; aside from 79
the noise that arises from the physics of the measurement itself, other biological and subject-driven 80
artifacts have some hope of being detected, modeled, and/or removed. And, much like the signal 81
components we actually care about (i.e., those related to our experimental questions), our ability to 82
detect and account for noise depends largely on the sophistication of our analytic techniques. 83

What we do know is that the brain is a highly complex, highly nonlinear system (Koch & Laurent, 84
1999; Sporns et al., 2000; Buzsaki & Mizuseki, 2014), and the addition of noise sources that are also 85
complex and nonlinear makes brain data no easier to analyze and interpret. Although the limits of the 86
usefulness of traditional MVPA, with its relatively low informational resolution, have not yet been 87
reached, those limits do loom on the horizon. As the size of neuroscience data continues to grow5, 88
traditional MVPA’s limitations become ever more apparent. It is a statistical truism that more 89
complex analytic models, with more parameters to fit, allow us to account for a greater proportion of 90
a dataset’s variance, but they also require larger input data to estimate their parameters reliably. Yet 91
the sizes of many contemporary datasets are now such that they can potentially accommodate 92
significantly more sophisticated statistical models than traditional MVPA, with greater power to 93
identify, extract, and distinguish noise sources and signals of interest. Thus, we believe it is time for 94
cognitive neuroscience and related fields to place increased emphasis on developing, exploring, and 95
using more sophisticated techniques, and on producing tools that can be used to perform that 96
exploration more effectively and efficiently. 97

1.1 The case for deep learning 98

There are numerous potential analytic methods of greater complexity and sophistication than 99
traditional MVPA. One class of ML techniques that has been gaining popularity, and the one we 100
endorse in this paper, is “deep learning.” Deep learning, briefly defined, refers to the use of artificial 101

but look terrible on most others. Conversely, an off-the-rack outfit with a simpler design would fit many individuals of
roughly similar proportions reasonably well.

4 Informally defined, the best we might be expected to do in using statistics to explain variance in the data, accounting for
the fact that a certain amount of unexplainable variance, aka noise, will always exist.

5 E.g., from better spatiotemporal resolution due to technological improvements; from increasingly large sample sizes,
particularly from big-data initiatives such as the Human Connectome Project (Van Essen et al., 2013) and OpenNeuro
(formerly OpenfMRI; Poldrack et al., 2013); and simply from the ongoing accumulation of data stockpiles from many
years’ worth of research studies.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 4, 2020. ; https://doi.org/10.1101/2020.12.03.410910doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.03.410910
http://creativecommons.org/licenses/by-nc/4.0/

 Deep learning and MVPA

4

neural networks (ANNs), typically with recurrent and/or convolutional architectures, that are more 102
complex, flexible, and powerful than both earlier generations of ANN architectures and the 103
techniques used for traditional MVPA. In the last few years, such deep neural networks (DNNs) have 104
been used increasingly heavily in a number of fields that employ ML for all kinds of purposes. Such 105
usage includes an ever-growing collection of studies in human neuroscience and related disciplines, 106
although a relatively small proportion have been devoted to neuroimaging analysis, and fewer still 107
devoted to decoding cognitive states from functional measurements of brain activity, which is a topic 108
of great interest to many. We believe the studies so far represent only the tip of the proverbial iceberg 109
in terms of what is achievable by using DNNs to analyze neuroscience datasets. In fact, we believe 110
deep learning has the potential to perform most of the tasks for which traditional MVPA is typically 111
employed, but with greater speed, flexibility, and power, and thus we advocate for the more 112
widespread use of what we call “deep MVPA,” or dMVPA for short. 113

To achieve more widespread adoption of deep learning in the neurosciences, notable challenges to 114
confront include 1) a relatively low level of knowledge/awareness of these techniques, and 2) 115
insufficient availability of software tools to make dMVPA as approachable as traditional MVPA. In 116
this paper we address the first challenge by providing a brief review of deep learning techniques, 117
including how they can be used in neuroscience investigations, and the pros and cons of dMVPA 118
versus traditional MVPA. We address the second challenge by introducing a new Python-based 119
software toolbox (the “Deep Learning In Neuroimaging: Exploration, Analysis, Tools, and 120
Education” package; DeLINEATE for short) that builds upon previous DNN and MVPA tools and 121
aims to make dMVPA more approachable and efficient for other researchers. 122

2 dMVPA: A tutorial 123

2.1 A brief history of neural networks 124

The techniques we now collectively call “deep learning” are generally extensions of older “shallow” 125
ANNs, which are significantly less complex and powerful than DNNs but not much different in their 126
basic principles. The concept behind all ANNs originates from a highly abstracted view of non-127
artificial neural networks, i.e., the biological nervous system (Figure 1A). In this framework, most 128
implementation details are stripped away, and what remains is the basic idea of a network of simple 129
computational units (“neurons”) that receive input (which can typically be excitatory or inhibitory), 130
perform an operation on their inputs (typically some variation on summation), and produce an output 131
(typically a single value analogous to an action potential or a firing rate), which might then serve as 132
input to one or more downstream neurons6. The original and simplest case is the McCulloch-Pitts 133
neuron (McCulloch & Pitts, 1943; Figure 1B), a processing unit whose input and output values are 134
exclusively binary (0 or 1). The McCulloch-Pitts neuron sums its inputs, compares the sum to some 135
threshold value, and outputs a 1 (“action potential”) or 0 according to whether the sum exceeds the 136
threshold. Although a pioneering idea and an interesting (if highly simplified) early model of neural 137

6 It should be noted up front that the artificial “neurons” used in ML applications bear about as much resemblance to real
neurons as a paper airplane bears to a commercial airliner. In both cases, the barest core principles are similar between the
pared-down model and the real thing, but little else. However, despite the low resemblance, ANNs can still be extremely
useful tools for ML and data processing. Readers are nonetheless cautioned to be as circumspect about over-aggressive
comparisons between artificial and real neural networks as they would about buying transatlantic tickets on paper
airplanes.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 4, 2020. ; https://doi.org/10.1101/2020.12.03.410910doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.03.410910
http://creativecommons.org/licenses/by-nc/4.0/

 Deep learning and MVPA

5

information processing, McCulloch-Pitts neurons can only implement a limited set of functions and 138
are thus not considered very useful for modern ML applications. 139

Figure 1. Comparison of biological and
artificial neural models.

(A) A simplified “textbook” model of a biological
neuron. Inputs come in via the dendrites in the
form of action potentials (or the lack thereof). The
inputs are summed in the cell body (soma) and, if
the threshold voltage is reached, the cell produces
an action potential as output that is delivered via
the cell's axon. (B) The original and simplest
version of an artificial neuron model, the
McCulloch-Pitts neuron. Similar to the biological
neuron, inputs (xi) and outputs are binary (although
we now know this to be an oversimplified view of
biological neurons). Inputs are summed and the
result passed to a thresholding function; if the
threshold is met, an output of 1 is produced, and
otherwise the output is 0. (C) A perceptron, a more
sophisticated revision of the McCulloch-Pitts
neuron that has an important place in modern
artificial neural networks. The concept of trainable
weights (wi; mimicking biological potentiation at
synapses) is introduced, and inputs are now
multiplied by their corresponding weight before
summation. In addition, in contemporary
perceptron models, the threshold function can be
replaced by any arbitrary function, called the
“activation function.” Popular activation functions
like the hyperbolic tangent may still act largely like
thresholding functions, but with the ability to
deliver graded rather than strictly binary output
values.

A few years later, though, ANNs took a significant step forward when Rosenblatt (1958) 140
incorporated Hebb’s theoretical views on the strengthening and weakening of synaptic connections 141
(Hebb, 1949) into a McCulloch-Pitts-like unit that came to be called the perceptron7. In its simplest 142
form, a perceptron (Figure 1C) is largely identical to a McCulloch-Pitts neuron with one critical 143

7 As originally conceived, “perceptron” referred to a more complex network of units that could be implemented in a
physical machine to produce artificial vision, hence the name. However, the most salient feature that researchers latched
onto was the structure of the neural units, and via synecdoche “perceptron” came to be the name of such a unit, so there is
some degree of fuzziness around nomenclature and definitions. Here, we use the contemporary sense of “perceptron” to
refer to the architecture of an artificial neural unit, rather than the original plan for the physical perceptron machine.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 4, 2020. ; https://doi.org/10.1101/2020.12.03.410910doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.03.410910
http://creativecommons.org/licenses/by-nc/4.0/

 Deep learning and MVPA

6

addition: Each input is now associated with a “synaptic weight” (often denoted w0, w1, etc.) that 144
determines whether it is excitatory or inhibitory and how strongly it influences the output. 145
Summation is then performed on the inputs after they have been multiplied by their respective 146
weights. Statistically inclined readers may recognize this as not-dissimilar-to a regression model, 147
particularly logistic regression; to conceptually convert between a multiple regression model and a 148
perceptron, simply rename the weights from the βi typically used in regression equations to wi and 149
pass the regression output through a thresholding function, logistic function (to essentially replicate 150
logistic regression), or other function as desired8. This function is known as the artificial neuron’s 151
activation function; activation functions are a key feature of contemporary ANN designs, and there 152
are many options to choose from. 153

In most important ways, the perceptron-like artificial neural units used in some DNNs today are not 154
substantially different than the classical perceptrons discussed by Minsky and Papert (1969) in their 155
seminal book some 50 years ago. Yet the original perceptron architectures retained many of the 156
McCulloch-Pitts neurons’ limitations and still had significant constraints on the classes of problems 157
they could solve. The key developments that distinguish the powerful deep learning techniques of 158
today from the toy models of the past are 1) improved methods for establishing what the proper 159
synaptic weights should be for a given dataset/problem, i.e., training the neural network, and 2) new 160
and ultimately better ways of digitally connecting groups of artificial neurons together into more 161
complex structures, i.e., improved ANN architectures9. 162

2.2 Training algorithms and neural network architectures 163

The earliest ANN architectures were very simple indeed; either a single artificial neuron or, in the 164
next major architectural advance after that, a layer of such units. In this latter (still very simple) 165
architecture, the units are fully connected, meaning that each unit receives a copy of each possible 166
input value (see Figure 2A). Note that in this figure, as in many neural network diagrams, inputs and 167
outputs are represented as “layers” of a sort, but there is only one true layer of computational units10. 168
If the ANN is meant to calculate a classification problem (a common application), the outputs are 169
typically assumed to each correspond to one of the possible classes, and are interpreted in a winner-170
take-all fashion (i.e., for a given set of input data, whichever output value is highest is interpreted as 171
the network’s prediction of the class that the input data belong to). Although the transition from 172
single-neuron to single-layer architectures laid a critical foundation for later work, single layers of 173
perceptrons were soon shown not to be terribly useful as artificial intelligence agents, no matter what 174
their synaptic weights were or how those weights were determined. As Minsky and Papert 175
demonstrated in Perceptrons (1969), it is mathematically impossible for any single-layer perceptron 176

8 The concept of the perceptron is also somewhat looser than the McCulloch-Pitts neuron regarding whether inputs and
outputs are constrained to be binary or can be continuously valued, and regarding what kind of thresholding or other
function the summed inputs are passed through in order to create the output.

