Supplemental Movie 1. Dynamics of actin patches labeled by complementary reporters. Actin reporters driven by C155-Gal4 (single timepoints shown in **Fig. S2C**). Timelapse Z-stacks were acquired by spinning disc confocal microscopy at 4 sec/frame. Movie shows MaxIPs played at 15X live speed. The predominant structures are transient patches (quantified in **Fig. 1B-D**), though we also observed much less frequent structures that exhibited significant lateral mobility or resembled 'comet tails', and other more stable, cable-like structures. Scale bar is 5 µm. Associated with **Figs 1, S1**.

Supplemental Movie 2 Loss of nwk increases the frequency of brief actin patches. MaxIPs of spinning disc confocal timelapses of control (left) and $nwk^{1/2}$ (right) muscle 6/7 NMJs acquired at 1Hz (playback 18 fps). Nwk mutants exhibit spurious synaptic F-actin assembly. Scale bar is 5µm. Associated with Fig 6D.

Supplemental Movie 3. AP2a and Lifeact::Ruby partially colocalize. Timelapse Z-stacks were acquired by Airyscan imaging at 4 sec/frame.of endogenously tagged AP2a::GFP and actin patches labeled by Lifeact::Ruby driven by C155-Gal4 (single timepoints shown in Fig. 2I). Movie shows MaxIP played at 16X live speed. Associated with Fig 7.

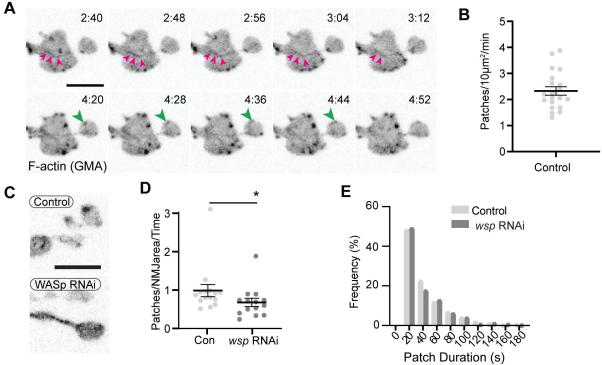
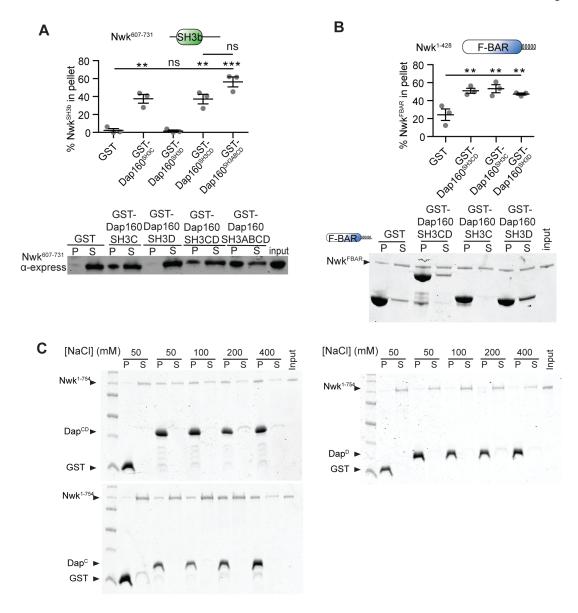
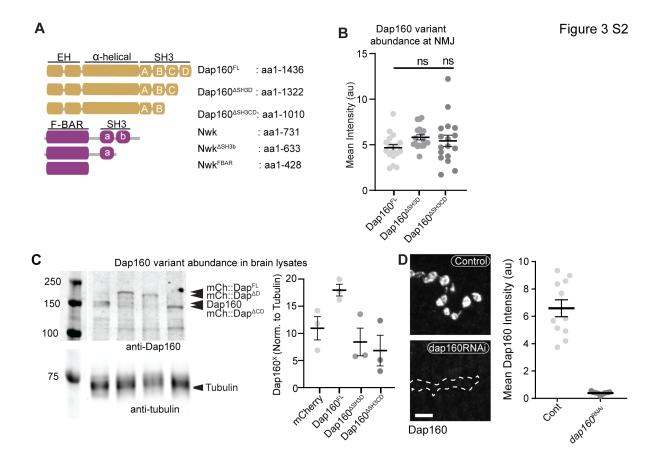




