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Abstract. In order to develop object recognition algorithms, which can approach 

human-level recognition performance, researchers have been studying how the 

human brain performs recognition in the past five decades. This has already in-

spired AI-based object recognition algorithms, such as convolutional neural net-

works, which are among the most successful object recognition platforms today 

and can approach human performance in specific tasks. However, it is not yet 

clearly known how recorded brain activations convey information about object 

category processing. One main obstacle has been the lack of large feature sets, to 

evaluate the information contents of multiple aspects of neural activations. Here, 

we compared the information contents of a large set of 25 features, extracted from 

time series of electroencephalography (EEG) recorded from human participants 

doing an object recognition task. We could characterize the most informative as-

pects of brain activations about object categories. Among the evaluated features, 

event-related potential (ERP) components of N1 and P2a were among the most 

informative features with the highest information in the Theta frequency bands. 

Upon limiting the analysis time window, we observed more information for fea-

tures detecting temporally informative patterns in the signals. The results of this 

study can constrain previous theories about how the brain codes object category 

information. 

Keywords: Object Category Recognition, Feature Extraction, Brain Decoding, 

Classification. 

1 Introduction 

Object recognition algorithms are widely used in computer vision applications such as 

image annotation (Vedaldi & Lenc, 2015), face recognition (O’Toole et al., 2018), face 

detection (Kalinovskii, n.d.) and object tracking (El-Shafie et al., 2019). They are cat-

egorized into one of the two categories of “machine learning” approaches and “deep 

learning” approaches. In the machine learning approaches, one needs to first define a 

set of statistical/topographical/mathematical features (e.g. Haar features, Scale-invari-

ant feature transform (Lowe, 1999), histogram of oriented gradients (Dalal & Triggs, 

2005)), extract them from object images and then apply a machine-learning classifier 

such as support-vector machine (SVM) to categorize the objects into their semantic 
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categories (e.g. car, animal, human, etc.). The deep learning approaches (including Re-

gion Proposals (Girshick et al., 2014) and Single Shot Multibox Detectors (Liu, 2016)) 

which generally use convolutional neural networks, on the other hand, do not need the 

features to be defined prior to classification; they do the feature extraction and classifi-

cation within the same architecture. Interestingly, the deep learning approaches, which 

are in many ways inspired by how the human visual system processes object features 

and performs recognition (Karimi-Rouzbahani et al., 2017c; Khaligh-Razavi & 

Kriegeskorte, 2014; Kheradpisheh et al., 2016), have outperformed most of the ma-

chine-learning approaches in the past eight years (Krizhevsky et al., 2012). In fact, the 

object recognition performance surged upon the introduction of second generation of 

convolutional neural networks, namely AlexNet, in 2012 (Krizhevsky et al., 2012), af-

ter more than a decade of slow improvements. Since then, one of the main approaches 

that researchers have been pursuing to improve the recognition performance, has been 

to understand how the human brain performs object recognition (Federer et al., 2020). 

These insights will in turn allow us to develop more brain-like object recognition algo-

rithms which can potentially reach human-level performance. 

 

To understand how the human brain performs object recognition, the first step is to 

understand how we can ‘read out’ or ‘decode’ the codes that the brain generates for 

each object category. Therefore, we need to quantitatively compare large sets of fea-

tures of the brain activity to characterize the informative ones for decoding. This is 

important, as it will constrain the understudied parameters of the available brain-in-

spired deep learning algorithms for improved recognition performance. Here we eval-

uate the information content of large-scale feature set of electrical brain activity (EEG), 

recorded while humans performed a simple object recognition task. To that end, we use 

multivariate pattern decoding (or simply decoding) to capture the most subtle differ-

ences in the patterns of neural activity across different object categories (Hebart & 

Baker, 2018). 