9 Not to mention the ~billion-fold increase in computational power (IBM 704 at 12,000 flops versus a recent desktop
GPU at ~11 teraflops, for an NVIDIA GeForce GTX 1080 Ti) that helps to make such sophisticated architectures viable.

10 In a biological neural network, one might relate these to a layer of dendrites, a layer of cell bodies, and a layer of
axons, but all of those together would comprise a single layer of neurons.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 4, 2020. ; https://doi.org/10.1101/2020.12.03.410910doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.03.410910
http://creativecommons.org/licenses/by-nc/4.0/

 Deep learning and MVPA

7

network – no matter how many units are in it – to perform certain fundamental computational 177
operations11. 178

This revelation may not seem surprising in retrospect; after all, a single layer of neurons, all receiving 179
the same inputs, is not a very viable architecture for a biological neural network either. Still, it was 180
enough to significantly dampen enthusiasm for ANN research for over a decade. Although adding 181
another layer of computational units (known as a hidden layer) would allow the network to maintain 182
an intermediate representation of the input and enable more complex operations12, the algorithms 183
available for training single-layer perceptron networks could not be readily extended to multi-layer 184
architectures. In the 1980s, however, interest was reignited with the popular (re-)discovery of the 185
backpropagation algorithm (or simply backprop, to its friends). This algorithm was known and even 186
applied to ANNs previously (Linnainmaa, 1970; Werbos, 1974), but it did not reach mainstream 187
awareness until the publication of Rumelhart and colleagues’ (Rumelhart et al., 1986a; Rumelhart et 188
al., 1986b) seminal formulations of it. Backprop proved to be a highly robust method for training 189
ANNs across many applications, and is still the dominant training algorithm in use today. 190

The main principle behind backprop is to take any errors made by the network during training and 191
propagate responsibility for them from the output layer (where the error is assessed, by comparing 192
the network’s decision to the known correct decision13) backwards through the network towards the 193
input layer, penalizing the synaptic weights most responsible for the error along the way. It is 194
analogous to the human behavior encapsulated by the vernacular phrase, “Shit rolls downhill.” For 195
example, imagine that a CEO – the final decision-maker in her company’s chain of command – 196
makes a decision that loses the company money. She turns to her immediate inferiors and doles out 197
punishment to them proportional to how influential they were in guiding that decision, and decides to 198
trust those influential individuals less in the future. In turn, each of those upper-level managers 199
passes along the punishment and distrust they have received to their immediate inferiors, again 200
proportional to their influence on the upper managers’ actions, and so on down the corporate 201
hierarchy. In this way, one hopes that the next time a similar decision is faced, the shift in influences 202
and communication channels throughout the hierarchy will produce a better outcome. 203

The advent of effective backprop-based training for ANNs reignited interest in them for a time, and 204
backprop-trained ANNs were found to perform admirably in a number of ML domains. Still, before 205
long, interest waned again, as neural nets with many hidden layers were found to present 206
mathematical difficulties for backpropagation algorithms, and complex networks also took a long 207
time to train on the CPUs of the era. Concurrently, the 1990s also saw the development of promising 208
alternative ML algorithms, most notably the modern incarnation of support vector machines (SVMs; 209
Cortes & Vapnik, 1995; Boser et al., 1992). SVMs were easier to work with than ANNs and 210
performed nearly equivalently (or even better) in many problem domains of the time. Thus, when 211
traditional MVPA techniques arose in neuroimaging in the 2000s, it is unsurprising that SVMs and 212

11 Put more formally, single-layer networks cannot solve problems that are not linearly separable, which famously
includes the relatively simple XOR function. (For binary inputs A and B, respond “yes” if A is true and B is false, or if A
is false and B is true, but respond “no” if A and B have the same value.)

12 Including XOR and many others.

13 As backprop is performed by comparing the performance of a network on a training dataset against an already-known
ground truth for that dataset, it is thus considered a form of supervised learning, in ML parlance.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 4, 2020. ; https://doi.org/10.1101/2020.12.03.410910doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.03.410910
http://creativecommons.org/licenses/by-nc/4.0/

 Deep learning and MVPA

8

other similarly robust linear classification algorithms, well-suited to the mid-sized datasets of the 213
time, dominated within that emerging field. 214

2.3 The deep learning Renaissance 215

Research interest in ANNs experienced another upswing, which has continued to the present, 216
beginning around 2006. This rebirth happened for several reasons, including: 1) solutions to some of 217
the technical and mathematical problems that had plagued networks with complex, many-layered 218
architectures (Hinton et al., 2006); 2) methods for training ANNs on desktop workstations using the 219
GPU instead of the CPU, producing speed improvements of up to ~70x (Raina et al., 2009); 3) the 220
advent of the so-called “Big Data” era, which provided the larger datasets required to adequately 221
train more complex neural architectures; and 4) the re-branding of neural net research as “Deep 222
Learning,” which, despite being more public relations than true substance, still likely helped ignite 223
new interest in a field formerly seen as relatively tired and unpopular. Since this Renaissance began, 224
there have naturally been several key architectural and methodological developments14. However, 225
these newer architectures are still trained and used similarly to the older, simpler networks described 226
above, and the variations are not too difficult to comprehend once one understands the fundamental 227
concepts and terminology behind ANNs. 228

During the early days of this revival, deep learning research had a number of notable successes, 229
including advances in speech recognition, natural language processing, computer vision, financial 230
fraud detection, and more. Large technology companies, who had access to Big Data and financial 231
motivations for finding better ways to process it, also had their interest piqued. Thus they began to 232
invest in deep learning research themselves, including developing improved software tools (for 233
example, the TensorFlow toolbox, developed primarily at Google, and PyTorch, developed primarily 234
at Facebook). These tools typically rely on lower-level driver and software library support for GPU-235
based computation, most notably NVIDIA’s CUDA libraries for general GPU-accelerated computing 236
and their cuDNN framework, built atop CUDA, specifically for DNN applications15. Although the 237
use of such tools has exploded in the technology sphere and in basic computer science research, 238
adoption in other areas, such as cognitive neuroscience, has been slower. This lag can partly be 239
attributed to fundamental limitations and difficulties of DNN-based data analysis (e.g., potential for 240
overfitting), but another large factor is the lack of higher-level software tools that make it convenient 241
for neuroscience researchers to implement dMVPA without needing to write large amounts of their 242
own code. And, when better software tools exist, it will be more efficient to explore the space of 243
possibilities and limitations of dMVPA. In short, neuroscience and related fields need more software 244
tools that match, or exceed, the versatility and ease-of-use of existing traditional MVPA tools. This is 245
the goal of the DeLINEATE toolbox (Deep Learning In Neuroimaging: Exploration, Analysis, Tools, 246
and Education), which we introduce below. 247

14 E.g., the use of ReLU activation functions (Maas, Hannun, and Ng, 2013); new approaches to regularization (Zeiler &
Fergus, 2013); and other architectural elements that were available earlier became more prominently used, once sufficient
data and computing power existed to use them more effectively (e.g., convolutional network layers).

15 However, alternatives for other GPU architectures do exist, such as the CoreML library used in Apple devices, which
use primarily non-NVIDIA GPUs.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 4, 2020. ; https://doi.org/10.1101/2020.12.03.410910doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.03.410910
http://creativecommons.org/licenses/by-nc/4.0/

 Deep learning and MVPA

9

2.4 Pros, cons, and caveats of dMVPA 248

Pro: Potentially greater suitability for complex, many-featured datasets. As discussed earlier, one 249
great promise of dMVPA is the potential to unearth more fine-grained patterns in neuroscience data 250
than the simpler (and commonly linear) techniques of traditional MVPA. However, a fundamental 251
principle of statistics is that more powerful (i.e., more complex) models require more parameters16, 252
and reliably estimating more parameters requires larger input datasets. Hence, why deep learning and 253
Big Data are commonly associated with each other. Unlike, say, the Google Images team, most 254
neuroscientists are unfortunately not swimming in training data for sophisticated machine learning; 255
neuroscience data are frequently “Big,” but more from features17 than from number of examples18. Of 256
course, in deep learning (and most statistical analyses), the inverse situation is usually more 257
desirable: A relatively large ratio of examples to features. 258

Potential solutions to the too-many-features problem include finding ways to intelligently select 259
(feature selection) or algorithmically condense19 the feature set. However, beyond those options, 260
most traditional MVPA techniques do not many choices for constraining the feature set, and in 261
particular lack any built-in ability to take the structure of the input data into account. This is 262
unfortunate because neuroscience data20 tend to be highly structured (temporally and spatially) in 263
ways that could be informative for MVPA21. DNNs, on the other hand, have numerous potential 264
architectural configurations that can be optimized to take advantage of known structure in the input 265
data. Most notably, certain types of ANN layers (e.g., convolutional layers) can handle multi-266
dimensional input data, whereas traditional MVPA’s linear classifiers typically just vectorize multi-267
dimensional inputs. Thus, dMVPA makes it possible to design customized classifiers that are more 268
suited to a particular shape/dimensionality of input data. 269

Caveat. Having more architectural options for structuring and condensing complex input data also 270
leads to a paradox of choice; how can one possibly decide on the best DNN architecture for a given 271
dataset? Unfortunately, dMVPA is still a young field, and we are still working on establishing good 272
heuristics for network architectures to handle many-featured datasets. Also unfortunately, this is not 273
one of those methodological choices where differences between options can be chalked up to 274

16 “Parameters” used in the statistical sense, i.e., numeric values that need to be estimated.

17 In the machine learning sense; for example, the number of voxels in a trial of fMRI data or the number of (electrodes ×
timepoints) in a trial of EEG data.

18 Also in the machine learning sense, i.e., instances of a set of features that can be assigned a category label. In
psychology and neuroscience, such “examples” are generally called “trials” (e.g., of a cognitive task), although in some
cases examples may correspond to experimental subjects – an even more limited resource.

