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Abstract 
Motivation: Data normalization is an important step in processing proteomics data generated in mass spectrometry (MS) 
experiments, which aims to reduce sample-level variation and facilitate comparisons of samples. Previously published meth-
ods for normalization primarily depend on the assumption that the distribution of protein expression is similar across all 
samples. However, this assumption fails when the protein expression data is generated from heterogenous samples, such 
as from various tissue types. This led us to develop a novel data-driven method for improved normalization to correct the 
systematic bias meanwhile maintaining underlying biological heterogeneity. 
Methods: To robustly correct the systematic bias, we used the density-power-weight method to down-weigh outliers and 
extended the one-dimensional robust fitting method described in the previous work of (Windham, 1995, Fujisawa and Eguchi, 
2008) to our structured data. We then constructed a robustness criterion and developed a new normalization algorithm, 
called RobNorm. 
Results: In simulation studies and analysis of real data from the genotype-tissue expression (GTEx) project, we compared 
and evaluated the performance of RobNorm against other normalization methods. We found that the RobNorm approach 
exhibits the greatest reduction in systematic bias while maintaining across-tissue variation, especially for datasets from 
highly heterogeneous samples. 
Availability: https://github.com/mwgrassgreen/RobNorm   
Contact: huatang@stanford.edu and mpsnyder@stanford.edu 
 

1       Introduction  
Mass spectrometry (MS) has made a significant progress over the last few 
decades, enabling the identification and quantification of thousands or ten 
thousands of proteins (Callister, et al., 2006; Chawade, et al., 2014; 
Välikangas, et al., 2018). Nowadays, the use of mass tags allows for mul-
tiplexing several samples in a single MS experiment, which permits quan-
tification of protein levels and increases data throughput. This simultane-
ous measurement also benefits statistical analysis in reducing within-run 
technical variation. Despite the advancement of the underlying technology 
and labeled experiment designs, MS data is still affected by the systematic 
biases introduced during sample preparation and data generation processes 
(Chawade, et al., 2014).  Inclusion of a normalization step is thus needed 
to correct such systematic biases and to make sample expression more 
comparable. 
    Using tandem mass tag (TMT) liquid chromatography-mass spectrom-
etry (LC-MS), (Jiang, et al., 2020) quantified 12,627 proteins from 32 nor-
mal human tissue types in the genotype-tissue expression project (GTEx). 
The dynamic range of protein expression profiles between heterogenous 
tissue types can be quite different from each other. This makes it hard to 
distinguish between technical variation and biological variation. In this 
setting, how to correct for inevitable technical variations while maintain-
ing important biological variation becomes challenging at the normaliza-
tion step. 

One approach from experimental design is to resort to spike-ins or 
house-keeping peptides/proteins controls. However, distinct from ge-
nomic analysis methods, there are no well-defined housekeeping proteins 

across tissues in the proteomics analysis that could be used in a similar 
way. From the computational perspective, current widely-used normaliza-
tion methods for MS data analysis are primarily derived from microarray 
analysis (Callister, et al., 2006; Chawade, et al., 2014; Välikangas, et al., 
2018). Most of these methods rely on the implicit assumption that the pro-
tein distributions across all samples are similar. However, this assumption 
does not hold when expression profiles across or within samples are highly 
heterogenous, such as from various tissue types in the GTEx project. This 
motivated us to develop a new data-driven robust normalization method, 
called RobNorm, to robustly correct technical variations while preserving 
important heterogeneity information.  

We used the density-power-weight method to down-weigh outliers and 
extended the previous work of (Windham, 1995, Fujisawa and Eguchi, 
2008) to our setting in Section 2. We compared the performance of Rob-
Norm with several commonly used normalization methods in Section 3. 
Not all the normalization methods have the ability to robustly correct the 
systematic bias without ruining the underlying heterogeneities. Our Rob-
Norm approach showed the best performance for preserving heterogenous 
sample expression, as shown in Section 3. We conclude the paper and 
discuss a few limitations of the method in Section 4.  

In this work, we focused on normalizing the relative abundance (in the 
logarithm scale) of the labeled quantitative proteomics data. Potential ap-
plication in the label-free quantitative proteomics is discussed at the end 
of the paper. 

2    Methods 
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In our approach, we called the systematic bias the “sample effect”. The 
protein expression matrix was viewed as structured data with row expres-
sion determined by the effect from each protein’s level while column ex-
pression was determined by the sample effect. Besides sample effect, pro-
tein expression was modeled from a mixture distribution with a Gaussian 
population distribution. Using this mixture model, we extended the one-
dimensional robust fitting shown in the previous work of (Windham, 
1995) and (Fujisawa and Eguchi, 2008) to the structured proteomics data 
and obtained a robust estimation for the sample effect from our algorithm 
RobNorm. The technical details are provided in the following subsections. 
In notation below, variables in bold represent vectors and variables with a 
capital letter denote a matrix based on the context.  
 
