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Abstract 
 
Pediatric high-grade glioma (pHGG) is a major contributor to cancer-related death in children. 

In vitro and in vivo disease models reflecting the intimate connection between developmental 

context and pathogenesis of pHGG are essential to advance understanding and identify 

therapeutic vulnerabilities. We established 21 patient-derived pHGG orthotopic xenograft 

(PDOX) models and eight matched cell lines from diverse groups of pHGG. These models 

recapitulated histopathology, DNA methylation signatures, mutations and gene expression 

patterns of the patient tumors from which they were derived, and included rare subgroups not 

well-represented by existing models.  We deployed 16 new and existing cell lines for high-

throughput screening (HTS). In vitro HTS results predicted variable in vivo response to inhibitors 

of PI3K/mTOR and MEK signaling pathways. These unique new models and an online interactive 

data portal to enable exploration of associated detailed molecular characterization and HTS 

chemical sensitivity data provide a rich resource for pediatric brain tumor research.  
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Introduction 
 
Brain tumors are the predominant cause of cancer-related morbidity and mortality in children1. 

Pediatric diffuse high-grade gliomas (pHGG) comprise approximately 20% of all childhood brain 

tumors. This heterogeneous group of tumors carries a devastating prognosis, with 70 to 90 

percent of patients dying within two years of their diagnosis1. Genome-wide analyses have 

transformed our understanding of pHGGs to illuminate distinct molecular features compared to 

adult HGG, including a close association between tumor location, patient age, and recurrent 

mutations that indicates an intimate connection between pHGG pathogenesis and 

developmental context2-4. For example, histone H3 K27M mutations, which are rare in other 

tumor types, occur in approximately 80% of diffuse intrinsic pontine gliomas (DIPG) and other 

diffuse HGGs in midline structures such as the thalamus5-8. This striking association has 

redefined the diagnosis of these tumors, with the 2016 World Health Organization Classification 

of Tumors of the Central Nervous System (CNS) now incorporating molecular-based criteria to 

define diffuse midline glioma - H3K27M mutant (DMG-K27M) as a distinct diagnostic entity9. 

H3K27M mutations most frequently occur in two of the fifteen genes that encode histone H3, 

with H3F3A encoding H3.3 K27M and HIST1H3B encoding H3.1 K27M in approximately 75% and 

25% of H3 mutant DIPG, respectively2.  Activating mutations in the gene encoding the BMP 

receptor ACVR1 are found almost exclusively in DIPG and preferentially co-occur with H3.1 

K27M mutations, generally in younger patients, demonstrating an even more restricted 

association with developmental context6,10-13. In contrast, Histone H3.3 G34R/V mutations are 

found in approximately 15% of cortical HGG, with patient age ranging from older adolescents 

through young adulthood6-8.  

 

Variable combinations of additional mutations also contribute to intertumoral heterogeneity, 

including mutations activating the receptor tyrosine kinase-Ras-PI3-kinase pathway, alterations 

inactivating tumor suppressors TP53 or CDKN2A, mutations in epigenetic regulators such as 

ATRX, and others6,7,10-13. Different subclasses of pHGG are readily detected through 

comparisons of genome-wide DNA methylation profiles, which may reflect both the 

developmental origins of the tumors and the consequences of tumorigenic mutations14.  This 
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epigenetic characterization allows a refined molecular classification of CNS tumors and is 

increasingly being incorporated into clinical practice. 

 

Despite rapid advances in the characterization of the genomic and epigenetic landscape of 

pHGG, effective therapeutic approaches are still lacking for almost all pHGG patients3,15. In vitro 

and in vivo models that recapitulate the complexity and heterogeneity of pHGG are essential to 

advance our understanding and identify therapeutic vulnerabilities of these deadly childhood 

brain tumors. 

 

Here, we report the establishment of a unique collection of 21 patient-derived orthotopic 

xenograft (PDOX) models and eight new pHGG cell lines recapitulating molecular signatures of 

the primary tumors from which they were derived and representing a broad spectrum of the 

heterogeneity found in pHGG. We used a total of 14 pHGG cell lines and two control cell lines 

for high-throughput screening (HTS) to identify drug sensitivity and validated the in vitro 

heterogeneity of response for two drugs in vivo.  Detailed molecular characterization of these 

novel models and the results from HTS chemical sensitivity studies on the large cell line panel 

are available through an interactive online data portal providing a rich resource to the pediatric 

brain tumor research community.  