19 For example, in techniques like elastic nets (Zou & Hastie, 2005) or SMLR, which use regularization or similar tricks
to reduce the number of predictor features.

20 Again, our discussion focuses on neuroscience data, but these techniques, lessons, and software tools can readily be
translated to related (or even not-so-related) research fields with similarly-structured datasets and classification problems.

21 For example, it may be useful to condense several spatially adjacent EEG electrodes with similar waveforms into a
single data channel. Or, if trying to classify whether a subject is viewing faces or houses, to construct a feature detector
that is sensitive to a certain voltage peak (say, the N170; Bentin 1996) but time-invariant within a ~20ms window, to
account for trial-to-trial latency variability.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 4, 2020. ; https://doi.org/10.1101/2020.12.03.410910doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.03.410910
http://creativecommons.org/licenses/by-nc/4.0/

 Deep learning and MVPA

10

rounding error; the wrong dMVPA architecture may completely fail to perform above chance in 275
situations where a superior architecture classifies the data fairly accurately. 276

Con: Many potential types of analysis architecture; many of these carry an increased danger of 277
overfitting. Most conventional MVPA techniques (SVM, SMLR, etc.) have a relatively small number 278
of hyperparameters22 to adjust, and those hyperparameters can often either be left at default values or 279
automatically estimated by the algorithm without serious adverse effects on performance. In contrast, 280
the number of possible hyperparameters to adjust in dMVPA is effectively infinite. These 281
hyperparameters include the number of layers in the network, the number of units in each layer, the 282
type of each layer23, and any number of additional layer-type-specific hyperparameters that can be 283
separately specified for each layer. Thus, even choosing a starting point for how to construct a 284
dMVPA model can be daunting for inexperienced researchers (and experienced ones, too). 285
Furthermore, thanks to the No Free Lunch (NFL) theorem(s) (Wolpert & Macready, 1997; Shalev-286
Shwartz & Ben-David, 2014), we know that no estimation- or optimization-based analysis technique 287
will be optimal for every dataset or problem domain, and therefore it is impossible to know a priori 288
whether a given analysis technique will be optimal for a particular problem. Put another way, if we 289
knew in advance that a particular analysis technique were optimal for our problem, then that 290
technique would necessarily be exquisitely tailored to the problem – which means we would 291
essentially already know the structure of the data perfectly, which obviates the need to conduct the 292
analysis. 293

Compounding the problem, there is no real upper limit, other than available computing power, to 294
how complex dMVPA models can be allowed to grow24. For the current status quo of neuroscience 295
data, most possible dMVPA models would be far too complex; many would even contain more 296
parameters to estimate than there are data points in the input set! It would be inaccurate to say these 297
models would fit the data poorly; rather, they would fit the training data too well. It is not uncommon 298
to see a complex dMVPA model effectively memorize its training data, producing perfect 299
classification of the training dataset but extremely poor generalization to a test dataset – the classic 300
problem of overfitting. 301

Caveat. Much as SVMs provide a fairly robust method for classification across a surprisingly wide 302
range of data types and problem domains (though they are rarely truly optimal due to NFL), there is 303
some hope that such “pretty good, most of the time” dMVPA architectures might exist as well. 304
Again, the field is young, but during development of the DeLINEATE toolbox, we have often found 305
that relatively simple dMVPA models, consisting of just 1–2 convolutional layers and 1–2 dense 306

22 This term is less commonly used in the MVPA literature than the ANN literature, but it refers essentially to a
parameter of the algorithm set by the user before running the analysis (for example, the amount of regularization), to
distinguish those values from plain (non-hyper) parameters, which are the values estimated by the statistical process or
model-fitting algorithm.

23 A full rundown of layer types is beyond this article’s scope and better-suited to a general introduction to deep learning,
but common types include perceptron-style “dense” layers, “convolutional” layers, “recurrent” layers, and supporting
utility layers that calculate simpler mathematical functions; discussed in more detail below.

24 Complexity could be defined many ways, but for now, we will use it mainly to refer to how many parameters (not
hyperparameters) need to be estimated for a given model.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 4, 2020. ; https://doi.org/10.1101/2020.12.03.410910doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.03.410910
http://creativecommons.org/licenses/by-nc/4.0/

 Deep learning and MVPA

11

layers25, perform comparably to (or better than) the industry workhorse of SVMs. A bit of 307
customization is often required to fit the size and shape of the input dataset, and it can be useful to 308
test out different variations of dMVPA architecture on one portion of the dataset before applying the 309
best-performing architecture to the remaining held-out data, but a satisfactory architecture is typically 310
not too difficult to find without excessive trial-and-error. We have found that after some experience 311
using dMVPA, one begins to develop fairly good intuitions about what kinds of architecture might be 312
best suited to a specific problem, but it is still far from an exact science. 313

As the field progresses, we hope that it will converge on more heuristics for designing dMVPA 314
architectures that perform as robustly as SVMs across datasets, while still retaining the flexibility and 315
other advantages of dMVPA. Still, for many practical applications, it is less important to identify an 316
optimal model than it is to determine if the data can be reliably classified above chance (Hebart & 317
Baker, 2018). With properly implemented cross-validation, this can often be achieved by a wide 318
variety of architectures (assuming the data do contain enough meaningful signal for reliable 319
decoding), with the accuracy difference between sets of hyperparameters being only a few percentage 320
points. Conversely, if the input data contain only noise with respect to the classification problem, any 321
sane architecture should perform at chance on the test set. Thus, while some trial and error may be 322
necessary before deciding that data cannot be classified, exhaustive model search is seldom required. 323
When possible, it is often helpful to conduct a traditional MVPA to get a ballpark estimate of how a 324
reasonably well-configured dMVPA should be expected to perform. 325

Pro: Intrinsically multiclass classification. One advantage of dMVPA whose value is likely 326
underestimated is that it is straightforward to design a “true” multiclass classifier, whereas most 327
traditional MVPA methods are intrinsically binary. Thus, in traditional MVPA, multiclass decisions 328
must generally be built from a combination of binary classifiers26. While there is nothing 329
methodologically wrong per se with building multiclass decisions from binary ones, the implications 330
are slightly different than those of a true multi-way decision, which should be taken into account 331
when interpreting results. Furthermore, in some commonly-used MVPA tools (e.g., PyMVPA), the 332
multiclass decision procedure is not always transparent to the end user, which can be a point of 333
confusion. Conversely, dMVPA classifiers are able to consider all classification options 334
simultaneously; as a consequence, it is also trivially easy to obtain meaningful prediction scores 335
across all classes for each example in the testing set, which can then be used in analyses that go 336
beyond simple winner-take-all accuracy measures. 337

Pro/Con: Performance. Performance, in the sense of speed, can be either an advantage or a 338
disadvantage of dMVPA. Although dMVPA network architectures can vary so widely that it is 339
difficult to generalize, prima facie dMVPA should typically run slower than traditional MVPA, 340
because the calculations involved in training a dMVPA network are more complex. However, for 341
larger datasets (in terms of numbers of features and/or examples), the performance of traditional 342
MVPA techniques may scale more poorly than dMVPA. (See “Benchmarks” below and Table 1 for 343
details.) Thus, beyond a certain dataset size, dMVPA may be the only feasible choice. Also, because 344

25 Technically, these “deep” MVPA networks would not be very deep in terms of how many layers they contain. Still, a
fair portion of “deep” learning these days does not use particularly complex network structures; the term now seems to
refer more to the contemporary era of ANN-based data analysis than any particular network structure.

26 Typically, if we have classes ABC, the multiclass decision would be made either by training up classifiers “A vs not-
A,” “B vs not-B,” and “C vs not-C,” or by training up classifiers “A vs B,” “A vs C,” and “B vs C,” and then summing up
the scores in favor of each category across classifiers in order to obtain an overall score for that category.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 4, 2020. ; https://doi.org/10.1101/2020.12.03.410910doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.03.410910
http://creativecommons.org/licenses/by-nc/4.0/

 Deep learning and MVPA

12

the network architecture of dMVPA can be adjusted, researchers have more options; e.g., whether to 345
employ a simpler network that may not achieve maximum accuracy but runs quickly, versus a more 346
complex network that runs slower. 347

Caveat. As alluded earlier, dMVPA’s computational costs can be somewhat offset by parallelization, 348
which is better supported by deep-learning software tools than most traditional MVPA tools. This is 349
true even if parallelizing across CPUs/cores, but especially true if using the computer’s GPU. Results 350
vary widely depending on dataset size, network architecture, and the specific hardware involved, but 351
users might roughly anticipate anywhere from a 5x–100x or more speedup for running dMVPA on a 352
GPU versus a CPU. On one hand, these benefits make dMVPA a more competitive option, speed-353
wise. On the other hand, GPU-accelerated dMVPA does require more specialized hardware and more 354
human effort setting up the relevant drivers and software packages. While we have striven in our 355
toolbox and documentation to keep this process as painless as possible, it is still more effort than is 356
required to run non-GPU-accelerated analyses; whether that effort is well-spent will heavily depend 357
on individual users and what tasks they are trying to accomplish. 358

Pro: Flexibility of applications. Although our focus has been on dMVPA, we should note that 359
modern neural networks have an ever-increasing number of uses beyond simple classification. For 360
example, one currently popular strategy is to train a model for categorization within some domain 361
(e.g., the contents of a photograph) and then interrogate the model’s intermediate layers, in an 362
attempt to understand what strategy the model is using (Zeiler & Fergus, 2014). Autoencoder-style 363
architectures allow for, e.g., unsupervised learning of feature structure (Xie et al., 2016), feature-364
sharpening for degraded inputs (Lore et al., 2017), and principled fusion of multimodal data (Ngiam 365
et al., 2011). Deep networks can also be used to implement classification techniques that are not well-366
suited to traditional MVPA – for example, “transfer learning,” in which a network is initially trained 367
on one dataset, and then refined by training it further on a different dataset. As another example, we 368
have recently explored using deep networks to create “smarter” similarity/distance metrics tailored to 369
particular datasets/applications, unlike traditional formula-based metrics (e.g., Pearson correlation, 370
Euclidean distance), which do not afford such flexibility (Williams et al., 2020). The DeLINEATE 371
toolbox can, with varying degrees of effort, support many of these advanced applications. 372