2.1 Mixture model 

Define the protein expression matrix by 𝑋 in log scale. The element 𝑋!" 
represents the expression for 𝑖#$  protein from 𝑗#$  sample, 𝑖 = 1, … , 𝑛,
𝑗 = 1, … ,𝑚, where 𝑛 is the protein number and 𝑚 is the sample size. For 
the 𝑖#$ protein, the expression 𝑋!" from sample 𝑗 is affected by the sample 
effect 𝜈". The sample effect 𝜈" is the common factor in all expression data 
from sample 𝑗, which is the systematic bias to remove. Besides the sample 
effect, the assumption that all the sample expression come from the same 
distribution is hard to uphold using heterogenous samples. Hence, we 
modeled protein expression from a mixture distribution, allowing the pres-
ence of outliers. For each protein, the majority of its expression is deter-
mined by the same population distribution. We took a parametric approach 
to model the overall population distribution as a Gaussian distribution. 
The remaining expression data are outliers, which can be technical errors 
or tissue specific expression. Usually their distribution is unknown. There-
fore, we did not specify the outlier distribution. This is one advantage of 
our model. In formula (1), the Gaussian-population mixture model for the 
expression in the 𝑖#$ protein is as follows, 

 
								𝑋!"	~	𝜈" + (1 − 𝜋!&)𝑁(𝜇!', 𝜎!'( ) +	𝜋!&𝐹!&,         (1) 

 
where 𝜋!& ∈ [0, 0.5) is the outlier proportion. From Model (1), a fraction 
(1 − 𝜋!&)  of samples come from the Gaussian-population distribution 
𝑁(𝜇!', 𝜎!'( ) with mean 𝜇!' and variance 𝜎!'( , while the rest of samples are 
outliers from unknown distribution 𝐹!&. The parameters (𝜇!', 𝜎!'( ) in the 
Gaussian population are called the protein effect. They can be different in 
various proteins. If a protein has no outliers, that is 𝜋!& = 0, then its ex-
pression can be written as 
 

𝑋!"	 = 	𝜈" + 𝜇!' +	𝑒!" , 	𝑤ℎ𝑒𝑟𝑒		𝑒!"	~!!)	𝑁(0, 𝜎!'( ), 𝑗 = 1, … ,𝑚. 
 
Relaxing this assumption on the outlier distribution makes the model more 
flexible. Here we assumed independence for all the expression data. 

2.2 Robust criterion for the structured data 

In the presence of outliers, our goal is to robustly estimate the sample ef-
fect. The literature of robust estimation is rich in statistics (Hampel, et al., 
2011; Huber, 2011; Maronna, et al., 2018; Tyler, 2008). The work of 
(Basu, et al., 1998; Fujisawa and Eguchi, 2008; Windham, 1995) used an 
approach to down-weight the outliers by weighting each data point by the 
fitted density to power 𝛾. The parameter 𝛾 is the exponent of the weighted 
density. Previous work found that this approach can still maintain robust-
ness even when the outlier proportion is not small, which fits our setting 
with sample expression that is highly heterogeneous. 

Suppose the sample effect	𝜈. is known and then the adjusted expression  
𝑋@!" = 	𝑋!"	 −	𝜈" , 𝑗 = 1, … ,𝑚,  are independently and identically 

distributed  (i.i.d.) from the mixture distribution (1 − 𝜋!&)𝑁(𝜇!', 𝜎!'( ) +
	𝜋!&𝐹!&. In the procedure of (Windham, 1995), a weight 𝑤!" is assigned to 
the adjusted expression 𝑋@!" by 

  
                                                                                                                  (2) 

 
where 𝛾 ≥ 0, and 𝑓'(𝑥;E 	𝜃) is a Gaussian density function with parameter 
𝜃 = (𝜇, 𝜎(). If the underlying population parameter is known, that is, 𝜃 =
(𝜇!', 𝜎!'( ) , then the theoretical distribution of the weighted data 
{(𝑤!" , 	𝑋H !")}"+&,  is still Gaussian 𝑁(𝜇!', 𝜎!'( (1 + 𝛾)⁄ ), but its variance is 
shrunk by 1 (1 + 𝛾)⁄  of the original variance. In the illustrated example 
shown in Figure 1, the outliers go to the tail of the density of the weighted 
data and thus do not contribute substantially to the population estimation. 
In this way, the expression from the population gains more weights while 
the outliers gain less, which achieves the goal of robustness. 