 

During the past decade, a number of DECODING studies have evaluated the infor-

mation content of brain activity as recorded through EEG to decode the category of the 

presented objects from brain activity (Kaneshiro et al., 2015; Karimi-Rouzbahani et al., 

2017a; Simanova et al., 2010). For example, earlier studies have shown that the mean 

amplitudes of brain activations such as P1, N1, P2a and P2b, which indicate average 

amplitudes in specific time windows of signal time series, between 100 to 300 ms object 

presentation time, could be used to reliably discriminate object categories (Chan et al., 

2011). Later investigations implemented a classifier of Linear Discriminant Analysis 

(LDA) and showed the components were so informative that allowed the discrimination 

of up to four object categories (Wang et al., 2012). Other studies investigated more 

complex ways in which information coding could happen in the brain such as frequency 

coding (Wang et al., 2018), signal power coding (Majima et al., 2014; Miyakawa et al., 

2018; Rupp et al., 2017), coding based on within-trial correlation (Karimi-Rouzbahani 

et al., 2017a; Majima et al., 2014), and non-linear statistical features such as signal 

Kurtosis, Hjorth complexities, fractal dimensions, etc. which generally represent the 
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randomness of the signals can be used to discriminate visual object categories (Stam, 

2005; Sweeti et al., 2018; Torabi et al., 2017). 

 

While all of the above-mentioned studies have been able to categorize visual object 

categories using their proposed signal features, their results lack the generalizability to 

other studies. We still do not know which of these features carry more object category 

information. This is important since, while the secondary attributes of the neural code 

may allow for the classification of categories, they still fall behind the most informative 

features, which might be available but overlooked. Therefore, we need to compare as 

many features as possible on a well-controlled dataset to assure which feature is the 

most informative. In fact, while several of the above-mentioned studies compared mul-

tiple features, most of the proposed features were used in separate studies, sometimes 

causing discrepancy in the results. For instance, one study showed that object categories 

could be discriminated from signal phase patterns in low frequency bands but not from 

signal power (Behroozi et al., 2016), a finding that was later repeated by another group, 

however, this time in a higher frequency band (4-8 Hz vs 1-4 Hz; (Wang et al., 2018)). 

To overcome this issue, we extracted a large set of 25 features, proposed in previous 

studies, from a generalizable object recognition dataset and evaluated their performance 

in providing object category information. 

2 Methods 

2.1 Dataset 

We used a previously published EEG dataset for this study. This dataset has been used 

in a time-resolved object categorization decoding study and has provided significant 

information about object categories using multivariate pattern analysis (Karimi-

Rouzbahani et al., 2019).  

Image set and task. EEG signals were collected from 10 human participants, while 

they performed an object recognition task as shown in Fig. 1B. Basically, they were 

presented with (48 unique) images from one of four categories of objects including 

animals, fruits, objects and human faces as shown in Fig. 1A. Participants were in-

structed to press the spacebar of a computer if the presented object was from the cate-

gory indicated (for 5000 ms) at the beginning of each blocks of trials and not if it was 

from other categories. Each block of trials included 12 image presentations and each 

image was presented for 900 ms followed by 800 ms of inter-stimulus-interval (Fig. 

1B). Each unique stimulus was presented 6 times to increase the signal-to-noise ratio 

for analyses. 
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Fig. 1. Image set (obtained from Kiani et al., 2007 with permission; A) and the object recognition 

paradigm (B). A, the image set included 4 categories of images with Object, Fruit, Animal and 

Face categories each including 12 exemplars (4 shown here). Images were 256*256 color images 

with balanced average luminance and contrast across categories. B, Subjects were supposed to 

press the spacebar if whenever they saw an image from the cured target category and refrain from 

response otherwise. They had 800 ms to respond. 

Signal pre-processing. The brain signals were sampled at 1000 Hz (using a 31-channel 

amplifier) and only the EEG data for correctly recognized object images (M=94.65%, 

SD=9.38% across participants) were used for decoding. We band-pass filtered the EEG 

signals in the range from 0.03 to 200 Hz to remove baseline drift and high-level noise. 

We also notch-filtered the signals at 50 Hz to remove line noise and removed eye-

movement artifacts using Independent Component Analysis (ICA). We split the signals 

around the time of stimulus presentation from 1 to 1000 ms after the stimulus onset for 

analysis. All the analyses were done in Matlab with the preprocessing done using the 

EEGLAB toolbox (Delorme & Makeig, 2004). For detailed explanation of the dataset 

see (Karimi-Rouzbahani et al., 2019). 

Extracted Features. We extracted a set of 25 features from the signal time series (from 

1 to 1000 ms after stimulus onset) ranging from the simple statistical feature of mean 

to more complex features of fractal dimensions. Here we very briefly explain each fea-

ture. For more information, the readers are referred to the relevant references.  
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Mean, Variance, Skewness and Variance. These features are the standard 1st to 4th mo-

ments of EEG time series. To calculate these features, we simply calculated the mean, 

variance, skewness and variance of EEG signals as defined in statistics. We also present 

the results for the Baseline, which refers to the signal mean in the pre-stimulus time 

span (-200 to 0 ms) and is expected to provide no information (it is a control feature). 