Con: Field and dependencies are in active development. While the software tools for traditional 373
MVPA will presumably keep receiving periodic updates, the field overall is fairly mature and not 374
changing particularly rapidly. However, deep learning and dMVPA are newer; as such, the 375
techniques and their underlying software tools are continually being updated. This means that 376
documentation can rapidly go out of date, and incompatibilities can arise easily if developers are not 377
careful. We have aspired to make our own toolbox as robust as possible to the changing software 378
landscape, but it is still worth being aware of. Of course, there are mitigating strategies: Users can 379
find one version that works and refuse to update anything, but this deprives them of future 380
enhancements. Alternately, they can continually update, but this makes it harder to exactly replicate 381
earlier work run with previous software versions. If only Python toolboxes (our DeLINEATE 382
toolbox, and the Keras/PyMVPA backends it relies on) are updated, Python’s “virtual environment” 383
feature can be helpful for maintaining different software setups, each in their own containers. But, if 384
later updates require newer hardware drivers, and users wish to maintain backward compatibility 385
with their earlier work, they may wish to do what our lab has done: Purchase several small hard 386
drives for each machine, set up a fresh operating system for each new major driver version, and 387
simply reboot from a different boot drive when one wishes to work with current vs. legacy versions 388
of the software. 389

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 4, 2020. ; https://doi.org/10.1101/2020.12.03.410910doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.03.410910
http://creativecommons.org/licenses/by-nc/4.0/

 Deep learning and MVPA

13

2.5 A brief introduction to network architecture 390

In an abstract sense, all feedforward27 neural networks may be viewed as a collection of 391
mathematical operations to be applied in sequence to an input of some fixed size, along with rules for 392
updating the parameters of those operations during training. In a classic perceptron, the core 393
operations are multiplication (input data times weight values), summation, and then activation (a 394
thresholding operation, traditionally). In a multi-layer perceptron network (Figure 2A), this complete 395
multiplication-summation-activation sequence is repeated, with each layer’s outputs becoming the 396
next layer’s inputs. A typical, slightly simplified mental model for such networks treats those 397
multiplication-summation-activation operations as all occurring within a self-contained unit or node, 398
like in a biological neuron; a number of such units in parallel constitutes a layer of the network, and 399
the main free parameter chosen by the designer of the network is the number of units in each layer. 400
However, unlike a biological neuron, in an ANN this set of operations is not immutable – one might 401
opt to omit activation, invert values after every step, or do any other sort of mathematical 402
transformation, at any step of the sequence. One could also adopt a different mental framework in 403
which every individual operation is a layer of the network, such that each layer of a perceptron 404
network expands into three sequential computational layers: a multiplication layer, a summation 405
layer, and an activation layer. In Keras, the Python framework upon which the DeLINEATE 406
toolbox’s deep-learning functionality rests, it is possible to work with either of these 407
conceptualizations – e.g., there are individual layer types that can perform thresholding/activation, 408
but the activation operation can also be specified as an argument of other layer types, with the 409
understanding that activation is applied last, after that layer’s primary operation. 410

In lay terms, when sufficiently tortured and beaten into submission, contemporary deep learning 411
frameworks can be mangled into performing virtually any kind of mathematical operation or 412
transformation on the input data. A full discussion of all the possibilities could fill several books, and 413
is thus beyond the introductory scope of this paper. However, there are a few broadly useful kinds of 414
operation/layer that are particularly worth understanding; novices to deep learning should focus on 415
understanding the basic gist of these fundamental tropes before getting lost in the details. Here, they 416
are described briefly in broad categories; Keras has several subtypes of each depending on details of 417
the desired implementation. 418

2.5.1 Classic 419
Called “Dense” layers in Keras, these are layers made of perceptrons (Figure 2A). They compute 420
weighted sums and apply an activation function. Varying the number of computational units in such a 421
layer allows one to increase (e.g., consider more potential weightings) or decrease (e.g., prune less 422
informative features) the dimensionality of the data as it passes through the layer. By default, these 423
layers are fully-connected, meaning that all outputs from one layer are used as inputs for each 424

27 “Feedforward” meaning that all outputs from earlier (closer to the input) layers are fed “forward” into later (closer to
the output) layers; outputs are never fed back into earlier layers. Feedforward networks are generally easier to work with
and design. Our toolbox currently supports only networks with a broadly feedforward design (implemented via the
“Sequential” model class in Keras) when using the graphical interface or text-based job files; however, when using it as a
collection of Python functions, other network types are possible. One exception is recurrent layers, which feed their
output back into themselves; thus networks containing recurrent layers are not strictly feedforward. However, as
implemented in our toolbox and the Keras backend we rely on, the recurrency can be viewed as something that recurrent
layers handle within themselves; the user does not have to think about this recurrency in terms of their network
architecture. From the user’s point of view, the layers of the network still follow a feedforward/sequential structure, even
if the individual units within some layers have recurrency built-in.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 4, 2020. ; https://doi.org/10.1101/2020.12.03.410910doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.03.410910
http://creativecommons.org/licenses/by-nc/4.0/

 Deep learning and MVPA

14

computational unit in the next layer of the network. As noted earlier, a neural network made entirely 425
of dense layers is sometimes called a “multi-layer perceptron” network architecture. 426

Figure 2. Examples of artificial neural
network architectures.

(A) A simple fully-connected multi-layer perceptron
model with 12 input values, a middle layer comprising
three perceptrons, and an output layer with two
perceptrons. Line lightness is used to represent synaptic
weight strength. (B) An example of a convolutional
neural network layer that might be used to analyze 2-D
input. Here, the layer looks less like a set of artificial
neurons and more like a digital filter used in image
processing. Two-dimensional input is convolved with a
2-D filter to yield a 2-D output, sized similarly to the
input. During training, it is the values in the
convolutional filter that get adjusted. Square lightness
represents the numeric values in the cells of each 2-D
matrix. (C) An example of a simple recurrent neural
network. There are many types of recurrent neural
network structures with varying degrees of complexity,
but all share the property that recurrent units' output gets
passed back into them (represented here by curved
arrows), giving them some form of “memory” for
previous input values. (D) An example of a complete
neural network architecture that might be used to
analyze 3-D input such as MRI data for a two-class
classification problem. In this simple example, 12 input
values in a 2×2×3 array are first passed through a 2×2×2
convolutional filter, yielding another 2×2×3 array as
output. This is then passed through a “flattening” layer
to convert it to a 12×1 vector, which then passes through
a 3-unit dense layer to a 2-unit output layer (as shown in
panel A).

2.5.2 Convolutional 427
Convolutional layers (Figure 2B) may be conceptualized as collections of filters that are swept across 428
(in mathematical terms, convolved with) their input. When used to process 2-D photographic data, 429
their function is often likened to visual neurons, which take input from a spatially restricted receptive 430
field, extract some feature if present, and pass along the result to the next layer of the visual 431
processing hierarchy. For readers familiar with digital image processing, they are essentially like 432
other kinds of digital filters (e.g., a blur filter, an edge detector), except that convolutional layers can 433
work with any dimensionality of data (not just 2-D images) and their parameters are learned over the 434

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 4, 2020. ; https://doi.org/10.1101/2020.12.03.410910doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.03.410910
http://creativecommons.org/licenses/by-nc/4.0/

 Deep learning and MVPA

15

course of training, rather than being pre-defined. The combination of filter shape and input data 435
structure will determine what kinds of feature may be selected for and passed along as output. For 436
example, if each example of input data is a 32 × 1000 array of EEG voltages (e.g., 2 seconds of 32-437
channel data sampled at 500 Hz), a set of 1 × 10 filters would be capable of detecting high-frequency 438
patterns within individual channels (in this example, patterns that fit inside a 20 ms time window), 439
but insensitive to lower-frequency or purely spatial patterns. Conversely, a set of 10 × 1 filters could 440
detect patterns distributed across multiple channels, but only those that occur instantaneously. 441
However, one could instead employ, for example, a set of 8 × 20 filters, which would be capable of 442
detecting patterns spread across up to eight adjacent channels over a 40 ms time window. Choices 443
about data structure are consequently more important for this class of layers than for a multi-layer 444
perceptron; the input examples would contain identical information if flattened from 32 channels × 445
1000 timepoints to a single 1 × 32,000 vector, but the meaning of a 1 × 10 filter bank’s outputs would 446
be very different. 447

2.5.3 Recurrent 448
Recurrent layers (Figure 2C) are named for their property of having their outputs fed back into 449
themselves as inputs. By maintaining an internal state determined by previous inputs, recurrent units 450
develop a form of memory for sequential data. For example, a 1 × 10 vector input to a classic dense 451
unit would be combined to a single value in only two steps – multiplying each element of the vector 452
by its weight and then summing the results. If the same vector were fed into a recurrent unit 453
(typically called a cell), the first element would be handled in isolation, but evaluation of the second 454
element would include the output of the cell’s operation on the first element. The result of this would, 455
in turn, update the unit’s state to influence its response to the third element, and so on until each 456
element of the input is consumed. Recurrent networks are frequently used to process natural language 457
data (both audio and text) and in general are considered good choices for timeseries data. In our own 458
work, we have not observed any significant benefit over convolutional layers when working with 459
human neuroscience data, and have found recurrent-based networks to take longer to train than 460
convolutional-based networks; however, these findings are likely highly dependent on details of the 461
dataset and research question. As alluded earlier, for common types of recurrent cells, the recurrency 462
is handled within the cell as a form of internal “memory” that is not visible to the rest of the network, 463
so network architectures using recurrent layers can still be considered broadly “sequential” or 464
feedforward, and are thus supported by our toolbox. 465

2.5.4 Supporting 466
This is a broad category of operations that, for various reasons, are generally thought of as secondary 467
or historically baked-in to more interesting operations. In Keras, this includes activation layers, 468
various purely utilitarian data-reshaping or simple mathematical operations, dropout (an operation in 469
which some percentage of a layer’s units are ignored; thought to mitigate overfitting), etc. Some of 470
these operations (e.g., activation functions) can be specified either as distinct layers or as parameters 471
to a primary layer, whereas others (e.g., a layer that downsamples the output of the previous layer via 472
averaging) can only be specified as distinct layers. 473

2.5.5 Practical advice 474
The following is a combination of our experience and advice we have received from other 475
colleagues. We hope it is helpful as a starting point, but readers should not feel overly constrained by 476
it. While the modern leaders in image recognition involve dozens of layers (Szegedy et al., 2016), in 477
our experience the aim of dMVPA can typically be accomplished with much smaller networks. When 478
working with minimally-processed fMRI/EEG/eye-tracking data, we have found that a good starting 479

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 4, 2020. ; https://doi.org/10.1101/2020.12.03.410910doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.03.410910
http://creativecommons.org/licenses/by-nc/4.0/