Windham’s procedure estimates the population parameters by solving 
the estimation equation, 

 
 
 
 

where 𝑢(𝑥, 𝜃) = 	𝜕 log 𝑓!'(𝑥; 		𝜃) 𝜕⁄ 𝜃  is the score function of the log-
likelihood function. In the same approach of down-weighting the outliers, 
the work of (Fujisawa and Eguchi, 2008) found a robustness criterion ---
	𝛾-cross entropy in (3), which gives the same estimates as from the Wind-
ham's procedure, 

 
 

                                                    (3) 
 
 
where 𝛾 > 0 and 𝑓!̅ is the empirical density of the adjusted expression in 
the 𝑖#$ protein. As 𝛾 approaches to zero, the limit of the 𝛾-cross entropy 
criterion is the negative of averaged log-likelihood function, 
 
 
 
In the case of 𝛾 = 0, the weight in (2) is 1 𝑚⁄  for all samples. If there are 
no outliers, taking 𝛾 = 0 gives the most efficient estimates --- maximum 
likelihood estimation (MLE). In the presence of outliers, large 𝛾 values 
down-weigh the outliers more aggressively and hence could provide more 
robustness. The model parameter 𝛾 essentially balances robustness and ef-
ficiency. 

To estimate the sample effect in our structured data, we extended the 
criterion of 𝛾-cross entropy for a single protein to the weighted summation 
of the 𝛾-cross entropies from all proteins. Note that 𝑤!" values are self-
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Figure 1: An illustration of the population estimation from the down-weighting outlier procedure using simu-
lated expression for one protein. The protein expression profile is generated from the mixture model 
𝑋.."	~	0.8𝑁(0, 1) + 	0.2𝑁(3, 1), 𝑗 = 1,… , 200. The blue bars (in the left bump) correspond to the population 
expression (about 80% samples) from distribution	𝑁(0, 1) and the yellow ones (in the right bump) correspond 
to the outlier expression (the rest about 20%	𝑠𝑎𝑚𝑝𝑙𝑒𝑠) from distribution 𝑁(3, 1). The blue solid curve indi-
cates the underlying population Gaussian distribution 𝑁(0, 1). The blue dashed curve indicates the theoretical 
weighted population Gaussian distribution 𝑁(0, 1/(1 + 𝛾)) from the down-weighting outlier procedure. The 
red curve is the fitted population distribution from method RobNorm under 𝛾 = 1. 
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standardized for each protein, i.e.,  ∑ 𝑤!" = 1,
"+& . We define the weighted 

sample size by 
                                                              (4) 
                                                          
from the denominator of 𝑤!. defined in (2). For example, there are five 
data points {𝑥&, 𝑥(, … , 𝑥F}. If we re-weight 𝑥&  and 𝑥(  each by 1 2⁄  and 
others by 0, then the weighted sample size 𝑀 = 2. Our robustness crite-
rion for the structured data is 
 
                                                                                      (5) 
 
where 𝑑G,! is defined in (3) and 𝑀! is defined in (4). When 𝛾 = 0,  the cri-
terion (5) becomes the negative of log-likelihood function from all the ex-
pression. 

2.3 Robust normalization 

Based on criterion (5), the robust estimate for (𝝂, 𝜽') is  

where 𝜽' = (𝝁𝟎, 𝝈𝟎𝟐) are the population parameters. The weight and the 
estimates are obtained in an iterative fashion. Given the weights 𝒘, taking 
the derivatives of 𝑑G

(J#KLM) with respect to the parameters gives  
 
 
  
                                               (6) 
 
 
In turn, the weight 𝒘 is updated based on [𝜇̂!', 𝜎]!'( , 𝜈̂"^ from the previous 
iteration. The fixed points from the iterations are the final estimates. We 
summarized the steps in Algorithm 1. Note that there is an unidentifiabil-
ity in estimating 𝜇!' and 𝜈". Both (𝜇!', 𝜈") and (𝜇!' − 𝑐, 𝜈" + 𝑐)	satisfy the 
equations in (6), where 𝑐 is a constant.  One common way to remove this 
ambiguity is to set 𝑐  as the sample effect for the standard sample 𝒙' , 
which is constructed of sample medians from individual proteins. Alt-
hough our estimation does not rely on such a standard sample, we intro-
duced 𝒙' in the algorithm. In the initial step, the estimate for the sample 
effect 𝝂(') is attained from a commonly used method --- probabilistic quo-
tient normalization (PQN) (Dieterle, et al., 2006). More analysis and per-
formance comparisons with PQN are in the Supplementary Material. 

