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Abstract: In studies of vision and audition, stimuli can be chosen to span the visible
or audible spectrum; in olfaction, the axes and boundaries defining the analogous odorous
space are unknown. Features governing the physical transport of molecules to olfactory
receptors are sufficient to reliably classify novel molecules as odorous or odorless (AUROC
= 0.97). Applying this model to a database of all possible small organic molecules, we
estimate that over 30 billion possible compounds are odorous, 6 orders of magnitude larger
than current estimates of 10,000. Remarkably, nearly all transport-capable molecules are
odorous, suggesting broad collective tuning of olfactory receptors. Defining the boundaries
of odor perception will enable design of experiments that representatively sample olfactory
space and efficient search for novel odor compounds.

The number of molecules humans can smell
is disputed, with published estimates rang-
ing from 10,000 (1 ) to infinitely many (2 ).
Chemical space is vast, and we cannot re-
solve this dispute until we define the subset of
chemical space that has an odor. Critically,
this knowledge gap means we cannot cur-
rently assess how well olfaction research rep-
resents the totality of odor space, nor where

novel odorants may be found.

The journey of an odorous molecule to an
olfactory receptor (OR) can be viewed as a
mass transport problem (3 ). For a molecule
to reach olfactory receptors and produce an
odor percept it must be 1) volatile enough to
enter the air phase and then the nasal cav-
ity, 2) non-volatile and hydrophilic enough
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to leave the air phase and sorb into the mu-
cous layer coating the olfactory epithelium, 3)
hydrophobic enough to enter an OR binding
pocket, and 4) activate at least one OR (Fig.
1A). These requirements point to the types
of molecular criteria we must consider (e.g.
vapor pressure, hydrophobicity), but are in-
sufficient to define precise limits or interac-
tions between these constraints that deter-
mine which molecules are odorous.

Knowledge of the constraints also does not
tell us how extensively each constraint re-
duces the pool of olfactory stimuli: does fail-
ure to complete the transport process (4 ) or
failure of transport-capable molecules to ac-
tivate an OR (5 ) eliminate more potential
odorants? Here, we developed a quantitative
model that can predict if a molecule is odor-
ous or odorless and show that the transport
process is the dominant limiting factor driv-
ing whether molecules are odorous.

A model using only three features that drive
transport (boiling point, vapor pressure, and
hydrophobicity) reliably classifies molecules
as odorous or odorless (Fig. 1B). If odor clas-
sification can be explained by so few molec-
ular properties, why were the classification
rules not previously known? The likely rea-
son is that available data are both noisy and
poorly curated; we needed to gather odor
classification data from multiple sources and
correct errors in the data – both in trans-
port features and odorous/odorless labels –
before the three-parameter transport model
matched the performance of more compli-
cated models. Ultimately, we generated a
large and chemically diverse dataset of over
1,900 molecules, classified as odorous (84%)
or odorless (16%) through a combination
of literature- and web-scraping, human dis-
crimination tasks, and chemical analysis. A

portion of the dataset, 60 of the molecules
classified by human subjects and confirmed
through chemical analysis, provided high-
confidence odor classifications critical for
model tuning (30 molecules) and measure-
ment of final performance (30 molecules).
The remaining molecules formed our train-
ing set, and we applied machine learning
(ML) algorithms to train a variety of odor
classification models. Our models represent
molecular structure as a vector of physico-
chemical features (Dragon v6, Talete; EPI
Suite, U.S. EPA), and calculate a prob-
ability that the molecule is odorous; all
code used to generate models and figures
is publicly available https://github.com/

emayhew/OlfactorySpace.