 Deep learning and MVPA

16

point often consists of 1–2 convolutional layers followed by 2–3 dense layers; based on preliminary 480
results from that architecture, one could add or remove layers, adjust the layers’ sizes, or tweak other 481
hyperparameters. See Figure 2D for an example. For maximal effectiveness and interpretability, 482
consideration should be given to the match between the shape of the per-example input data and 483
shape of convolutional filters (e.g., should the filters look across EEG channels, or only within? If 484
across, are channels arranged to be spatially adjacent in the data?). Leaky ReLU is usually our 485
preferred activation function, and we have often found dropout values of ~0.3 in dense layers to be 486
beneficial. We have found Stochastic Gradient Descent (SGD) with the momentum parameter 487
(classical or Nesterov) set to something on the order of 0.9 to be a generally successful optimizer, 488
although the Adam optimizer (Kingma & Ba, 2014) also performs well in some situations28. New 489
users are encouraged to experiment with everything and keep track of the results; soon, you will 490
likely develop your own favorite architectures and hyperparameters. Do not be afraid to experiment 491
broadly; dMVPA has some powerful advantages, but we are also in a more exploratory phase for this 492
kind of research, and designing a sufficiently performant dMVPA architecture can take significant 493
trial-and-error. Of course, the extent to which that exploration might constitute p-hacking depends on 494
your research aims; if that is a potential concern, you may want to design your analysis based on an 495
independent dataset (e.g., one of the sample datasets included in our toolbox), or consider a split-half 496
design in which one half of your data is used to explore analysis architectures and the other half is 497
used for confirmatory purposes. 498

3 dMVPA: A toolbox 499

3.1 The DeLINEATE Toolbox 500

One major purpose of the DeLINEATE toolbox is to enable rapid exploration of model 501
architectures/hyperparameters while maintaining an accurate record of what was done and how it 502
turned out. These are conflicting goals in common practice – a researcher attempting to iterate on an 503
analysis is often tweaking a script or working directly with a command-line interpreter, perhaps in a 504
Notebook type environment (Grus, 2018), and discarding fruitless branches of exploration along the 505
way. Maintaining an accurate record of each tweak and its results during such rapid prototyping is 506
not easy, and can take more time and coding discipline than many of us have. 507

Our solution to this problem was a processing pipeline in which a single JSON (JavaScript Object 508
Notation) format29 job configuration file fully specifies an analysis: the input data, how it will be 509
divided for cross-validation and rescaled, the model architecture to be trained and evaluated, and the 510
outputs to be saved (Figure 3A). The toolbox translates this JSON file into Python code to execute 511
the specified analysis (or analyses), and saves all desired outputs into .tsv (tab-separated values) files 512
with names that include a user-defined prefix linking them to the original JSON file. A copy of that 513
original JSON file can also be saved alongside the other output, so that even if the original is 514

28 We realize that all this terminology can be overwhelming at first, but readers unfamiliar with deep learning should try
not to feel discouraged by the sheer number of architecture/hyperparameter choices available. Rest assured that it does
become more familiar and accessible after some hands-on experience.

29 JSON is a format that allows data structures to be written to plain text files with human-readable syntax. Although not
as intuitive as a graphical interface, editing JSON-formatted job files is certainly easier for beginners than writing their
own Python code. There are also JSON modules available for many popular text editors and a handful of standalone
JSON editing programs to make the task even easier.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 4, 2020. ; https://doi.org/10.1101/2020.12.03.410910doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.03.410910
http://creativecommons.org/licenses/by-nc/4.0/

 Deep learning and MVPA

17

subsequently overwritten during the exploration process, the “output” copy remains a pristine record 515
of what was run to create a particular set of results. 516

Figure 3. Ways that users can configure an analysis in the DeLINEATE toolbox.

(A) Most users will likely configure analyses using a text-based JSON (JavaScript Object Notation) format job file. In
this example, the file is open in a generic text-editor program, but JSON-format-specific editing software also exists.
Each job has four main sections: “model,” “data,” “analysis,” and “output,” corresponding to the major object types in the
toolbox. The file shown is configured to run 10 iterations of a PyMVPA-based SMLR analysis using a sample face-
scene-object-viewing EEG dataset, using a randomly selected 95% of trials as training data and 5% as test data on each
iteration. (B) A basic graphical user interface (GUI) that allows users to configure a job file without having to edit the text
directly. The most frequently used options for several common analysis types are available (although editing the text file
directly will always allow more flexibility than is possible to express in a GUI). The GUI also contains sections for data,
analysis, model, and output, as well as buttons for loading in an existing job file and saving the settings configured in the
dialog box to a new JSON file. The settings shown are configured to run 20 iterations of a Keras-based deep learning
analysis, using 70% of trials as training data, 15% as validation data, and 15% as test data on each iteration.

A secondary goal was to facilitate comparison of dMVPA approaches to traditional MVPA while, as 517
much as possible, maintaining parity in data handling. To this end, classic MVPA is also supported 518
alongside the dMVPAs that are our primary focus. This is currently implemented with a PyMVPA 519
backend. Traditional MVPA uses the same JSON job file format as dMVPA, as well as similar 520
output file formats, cross-validation/rescaling options, etc., making it a simple task to conduct 521
parallel MVPA and dMVPA on the same data. Currently we support SVM (Support Vector Machine) 522
and SMLR (Sparse Multinomial Logistic Regression) classifiers for traditional MVPA, although our 523
framework is readily extensible to most other classifiers in the PyMVPA toolbox. 524

For a typical user, the primary entry point to the toolbox is delineate.py, a simple script that accepts 525
one or more JSON-format configuration files as arguments, validates their contents, and uses them to 526
create and run one or more analysis job(s). This allows users to run analyses without requiring them 527
to write any code of their own. To further increase accessibility, we have recently developed a simple 528
graphical user interface (GUI) that some find more approachable than a text editor (Figure 3B). GUI 529
users can click on a collection of interactive menus to create properly-formatted job configuration 530
files, which can then be used as input to the main delineate.py script. The GUI can also auto-populate 531

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 4, 2020. ; https://doi.org/10.1101/2020.12.03.410910doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.03.410910
http://creativecommons.org/licenses/by-nc/4.0/

 Deep learning and MVPA

18

selections based on an existing job configuration file for users who have a starting point (such as one 532
of the included sample job files) they wish to modify for future analyses. 533

For Python-proficient users who want more complex or flexible analysis options, the toolbox can 534
also be used as a Python programming library, and users can write their own code instead of creating 535
JSON files. JSON functionality and code-library functionality can also be mixed-and-matched (e.g., 536
JSON files can be used to create a template analysis, which can then be tweaked and iterated upon 537
with custom code). For users who wish to write their own Python code as well as JSON users who 538
simply want some familiarity with the toolbox’s underlying functionality, we next present a brief 539
overview of the code structure; more detail is available in the toolbox documentation. 540

3.2 DeLINEATE Toolbox structure 541

The DeLINEATE Toolbox is an object-oriented collection of Python modules, each responsible for a 542
different aspect of the (d)MVPA process. It comprises five main object classes and a small number of 543
supporting files that contain utility functions or facilitate batch analysis. Each main class is housed in 544
a .py file named for that class. In typical usage, the toolbox follows a minimum-import philosophy; 545
to use it as a code library, one simply needs to navigate to its main directory and directly import the 546
desired class file(s). The primary classes are: 547

1. DTJob, responsible for parsing JSON files that define DeLINEATE jobs and passing the 548
appropriate information to constructors for the other object types. In typical usage, a DTJob is 549
responsible for creating one of each other object type and then triggering the DTAnalysis 550
object to actually run the analysis. However, users can also eschew DTJob entirely if they 551
prefer to instantiate the other objects manually in their own Python code. 552

2. DTAnalysis, a parent class that contains one instance each of DTModel, DTData, and 553
DTOutput; it is responsible for coordinating the operations of those other objects. This 554
includes dividing data into training/validation/testing sets, iterating through portions of the 555
data when desired (e.g., to loop through individual subjects), and initiating the model 556
training/testing procedures. 557

3. DTModel, responsible for constructing the model in the appropriate machine learning 558
backend (currently, either Keras or PyMVPA). The “model” in this sense refers either to the 559
artificial neural network (Keras) or an object representing a simpler classifier, e.g., a support 560
vector machine with a linear kernel and parameter C=1 (PyMVPA). 561

4. DTData, responsible for loading the dataset from a data file, storing it, and performing certain 562
operations on it (such as scaling/normalization or slicing it up into smaller training, 563
validation, and/or test subsets). 564

5. DTOutput, responsible for writing analysis results to output files. 565

The four main sections of a JSON-format job file are the analysis, model, data, and output sections, 566
which map directly onto the corresponding Python classes; each section contains the parameters 567

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 4, 2020. ; https://doi.org/10.1101/2020.12.03.410910doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.03.410910
http://creativecommons.org/licenses/by-nc/4.0/

 Deep learning and MVPA

19

necessary to instantiate an object of the appropriate class30. Another (purely optional) class, DTGui, 568
implements the aforementioned GUI. 569

3.3 Current functionality 570

3.3.1 Model types and backends 571
At present, the DeLINEATE toolbox has been used in-house for approximately two years to conduct 572
analyses across a number of studies. It is a high-level toolbox with a flexible, extensible architecture 573
that potentially allows it to sit atop multiple underlying machine-learning libraries. Currently, we 574
support a subset of functionality for two backends: Keras (Chollet et al., 2015) for dMVPA and 575
PyMVPA (Hanke et al., 2009) for traditional MVPA. With our heavy focus on providing a flexible 576
architecture, it is relatively easy to add support for additional backends in the future, as well as 577
enhancing the breadth of support for features of Keras and PyMVPA, enabling new data types to be 578
imported, etc. The relative prioritization of such extensions will be guided by user demand. 579

3.3.2 Cross-validation 580
We currently support two approaches to cross-validation. The first is a “universal” approach 581
(specified in configuration files with the name “single”) in which all data are treated as belonging to a 582
single pool, which is randomly divided into training/validation/test sets according to percentages 583
specified in the configuration file. The second divides the data according to some attribute of the 584
samples31 and iterates through each value of this property, dividing the data within each iteration into 585
training/validation/test sets (specified in configuration files as “loop_over_sa”). Regardless of which 586
scheme is used, because classification performance can be influenced by a model’s initial 587
conditions32, it is common practice to run multiple complete cross-validation iterations in order to 588
ensure a stable estimate of the architecture’s performance. With properly configured input data (see 589
below), these two cross-validation schemes can cover most common MVPA use cases; however, 590
additional schemes can be added in the future according to demand. 591

3.3.3 Rescaling 592
Although some MVPA methods are invariant to the scaling of the input data, others, such as many 593
dMVPA applications, require data to be on a certain scale for good classification. The issue is 594
slightly complicated by the need to prevent features of the test data from influencing the training 595
data. We support several methods for rescaling data that avoid this issue by calculating necessary 596
parameters solely on the training data, and using those parameters to adjust validation/test data as 597

30 Although a non-Python-savvy user does not need to know these implementation details, the parity between job file
sections and Python classes makes it easy for more experienced coders to switch back and forth between job files and
their own Python scripts. As noted above, it is also possible to mix-and-match the two approaches.