Algorithm 1: Robust normalization (RobNorm) 
Input: a combined matrix (𝒙𝟎, 𝑋) with the first column from the stand-
ard sample expression and the remaining columns from the expression 
matrix 𝑋,	 parameter 𝛾, iteration step counter 𝑘 (starting from 1), and 
a small tolerance 𝜖 (= 10NO by default). 
Output: robustly normalized data matrix 
1. Initialize [𝝂('), 𝝁('), 	(𝝈𝟐)(')^ . 𝝂(')  is obtained from PQN and 

[	𝝁('), 	(𝝈𝟐)(')^ are the MLEs of the normalized data adjusted by 
𝝂('). 

2. Calculate 𝒘(P) from [𝝂(PN&), 𝝁(PN&), 	(𝝈𝟐)(PN&)^ based on (2). 
3. Update [𝝂(P), 𝝁(P), 	(𝝈𝟐)(P)^ given 𝒘(P) based on (6). 
4. Replace 𝝁(P) by (𝝁(P) +	𝜈&

(P)) and 𝝂(P) by [𝝂(P) −	𝜈&
(P)^. 

5. Update 𝑘	 ← 𝑘 + 1 
6. Repeat steps 2-5 until ∥ 	 𝝃(P) −	𝝃(PN&) 	 ∥&	< 𝜖  and 𝑘	 ≤ 50 , 

where 𝝃 = (𝝂, 𝝁, 𝝈𝟐). Finally attain the robustly normalized data 
matrix by subtracting 𝜈̂" from the corresponding column of 𝑋. 

3    Results 
In this section, we first reviewed several existing normalization methods 
and then compared their performance against our RobNorm approach in 
both simulation studies and application to real data. 

3.1   Summary of current normalization methods 

Most normalization methods used for the MS proteomics data are adapted 
from microarray analysis. The work of (Callister, et al., 2006; Chawade, 
et al., 2014; Välikangas, et al., 2018) gave a systematic review on com-
monly used normalization methods. Here we summarized these methods 
into four categories in supplementary Table S1. 

From TableS1, Category I includes normalization methods that use sim-
ple sample shifting, including mean/median normalization and PQN. The 
advantage of this approach is easy to implement. However, without a tar-
geted model, it is hard to reduce the systematic bias to the desired level.  

Our RobNorm method belongs to the category II: model-based normal-
ization. This category also contains the ANOVA-based normalization 
methods (Hill, et al., 2008; Oberg and Mahoney, 2012; Oberg, et al., 2008) 
and EigenMS (Karpievitch, et al., 2009). ANOVA-based normalization 
methods attempt to remove all sources of biases from the model, such as 
the effects from tags, experimental groups, and peptides. However, aiming 
to include all these effects in the model may lead to the problem of over-
fitting. Moreover, it is impossible to identify all the relevant sources of 
biases due to the complexity of MS experiments (Karpievitch, et al., 
2009). Furthermore, if there is some effect, such as the tissue effect, not 
included in the model, the estimation of the sample effect from ANOVA 
may not be robust. EigenMS is another approach adapting the surrogate 
variable analysis (SVA) method of (Leek and Storey, 2007) to remove 
possible bias from unmodeled effects. It was formulated in two steps: (i) 
to remove the known effects from experimental design, and (ii) to apply 
SVA on the residuals to remove possible unknown bias trends. One con-
cern inherent to this method is that it may eliminate the biological differ-
ences in the differentially expressed (DE) proteins, especially when the 
truly differential expression is strong and dense. Since EigenMS was im-
plemented in two successive steps, the robustness of its estimation in the 
first step may affect the stability of its results in the second step. Compared 
to ANOVA-based normalization that includes all effects in one model and 
EigenMS that estimates the known and unknown effects in two steps, we 
instead put unmodeled and unknown factors into the outlier distribution 
and then robustly estimated the sample effect. 