 

Results 

Patient-Derived Orthotopic Xenografts and Cell Lines of pHGG Represent Diverse Tumor 

Subtypes 

We generated a unique resource of 21 pHGG PDOX by implanting dissociated tumor cells from 

surgical or autopsy samples into the brains of immunodeficient mice.  Patient age at diagnosis 

ranged from 4-19 years, with a median age of 12 years and median survival of 12 months 

(Supplementary Table 1). Engraftment efficiency was higher for surgical samples (56%) than for 

autopsy samples (33%), likely due to decreased tumor cell viability in postmortem material. 

After initial tumor engraftment, tumors were collected, dissociated, and passaged by 

intracranial implantation into additional immunodeficient mouse hosts to confirm that the 
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PDOX could be reliably maintained, and for expansion and banking. Passaged tumors were 

dissected and cryopreserved as viable cells, snap-frozen for subsequent molecular analyses, or 

processed for histopathology evaluation. The majority of PDOX models were transduced with 

lentivirus expressing luciferase-2a-YFP to enable in vivo imaging16. The mouse host survival 

times for this collection of PDOX models ranged from 2-6 months after intracranial 

implantation. (Supplementary Table 1). For a subset of the tumors, dissociated cells were 

adapted for in vitro propagation under neural stem cell conditions to facilitate the use of these 

as matched cell line models for high-throughput drug screening (Fig.1).   

 

We performed DNA methylome profiling to classify all 21 PDOX tumors, 19 matched patient 

tumors from which PDOXs were established, and eight matched cell lines established from 

PDOXs (Supplementary Table 1b). Using t-distributed stochastic neighbor embedding (t-SNE) 

analysis of methylation profiles from these samples and a reference set including samples from 

diverse brain tumor subgroups14, all PDOX models and cell lines clearly grouped with 

glioblastoma or glioma, distinct from embryonal or ependymal tumors. (Fig. 2a).  An expanded 

view of the glioblastoma and glioma clusters shows that 17 of 19 PDOXs and all eight cell lines 

cluster closely with the tumor from which they were derived (Fig. 2b). Following the established 

classification scheme14, this novel collection of PDOX models comprises six DMG K27M, two 

pleomorphic xanthoastrocytomas (PXA), 10 glioblastoma, IDH wildtype, including three H3.3 

G34 mutant (GBM G34), four subclass midline (GBM Mid), one subclass RTK II (pedRTKII), and 

two subclass RTKIII (pedRTKIII). Three tumors did not directly match the reference clusters, but 

were closest to GBM Mid, pedRTKII, or PXA (Fig. 2 and Supplementary Table 1a and b). For two 

models, SJ-HGGX51 and SJ-HGGX78, the diagnostic patient tumor from which the PDOX was 

established clustered with reference samples from control inflammatory cells 

(CONTR_INFLAM), suggesting the presence of large areas of necrosis in the tumor surgical 

specimens with exuberant inflammatory infiltration, while the PDOX clustered with, or very 

close to the pedRTKII glioblastoma subgroup. Three PDOX models, SJ-HGGX56, SJ-HGGX58, and 

SJ-HGGX59 that were established from patient tumors with mismatch repair deficiency (MMRD) 

clustered tightly with their matched patient tumors, and close to one another, along with 
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midline tumors despite their cortical location in the patients (Fig. 2b). In addition to the eight 

cell lines established from these PDOX models, we also evaluated methylation profiles from six 

previously reported DIPG cell lines17 used in our preclinical testing experiments.  All H3K27M 

mutant tumors, including patient tumors, PDOXs and cell lines, clustered with the DMG K27M 

subgroup as expected (Fig. 2a,b).  

 

Histopathology of PDOX models showed typical characteristics of pediatric HGG including high 

cellularity, varying extent of astrocytic differentiation, readily apparent mitotic activity, 

infiltration of the CNS parenchyma, vascular endothelial proliferation and areas of necrosis. 

PDOX models recapitulated architectural and cytologic features seen in the corresponding 

patient tumors from which they were derived (Fig. 3). 