31 A “sample attribute,” if you will, which is the terminology used by other MVPA toolboxes for a tag or property
associated with each data sample/example. For instance, a subject ID or session ID.

32 Especially for dMVPA; for a given architecture, a classification might sometimes perform well and sometimes at
chance depending on the random values assigned to weights at the beginning of training, which is generally a sign that
the architecture needs adjusting. Other classification techniques, such as SVMs, are deterministic; as such, they may or
may not benefit from multiple cross-validation iterations, depending on dataset and cross-validation scheme.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 4, 2020. ; https://doi.org/10.1101/2020.12.03.410910doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.03.410910
http://creativecommons.org/licenses/by-nc/4.0/

 Deep learning and MVPA

20

well. Again, these methods are readily extensible with additional options, or users can always pre-598
scale their own data however they like. Currently supported methods are: 599

1. “percentile”, which identifies the value at a specified percentile of the data and divides all 600
data by that value, 601

2. “standardize”, which mean-centers and divides all values by the standard deviation of the 602
data, 603

3. “mean_center”, which subtracts the mean of the data from all values, 604

4. “map_range”, which translates values into the range between a user-specified minimum and 605
maximum (0 and 1, by default). 606

3.3.4 Input data and loaders 607
By far, the most common question we have received from potential users concerns the necessary 608
format for input data. The toolbox operates on, at minimum, one NumPy array and one Python 609
dictionary. The former contains the actual data to be analyzed in a two-or-more-dimensional array, 610
where one dimension represents examples (e.g., trials) and the other dimension(s) are feature 611
dimensions. For instance, an fMRI dataset might be shaped as (examples × voxels), whereas an EEG 612
dataset might be (examples × electrode × timepoint). Higher-dimensional structure is ignored in 613
traditional MVPA and simply collapsed into a 2-D (examples × features) array, as those simple 614
classifiers can only operate on vectors of data. However, dMVPA, when run with an appropriate 615
network architecture, can operate on any dimensionality of data and can potentially take that 616
information into account for classification. If the spatiotemporal structure of the data is meaningful, 617
this may produce superior performance. The Python dictionary contains the metadata needed to 618
interpret the data array, in the form of one or more “sample attributes” (defined earlier; e.g., 619
experimental condition, participant identity) for each sample. These sample attributes may be used as 620
targets for classification (i.e., the class labels to be predicted) or as grouping variables in cross-621
validation (e.g., for leave-one-subject-out cross-validation). 622

Data are read into the toolbox by a “loader” Python function specified in the job configuration file. 623
Loaders can reside in a specific subdirectory of the toolbox or in an arbitrary user-specified location. 624
We include several example datasets and corresponding loader functions that should be easily 625
modifiable by researchers to fit their own needs. This is the main place where a typical user might 626
need to write their own Python code; because of the many idiosyncratic formats used to store 627
experimental data, some users may need to write a short function to read their files in and reshape 628
them into the expected format. However, if the format is well-supported by NumPy or other Python 629
libraries, these functions can typically be quite short (on the order of 10 lines of code). We also 630
provide generic functions included for data in the NumPy and MATLAB native file formats, which 631
will accept any .mat or .npy file containing one array variable of data examples and at least one 632
variable of sample attributes. Thus, if users are able to save their data in one of those formats 633
beforehand, there may be no need for a custom loader function. 634

Because neuroscience data vary widely in format, we recognize that a need for additional loader 635
options could still present a barrier to some researchers. We encourage such individuals to reach out 636
to us so that we can offer assistance and expand the range of formats we are able to support natively. 637
On the other hand, the overall flexibility in format means that with just a few lines of code, any 638
dataset that can be represented as a multi-dimensional array is a candidate for analysis with our 639

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 4, 2020. ; https://doi.org/10.1101/2020.12.03.410910doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.03.410910
http://creativecommons.org/licenses/by-nc/4.0/

 Deep learning and MVPA

21

toolbox, not limited to neuroscience data; for instance, we have used the toolbox to analyze eye-640
tracking data (Cole et al., under review), photographic images, and more. 641

3.3.5 Graphical User Interface 642
As described earlier, the GUI currently allows users to generate a job configuration structure via 643
menu selections and free-entry fields (Figure 3B) that can be auto-populated by loading an existing 644
job file. For frequently used Keras layer types, some reasonable default hyperparameters are 645
provided; however, there are minimal defaults available for less common layer types, and in general 646
it is still recommended for users to have some baseline knowledge of Keras’s workings and 647
hyperparameter options, even when using the GUI. As the number of potential analysis 648
configurations is effectively limitless and this module is a relatively recent addition, error checking is 649
currently somewhat limited. Still, we recognize that a usable GUI is a critical feature for some users, 650
and we expect this to be a primary target for expansion and refinement in upcoming releases. 651

3.4 Availability 652

All toolbox code is currently hosted at https://bitbucket.org/delineate/delineate and is freely 653
accessible and open-source under the MIT License. There is also a project website at 654
http://www.delineate.it/ that hosts older releases, documentation, links to video tutorials, and more. 655

3.5 Hardware/software requirements 656

The DeLINEATE toolbox has few software dependencies of its own. However, as noted earlier, it 657
requires either a Keras or PyMVPA backend to perform dMVPA or traditional MVPA, respectively, 658
and those packages have their own corresponding dependencies. Fortunately, both Keras and 659
PyMVPA are well-documented and readily available; we also provide start-to-finish setup guides on 660
the toolbox website. In brief, DeLINEATE is compatible with any recent version of either backend, 661
and in principle can be run on any Python version from 2.7 onward, including all versions of Python 662
3; however, specific Python version compatibility may depend on which version of Keras/PyMVPA 663
the user is running, and which Python versions those libraries are compatible with. The only 664
additional dependency of DeLINEATE is Python support for Tcl/Tk (a graphical interface toolkit) if 665
one wishes to use DTGui; most Python installations include Tcl/Tk libraries, but some might require 666
a separate installation. As Python is available on all major operating systems (Windows, macOS, and 667
Linux), DeLINEATE will also run on any of them, although hardware choices may constrain 668
operating system options. 669

In terms of hardware, a bare-bones DeLINEATE installation will run on any computer with enough 670
RAM to hold the user’s dataset in memory, as long as the user only wishes to run analyses on the 671
CPU. Traditional MVPA via PyMVPA does not presently employ GPU acceleration, but most 672
dMVPA users will want to enable GPU acceleration for a dramatic increase in speed (see 673
“Benchmarks” below). As Keras relies on the TensorFlow library for its own backend (or the older 674
Theano library; now deprecated in recent Keras versions but still supported by DeLINEATE), which 675
in turn relies on the CUDA (Compute Unified Device Architecture) and cuDNN (CUDA deep neural 676
network) libraries from NVIDIA, effectively this means that an NVIDIA-compatible GPU is required 677
for accelerated dMVPA. Different GPUs will have different compatibility with various versions of 678
CUDA, cuDNN, TensorFlow/Theano, and Keras; however, as long as compatible versions of those 679
tools are installed, DeLINEATE should work with any of them. At the time of writing, we 680
recommend midrange to high-end GPUs from the GeForce 10 series or higher; our lab’s workstations 681
mostly use GeForce GTX 1070 through GeForce GTX 1080 Ti cards, but other users may have 682

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 4, 2020. ; https://doi.org/10.1101/2020.12.03.410910doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.03.410910
http://creativecommons.org/licenses/by-nc/4.0/

 Deep learning and MVPA

22

higher or lower requirements. Currently, a reasonably powerful workstation for many dMVPA 683
applications could be built from parts for $1500–2000 US33, although prices can vary widely 684
depending on users’ specific requirements and budgets. Since no current Apple computers support 685
compatible NVIDIA GPUs, GPU-accelerated dMVPA is currently unavailable on macOS. Generally, 686
for scientific computing, we recommend Linux-based operating systems for their widespread 687
compatibility and open-source nature; however, GPU-accelerated dMVPA will work on Windows as 688
well. In the future, if the macOS/NVIDIA compatibility situation changes, or if DeLINEATE adds 689
support for additional backends, GPU-accelerated dMVPA may become available on macOS. 690

It has historically been difficult to implement large neural networks without setting up dedicated 691
hardware, largely because the virtualization approaches favored for cloud-based computing do not 692
provide sufficient access to GPUs. However, we have recently seen the emergence of an option that 693
may be useful to those who lack either the budget or the technical confidence to set up their own deep 694
learning environments. Google Colab (https://colab.research.google.com) is a browser-based Python 695
environment akin to Jupyter Notebooks with some access to GPUs. Because the provided 696
environment includes Keras/TensorFlow and allows interaction with files stored on Google Drive, it 697
is relatively straightforward to execute DeLINEATE-based analyses by importing some of the classes 698
and manually calling the method that begins an analysis. An example IPython notebook is provided 699
in the Colab subfolder of the DeLINEATE repository. This approach requires some proficiency in 700
Python and is subject to fluctuating resource limitations, so no promises can be made about speed or 701
stability; however, it may be a good jumping-off point for beginning users wishing to explore the 702
toolbox before investing in their own equipment. 703

3.6 Benchmarks 704

For both traditional MVPA and dMVPA, performance (both accuracy and computation time) will 705
vary drastically across datasets, hardware, and choice of MVPA classifier or neural network 706
architecture. Thus, the generalizability of any benchmarks is limited. However, to give readers a 707
rough sense of the computational advantages of dMVPA and how running times scale for different 708
dataset sizes, we prepared several datasets and analyzed them with both traditional MVPA and 709
dMVPA. These benchmark datasets emulate the format of an fMRI dataset, but are entirely synthetic. 710
The code to generate them is included in the toolbox. 711