Category III comprises the sample variance stabilization normalization 
(VSN) method (Huber, et al., 2002). Methods based on sample-to-refer-
ence transformation belong to Category IV. The assumption of the meth-
ods in these two categories is that the majority of the proteins are non-
differentially expressed (nonDE). Since nonDE proteins are mainly af-
fected by systematic bias, the normalization methods attempt to correct 
this bias based on nonDE protein data. As the nonDE proteins are un-
known beforehand, several normalization methods make use of robust es-
timation approaches. Quantile normalization is based on this assumption 
and transforms the distributions of all samples to be conform to the em-
pirical cumulative density function (e.c.d.f.) of the reference sample 
(Bolstad, et al., 2003). VSN estimates the sample transformation parame-
ters from the least trimmed sum of squares (LTS) regression. In its imple-
mentation, VSN provides options for tuning the LTS quantile parameter 
for robustness. Linear regression-based normalization methods use robust 
least median regression (rlm) to project the unnormalized expression onto 
the reference sample expression (Chawade, et al., 2014). Loess-based 
methods are based on robust loess fitting tuned by a span parameter 
(Ballman, et al., 2004; Dudoit, et al., 2002; Ting, et al., 2009). However, 
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when the sample expression is highly heterogeneous, the assumption that 
the majority of the proteins are nonDE is hard to maintain. In the simula-
tion studies in Section 3.2, we investigated the performance of these ro-
bustness methods against differing degrees of heterogeneity to identify the 
level of heterogeneity at which methods become unreliable. 

3.2 Simulation studies 

We examined the performance of the normalization methods mentioned 
in Section 3.1 in simulated data. We listed the methods for comparison 
below and provided their implementations in R functions (Team, 2013) as 
references. The methods for comparisons are: our RobNorm approach un-
der 𝛾 = 0.5,1 for the large sample size and under 𝛾 = 0.1,0.5 for small 
sample size, ANOVA method (𝛾 = 0), mean/median normalization, PQN 
(Dieterle, et al., 2006), EigenMS (Karpievitch, et al., 2009), VSN (R li-
brary vsn – justvsn(.) (Huber, et al., 2002)) under LTS quantile parameter 
0.9, 0.7, 0.5, quantile normalization (R library preprocessCore – normal-
ize.quantiles(.) (Bolstad, et al., 2003)), Rlr and its variant RlrMA 
(Chawade, et al., 2014),  LoessCyc and its variant LoessMA under span 
parameters 0.9, 0.7, 0.5  (R library limma – normalizyCyclicLoess(.) 
(Ritchie, et al., 2015)). For the Loess-based normalization (Dudoit, et al., 
2002), we used fast Loess for computational efficiency. 
      Simulated data. Using the same notation as in model (1), the outlier 
distribution 𝐹!& here is specified as Gaussian 𝑁(𝜇!' + ∆𝜇, 𝜎!'( ). The gen-
erative underlying model in the simulations is as follows 

 
𝑋!"	~	𝜈" + (1 − 𝜋!&)𝑁(𝜇!', 𝜎!'( ) +	𝜋!&𝑁(𝜇!' + ∆𝜇, 𝜎!'( ),	  (7) 

 
where 𝑖 = 1, … , 𝑛,	and 𝑗 = 1, … ,𝑚 . The protein population mean 𝜇!' 's 
were generated from 𝑁(0,1) and the protein variance 𝜎!'( 's were from in-
verse-Gamma distribution with the shape parameter at 5 and scale param-
eter at 0.5. 80% of sample effect 𝜈" 's were obtained from 𝑁(0,1), and the 
remaining 20% 𝜈" 's from 𝑁(1,1). The distributions of the generated pa-
rameters are shown in supplemental Figure S1. The first half of the sam-
ples were treated in group 1 and the last half in group 2. In the simulations, 
the outliers were concentrated in two regulation blocks, one block per 
group. The simulated dataset was visualized in Figure 2 (left panel). The 
80% expression levels in the up-regulated block (in the upper left corner 
in color red) was up-shifted by ∆𝜇 in mean and, similarly, 80% expression 
levels in the down-regulated block (in the bottom right corner in color 
blue) were down-shifted by ∆𝜇 in mean. There is no overlap between the 
regulation blocks.  

 

    In the simulated data shown in Figure 2, there are clear stripes in the 
columns, indicative of the sample effect. The right panel in Figure 2 
shows the normalized expression from RobNorm. After the sample effect 
was robustly removed, the underlying regulation blocks were recovered. 
    In the differential expression (DE) analysis, four cases were considered: 
(i) DE protein proportion = 2×10% (10% for up-regulation, 10% for down-
regulation) and DE mean change ∆𝜇 = ±1, (ii) DE protein proportion = 
2×10% and ∆𝜇 = ±3, (iii) DE protein proportion = 2×20% and ∆𝜇 = ±1, 
(iv) DE protein proportion = 2×20% and ∆𝜇 = ±3. The protein size 𝑛 was 
set as 5000 and the sample size 𝑚 as 200 and 40. The Wilcoxon rank sum 
test was applied for each protein after normalization and the Area Under 
the Curve (AUC) for each method was recorded. We repeated the proce-
dure independently 20 times. The reports were summarized in Figure 3 
(𝑚 = 200) and supplementary Figure S2 (𝑚 = 40).  