Figure 1 Supplement 1. Additional characterization of actin patches. (A) Image series from Movie 1 highlighting actin cables (magenta arrowheads) and in addition to dynamic patches (large green arrowheads). (B) Quantification of patch frequency in NMJs expressing GMA and imaged at 1Hz. Data are from same experiment as controls in Fig 6A-C (C) Representative MaxIPs of single spinning disk confocal microscopy time points of neuronally expressed GMA in control and WASp RNAi (expressed in neurons via C155-GAL4) NMJs. (D,E) Quantitative analysis of patch frequency and patch duration distribution (imaged at 0.25 Hz) shows that presynaptic WASp RNAi recapitulates the decreased patch frequency observed at WASp mutant NMJs. Histogram bins are 20 sec; X axis values represent bin centers. Scale bars in A and C are 5 µm. Graphs show mean +/- s.e.m.; n represents NMJs. Associated with Fig 1, Movie 1.

Figure 1 S1

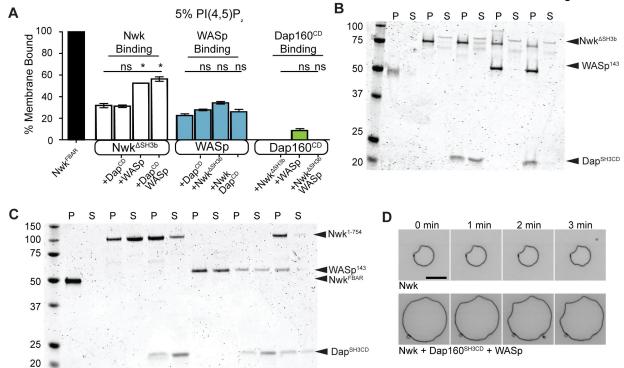


Figure 3 Supplement 1. (A-B) GST fusion proteins were immobilized on glutathione agarose and incubated with the indicated purified proteins. Pellets and supernatants were fractionated by SDS-PAGE, immunoblotted (A) or Coomassie stained (B) and quantified by densitometry. (A) Nwk^{SH3b} interacts directly with Dap160^{SH3C}, Dap160^{SH3CD} or Dap160^{SH3ABCD}, but not with Dap160^{SH3D} alone. [Nwk^{SH3b}]=7µM. (B) The Nwk F-BAR domain interacts directly with Dap160^{SH3}, Dap160^{SH3D}, and Dap160^{SH3CD}. [Nwk^{F-BAR}]=1.5µM, [GST-Dap160^{SH3CD}]=8.5µM, [GST-Dap160^{SH3CD}]=11µM. (C) Representative Coomassie-stained gels for **Fig 3B**.