We optimized ML models and measured
performance using the area under the re-
ceiver operating characteristic curve (AU-
ROC); AUROC penalizes false positives and
false negatives equally, an important metric
feature in classification problems where one
class outnumbers the other. An AUROC
value of 1.0 represents perfect classification,
while 0.5 represents chance-level classification
accuracy. We achieved near-perfect AUROC
values in cross-validation with several algo-
rithms (extreme gradient boosting – XGB,
random forest – RF, support vector machine
– SVM) when paired with a synthetic minor-
ity oversampling technique (SMOTE) to ad-
dress the imbalance in odorous:odorless train-
ing examples. When applied to a test set
of 30 molecules with high-confidence classi-
fications held-out during model training, our
best-performing XGB model separates odor-
ous from odorless molecules with few errors
and a high AUROC of 0.97 (Fig. 1C). Strong
predictive performance on this held-out set
suggests that the model will generalize well
to new molecules.
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Figure 1: A machine learning model can accurately classify molecules as odorous or
odorless based only on transport features. (A) Schematic of the transport process molecules
must complete to act as olfactory stimuli. To elicit an odor, molecules must reach the olfactory
epithelium (OE), enter olfactory receptor (OR) binding pockets, and trigger OR neuron (ORN)
activation. (B) Transport-feature ML model-generated odorous probabilities for all molecules in
the dataset. Each dot represents one molecule colored by the ground truth, and the width of the
violin plot is the density of molecules at a given prediction value. (C) Model performance on a held-
out test set of 30 molecules, quantified by the Area Under the Receiver Operating Characteristic
(AUROC) curve, for transport-feature and many-feature machine learning models and published
fragrance-like (6 ) and Boelens’ (4 ) models. (D) Density of odorous and odorless molecules in
transport space defined by molecular weight and number of heteroatoms. Each successive contour
line indicates a step increase in density (red = 0.05%, blue = 0.015%). Molecules have a discrete
number of heteroatoms, but are jittered along the y-axis to better show density. Plotted within the
black box, molecules that obey the “rule of three” with fewer than 3 heteroatoms and molecular
weight between 30 and 300 g/mol are generally odorous. Relative performance of models depends
on functional group/chemical class. (E) Heatmap of mean AUROC generated by four models for
molecules of common chemical classes (number of matching molecules in parentheses).
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We next compared the performance of our
transport-feature ML model to a “many-
feature” ML model trained with over 3700
physicochemical features. Even when regu-
larization is applied to reward use of few,
highly relevant features to generate predic-
tions, adding features does not improve clas-
sification accuracy (AUROC = 0.98, Fig.
1C). This finding suggests that transport fea-
tures are sufficient to classify a molecule as
odorous or odorless.

There are few published attempts to predict
the odor status of molecules based on struc-
ture. The simplest, a transport-based model
proposed by Boelens (4 ), classifies molecules
based solely on boiling point and hydropho-
bicity, represented by the log of the octanol-
water partition coefficient (log P). Boelens’
transport model consists of a parabola in log
P vs. boiling point space where molecules
above the parabola are predicted to be odor-
ous and molecules below it odorless; notably,
the publication does not include information
on the data or fit method used to derive
this boundary, and its accuracy is untested.
More recently, Ruddigkeit et al. (6 ) pro-
posed a set of criteria that define “fragrance-
like” molecules, including heavy atom count
(HAC ≤ 21), atom types (C,H,O,S only), and
number of hydrogen bond donors (HBD ≤
1). These criteria represent trends found in
databases of fragrance molecules, but their
classification accuracy is likewise untested.

We applied Boelens’ transport model and
Ruddigkeit et al.’s fragrance-like model to
our test set to benchmark our ML transport
model and found that although both mod-
els perform well (Boelens’ model AUROC =
0.80; fragrance-like model AUROC = 0.98),
our model substantially outperforms Boelens’
transport model (Fig. 1C). Sharma and oth-
ers recently published a deep neural network

model that predicts odor classification with
comparable accuracy (AUROC 0.98) using
1622 chemical features and molecules drawn
from internet databases (7 ); however, our re-
sults indicate that this degree of model com-
plexity is not necessary to generate reliable
predictions.

Our transport ML model achieves high accu-
racy with few features, but experimental val-
ues of boiling point, vapor pressure, and log
P are unavailable for many molecules. We
also developed a simple rule of thumb that
does not require measured experimental val-
ues, can be applied knowing only the molec-
ular formula (e.g. C10H12O2), and preserves
most of the performance: the “rule of three”
states that molecules with molecular weight
between 30 and 300 Da and with fewer than 3
heteroatoms are generally odorous (Fig. 1D).
In our dataset, 96% of the molecules that
meet these criteria are odorous (positive pre-
dictive value); these criteria capture 68% of
odorous molecules (sensitivity) and exclude
84% of odorless molecules (specificity).

Next, we asked if the relative accuracy of
the transport ML, many-feature ML, “rule
of three”, and Boelens (4 ) models varied by
chemical class. Fig. 1E shows the test set
AUROC for common chemical classes, aver-
aged over 80 models trained on randomized
train/test splits. All models achieved strong
predictive accuracy for alkanes, alcohols, and
carbonyl-containing molecules, but only ML
models accurately classified organohalides.
The “rule of three” underperforms on inor-
ganic compounds because molar mass is not
a good proxy for volatility of inorganic com-
pounds (e.g. NaCl: MW = 54 g/mol, BP =
1465). The strong performance of the trans-
port ML model independent of chemical class
supports the reliability of the model across
common classes of molecules.
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Figure 2: Inaccuracies in data impact model performance. (A) Difference between ex-
perimentally determined boiling point (BP) values and BP values calculated using the Burnop (8 )
and Banks (9 ) methods. (B - C) Odor classification predictions by transport-feature ML models
using only estimated BP values calculated by the (B) Burnop or (C) Banks method. (D) Human
subject-classified molecules in transport space defined by BP and log P. Many clearly non-volatile
molecules were initially classified as odors due to odorous contaminants. (E) Transport-feature
ML model odor predictions for human subject-classified molecules. Chemical compounds that are
odorless but had odorous contaminants are correctly predicted to be odorless by the model.