Median. We also calculated signal’s median as it is less affected by spurious values 

compared to the signal mean. 

 

LZ complexity. We calculated the Lempel-Ziv complexity as an index of signal com-

plexity. This measure, counts the number of unique sub-sequences within the signal 

time samples, which is first turned into a binary sequence. We used the signal median 

to make the signal samples binary. Accordingly, the LZ complexity of a time series 

grows with the length of the signal and its irregularity. See (Ziv & Lempel, 1976) for 

more details. 

Higuchi and Katz fractal dimensions. Fractal is an indexing technique which provides 

statistical information determining the complexity of how data are organized in a time 

series. Accordingly, higher fractal value, suggests a more complexity and vice versa. 

In this study, we calculated the complexity of the signals using two methods of Higuchi 

and Katz, as had been used before for categorizing object categories (Namazi, 2018). 

Hurst exponent. This measure, quantifies the long-term memory in a time series. Basi-

cally, it calculates the degree of dependence among consecutive samples of time series 

and functions similarly to the autocorrelation function (Racine, 2011). 

Sample and Approximate Entropy. Entropy measure the level of perturbation in time 

series. As precise calculation of entropy needs large sample sizes and is also noise-

sensitive, we calculated it using two of the most common approaches. Sample entropy 

is not as sensitive to the sample size and simpler to implement compared to Approxi-

mate entropy. Sample entropy, however, does not take into account self-similar patterns 

in the time series (Richman & Moorman, 2000). 

P1, N1, P2a and P2b (event-related potential; ERP) components. These signal compo-

nents refer to signal amplitude (mean value) within well-known prespecified time win-

dows of trial. These are defined as P1 (80 to 120 ms), N1 (120 to 200 ms), P2a (150 to 

220 ms) and P2b (200 to 275 ms). 

Within-trial correlation. This index quantifies the self-similarity of a time series at spe-

cific time lags. Accordingly, if a time series has a repeating pattern at the rate of F hertz, 

an autocorrelation measure with a lag of 1/F will return a value of 1. However, it would 
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return -1 at the lag of 1/2F. It would provide values between -1 and 1 for other cases. 

More complex signals, would provide values close to 0. 

Hjorth complexity and mobility. These parameters measure the variation in the signals’ 

characteristics. Specifically, the complexity measure, calculates the variation in a sig-

nal’s dominant frequency, and the mobility measures the width of the signal’s power 

spectrum (how widely the frequencies are scattered in the signal; (Torabi et al., 2017)). 

Mean, Median and Average Frequency. These measures, calculate the central fre-

quency of the signal in different ways. Mean frequency is the average of all frequency 

components available in a signal. Median frequency is the median normalized fre-

quency of the power spectrum of the signal and the average frequency is the number of 

time the signal time series crosses zero. 

Spectral Edge Frequency. It indicates the high frequency, below which, x percent of 

the signal’s power spectrum exists. X was set to 95% in this study. 

Signal power, Power and Phase at Median Frequency. Signal’s power (i.e. power spec-

trum density) was used as a feature. Signal’s power and phase at median frequency 

have been shown to be informative about object categories (Jadidi et al., 2017; Rupp et 

al., 2017). Therefore, we also extracted them from signals to evaluate their information 

content in category decoding. 

Multivariate pattern analysis (decoding). We used multivariate decoding to measure 

the level of information contained in each feature about object categories. This method 

is basically a classification, which is quite common in machine learning, which takes 

into account the activity from all electrodes in EEG as input features to the classifier. 

We used an LDA classifier to classify every pair of categories (6 pairs for 4 categories). 

We used a 10-fold cross-validation procedure in which we trained the classifier on 90% 

of data and tested them on the left-out 10%. We repeated this procedure 10 times so 

that each data is used once as a testing data. We did it for every time window, the main 

frequency bands in EEG (Delta= 0.5-4Hz; Theta= 4-8Hz; Alpha=8-12Hz; Beta=12-

16Hz and Gamma=16Hz>). 