We simulated datasets with three conditions (classes). Datasets ranged from 200 features (e.g., 712
voxels) to 25,600 features in a doubling progression (200, 400, 800, …). The number of examples 713
(trials) per condition ranged from 100 to 10,000 in the progression: 10^2, 20^2, 30^2, …. Full details 714
are given in the code. Briefly, for each condition, a random signal with the appropriate number of 715
features was generated. Then, supposing for this example that we are generating 900 trials/condition, 716
30 variations on the “canonical” signal for that condition would be generated by blending the 717
canonical signal with a certain proportion of random noise. Then, for each of those 30 variations, 30 718
sub-variations were generated by the same process. Although we did not particularly strive for 719
biological verisimilitude, the intent was to somewhat mimic a circumstance where brain patterns had 720
a small number of “true” variations (e.g., if the condition were “faces,” subjects might have slightly 721
different voxel response patterns for different genders/races) as well as trial-to-trial variations due to 722

33 Based on market prices for parts to build a system similar to ours at the time they were built, with an eight-core Intel
i7-9700K CPU, GeForce GTX 1070 GPU, 32GB RAM, 1TB SSD primary storage, 4TB HDD secondary storage, and a
compatible CPU cooler, motherboard, case, and power supply, for a total of $1750 US. Newer GPUs and other parts have
been released since those were built, but pricing for current parts is in a similar range.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 4, 2020. ; https://doi.org/10.1101/2020.12.03.410910doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.03.410910
http://creativecommons.org/licenses/by-nc/4.0/

 Deep learning and MVPA

23

stimulus exemplar effects and/or measurement noise. To make the classification more challenging, 723
each trial’s signal was also blended with a proportion of the signal of a trial from each of the other 724
two conditions. 725

The datasets were analyzed with three classifier models: a simple CNN, SMLR, and SVM. The CNN 726
used GPU acceleration (NVIDIA GeForce GTX 1080 Ti), whereas the other models used only the 727
CPU (Intel Xeon X5650 @ 2.67GHz). Each analysis was typically run for 10 iterations (cycles of 728
training/test with different randomly-selected training/test sets) except when running times became 729
prohibitive, in which case the analysis was terminated after as few as five iterations. 730

Mean running times (Table 1) ranged drastically, from less than one second to several days. As 731
expected, running times for all model types generally increased with greater numbers of features and 732
trials. SVMs had both the shortest and longest running times. Compared to SVMs, SMLR had both a 733
longer shortest running time and a shorter longest running time (i.e., the range was compressed on 734
both ends), and CNNs continued this trend with an even longer shortest running time and a still 735
shorter longest running time (i.e., the range was even more compressed). Notably, the CNN never 736
took less than 10 seconds (largely due to a relatively fixed start-up time for Keras models) but its 737
longest running times, for the most complex datasets, were still under 15 minutes. By comparison, 738
SMLR’s longest running times were over four hours, and SVMs’ were multiple days. (And a few 739
SVM models never converged in any reasonable amount of time.) Thus, as expected, deep learning 740
models were less time-efficient than traditional MVPA for simpler datasets but were vastly more 741
scalable for large datasets. 742

Benchmark datasets were intended to be classifiable at moderate accuracies but not particularly 743
designed to be benchmarks of accuracy, so we do not report comprehensive accuracy results, which 744
could invite misleading extrapolations to real data. However, generally all methods performed above 745
chance, in a comparable range. Typically, the CNN had the lowest accuracy of all three models on 746
datasets with few trials but usually had the highest accuracy with large trial counts, especially when 747
feature counts were low. Conversely, SVM had the highest accuracy when trial counts were low or 748
with very high feature counts, although in those high-feature-count analyses, the SVM running time 749
was long enough to be unusuable in many real-world scenarios. SMLR accuracy almost always fell 750
between CNN and SMLR. Again, we do not expect these accuracies on synthetic data to perfectly 751
reflect performance on real-world data, but they do fit general expectations of how models of varying 752
complexity might be expected to overfit or underfit datasets of varying sizes. 753

4 Discussion 754

4.1 Future development 755

Toolbox development is ongoing and will largely be steered by community feedback. Current goals 756
include adding support for non-sequential Keras models (e.g., those including feedback connections), 757
transfer learning, model introspection, Generative Adversarial Networks (GANs), and additional 758
built-in data loaders and cross-validation schemes. We also plan to make the GUI more informative 759
and intuitive for users who are less familiar with Keras, and to include some tools for visualization 760
and potentially analysis of results (although this remains an unsettled topic; see Hebart & Baker, 761
2018, for relevant discussion). Although we have kept discussion in this paper fairly general, 762
information is still liable to go out-of-date quickly due to the rapid pace of deep learning methods 763
development; users are encouraged to consult our website for the most updated details. 764

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 4, 2020. ; https://doi.org/10.1101/2020.12.03.410910doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.03.410910
http://creativecommons.org/licenses/by-nc/4.0/

 Deep learning and MVPA

24

4.2 Summary 765

Deep learning continues to grow and offer new possibilities for computation in many areas of 766
research and private industry. While it is being increasingly used in neuroimaging and other 767
neuroscience applications, adoption has been hampered by the complexity of the topic and the lack of 768
approachable software tools. We hope that this tutorial review will help researchers new to deep 769
learning address the former, and that the DeLINEATE software toolbox will help address the latter. 770
In years to come, we expect dMVPA to enable a forward leap in neuroscience discoveries 771
comparable to, or exceeding, that of traditional MVPA over older analyses. 772

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 4, 2020. ; https://doi.org/10.1101/2020.12.03.410910doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.03.410910
http://creativecommons.org/licenses/by-nc/4.0/

 Deep learning and MVPA

25

5 Tables 773

5.1 Table 1. Running times on synthetic benchmark datasets, in minutes 774

CNN Trials/
condition

100 400 900 1600 2500 3600 4900 6400 8100 10000

 Features
 200 .207 .231 .244 .250 .258 .295 .365 .363 .438 .475
 400 .216 .227 .238 .240 .249 .278 .297 .322 .428 .520
 800 .213 .231 .242 .248 .262 .279 .305 .341 .421 .437
 1600 .202 .258 .270 .282 .298 .337 .367 .414 .499 .532
 3200 .205 .322 .357 .372 .376 .430 .499 .564 .683 .709
 6400 .195 .326 .505 .542 .657 .678 .724 .900 1.18 1.15
 12800 .292 .503 .914 1.20 1.61 1.99 2.35 2.97 2.17 2.28
 25600 .360 .920 1.32 2.49 3.71 7.41 7.73 9.43 13.5 12.1

SMLR Trials/

condition
100 400 900 1600 2500 3600 4900 6400 8100 10000

 Features
 200 .024 .049 .053 .086 .081 .112 .127 .137 .178 .219
 400 .047 .326 .321 .382 .292 .358 .447 .484 .541 .676
 800 .087 .329 1.49 1.74 1.70 1.77 1.89 1.94 2.19 2.57
 1600 .137 .563 1.70 5.40 7.78 9.09 10.1 10.3 10.8 10.8
 3200 .194 1.37 2.53 6.06 12.6 24.4 30.0 41.3 50.8 54.2
 6400 .258 2.59 5.59 9.57 16.6 29.4 46.9 70.7 112 140
 12800 .354 4.19 13.7 20.5 28.3 42.9 64.6 91.2 128 170
 25600 .456 5.90 23.6 52.8 63.8 76.6 104 144 192 253

SVM Trials/

condition
100 400 900 1600 2500 3600 4900 6400 8100 10000

 Features
 200 .003 .103 .516 1.09 2.28 6.37 20.6 47.5 88.1 148
 400 .004 .067 1.25 3.71 5.67 16.7 65.1 155 304 502
 800 .008 .090 .710 5.32 10.4 32.0 159 439 920 1663
 1600 .014 .216 .950 2.76 9.70 36.9 240 855 2302 4794
 3200 .031 .438 2.03 5.64 12.1 22.7 109 1098 3168 ∞

 6400 .068 .892 4.32 13.2 28.3 55.2 134 392 2065 ∞

 12800 .134 1.85 9.11 28.0 65.5 133 357 1241 ∞ ∞

 25600 .263 3.72 18.5 57.1 138 314 1048 3699 ∞ ∞

Table 1. Running times on synthetic benchmark datasets, in minutes

We processed a synthetic benchmark dataset with three models: a convolutional neural network (CNN), Sparse
Multinomial Logistic Regression (SMLR), and Support Vector Machines (SVM). Average running time is listed in
minutes. A few SVM models never converged in any reasonable amount of time and are represented in the table with the
infinity symbol ∞. See text for further details.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 4, 2020. ; https://doi.org/10.1101/2020.12.03.410910doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.03.410910
http://creativecommons.org/licenses/by-nc/4.0/

 Deep learning and MVPA

26

6 Nomenclature 775

ANN: artificial neural network 776

CNN: convolutional neural network 777

CUDA®: NVIDIA Compute Unified Device Architecture 778

cuDNN: NVIDIA CUDA® Deep Neural Network library 779

DeLINEATE: Deep Learning In Neuroimaging: Exploration, Analysis, Tools, and Education 780

dMVPA: deep multivariate pattern analysis 781

DNN: deep neural network 782

GAN: generative adversarial network 783

JSON: Javascript object notation 784

ML: machine learning 785

MVPA: multivariate pattern analysis 786

SMLR: sparse multinomial logistic regression 787

SVM: support vector machine 788

7 Conflict of Interest 789

The authors declare that the research was conducted in the absence of any commercial or financial 790
relationships that could be construed as a potential conflict of interest. 791

8 Author Contributions 792

KMK, JMW, PCL, and MRJ worked on toolbox code and co-wrote the manuscript. AS and PKR 793
consulted on the analyses and related projects intertwined with toolbox development, and contributed 794
to the writing of the manuscript. 795

9 Funding 796

This work was supported by NSF Grant CMMI 1719388, Biosensor Data Fusion for Real-time 797
Monitoring of Global Neurophysiological Function awarded to PKR and colleagues, as well as 798
NSF/EPSCoR Grant 1632849, RII Track-2 FEC: Neural networks underlying the integration of 799
knowledge and perception, and NIH P20 GM130461, Rural Drug Addiction Research Center, 800
awarded to MRJ and colleagues. We also received a GPU grant from NVIDIA Corporation. The 801
content is solely the responsibility of the authors and does not necessarily represent the official views 802
of the National Institutes of Health or the University of Nebraska. 803

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 4, 2020. ; https://doi.org/10.1101/2020.12.03.410910doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.03.410910
http://creativecommons.org/licenses/by-nc/4.0/