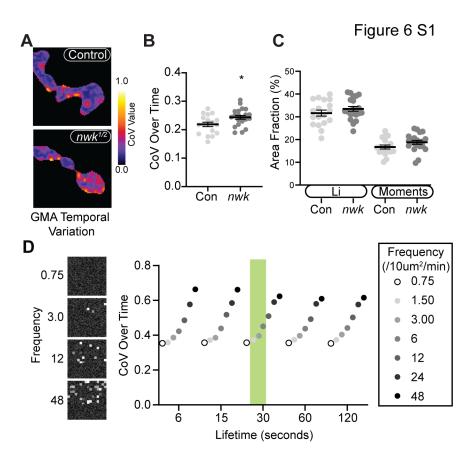
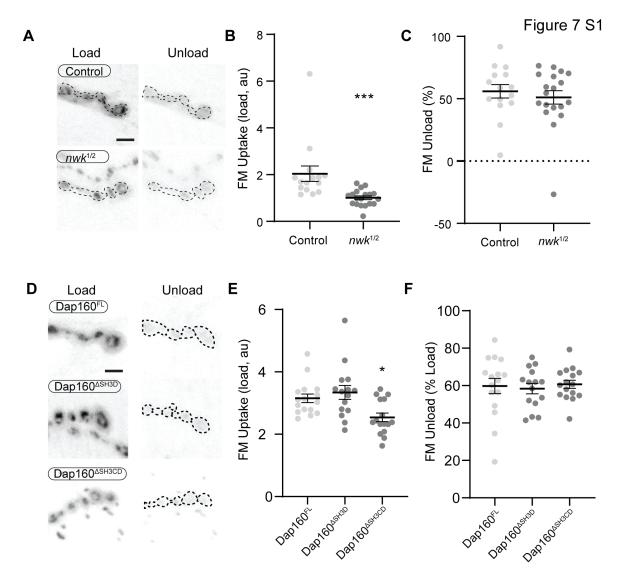


Figure 3 Supplement 2. (A) Schematic of Dap160 rescue transgenes used *in vivo* and Nwk fragments used *in vitro* experiments. (B) Quantification of Dap160 variant transgene expression (mCherry signal) at NMJs from dataset in **Fig 3E**. All transgenes were expressed in neurons by C155-GAL4 in a *dap160* null background (*dap160*^{Δ1/Df}). (C) Representative Western blots (left) and quantification (right) of Dap160 rescue transgene expression in *Drosophila* adult head extracts. (D) MaxIPs (left) and quantification (right) of spinning disc confocal micrographs of control and *dap160* RNAi expressing NMJs showing knockdown of Dap160 protein levels, using the same conditions as in **Fig 3D**. Associated with **Fig 3**.



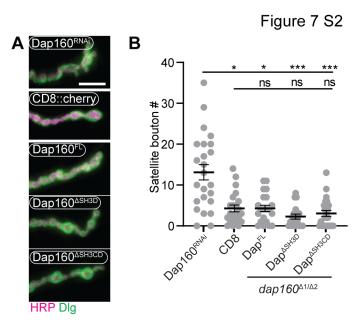

Figure 5 Supplement 1. (A) Cosedimentation assay between the indicated purified proteins and liposomes composed of [mol% = DOPC/DOPE/DOPS/PI(4,5)P₂ = 75/15/5/5]. Dap160^{SH3CD} is unable to enhance membrane binding of Nwk^{ASH3b} (which lacks the autoinhibitory and Dap160-binding SH3b domain), or WASp. Conversely, Nwk^{ASH3b} is unable to promote membrane recruitment of Dap160^{SH3CD}. Quantification from Coomassie-stained gels represents the mean fraction of total protein that cosedimented with the liposome pellet, ± SEM. [Nwk^{1-xxx}] = 2µM, [Dap160] = 6µM. Graph shows mean +/- s.e.m. (B) Representative Coomassie-stained gel from **Fig 5C**. (D) Confocal timelapse of deformation of GUVs (10% PI(4,5)P₂, labeled with <1% TopFluor-PE) decorated with the indicated proteins [Nwk^{1-xxx}] = 250 nM, [WASp]=250 nM, [Dap160] = 1.2 5µM. The Nwk-Dap160-WASp complex retains the same membrane remodeling activity as Nwk alone. Associated with **Fig 5**.