 

PDOX and cell lines recapitulate recurrent mutations and gene expression signatures 

characteristic of pHGG  

For a more comprehensive view of the genomic landscape of these models, we performed 

whole-genome or whole-exome sequencing on all PDOX, matched patient tumors and derived 

cell lines. Somatic mutations and potentially pathogenic germline mutations were identified for 

tumors with matched germline samples for 16/21 lines, and potentially pathogenic non-silent 

mutations were annotated for tumors without available matched germline (Fig. 4, 

Supplementary Table 2). As expected, there was a dramatically increased mutation burden in 

PDOXs with MMRD (SJ-HGGX56, 58 and 59) compared to the rest of the cohort (median non-

silent SNVs in the exome of 19,336 compared to 26). Recurrent mutations characteristic of 

pHGG were well-represented in this cohort of tumors, including hotspot mutations in histone 

H3, as well as mutations in genes involved in chromatin and transcription regulation such as 

ATRX, BCOR and MYCN, recurrent alterations in the receptor tyrosine kinase-RAS-PI3-Kinase 

pathway including missense mutation, amplification and gene fusion of PDGFRA, alterations in 

the TP53 and RB/cell cycle pathways and activating missense mutation in ACVR1 (Fig. 4). The 

great majority of PDOXs and cell lines maintained signature mutations and copy number 

abnormalities (CNAs) found in the matched patient tumors including large scale gains and 
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losses and focal amplifications in extra-chromosomal DNA, although there were some examples 

of divergence between patient tumor and derivative models (Fig. 4, Supplementary Fig. 1 and 

2). PDOX models also maintained mutations of signature glioma genes over multiple passages, 

as shown for passages 7 and 10 of SJ-DIPGX7 and passages 3 and 4 of SJ-DIPGX29 (Fig. 4). 

 

We previously showed that pHGG, including DIPG, showed heterogeneous expression 

signatures recapitulating the glioma subgroups Proneural, Proliferative, and Mesenchymal17-20. 

Analysis of these expression signatures in the entire cohort of patient tumors, PDOXs, and cell 

lines showed PDOX models represented in all three expression subgroups. However, 

proliferative signatures were much stronger in general in PDOX and cell line models compared 

with patient tumors (Fig. 5). Consistent with this observation, analysis of genes that were 

differentially expressed between PDOX and patient samples across the entire matched cohort 

(|logFC|>1, adj.p<0.05), showed upregulation of genes associated with cell cycle progression 

(adj p<2.2E-16), and downregulation of genes associated with inflammatory response (adj 

p<2.2E-16) in PDOX (Supplementary Table 3). We removed the shared differences between 

PDOX and patient tumors to better compare the similarity in expression signatures between 

matched PDOX and patient tumors and found that expression signatures of PDOX correlated 

strongly with their matched patient tumor (Supplementary Fig. 3).  Representative PDOX 

models retained fidelity of transcriptome signatures over multiple passages (Pearson 

correlation 0.98, p<2.2e-16), and cell lines, which represent extensive passaging in neural stem 

cell growth media also showed strong fidelity with the matched PDOX models from which they 

were derived (Pearson correlation from 0.87-0.95, p<2.2e-16) (Supplementary Fig. 4).   

 

Online interactive portal of PDOX and cell line characterization 

To maximize the utility of these well-characterized models for the cancer research community, 

we developed an online Pediatric Brain Tumor Portal (https://pbtp.stjude.cloud) that supports 

interactive exploration of all molecular data. Within this rich open-access portal, detailed 

characterization sheets can be viewed or downloaded for each individual model, summarizing 

clinical, molecular and histopathological features (Supplementary Fig. 5). In addition, this portal 
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will house information about other pediatric brain tumor PDOX models derived at St. Jude 

Children’s Research Hospital21 and will be continually updated with new models in the future. 

 

High-throughput screen for drug response of different pHGG subtypes 

We selected a panel of 16 cell lines to assess drug sensitivity of different subgroups of pHGG: 

eight glioma stem-cell (GSC) lines were established from PDOXs reported here, six were 

previously reported patient-derived DIPG cell lines22,23 (Supplementary Table 4). Two different 

sources of proliferating normal human astrocytes were used as controls: astrocytes generated 

from iPS cells (iAstro), and astrocytes isolated from human embryonic brainstem (HABS) 