Statistical analysis. In order to determine the significance of decoding accuracies with 

chance-level decoding, we generated 1000 random accuracies using random permuta-

tions of class labels. To that end, we randomized the labels of categories and did the 

classification as if they were true categories. Finally we compared the true distribution 

with the null distribution and considered the true accuracies as significant if they sur-

passed 95% of the accuracies from the null distribution. All the p-values were corrected 

for multiple comparisons across features using Bonferroni correction.  
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3 Results 

The decoding results showed that only a few of the features could provide category 

information with above-chance accuracy (p<0.05; random permutation testing; Fig. 

2A). Specifically, Mean, Variance, Higuchi-frct, Hurst-Exp, Hjorth-Mob, Mean-Freq, 

Med-Freq, within-trial correlation as well as all ERP components showed information 

for object categories. Importantly, ERP components provided the highest decoding ac-

curacy as reflected in their mean. We also looked at the results from each individual 

category separately to see if the coding of information was advantageous for any cate-

gories (Fig. 2B). We saw the dominance of the same features, with the most pronounced 

decoding values for the ‘Face’ category. This is consistent with previous finding show-

ing stronger coding of face category information in the human brain compared to other 

categories of objects (Kaneshiro et al., 2015; Karimi-Rouzbahani et al., 2017a; Petras 

et al., 2019). 

 

Fig. 2.  Decoding results for all categories (A) and each individual category (B). A, decoding 

accuracy reflects the average classification accuracy along with the standard error (SE) across 

participants (error bars). Colored dots indicate features with significantly (p<0.05; random per-

mutation testing) above-chance accuracy. B, decoding accuracy for each category was calculated 

as the average of decoding accuracy when classifying the given category from all other catego-

ries.  

In order to quantify the advantage for the face category, we performed a signed-rank 

statistical testing to quantitatively compare the decoding results across categories. We 
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observed that, the face category dominated other categories, especially for the ERP 

components of P1, N1, P2a and P2b (Fig. 3). This is consistent with previous studies 

which observed the temporally constrained representation of face processing at around 

170 ms post-stimulus onset (Nemrodov et al., 2018; Rousselet & Pernet, 2011). 

 

 

Fig. 3.  Statistical testing results evaluating the difference between the decoding accuracies ob-

tained for individual object categories (Fig. 2B). Wilcoxon’s signed-rank test was performed be-

tween all possible pairs of categories and the p-values were corrected for multiple comparisons 

across features and combination of categories. Robust results were found supporting the domi-

nance of face category decoding especially for the ERP components. 

 

Motivated by previous studies finding category information in specific frequency 

bands, we also evaluated the information contents of the well-known EEG frequency 

bands of Delta= 0.5-4Hz, Theta= 4-8Hz, Alpha=8-12Hz, Beta=12-16Hz and Gam-

ma=16Hz> (Fig. 4). While the Delta band provided above-chance decoding accuracies 

and seemed to surpass other frequency bands in a few features such as the moment 

features (e.g. Mean, Variance) as well complexity-measuring features (e.g. Katz-frct), 

the most information seem to have been represented in the EEG signals in the Theta 

and Alpha bands. This was more pronounced or the ERP components. The observation 

that the Theta band dominated other frequency bands can be explained by the pro-

cessing of visual information in the brain by the feed-forward neural mechanisms 

(Bastos et al., 2015). 
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Fig. 4. Decoding accuracy obtained for all features (except for frequency-domain features) in the 

well-established informative EEG frequency bands of Delta, Theta, Alpha, Beta and Gamma. 

Decoding results reflect the average classification accuracy along with the standard error (SE) 

across participants (error bars). Colored dots indicate features with significantly (p<0.05; random 

permutation testing) above-chance accuracy. 

The results so far showed that ERP features which were extracted from the signal in 

the time span from 80 to 275 ms relative to the stimulus presentation onset, provided 

the most information about visual object categories. This was different to the other fea-

tures, which were all extracted from the whole trial time span (0 to 1000 ms). These 

results and previous time-resolved studies (Kaneshiro et al., 2015; Karimi-Rouzbahani, 

2018; Karimi-Rouzbahani et al., 2017b; Karimi-Rouzbahani et al., 2020; Karimi-

Rouzbahani et al., 2020a) suggest that the object category information might be more 

accessible in specific time spans from around 50 ms to 300 ms in the EEG signals. 

However, it has not been shown how (if at all), other features of the EEG signals (i.e. 

all except Mean), reflect object category information across the time course of trials. 