Figure 6 Supplement 1. (A) CoV projections of time-lapse movies of GMA dynamics in control and nwk mutant NMJs (analysis of same dataset as shown in 6A-C; different representative images shown). (B) Average temporal CoV values across NMJs. *nwk* mutants exhibit greater temporal variation in GMA signal than controls. (C) Quantification of the fraction of NMJ area covered by 'high' CoV pixels (identified by automated thresholding using either Li (Li and Tam, 1998) or Moments (Tsai, 1995) algorithms). *nwk* mutants show no difference in the fraction of high CoV pixels, suggesting that actin dynamics are confined to a restricted region of the synapse, and vary more over time rather than space. (D) Example of results from temporal CoV analysis of synthetic data, in which the frequency and lifetime were systematically varied. (Left) Representative images of synthetic data created using a custom FIJI script. (Right) Quantification of CoV over time. Shaded green region indicates values that most closely match in vivo measurements drawn from Patchtracker particle-based analysis. In this regime, our model indicates that the *nwk* mutant effect size in panel B corresponds to a 43% increase in patch frequency, slightly higher than the particle-based measurement of 28%.

Figure 7 Supplement 1. Nwk and Dap160SH3 mutants do not disrupt FM dye unloading. Loading and unloading of FM dyes in *nwk* and *dap160*^{SH3} mutants by stimulation in 90mM KCl + 2mM CaCl₂. (A,D) MaxIPs of spinning disc confocal stacks acquired after loading (left) and unloading (right) of FM dyes. (B-C) Quantification of FM4-64 loading (B) and unloading (C) in *nwk* mutants. (E-F) Quantification of FM1-43 loading (E) and unloading (F) in *dap160* domain mutants.

Figure 7 Supplement 2. (A-B) All Dap160 transgenes rescue *dap160* satellite bouton phenotype. (A) MaxIPs of epifluorescence micrographs of muscle 4 NMJs stained for anti-HRP (magenta) and anti-Dlg (green). Dap160^{RNAi} expressing NMJs exhibit many satellite boutons, which are restored to normal levels by presynaptic expression of Dap160^{FL}, Dap160^{ΔSH3D}, or Dap160^{ΔSH3CD} (in dap160^{Δ1/Df} larvae). (B) Quantification of satellite boutons. Graph shows mean +/- s.em.; n represents NMJs. Scale bar in (A) is 10 µm. Associated with **Fig 7**.