(Supplementary Table 4). Together, the cohort comprised two cortical HGG with H3.3 G34R 

mutation, two HGG with wildtype histone H3, and 10 DIPG; seven with H3.3 K27M and three 

with H3.1 K27M mutation. We optimized all cells to grow in 384-well format plates for HTS and 

conducted a series of validation experiments to ensure reproducibility, including cell 

proliferation curves, culture conditions, and the automation parameters of HTS. We showed 

that DIPG cells plated as adherent cultures on basement membrane matrix compared with the 

same cells grown as tumorspheres responded similarly to a panel of 53 different drugs 

representing a range of mechanisms of action (MOA) tested in a dose-response (DR) format 

(Supplementary Fig. 6, Pearson correlation = 0.994; Supplementary Table 5 a and b). Therefore, 

we conducted HTS experiments with adherent cells to avoid variability within and between 

cultures introduced by variable tumorsphere sizes.  

 

As an initial screen for sensitivity to drugs that could be quickly deployed in the clinic, we tested 

1,134 FDA-approved drugs at a single concentration in nine pHGG cell lines (SJHGGx39c, 

SJHGGx6c, SJDIPGx37c, SJDIPGx29c, SJDIPGx9c, SJDIPGx7c, SUDIPG-XIII, SUDIPG-IV, SUDIPG-VI) 

and human embryonic stem cell-derived neural stem cells (hNSC) as a normal cell type 

reference. Top hits from this screen were supplemented with recently FDA-approved oncology 

drugs, epigenetic modulators, clinical candidates, and relevant chemical probes to yield a set of 

93 drugs that were screened against the full panel of 16 cell lines in DR format using an 

independently prepared compound plate. For all 16 cell lines, the z-prime values24 calculated 
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from 310 384-well assay plates showed an excellent signal to noise ratio (z-prime values: 

median=0.82, minimum=0.56, maximum=0.92) (Supplementary Fig. 7). An additional 246 

compounds, sampling a broader range of drug mechanisms of action, were screened in DR 

format in 4 exemplar pHGG models representing different histone sub-types: SJHGGx39c (wild-

type histone H3), SJHGGx6c (H3.3 G34R), SJDIPGx29c (H3.3 K27M), and SJDIPGx37c (H3.3 

K27M). Results from all stages of these HTS studies are presented in Supplementary Table 5 and 

are available online for exploration in the Pediatric Brain Tumor Portal 

(https://pbtp.stjude.cloud) where interactive features allow the user to query by drug class, 

specific compound name, tumor subgroup, or tumor cell lines, and to visualize results in 

multiple formats including data on the range of responses to selected compounds, the 

sensitivity to all tested drugs for selected cells lines, and customized overlay dose-response 

curves.  A mouse over feature also allows the user to identify outliers and view compound 

information, dose response values and the associated dose response curve. 

 

Results from the comprehensive screen of 93 compounds in 16 cells lines are summarized in 

Fig. 6. To highlight the most effective drug for each cell line in terms of selectivity, we calculated 

the area under the curve (AUC) from the DR of each drug and subtracted the median AUC for 

that drug calculated over all cell lines (Fig. 6a). Notably, the distribution of responses for 

SUDIPG-XXI showed that these cells were more sensitive than other lines to nearly every drug 

tested. Consequently, we flagged this model as an outlier and removed it from subsequent 

analyses. Several drugs were identified as the most selective for more than one pHGG model: 

the MEK inhibitor trametinib for SJDIPGx9c and SUDIPG-XIX, the NF-κB inhibitor EVP4593 for 

SJDIPGx7c and SUDIPG-XIII, and the HSP90 inhibitor tanespimycin for SJDIPGx37c and 

SJHGGx39c. The GSK3 inhibitor LY2090314 was the most selective drug for both SUDIPG-IV and 

HABS control cells, whereas the proteasome inhibitor marizomib was the most selective for 

SUDIPG-VI and iAstro control cells. 