To answer this question, we split the trials into six 100ms sub-windows of time and 

evaluated the category information within each sub window from each individual fea-

ture (Fig. 5). Please note that, by definition, we excluded the ERP components in this 

analysis. The results showed that the highest information was observed in the 100-200 

ms (for almost all features except fractal dimensions, approximate entropy and SEF) 

followed by the 200-300 ms sub windows. Interestingly, rather the commonly used 

signal Mean feature, the maximum average decoding accuracies were obtained from 

the within-trial correlation and the Hurst exponent both of which measure aspects of 

signal autocorrelation in the EEG. While these results are consistent with previous ob-

servations showing category-related information in the 50 ms to 300 ms time windows 

(Karimi-Rouzbahani et al., 2019; Karimi-Rouzbahani, 2018), they also suggest that fea-

tures of EEG signals, which detect temporally correlated patterns (i.e. within-trial cor-

relation and Hurst exponent), can provide additional category-related information for 

decoding. 
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Fig. 4. Decoding accuracy obtained for all features (except the time-dependent ERP features) in 

six 100ms sub windows of trials. Decoding results reflect the average classification accuracy 

along with the standard error (SE) across participants (error bars). Colored dots indicate features 

with significantly (p<0.05; random permutation testing) above-chance accuracy. 

4 Discussion 

While the artificial intelligence-based object recognition algorithms have started a 

remarkable progress after the introduction of the brain-plausible convolutional neural 

networks (Krizhevsky et al., 2012), we are still short of enough understanding about 

how the brain processes categories of objects for recognition. This understanding is 

critical for improving the AI-based algorithms. We believe that the first step in under-

standing the human brain is to find the optimal way in which we can read out/decode 

the information processing of the brain. In this work, we approached this question by 

evaluating the information content of a large set of features extracted from human brain 

activity (EEG) during object recognition. We observed that, the well-established ERP 

components of the EEG were the most informative features in the feature set and their 

information was more pronounced in the Theta band rather than any other bands. Upon 

limiting the analysis time window to 100 ms windows, we observed that the information 

was mainly concentrated in the 100-200 ms time window (at around the same time of 

the ERPs) and it was more pronounced for the features which detected repetitive pat-

terns across time (i.e. within-trial correlation and Hurst exponent). Finally, we showed 

that the information about human faces were more accessible in the brain activity. 

 

These results have several implications for future developments of brain-inspired 

object recognition algorithms. First, the information about object category processing 

should be looked for in the span from 50 ms to 1000 ms post stimulus onset, when 

trying to study the human object recognition brain. This could confine many previous 

work which looked at the whole trial time window for additional category-related in-

formation (Taghizadeh-Sarabi et al., 2014; Torabi et al., 2017) and can inform future 

studies. Second, brain decoding for object category information should look at the 

Theta band as it is the main substrate for the coding of feed-forward visual processing 

of visual information in the brain (Bastos et al., 2015). Third, temporal variability of 
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brain activity should not be overlooked, as this is generally the case in multivariate 

decoding (Karimi-Rouzbahani et al., 2019), as the temporal codes can contain addi-

tional information. Forth, as the brain seem to process the face and object information 

using a common set of neural infrastructures (Dobs et al., 2019), but constructs face 

representations which outperform object representations (Fig. 2B), the current deep net-

works of object recognition, may benefit to follow the brain and move towards a unified 

platform for face and object recognition. This is not the case as we generally use sepa-

rate deep neural networks for the categorization of objects (e.g. AlexNet) and faces (e.g. 

VGG face). 

 

This work also provides new insights for the research in the area of Brain-Computer 

Interface (BCI), by putting the spotlight on the most informative features that can im-

prove the classification accuracy. Please note that we did not try to maximize the de-

coding accuracy in this study, but rather, tried to see how the brain processes infor-

mation about object categories. That is why we used unsupervised feature extraction 

methods to see how the brain activity reflects information, rather than using supervised 

methods for feature transformation and combination which are used in the BCI domain 

(Pouryazdian & Erfanian, 2009). Of course, using supervised machine learning meth-

ods can potentially provide advantageous decoding accuracies on this same dataset.  

 

Together, this paper presents preliminary results about where we should look for 

object category information when decoding brain activity. There can be many interest-

ing future directions for this work including combining the informative features 

(Rouzbahani & Daliri, 2011), fusing the neural representations of objects (EEG) with 

those of state-of-the-art convolutional neural networks to see their similarities/differ-

ences using representational similarity analysis (Hamid Karimi-Rouzbahani, 2018), etc. 
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