Figure/ Experiment	Genotype/Conditions	Ν	Statistical Test(s)
1A-D			NA
GFP::Actin	C155-GAL4/+ or Y; UAS-GFP::actin/+	823 patches/9 NMJ/5 larvae	
GMA	C155-GAL4/+ or Y; UAS-GMA/+	819 patches/15 NMJ/6 larvae	
Lifeact::Ruby	C155-GAL4/+ or Y; UAS-lifeact::Ruby/+	363 patches/7 NMJ/3 larvae	
1E-F			NA
Arp3	C155-GAL4/UAS-Arp3::GFP; UAS-lifeact::Ruby/+	13 NMJ/3 larvae	
1G-I			Kolmogorov-
Control	C155-GAL4/+ or Y; UAS-GMA/+	832 patches/18 NMJ/8 larvae	Smirnoff(G) Welch's t
WASp	C155-GAL4/+ or Y; wsp1,e,UAS-GMA/wsp1,e	532 patches/15 NMJ/6 larvae	test (H)
S1A-B	C155-GAL4/+ or Y; UAS-GMA/+	1606 patches/20 NMJ/8 larvae	Kolmogorov-
SILLE			Smirnoff
S1C-E			Kolmogorov-
Control	C155-GAL4/Y; UAS-GMA/UAS-luciferaseRNAi	709 patches/15 NMJ/6 larvae	Smirnoff (H)
WASp	C155-GAL4/Y; UAS-GMA/UAS-WASpRNAi	286 patches/14 NMJ/5 larvae	Mann-Whitney (I)
			t test (J)
2A	Nwk ^{MIMICGFP}		
2B	Vglut-GAL4/Y; CD8::RFP/+; Nwk::GFP/+		
2D 2C-D	C155-GAL4/Y; UAS-WASp::myc/+; UAS-GMA/+	14 NMJ/3 larvae	NA
2E-F	C155-GAL4/Y; UAS-WASp::myc/+; UAS-GMA/+	12 NMJ/3 larvae	NA
2G-I			NA
AP2	C155-GAL4/+; UAS-lifeact::Ruby/AP2::GFP	14 NMJ/3 larvae	
3B		3 tech replicates per lane	NA
GST-X	5µg	• ····· ··· ··· ··· ··· ··· ···	
Nwk ¹⁻⁷³¹	3µg		
3B		3 tech replicates per lane	NA
GST-CD	1.6μM CD, 1.2μM C/D	1 1	
Nwk ¹⁻⁴²⁸	1.5μM		
Nwk ¹⁻⁷³¹	0.8μ M		
3D	rescues=C155-GAL4/+; dap160 ^{Δ1} /Df3450; X		ANOVA+Tukey's
Dap ^{FL}	X=UAS-Dap ^{FL} ::mCherry/+	18 NMJ/3 larvae	multiple comparison
$Dap^{\Delta D}$	$X=UAS-Dap^{\Delta D}/+$	18 NMJ/3 larvae	test
$Dap^{\Delta CD}$	X=UAS-Dap $^{\Delta CD}/+$	17 NMJ/3 larvae	
Dap ^{RNAi}	C155-GAL4, UAS-Dcr2/Y; UAS Dap160-RNAi/+	16 NMJ/3 larvae	
3E	rescues= C155-GAL4/+; dap160 $^{\Delta 1}$ /Df3450; X		Kruskal-Wallis +
Dap ^{FL}	X=UAS-Dap ^{FL} ::mCherry/+	17 NMJ/3 larvae	Dunn's multiple
Dap ^{ΔD}	$X=UAS-Dap^{\Delta D}/+$	18 NMJ/3 larvae	comparison test
$Dap^{\Delta CD}$	$X=UAS-Dap^{\Delta CD}/+$	17 NMJ/3 larvae	1
3 S1A			
Nwk ⁶⁰⁷⁻⁷³¹	7μΜ		
3 S1B		3 tech replicates per lane	ANOVA+Tukey's
GST-X Nwk ¹⁻⁴²⁸	.375mg/mL (CD=8.5μM, C/D=11μM) 1.5μM		multiple comparison test

Supplemental Table 1. Summary of genotypes and statistics for all experiments in this study.