When sample size 𝑚 = 200,	 RobNorm delivered the best performance 
in all four cases (Figure 3). The performance of RobNorm under 𝛾 = 1 
was slightly better than that under 𝛾 = 0.5, especially in the case that the 
outlier magnitude was large. Among the methods in Category I, PQN per-
formed the best but was still out-performed by RobNorm, which indicated 
the importance of incorporating data structure into the normalization step. 
Using quantile parameters from 0.9 to 0.5, the performance of VSN was 
dramatically improved. Under quantile parameter = 0.5, VSN removed 
50% extreme data points to be robust enough to estimate the normaliza-
tion factors, although it still performed worse than RobNorm. Other meth-
ods in Category II generally performed worse than RobNorm. Without it-
erating the expression of the reference sample, the LoessMA had even 
lower power than LoessCyc at finding DE proteins. One observation in 
this simulation study was that the results from EigenMS had much larger 
variation than all other approaches. We speculated that this variation may 
arise from failures of distinguishing true signals from unwanted bias. 

Comparison results under sample size 𝑚 = 40 are summarized in Sup-
plemental Material. When the sample size was small, the fitted popula-
tion of some proteins could be locally trapped such that the variance of 
those proteins was very small under a large 𝛾. To avoid this, a small 𝛾 for 
RobNorm is recommended. In simulations where 𝑚 = 40, we set 𝛾 =
0.1, 0.5. RobNorm under 𝛾 = 0.5 performed better than the rest of the 
methods except EigenMS. EigenMS achieved the best performance on av-
erage but at the cost of larger variation. Note that EigenMS adjusted both 
known and unknown biases while other methods focused only on adjust-
ing known biases. 

We further investigated the performance of RobNorm and one compet-
itive method PQN in estimating the sample effect and protein effect under 
various outlier proportions and magnitudes. The effect of the choice of 𝛾 
was also explored in Supplementary Material. In the simulation studies 
under 𝑚 = 200 , the estimation for the sample effect from RobNorm 
achieved high accuracy in terms of sum of squared errors and was not 
affected much by the choice of 𝛾. We observed that a properly selected 𝛾 
would improve the estimation accuracy for the protein effect.  

3.2 Real data application 

We applied the normalization methods above to the labeled proteomics 
dataset generated in our previous work (Jiang, et al., 2020). In this dataset, 
each run had a pooled reference sample. The peptide abundances were first 
normalized by the total sum normalization and then summarized to the 
protein level. Their relative abundances were obtained by calculating the 
ratios of the sample abundances to the reference. To evaluate normaliza-
tion performance, we only considered the 5,970 proteins that were ob-
served in at least 100 samples to avoid possible bias from missing values.  
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Figure 2: An illustration of a simulated data expression matrix under the setting of protein number n = 500, 
the sample number m = 20 and the regulation effect |∆𝜇| = 3. Each row is the expression of a protein from 
20 samples and each column is the expression of a sample from 500 proteins. There are two regulation 
blocks. One occurs in the upper left block in the first 100 proteins from the first four samples and the other 
in the bottom right block from the last 100 proteins from the last four samples. Each sample (the column) 
is affected by a sample effect. The left panel is the raw expression. The right panel is the normalized expres-
sion from method RobNorm under parameter 𝛾 = 0.5. The simulation details are in Section 3.1. 
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Details in identification and quantification can be found in the Supplemen-
tary Material in (Jiang, et al., 2020). 

With the exception of the VSN method working with the raw relative 
abundance data, all the other normalization methods use log transformed 
data. For the fast loess (LoessCyc) normalization method, the default iter-
ation limit is 3. We found that the estimation from LoessCyc did not con-
verge within 100 iterations for this dataset. Hence, we did not include Lo-
essCyc and only included the LoessMA method which does not iterate 
reference sample expression. The methods applied in this dataset were 
RobNorm (under 𝛾 = 0.5, 1 ), ANOVA ( 𝛾 = 0 ), EigenMS, PQN, 
mean/median normalization, quantile normalization, Rlr, RlrMA, VSN 
(under quantile parameter = 0.9,0.7,0.5), and LoessMA (under span pa-
rameter = 0.9,0.7,0.5 ). The implementation of EigenMS removed the 
proteins with any missing values so the normalized data from EigenMS 
covered only 4,816 proteins. 