 

Trametinib is an FDA-approved drug and we decided to compare the distribution of its AUC values 

across all 15 models to other drugs in the set that have been evaluated in clinical trials or 
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implicated as promising agents in preclinical studies for adult or pediatric glioma (Fig. 6b-c, 

Supplementary Fig. 8a). THZ1, which targets CDK725, was the most active drug (highest median 

AUC) in this subset and was more selective for pHGG models compared to iAstro and HABS. The 

CDK9 inhibitor CDK9-IN-226 had lower AUC values compared to THZ1, but also showed selectivity 

for pHGG models relative to control cell lines, although SJHGGx39c, SJHGGx2c, and SUDIPG-XIII 

were refractory relative to the other tumor models. CDK7 and CDK9 are key regulators of 

transcription initiation and elongation, respectively, supporting the concept of targeting 

transcriptional dependencies in tumor cells27. In contrast, the pan-BET inhibitor JQ128,29, which 

also impacts transcription regulation, was much weaker than the CDK7 and CDK9 inhibitors, and 

was equally or more cytotoxic to control cell lines (Fig. 6b). The anti-metabolite GMX-1778, which 

disrupts the regeneration of NAD+ via NAMPT, showed strong efficacy in all cell lines, in 

agreement with previous reports in some DIPG models30. However, we did not observe enhanced 

sensitivity in a line with PPM1D mutation (SJDIPGx37c) as predicted by previous studies30. 

Consistent with previous reports that evaluated broad-spectrum HDAC inhibitors17,22,31,32, 

panobinostat showed strong efficacy in vitro. However, CUDC-907, a dual-acting inhibitor of class 

I PI3K and HDAC33, had higher median AUC and was slightly more selective for pHGG models. 

Both drugs were considerably less active in iAstro but also less effective in SUDIPG-XIII (Fig. 6b,c). 

The proteasome inhibitor marizomib is being evaluated in a phase I combination study with 

panobinostat in DIPG (NCT04341311)17. This drug had the largest interquartile range of AUC 

values in the sub-set and induced significant cytotoxicity in iAstro cells (Fig. 6b, Supplementary 

Fig. 8a). Inhibitors of PI3K/mTOR (omipalisib) and MEK (trametinib) were selective for the same 

3 pHGG models over all other cell lines: SJDIPGx9c, SUDIPG-XIX, and SJDIGXc37 (Fig. 6c). 

However, trametinib was generally much less active in the panel as evidenced by its significantly 

lower median AUC (Fig. 6b).  

 

The WEE1 inhibitor MK-1775 (adavosertib), which is being evaluated clinically with radiotherapy 

in pHGG (NCT01922076), showed low efficacy in our panel. Likewise, the alkylating agent 

temozolomide (TMZ), a standard of care in adult gliomas, was inactive in our tumor models, 

consistent with the lack of clinical response to TMZ in children with pHGG34,35. We also tested 
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two other alkylating agents previously tested in brain tumors, streptozocin and  nimustine36, and 

both were inactive in our pHGG models (Supplementary Table 5 c and e). 

 

Finally, to better explore patterns of drug sensitivity across the cell lines in our panel, we 

performed unsupervised clustering of cell lines (columns) and compounds (rows) with all 93 

compounds (Supplementary Fig. 8b), or using the top 25% most active drugs out of the 93 

evaluated (Fig. 6d). Notably, tumor models did not cluster according to histone subtype based on 

their responses to the drugs in this subset. SJHGGx6c and SUDIPG-XIII tended to be more 

refractory, and SUDIPG-XIX and SJDIPGx9c more sensitive, to this subset. We observed two 

compound clusters that were enriched for molecules acting by the same mechanism of action. 

Cluster 1 contained 4 proteosome inhibitors (marizomib, ONX-0914, ixazomib, and bortezomib) 

and was marked by uniformly weak efficacy against a group of tumors clustered on the left side 

of the heatmap: SJHGGx6c, SUDIPG-XIII, HGGx42c, and HGGx29c. Cluster 2 contained 4 

compounds targeting transcriptional dependencies (THZ1, CDK9-IN-2, panobinostat and CUDC-

907) and two dual activity compounds including PI3K inhibition (CUDC-907 and omipalisib), and 

was characterized by a significant lack of efficacy against the iAstro control cell line, therefore 

showing some selectivity for HGG. 