Building a high performing transport model
required correction of two major sources of
error: boiling point values and odor classifi-
cations. Boiling point (BP) is commonly esti-
mated from chemical formula, but these esti-
mates are error-prone. We compared experi-
mental BP (EPI Suite, U.S. EPA; PubChem,
pubchem.ncbi.nlm.nih.gov) to estimates gen-
erated using the Burnop (8 ) and Banks (9 )
methods and found high median errors of 28
°C (Burnop) and 37 °C (Banks) even within
these methods’ domains of applicability (Fig.

3A). Using estimated BP values limits model
accuracy; the classification performance of a
ML model trained with identical parameters
but only estimated BP values is worse (Fig.
2B-C: cross-validation AUROC = 0.92 (B),
0.95 (C); error rate = 5.8% (B), 5.6% (C))
than our final ML transport model (Fig. 1B:
CV AUROC = 0.99, error rate = 2.4%). Ex-
perimental values should be used to gener-
ate high confidence odorous/odorless predic-
tions, though estimated values may be ade-
quate where a higher error rate is acceptable.
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Figure 3: The transport model can be used
to predict the population of odor space. (A)
Proportion of molecules predicted by transport
ML model to be odorous as a function of heavy
atom count (HAC). Red circles show the mean
probability generated for HAC tranches from the
GDB database (12 ) with standard error bars; hol-
low circles show the projected odorous probabil-
ity generated by the logistic regression fit plot-
ted in black. (B) Estimated number of possible
molecules and predicted odorous molecules from
the GDB databases as a function of HAC. Lighter
shaded bars indicate HAC values beyond GDB-
17; as a conservative estimate, the number of pos-
sible molecules with HAC 18-21 was set to equal
that of HAC 17. (C) Cumulative estimates of
possible molecules and odorous molecules with in-
creasing HAC on a logarithmic scale. The red dat-
apoint at HAC 17 reflects our conservative esti-
mate of 33 billion odorous molecules; the light red
datapoint at HAC 21 reflects our less-conservative
estimate of 62 billion odorous molecules.

The second major source of error that we rec-
tified is the odor classifications themselves.
ML models can tolerate some noise in the
training data, but inaccuracies in the valida-
tion set used to tune models and especially in
the test set used to measure final model per-
formance can be more costly; specifically, pre-
dictive performance is bounded from above
by mis-labeled data in the test set (10 ). To
ensure our validation and test set were com-
posed of accurately classified molecules, we
supplemented our literature and web-scraped
data with 128 molecular odor classifications
(111 odorous, 17 odorless) generated through
human psychophysics experiments. We an-
alyzed all 111 compounds with a human-
detectable odor using paired GC-MS and GC-
O as a quality control (QC) measure to iden-

tify cases in which impurities, rather than
the target compound, were responsible for the
odor detected by human subjects. We found
that 22% of molecules classified as odorous
were actually odorless compounds contami-
nated with odorous compounds, despite high
nominal purity ratings from vendors (Fig.
2D). Had we not performed this QC, we
would have falsely believed that model per-
formance was poor (pre-corrected Transport
ML AUROC = 0.75). In fact, most disagree-
ments between our model’s predictions and
pre-QC classifications were due to the model
correctly identifying misclassifications in the
dataset (Fig. 2E).

Chemical compounds are common stimuli in
olfaction research, but the impact of impuri-
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ties on data is rarely discussed. Odor detec-
tion thresholds vary by many orders of mag-
nitude across molecules, so even high purity
(e.g. 99%) is insufficient grounds to consider
odor to be driven entirely by the dominant
molecular species (11 ). Addressing the im-
pact of contaminants on our data was thus
vital for accurately measuring model perfor-
mance.

The dispute over the size of odor space has
endured in the field because the criteria for
odorous molecules were not rigorously de-
fined. We now have a tool to address this de-
bate: a quantitative model that makes highly
accurate odor classification predictions and
generalizes to new molecules. Chemical space
is vast, but it can be enumerated. Apply-
ing graph theory and rational chemical con-
straints (e.g. bonds per atom, bond angles,
ring strain), Ruddigkeit et al. (12 ) developed
GDB-17, a database of 166 billion unique
molecules with 17 of fewer heavy atoms. Due
to the limited range of atoms included (C,
H, N, O, S, halogens) and careful elimina-
tion of unstable structures, the size of this
database can be thought of as a conservative
estimate for the number of possible molecules
with heavy atom count (HAC) ≤ 17.