To evaluate the performance of these normalization methods, (Callister, 
et al., 2006; Chawade, et al., 2014; Välikangas, et al., 2018) discussed 
several relevant metrics, such as quantitative metrics to evaluate within-
group and across-group variation and qualitative visualization measures. 
We first evaluated the effect of the normalization method on the within-
tissue variation in terms of the pooled intragroup median absolute devia-
tion (PMAD). From Figure 4, except the EigenMS method, most of the 
methods including RobNorm did not significantly decrease the PMADs 
compared to the raw unnormalized data. It may be because the high quality 
of the reference samples and labeled experimental design help reduce 
within-tissue variation in the raw data. We next focused on evaluating the 
effect of the normalization method on the across-tissue variation.   

As a qualitative measure, we visualized the distribution of tissue ex-
pression after normalization. In Figure 5, the densities of muscle and heart 
ventricle expression obviously lagged behind other tissue expression to-
wards low values in the raw data. This can be explained by the fact that 
high signals from a small number of abundant proteins can suppress the 
signals from lower abundance proteins in muscle and heart tissues 
(Geiger, et al., 2013; Jiang, et al., 2020; Wang, et al., 2019). The purpose 
of normalization is to make most of the expression comparable across all 
tissues and the adjustment factors should not be strongly affected by a few 
extremely high or low abundances. In RobNorm normalized data, the den-
sity peaks of all the tissues are aligned together in Figure 5, while the 
EigenMS and VSN adjusted data still produce muscle and heart tissue den-
sities deviated from other tissue densities, which lowers their ability to 
detect up-regulated muscle or heart proteins. All method density compar-
isons are shown in supplementary Figure S9. 

We further investigated the normalization effect on the across-tissue 
variation in differential expression (DE) analysis. As full tissue expression 
analysis was studied in (Jiang, et al., 2020),  here we focused on compar-
ing muscle group expression vs. non-muscle group expression on the nor-
malized datasets. The proteins observed in at least five samples in both 
two groups were included in this DE analysis. The Wilcoxon rank sum 
test was applied for each protein and significantly regulated proteins under 
BH adjusted p-value < 0.05 were reported (Benjamini and Hochberg, 
1995). The DE results are summarized in the supplementary Figure S10 
with volcano plots. Based on the significantly up-regulated muscle 
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Figure 3: The effect of normalization method on the differential expression (DE) analysis in terms of AUC from simulation studies. In the simulations, the sample size 𝑚 was set as 200. Four situations were considered and 
each panel shows the AUC results in each situation. Situation (1):DE protein proportion = 2 × 10% and DE mean change = ±1 (the topleft panel); Situation (2): DE protein proportion = 2 × 10% and DE mean change 
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panel). The height of each bar shows the average AUCs from 20 independently repeated simulations. The error bar corresponds to ±1 standard deviation from the averaged AUC. 
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proteins from the DE results, GO term biological function analysis was 
applied and was implemented using the software STRING (Franceschini, 
et al., 2012(Franceschini, et al., 2012)). 1,232 significantly up-regulated 
proteins resolved in muscle were detected from the RobNorm adjusted da-
taset. They were significantly enriched in the skeletal-muscle-function-re-
lated GO terms, including respiratory electron transport chain, oxidative 
phosphorylation, mitochondrial electron transport, NADH to ubiquinone, 
muscle system processes, muscle contraction, aerobic respiration, glycol-
ysis, and fatty acid metabolic process (with BH adjusted p-value < 10NW). 
Approximately 900 proteins detected using RobNorm were not detected 
in raw data or in EigenMS adjusted data. Those undetected proteins were 
highly enriched in muscle-related functions, including generation of pre-
cursor metabolites and energy, muscle system process, muscle organ de-
velopment, muscle contraction, mitochondrial electron transport, NADH 
to ubiquinone, and skeletal muscle contraction (with BH adjusted p-value 
< 10NF). This indicated that improper normalization methods may limit 
discoveries in protein function and tissue regulation. Moreover, we eval-
uated the coverage of significantly up-regulated proteins over the proteins 
belonging to four well-known muscle-function related GO terms -- NADH 
ubiquinone oxidoreductase subunit, myosin, mitochondrial protein, and 
ATP protein. As shown in Figure 6, the coverage from raw data, 
EigenMS, VSN, Quantile, mean, and median normalized data are less than 
80% in at least one protein group. The Rlr method and our RobNorm ap-
proach have similar coverage. For the down-regulated proteins, we found 
that those proteins whether they were detected from RobNorm or other 
methods were mainly enriched in the basic protein functions, such as ves-
icle-mediated transport, protein transport, and protein localization. More-
over, we did not obtain much significant GO term enrichment associated 
with non-muscle-tissue-type specific functions. It may be because we re-
stricted the proteins to be observed in at least five samples in each group 
in this DE analysis such that the non-muscle-tissue-type specific proteins 
were filtered out. Hence, here we did not further evaluate performance 
differences in detecting down-regulated proteins. 