Figure/ Experiment	Genotype/Conditions	N	Statistical Test(s)
3S1C	Same experiment as Figure 3B	Same experiment as Fig 3B	ANOVA+Tukey's multiple comparison test
3S2B	Same experiment as Figure 3D	Same experiment as Fig 3D	ANOVA+Tukey's multiple comparison test
3 S2C mCh Dap ^{FL} Dap ^{ΔD} Dap ^{ΔCD}	C155-GAL4/+; UAS-CD8::RFP/+ X=UAS-Dap ^{FL} ::mCherry/+ X=UAS-Dap ^{ΔD/+ X=UAS-Dap^{ΔCD/+}}	10 pooled brains/replicate, 3 biological replicates/group	NA
3 S2D Control Dap160RNAi	vglut/Y; Nwk::GFP ^{MiMIC} /UAS-luciferaseRNAi vglut/Y; UAS-dcr2/+; Nwk::GFP ^{MiMIC} /Dap160 ^{RNAi}	11NMJ/3larvae 11NMJ/3larvae	t test
4A Actin Arp2/3 WASp Nwk1-731 DapCD DapC	2μM 50nM 50nM 500nM 2μM 2μM	 (1) 2 replicates (2) 2 replicates (3) 3 replicates (4) 3 replicates (5) 5 replicates (6) 2 replicates 	ANOVA+ Tukey's multiple comparison test
4B Actin Arp2/3 WASp Nwk1-731 DapCD PI(4,5)P ₂	2μM 50nM 50nM 100nM 500nM 2μM 10% PI(4,5)P2 liposomes	 (1) 2 replicates (2) 2 replicates (3) 3 replicates (4) 3 replicates (5) 3 replicates 	ANOVA+ Tukey's multiple comparison test
4C Nwk ¹⁻⁶³³ Nwk ¹⁻⁷³¹⁺ Dap ^{CD}	2μM OG-actin, 50nM Arp2/3, 50nM WASp 500nM Nwk ¹⁻⁶³³ ::SNAP549 500nM Nwk ¹⁻⁷³¹ ::SNAP549+2μM Dap160 ^{SH3CD}	41 droplets 22 droplets	NA
5A Nwk ¹⁻⁴²⁸ Nwk ¹⁻⁷⁵⁴ Dap ^{CD}	DOPC/DOPE/DOPS/PI(4,5)P ₂ = 70/15/5/10 3µM 1.125µM 1.69-6.75µM	3 tech replicates per group	ANOVA+ Tukey's multiple comparison test
5B Nwk ^{1-XXX} Dap160 ^X	$\frac{\text{DOPC/DOPE/DOPS/PI(4,5)P}_2 = 80 \text{-x}/15/5/\text{x}}{2\mu\text{M}}$ 6 \u03c0 M	3 tech replicates per group, except 2 replicates for: 2.5%PIP2-Nwk ¹⁻⁴²⁸ 2.5%-Nwk ¹⁻⁷³¹ +Dap ^{SH3C}	ANOVA+ Tukey's multiple comparison test
5C Nwk ¹⁻⁷³¹ WASp Dap160 ^{CD}	DOPC/DOPE/DOPS/PI(4,5)P ₂ = 70/15/5/10 1μM 1μM 3μM	3 tech replicates per group	ANOVA+ Tukey's multiple comparison test
5D Nwk ¹⁻⁷³¹ Nwk/WASp/Dap	5% PI(4,5)P ₂ GUVs 500nM Nwk ¹⁻⁷³¹ ::SNAP549 250nM Nwk ¹⁻⁷³¹ ::SNAP549, 250nM WASp, 1.25μM Dap160 ^{SH3CD}	Representative from: 11 GUVs imaged 12 GUVs imaged	NA
5E-F Control Dap160RNAi	vglut/Y; Nwk::GFP ^{MiMIC} /UAS-luciferaseRNAi vglut/Y; UAS-dcr2/+; Nwk::GFP ^{MiMIC} /Dap160 ^{RNAi}	9 NMJs/4 larvae 10 NMJs/5 larvae	One step association curve Mann-Whitney U test on taus