 

Inhibition of PI3K/mTOR and MEK signaling show selective effects alone and in combination in 

pHGG in vitro and in vivo 

We sought to determine if sensitivity differences between tumor cell lines detected by HTS 

translated into in vivo effects in orthotopic brain tumors. For these studies, we chose PI3K/mTOR 

and MEK pathway inhibitors because responses in different pHGG lines varied and drug 

engagement of the target can be reliably detected in tumor tissue. HTS results showed that the 

PI3K/mTOR inhibitor omipalisib was active in most pHGG models but varied in potency. In 

contrast, the MEK inhibitor trametinib showed weak activity in many tumor cells (Figure 6 and 

Supplementary Table 5f). While these pathways are compelling targets for in vivo treatment 

given known genetic aberrations in both pathways in pHGG2,6, both compounds are known 

substrates of ATP-dependent efflux pumps P-gp and BCRP, limiting their brain exposure37,38. 
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Therefore, we selected paxalisib (GDC0084) and mirdametinib (PD0325901), which target 

PI3K/mTOR and MEK, respectively, and have superior blood-brain barrier penetration and 

exposure37,39,40, to validate effects of pathway inhibition for in vitro/in vivo comparisons.  

 

Numerous studies have shown extensive cross-talk between these pathways and promise for 

enhanced efficacy of combined inhibition approaches41,42. We conducted in vitro quantitative 

synergy assays in seven cell lines and analyzed results using the Bivariate Response to Additive 

Interacting Doses (BRAID) response surface model43. BRAID κ denotes the type of interaction (κ 

< 0 is antagonistic;  κ = 0 is additive, and κ > 0 is synergistic), whereas BRAID IAE50 computes the 

degree to which a combination achieves a minimal efficacy within a defined concentration 

range (in this study, 50% reduction in cell viability for concentrations ≤ 1 μM). Higher IAE50 

means that the combination is more efficacious. The combination of paxalisib and mirdametinib 

exerted synergistic growth inhibition (κ > 0) in three pHGG cell lines (SJ-DIPGX29c, SJ-DIPGX37c 

and SJ-HGGX6c) and iAstro controls, but not in SJ-DIPGX7c, SJ-HGGX42c, SJ-HGGX6c or HA-bs 

controls (Figure 7).  The drug combination was clearly most efficacious in SJ-DIPGX37c (IAE50 = 

3.3), followed by SJ-DIPGX29c, SJ-DIPGX7c, SJ-HGGX42c, and then SJ-HGGX6c and the two 

controls, HA-bs and iAstro. When considering the efficacy of the combination (IAE50), synergy 

made a major contribution in the case of SJDIPGx37c and SJDIPGX29c, as indicated by the 

curvature of the 50% (black) and 90% (white) cell viability isoboles. In contrast, the IAE50 value 

for SJDIPGx7c was driven solely by paxalisib. Here, the 50% and 90% isoboles run parallel to the 

y-axis because mirdametinib exerts little cytotoxicity on its own and fails to potentiate the 

activity of paxalisib. While the synergy is highest in iAstro (κ = 8.8), as evidenced by the clear 

shift in the 50% isobole with increasing mirdametinib concentrations, both drugs are weakly 

cytotoxic on their own and their interaction is insufficient to induce high combined efficacy 

(IAE50 = 1.0).  

 

We selected two H3.3 K27M mutant DIPG PDOX models, SJ-DIPGX37 and SJ-DIPGX7, to test 

whether in vitro HTS results predicted in vivo response. Both harbor mutations targeting PI3K and 

TP53-related pathways (Fig. 4) and their corresponding cell lines (SJ-DIPX7c and SJ-DIPGX37c) 
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demonstrated different in vitro responses. Both cell lines showed similar sensitivity to paxalisib 

(EC50 = 0.32 μM for SJ-DIPGX37c vs. 0.22 μM for SJ-DIPGX7c), whereas mirdametinib induced a 

stronger response in DIPGX37c (EC50 = 1 μM), which has PIK3R1 and PPM1D mutations, and did 

little in SJ-DIPGX7c, which has PIK3CA and TP53 mutations (Figs. 4 and 7), similar to the responses 

observed with omipalisib and trametinib in the HTS data (Supplementary Table 5f).   