 

4       Discussion and conclusion 
In analyzing MS data from labeled experimental designs, we developed a 
new data-driven robust normalization method (RobNorm) and compared 
the performance of RobNorm to several commonly used normalization 
methods. From these studies and their application to real data, we con-
cluded that our RobNorm approach offers the best performance in correct-
ing systematic bias while maintaining underlying biological heterogenei-
ties. However, there are still some limitations in the method and future 
work to be done. 

Model assumption. The RobNorm approach was based on the assump-
tion that the majority of protein expression follows a Gaussian distribution 
in logarithmic scale. Based on the Gaussian population assumption, we 

obtained an explicit formula to estimate the sample effect. If the underly-
ing distribution has heavier tails, such as a 𝑡-distribution with a small de-
gree of freedom, a similar framework can be still applied. To maintain the 
power for performance at normalization, it is required to adjust the weight 
function based on the 𝑡-distribution. 

Model flexibility and stability. To model the protein expression in the 
step of normalization, we only modeled the sample effect and the protein 
effect as the primary parameters, while EigenMS considered both known 
and unknown effects. As pointed out in (Karpievitch, et al., 2009), nor-
malization models need to be flexible enough to capture biases of arbitrary 
complexity while avoiding overfitting that would invalidate downstream 
statistical inference. From our simulation studies with highly hetero-
genous sample expression, we found that EigenMS failed to distinguish 
the true signals from the unwanted effects and its performance had high 
variation. There is still a need to robustly and stably remove both known 
and unknown systematic biases in future work. 
     Choice of 𝜸. Our robust estimation was based on the density-power-
weight approach. The model parameter 𝛾 is the weight exponent, which 
balances robustness and efficiency of the estimation. Since our algorithm 
sets the same 𝛾 for all proteins, the 𝛾 can be large for some proteins such 
that their population fitting was locally trapped, i.e., the estimated variance 
was too small. To avoid this, we suggested choosing a smaller 𝛾 when the 
sample size is small. Therefore, in implementing RobNorm from GitHub, 
we included a warning message if the prechosen g is large. From our ex-
perience, we recommended setting 𝛾  as 1 or 0.5 when sample size is 
greater than 100, and otherwise setting 𝛾 as 0.5 or 0.1. The ideal case is to 
choose  𝛾 adaptively for each protein, but this will lead to a problem in 
balancing flexibility and stability of the model. How to select an optimal 
𝛾 is still an open and interesting problem.  
      Sample size. Since our robust estimation for the sample effect depends 
on the estimation of the population parameters, the sample size cannot be 
too small. This is one limitation of the RobNorm method. In practice, we 
suggest that the sample size should be greater than or equal to 20. 
      Missing values. In practice, missing values are very common in MS 
data. Since RobNorm is based primarily on population expression, random 
missing values would not have much effect on the normalization factors. 
If there are missing values in the population, one can impute the missing 
values by taking the sample median or the robustly fitted mean and then 
iteratively applying our algorithm until the estimated parameters con-
verge. To avoid possible bias from missing values due to low expression, 
we recommended using partial proteins with missing proportion < 50% 
to estimate the sample effect and then apply the estimated sample effect 
to normalize all the proteins. The work of (Karpievitch, et al., 2012) com-
bined their EigenMS normalization method with missing value imputa-
tion. How to embed the missing value imputation step into our framework 
can be further explored.  
      Extension to label-free experimental designs. Our RobNorm 
method was designed to normalize labeled proteomics data. Label-free 
proteomics quantification is usually considered to be more noisy by nature 
when compared to labeled data (Callister, et al., 2006; Cox, et al., 2014). 
One step normalization may not be enough to correct all the biases. The 
work of  (Kultima, et al., 2009) combined the normalization step with re-
moving run order bias. MaxLFQ took pair-wise comparison of peptides to 
best estimate protein abundance (Cox, et al., 2014). Also, different search 
engines may affect the quantification results (Kuharev, et al., 2015). It is 
possible to apply RobNorm to label-free quantification as long as the 
Gaussian assumption is valid for the population expression. However, 
there still needs a combination of multiple processing steps used, not only 
one normalization step, to fully correct systematic biases.  
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