Figure/ Experiment	Genotype/Conditions	N	Statistical Test(s)
5 S1A-B	DOPC/DOPE/DOPS/PI(4,5)P ₂ = 75/15/5/5	3 tech replicates per group	ANOVA+
Nwk ¹⁻⁶³³	1μM	1 1 2 1	Tukey's multiple
WASp	2 μM		comparison test
Dap160 ^{CD}	3µM		1
5 S1C	DOPC/DOPE/DOPS/PI(4,5)P ₂ = $70/15/5/10$	3 tech replicates per group	ANOVA+
Nwk ¹⁻⁷³¹	1μM	s teen reprieates per group	Tukey's multiple
WASp	1µM		comparison test
Dap160 ^{CD}	3µM		comparison test
5 S1D	DOPC/DOPE/DOPS/PI(4,5)P ₂ = $70/15/5/10$	Donnocontativo from	NA
Nwk ¹⁻⁷⁵⁴		Representative from:	NA
	250nM	5 GUVs imaged	
WASp		10 GUVs imaged	
Dap160 ^{SH3CD}	250nM5% PI(4,5)P ₂ GUVs		
6A-C			
Control	C155-GAL4/+ or Y; UAS-GMA/+	1606 patches/20 NMJ/8 larvae	Mann-Whitney (B)
nwk ^{1/2}	C155-GAL4/+ of Y; UAS-GMA, nwk^2 , h/nwk^1	1928 patches/22 NMJ/8 larvae	KolmSmirnoff (C)
		1920 patenes/22 Mivij/8 larvae	KonnSimmon (C)
6D-F	C155-GAL4/+; dap $160^{\Delta 1}$ /Df3450; UAS-GMA/X	1270	Mana Will's (T)
FL	X=UAS-Dap ^{FL} ::mCherry/+	1279 patches/14 NMJ/7 larvae	Mann-Whitney (E)
ΔCD	X=UAS-Dap $^{\Delta CD}/+$	1937 patches/17 NMJ/7 larvae	KolmSmirnoff (F)
6 S1A-C	Same data as 6A-C	As 6A-C	t-test (B)
			t-test (C)
7B-C	C155-GAL4/+; UAS-lifeact::Ruby/AP2::GFP	14 NMJ/3 larvae	NA
7 D- Е			
Control	C155-GAL4/Y; UAS-GMA/+	669 patches/16 NMJ/8 larvae	Welch's t test (D)
shiTS1	C155-GAL4, shiTS1/Y; UAS-GMA/+	901 patches/19 NMJ/8 larvae	
7A-BF-G		·	Kruskal-Wallis +
Control	C155-GAL4/Y; UAS-GFP/+	23 NMJ/4 larvae	Dunn's multiple
$nwk^{1/2}$	C155-GAL4/Y; UAS-GFP/+; nwk^1/nwk^2h	24 NMJ/4 larvae	comparison test
shi ^{TS1}	C155-GAL4, shi ^{TS1} /Y; UAS-GFP/+	23 NMJ/4 larvae	comparison test
7C-DH-I	rescues= C155-GAL4/+; dap $160^{\Delta 1}$ /Df3450; X		Unpaired t-tests to
		22 NIML- /9 1	
Dap^{FL} $Dap^{\Delta D}$	X=UAS-Dap ^{FL} ::mCherry/+	32 NMJs/8 larvae	dish-matched controls
	$X=UAS-Dap^{\Delta D}/+$	12 NMJs/3 larvae	
Dap ^{∆CD}	$X=UAS-Dap^{\Delta CD}/+$	12 NMJs/3 larvae	
shi ^{TS!}	C155, shiTS1/Y x UAS-RFP	8 NMJs/2 larvae	
7 S1A-C			
Control	C155-GAL4/Y; UAS-GFP/+	15 NMJ/4 larvae	Mann-Whitney (B)
nwk ^{1/2}	C155-GAL4/Y; UAS-GFP/+; nwk^1/nwk^2h	19 NMJ/5 larvae	t-test (C)
7 S1D-F	rescues= C155-GAL4/+; dap160 $^{\Delta1}$ /Df3450; X	17 11110/0 141 140	
Dap ^{FL}	X=UAS-Dap ^{FL} ::mCherry/+	16 NMJs/4 larvae	ANOVA+Tukov'a
	$X=UAS-Dap^{\Delta D}/+$	16 NMJs/4 larvae	ANOVA+Tukey's
$Dap^{\Delta D}$			multiple comparison
Dap ^{ΔCD}	$X=UAS-Dap^{\Delta CD}/+$	16 NMJs/4 larvae	test
Figure 7S2A-B			
DapRNAi	C155-GAL4, UAS-Dcr2/Y; UAS Dap160-RNAi/+	24 NMJ/6 larvae	ANOVA+Tukey's
mCh	C155-GAL4/+; UAS-CD8::RFP/+	22 NMJ/6 larvae	multiple comparison
Dap ^{FL}	X=UAS-Dap ^{FL} ::mCherry/+	21 NMJ/6 larvae	test
Dap ^{∆D}	$X=UAS-Dap^{\Delta D}/+$	16 NMJ/5 larvae	1051
$Dap^{\Delta CD}$	$X=UAS-Dap^{\Delta/T}$ X=UAS-Dap^{\Delta/CD}/+	23 NMJ/6 larvae	
Бар -	$\Lambda - UAS - Dap$	25 INIVIJ/O Idrvae	

Del Signore et al., 12 04 2020 – Supplementary Material - BioRxiv