 

We evaluated PI3K and MEK pathway inhibition in intracranial PDOX models matched to these 

cell lines by evaluating levels of p-AKT S473 and p-ERK T202/Y204, respectively (Fig. 8 and 

Supplementary Fig. 9). Interestingly, while the levels of PI3K pathway activity, as assessed by p-

AKT, were similar between both PDOXs, SJ-DIPGX7 showed markedly lower levels of p-ERK, 

indicating lower MEK pathway activation (Fig. 8a). Consistent with a reduced reliance on MEK 

signaling, mirdametinib did not significantly alter cell survival or proliferation in SJ-DIPGX7, as 

assessed by active caspase 3 and phospho-histone H3, respectively.  Paxalisib treatment alone 

induced a trend of Increased cell death, and when combined with mirdametinib significantly 

increased cell death (Figure 8a).  SJ-DIPGX37 showed a significant decrease in tumor cell 

proliferation in vivo with paxalisib treatment, and a greater magnitude effect with mirdametinib, 

while neither induced significant tumor cell death. Strikingly, the combination of paxalisib and 

mirdametinib significantly enhanced tumor cell death in vivo beyond levels induced by either 

agent alone (Fig. 8b). Consistent with in vitro synergy studies, the combination had a much more 

significant impact on cell death in SJ-DIPGX37.  

 

We further extended these promising results in SJ-DIPGX37 to evaluate effects on the survival of 

tumor-bearing mice. We reduced doses of paxalisib to 8mg/kg and mirdametinib to 14mg/kg in 

monotherapy controls and in the combination for long-term treatment due to significant weight 

loss. These doses still effectively inhibited both pathways in the brain, with the combination 

showing slightly enhanced suppression of p-ERK1/2 relative to mirdametinib alone 

(Supplementary Figure 9c). We randomly distributed 24 mice bearing SJ-DIPGX37 PDOX into four 

arms; 1) vehicle, 2) paxalisib, 3) mirdametinib, or 4) combination and found that the combination 

of paxalisib and mirdametinib, but not either drug alone, significantly extended survival of mice 
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with intracranial SJ-DIPGX37 tumors (Fig. 9, p=0.0056, Mantel-Cox log-rank test). We examined 

the plasma and brain pharmacokinetics of mirdametinib and paxalisib in normal mice to assess 

the possibility that the enhanced combinatorial effects were due to drug-drug interaction. While 

both agents had slightly increased plasma AUCs in combination (Supplementary Fig. 10), the 

differences were within variability and less than twofold magnitude, the conventionally accepted 

threshold to identify drug-drug interactions44,45. Thus, the enhanced efficacy with combination 

treatment was likely due to combined pathway inhibition. 

 

Discussion: 

Relevant in vitro and in vivo disease models that are founded in the correct developmental 

origins, recapitulate genetic and epigenetic signatures and represent the significant 

heterogeneity of pHGG are essential to further our understanding of mechanisms driving 

tumorigenesis and to identify therapeutic vulnerabilities. Although a growing number of DIPG 

cell lines have been established and characterized17,22,46-48, relatively few of these efficiently 

engraft in the brain as xenografts49,50, and there are a much smaller number of cell lines from 

pediatric gliomas arising outside the brainstem. Studying PDOXs in addition to cell lines allows 

researchers to address important dimensions of tumor biology, including angiogenesis, tumor 

invasion, and interactions with the tumor microenvironment that may strongly influence tumor 

growth and selective pressures, including the contribution of nervous system activity in driving 

glioblastoma and DIPG growth51.  A recent study to establish a biobank of pediatric brain 

tumors reported the establishment of 8 new pHGG PDOX models52.  The 21 new pHGG PDOX 

models and eight new cell lines reported here are a significant advance in available pHGG 

models and include several rare tumor subtypes for which models are currently extremely 

limited, including three H3.3 G34R glioblastomas, three pHGG models with MMRD, two 

glioblastomas in the pedRTKIII subgroup, and two PXAs. This new collection of models 

recapitulates the histopathological and molecular hallmarks of pHGG and preserves mutation 

and DNA methylome signatures of the primary tumors from which they were derived, including 

single-nucleotide variants, large scale copy number changes, and the presence of double 

minute chromosomes.  
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pHGG is known to display significant intra-tumoral heterogeneity due to clonal variation within 

the tumor53-55.  Indeed, there were a few differences between patient tumor, PDOX and cell 

line, such as NTRK1 mutation detected in the autopsy sample of SJ-DIPGX37, but not the 

associated PDOX or cell line, or MYCN amplification present in SJ-DMGX40 PDOX, but not 

detected in the matched patient tumor (Fig. 4, Supplementary Fig. 2). Such differences could be 

due to regional heterogeneity between the patient sample analyzed compared with cells 

implanted, expansion of a minor subclone during PDOX establishment, or acquisition of a new 

mutation during ongoing tumor evolution in the mouse host.  Across multiple PDOX models, we 

found consistent upregulation in genes associated with proliferation and decreased expression 

of genes associated with inflammatory response compared to matched patient tumors, as 

previously described52. After removing these shared PDOX-dependent signatures, however, 

there was a strong correlation in expression signatures between PDOX and matched patient 

tumors.   