We applied our model to a random sample
of over 100,000 molecules from GDB-17 (12 ),
including all molecules with HAC 1 to 7 and
approximately 10,000 molecules each with
HAC 8 to 17, to generate odor classification
predictions. Almost 50,000, or about half, of
the molecules we sampled were predicted to
have an odor. The proportion of molecules
predicted to be odorous is highly dependent
on HAC; more than 75% of molecules with
between 3 and 9 heavy atoms are predicted
to be odorous, but the proportion declines
with increasing HAC to approximately 5%

predicted odorous for HAC 17 (Fig. 3A).
By multiplying the proportion of predicted
odors by the number of molecules for each
HAC in GDB-17, we calculate that there are
at least 33 billion possible odorous molecules
(Fig. 3B-C).

This estimate is conservative because we
know the odorous range extends beyond HAC
17 and that GDB-17 does not include all pos-
sibly odorous chemical structures. We can-
not confidently estimate the number of pos-
sible molecules with greater than 17 heavy
atoms, but we can safely assume there are
at least as many possible unique molecules
with 18 heavy atoms as there are with 17.
Similarly, we do not know what proportion
of molecules above HAC 17 will be odor-
ous, but we can assume that the proportion
will approach 0 with increasing HAC. We set
an upper HAC bound of 21 because odor-
ous molecules with up to 21 heavy atoms
have been identified (6 ). We fit a logistic
regression model to transport ML model pre-
dictions on our GDB subset (Fig. 3A) to
predict the rate of decline in the proportion
of odorous molecules with increasing HAC.
To generate a less conservative estimate, we
then applied these extrapolated odorous pro-
portions to the number of molecules with 17
heavy atoms in GDB-17, a conservative esti-
mate for the number of molecules with HAC
18-21. This approach yields an estimate of 62
billion odorous molecules.

Our estimate is sensitive to the composition
of our training set: increasing the ratio of
odorous molecules in the dataset increases the
proportion of predicted odors.

There is significant uncertainty in our esti-
mates, both of the proportion of molecules
that are odorous and the number of possible
molecules, but all variants of our approach
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Figure 4: Visualization of olfactory space highlights understudied regions. (A) Uniform
Manifold Approximation and Projection (UMAP) plot of known odorous molecules (green) and pos-
sible molecules from GDB-17 colored by their transport ML-predicted odorous probability. Many
regions dense with probable odors are sparsely represented by known odors. (B) Eugenol, a known
odorant. (C-E) Example molecules from GDB-17 and their transport ML-predicted probability of
being odorous (podor).

have yielded estimates between 10 and 200
billion. Therefore, we predict that there are
at least tens of billions of possible odorous

molecules, a value 6 orders of magnitude
larger than the commonly cited estimate of
10,000 odorants (1 ).
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Any database or catalog of purchasable odor-
ous molecules is dwarfed by the scale of odor
space. For example, the Sigma-Aldrich Fla-
vor and Fragrance Catalog typically lists only
1,600 molecules. Many densely populated re-
gions of odorous chemical space (Fig. 4A) are
sparsely represented by known odorants (Fig.
4B). Our map of the odorous region of chem-
ical space can identify new likely odorants
(Fig. 4C, 4E) and be used to filter out un-
likely odorants (Fig. 4D). The sheer number
of as-yet-unsynthesized odorous molecules is
striking and there are whole classes of odor-
ous molecules that have not been synthesized
and whose odor characteristics are to date un-
known.

Drawing the borders of olfactory space is
largely a matter of understanding physical
transport. Nearly all molecules that can
physically enter a receptor binding pocket
have an odor. Although there are some clear
exceptions, for some individuals, such as an-
drostenone (13 ), few molecules appear to
be odorless simply because there is no suf-
ficiently sensitive receptor. Another piece of
evidence suggesting that the receptor reper-
toire is generally broadly tuned enough to de-
tect most odors is that methane, which has a
high vapor pressure and so does not sorb into
the mucosa at standard pressure, is odorless.
However, when divers were given methane at
13 atmospheres, a pressure at which it can
dissolve into mucosa, it smelled of camphor
(14 ). The receptor repertoire over the course
of human evolution could not have evolved to
detect this molecule, yet this repertoire main-
tains enough general sensitivity to – once
given access to it – detect it nonetheless.

Our model answers the question of what
makes a molecule odorous, but many ques-
tions remain. Our estimate of the number

of possible odorous molecules cannot resolve
the number of discriminable odor percepts
(15 –17 ); many of these predicted odorants
may have indistinguishable odor percepts,
and odorant mixtures may produce percepts
that are distinct from that of any single odor-
ant. Everything we know about odorants is
derived from a tiny subset of all volatiles—a
catalog of all volatiles present in foods rep-
resents less than 0.000002% of the molecules
we can smell. This model invites researchers
into the unknown, providing a map to new
regions of odor space and the means to rep-
resentatively sample it.
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