 Deep learning and MVPA

27

10 Acknowledgments 804

We thank Aaron Halvorsen and Hannah Ross for assistance with figure creation and manuscript 805
editing. 806

11 References 807

Akama, H., Murphy, B., Na, L., Shimizu, Y., and Poesio, M. (2012). Decoding semantics across 808
fMRI sessions with different stimulus modalities: a practical MVPA study. Frontiers in 809
neuroinformatics, 6:24. doi: https://doi.org/10.3389/fninf.2012.00024 810

Bentin, S., Allison, T., Puce, A., Perez, E., and McCarthy, G. (1996). Electrophysiological studies of 811
face perception in humans. Journal of cognitive neuroscience, 8:6, 551-565. 812

Berger, H. (1929). Über das elektroenkephalogramm des menschen. Archiv für psychiatrie und 813
nervenkrankheiten, 87:1, 527-570. 814

Boser, B. E., Guyon, I. M., and Vapnik, V. N. (1992). “A training algorithm for optimal margin 815
classifiers” in Proceedings of the Fifth Annual Workshop on Computational Learning Theory. (New 816
York, NY, USA: ACM Press), 144–152. 817

Buzsaki, G., and Mizuseki, K. (2014). The log-dynamic brain: how skewed distributions affect 818
network operations. Nature Reviews Neuroscience, 15:4, 264-278. 819

Chollet, F. (2015). Keras. https://keras.io [Accessed September 17, 2020] 820

Cortes, C., and Vapnik, V. (1995). Support-vector networks. Machine Learning, 20, 273–297. 821

De Martino, F., Valente, G., Staeren, N., Ashburner, J., Goebel, R., and Formisano, E. (2008). 822
Combining multivariate voxel selection and support vector machines for mapping and classification 823
of fMRI spatial patterns. Neuroimage, 43:1, 44-58. 824

Dosenbach, N. U., Nardos, B., Cohen, A. L., Fair, D. A., Power, J. D., Church, J. A., ... and Barnes, 825
K. A. (2010). Prediction of individual brain maturity using fMRI. Science, 329:5997, 1358-1361. 826

Grus, J. (2018). I Don’t Like Notebooks. Talk given at Jupytercon, New York, NY. Video available 827
at: https://www.youtube.com/watch?v=7jiPeIFXb6U [Accessed November 13, 2019] 828

Hanke, M., Halchenko, Y. O., Sederberg, P. B., Hanson, S. J., Haxby, J. V., and Pollmann, S. (2009). 829
PyMVPA: a python toolbox for multivariate pattern analysis of fMRI data. Neuroinformatics, 7:1, 830
37-53. 831

Haxby, J. V., Connolly, A. C., and Guntupalli, J. S. (2014). Decoding neural representational spaces 832
using multivariate pattern analysis. Annual Review of Neuroscience, 37, 435-436. doi: 833
10.1146/annurev-neuro-062012-170325 834

Haxby, J. V., Gobbini, M. I., Furey, M. L., Ishai, A., Schouten, J. L., and Pietrini, P. (2001). 835
Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science, 836
293:5539, 2425-2430. 837

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 4, 2020. ; https://doi.org/10.1101/2020.12.03.410910doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.03.410910
http://creativecommons.org/licenses/by-nc/4.0/

 Deep learning and MVPA

28

Hebart, M. N., and Baker, C. I. (2018). Deconstructing multivariate decoding for the study of brain 838
function. Neuroimage, 180, 4-18. 839

Hebb, D. O. (1949). The organization of behavior: a neuropsychological theory. New York: John 840
Wiley. 841

Hinton, G. E., Osindero, S., & Teh, Y. W. (2006). A fast learning algorithm for deep belief nets. 842
Neural computation, 18:7, 1527-1554. 843

Kassam, K. S., Markey, A. R., Cherkassky, V. L., Loewenstein, G., and Just, M. A. (2013). 844
Identifying emotions on the basis of neural activation. PloS one, 8:6. doi: 845
https://doi.org/10.1371/journal.pone.0066032 846

Kay, K.N., David, S.V., Prenger, R.J., Hansen, K.A. and Gallant, J.L. (2008). Modeling low-847
frequency fluctuation and hemodynamic response timecourse in event-related fMRI. Human Brain 848
Mapping, 29:2, 142-156. 849

Kingma, D. P., and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv [Preprint]. 850
Available at: https://arxiv.org/abs/1412.6980 (Accessed September 17, 2020). 851

Koch, C., and Laurent, G. (1999). Complexity and the nervous system. Science, 284:5411, 96-98. 852

Kohler, P. J., Fogelson, S. V., Reavis, E. A., Meng, M., Guntupalli, J. S., Hanke, M., ... and Peter, U. 853
T. (2013). Pattern classification precedes region-average hemodynamic response in early visual 854
cortex. NeuroImage, 78, 249-260. 855

Krishnapuram, B., Figueiredo, M., Carin, L., and Hartemink, A. (2005). Sparse Multinomial Logistic 856
Regression: Fast Algorithms and Generalization Bounds. IEEE Transactions on Pattern Analysis and 857
Machine Intelligence (PAMI), 27, 957–968. 858

Lim, P. C., Ward, E. J., Vickery, T. J., and Johnson, M. R. (2019). Not-so-working memory: Drift in 859
functional magnetic resonance imaging pattern representations during maintenance predicts errors in 860
a visual working memory task. Journal of Cognitive Neuroscience, 31:10, 1520-1534. 861

Linnainmaa, S. (1970). The representation of the cumulative rounding error of an algorithm as a 862
Taylor expansion of the local rounding errors. [Master’s thesis]. [Helsinki, Finland]: University of 863
Helsinki. 864

Lore, K. G., Akintayo, A., and Sarkar, S. (2017). LLNet: A deep autoencoder approach to natural 865
low-light image enhancement. Pattern Recognition, 61, 650-662. 866

Maas, A. L., Hannun, A. Y., and Ng, A. Y. (2013). Rectifier nonlinearities improve neural network 867
acoustic models. Proc. icml, 30:1, 3. 868

McCulloch, W.S., and Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. 869
Bulletin of Mathematical Biophysics 5, 115–133. 870

Minsky, M., and Papert, S. (1969). Perceptrons: An Introduction to Computational Geometry. MIT 871
Press. 872

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 4, 2020. ; https://doi.org/10.1101/2020.12.03.410910doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.03.410910
http://creativecommons.org/licenses/by-nc/4.0/

 Deep learning and MVPA

29

Ngiam, J., Khosla, A., Kim, M., Nam, J., Lee, H., and Ng, A. Y. (2011). Multimodal deep learning. 873
ICML, 11, 689-696. 874

Nili, H., Wingfield, C., Walther, A., Su, L., Marslen-Wilson, W., and Kriegeskorte, N. (2014). A 875
toolbox for representational similarity analysis. PLoS computational biology, 10:4, e1003553. 876

Poldrack, R. A., Barch, D. M., Mitchell, J., Wager, T., Wagner, A. D., Devlin, J. T., ... and Milham, 877
M. (2013). Toward open sharing of task-based fMRI data: the OpenfMRI project. Frontiers in 878
neuroinformatics, 7, 12. 879

Raina, R., Madhavan, A., and Ng, A. Y. (2009). Large-scale deep unsupervised learning using 880
graphics processors. Proceedings of the 26th annual international conference on machine learning, 881
873-880. 882

Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and 883
organization in the brain. Psychological Review. 65:6, 386–408. doi:10.1037/h0042519. 884

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986a). Learning representations by back-885
propagating errors. Nature, 323, 533–536. 886

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986b). Learning internal representations by 887
error propagation. Parallel distributed processing: Explorations in the microstructure of cognition, 1. 888

Shalev-Shwartz, S., and Ben-David, S. (2014). Understanding machine learning: From theory to 889
algorithms. Cambridge University Press. 890

Sporns, O., Tononi, G., & Edelman, G. M. (2000). Connectivity and complexity: the relationship 891
between neuroanatomy and brain dynamics. Neural networks, 13(8-9), 909-922. 892

Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A. (2016). Inception-v4, inception-resnet and the 893
impact of residual connections on learning. arXiv preprint arXiv:1602.07261. 894

Van Essen, D. C., Smith, S. M., Barch, D. M., Behrens, T. E., Yacoub, E., Ugurbil, K., & Wu-Minn 895
HCP Consortium. (2013). The WU-Minn human connectome project: an overview. Neuroimage, 80, 896
62-79. 897

Werbos, P. (1974). Beyond Regression: New Tools for Prediction and Analysis in the Behavioral 898
Sciences. [PhD thesis]. [Cambridge (MA)]: Harvard University. 899

Williams, J. M., Samal, A., Rao, P. K., and Johnson, M. R. (2020). Paired Trial Classification: A 900
Novel Deep Learning Technique for MVPA. Frontiers in Neuroscience, 14, 417. 901

Wolpert, D.H., Macready, W.G. (1997), "No Free Lunch Theorems for Optimization", IEEE 902
Transactions on Evolutionary Computation 1, 67 903

Xie, J., Girshick, R., and Farhadi, A. (2016). Unsupervised deep embedding for clustering analysis. 904
International conference on machine learning, 478-487. 905

Xue, G., Dong, Q., Chen, C., Lu, Z., Mumford, J. A., and Poldrack, R. A. (2010). Greater neural 906
pattern similarity across repetitions is associated with better memory. Science, 330:6000, 97-101. 907

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 4, 2020. ; https://doi.org/10.1101/2020.12.03.410910doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.03.410910
http://creativecommons.org/licenses/by-nc/4.0/

 Deep learning and MVPA

30

Zeiler, M. D., and Fergus, R. (2014). Visualizing and understanding convolutional networks. 908
European conference on computer vision, 818-833. 909

Zeiler, M. D., and Fergus, R. (2013). Stochastic pooling for regularization of deep convolutional 910
neural networks. arXiv [Preprint]. Available at https://arxiv.org/abs/1301.3557 (Accessed September 911
17, 2020) 912

Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the 913
royal statistical society: series B (statistical methodology), 67(2), 301-320. 914

12 Data Availability Statement 915

The toolbox code and sample data are available through a Git repository hosted at 916
https://bitbucket.org/delineate/delineate/src/master/. Release versions of the toolbox and additional 917
documentation, as well a link to the Git repository, can be found at http://delineate.it. 918

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted December 4, 2020. ; https://doi.org/10.1101/2020.12.03.410910doi: bioRxiv preprint

https://doi.org/10.1101/2020.12.03.410910
http://creativecommons.org/licenses/by-nc/4.0/