 

Despite decades of clinical trials, no effective chemotherapy approaches have been identified 

for pHGG. However, the revolution in knowledge gained through genomic analyses of pHGG 

revealed some clear therapeutic targets, and selective inhibitors have induced striking 

responses in pHGG with BRAF V600E mutation or NTRK fusion genes56. The high frequency of 

H3 K27M mutations in DIPG and other midline gliomas sparked an intense search for selective 

vulnerabilities conferred by this mutation, especially in agents connected to epigenetic 

regulation. Some of the top hits from our HTS were consistent with previous findings in DIPG 

cell line screening, including inhibitors of HDACs, CDK7 and CDK9, and proteins intersecting with 

epigenetic regulatory mechanisms and converging on transcription regulation17,22,27,31,57-59. 

Challenges in achieving effective concentrations of the HDAC inhibitor panobinostat in the brain 

has led to investigations identifying combination approaches to enhance efficacy17,27,31,32,60,61.  

Overall, two sources of normal astrocyte control cells were among the least sensitive cell lines 

to the collection of compounds tested in DR (Fig. 6a), and many of the top hits showed greater 

sensitivity in tumor cell lines than in iAstro control cells (Fig 6b and c).  However, responses 
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varied between the two sources of astrocytes (Fig. 6b,c and Supplementary Fig. 8). These 

results reveal potential differences in drug sensitivity in normal cells at different developmental 

stages as well as variation among tumors, and further highlight the difficulty in determining 

simple predictors of drug responsiveness in pHGG which are heterogenous in developmental 

expression signatures as well as genetic mutations.     

 

Understanding how disease heterogeneity contributes to therapeutic response is the 

foundation of precision medicine. The panel of 14 pHGG cell lines and two astrocyte controls 

revealed substantial variation in efficacy and potency across the collection of compounds 

representing multiple MOA. We further investigated inhibitors of PI3K/mTOR and MEK 

pathways in two PDOX models with differing responses as test cases to determine how well 

results of in vitro screening were predictive of in vivo response. Myriad mutations in pHGG and 

other cancers converge on these two signaling pathways, and there are multiple examples of 

pathway cross-talk that compromise the efficacy of single-agent approaches that inhibit only 

one of these two regulatory cascades41,42,62-64. Among available inhibitors of PI3K/mTOR and 

MEK, we selected paxalisib and mirdametinib, respectively, for in vivo studies because of their 

ability to traverse the blood-brain barrier. In vivo testing with these drugs induced dramatic 

inhibition of pathway activity in both PDOXs with differential tumor responses consistent with 

in vitro studies. SJ-DIPGX7 showed relative resistance to MEK inhibition and a more moderate 

impact of combined PI3K/mTOR inhibition compared with the more responsive SJ-DIPGX37, 

where the drug combination drove greater cytotoxic and cytostatic responses and extended 

survival of mice carrying intracranial tumors.  Pharmacokinetic analyses showed no substantial 

drug-drug interaction changing drug exposures, so the enhanced effects are likely to represent 

the result of combined pathway inhibition. However, levels of mirdametinib used to effectively 

block signaling in our study were significantly higher than those observed in humans following 

exposure at the current clinical dosing of 4mg twice daily65. Given the compelling survival 

advantage and observed in vivo toxicity, there is a rationale to consider local delivery of 

PI3K/mTOR and MEK inhibitors to these tumors to avoid systemic toxicities and reach the 

necessary levels of drug activity.   
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Further studies are needed to understand the intrinsic differences in sensitivity between 

tumors to ultimately achieve the promise of personalized medicine. Major advances in the 

treatment of this heterogeneous group of intractable brain tumors will require significant new 

insights into mechanisms driving disease pathogenesis and even more extensive preclinical 

testing.  Models with a detailed molecular characterization that can be experimentally 

manipulated and studied in vitro and in vivo provide powerful tools needed to address this 

challenge. To facilitate an in-depth exploration of this collection of 21 new PDOX and eight new 

cell lines, the Pediatric Brain Tumor Portal provides an interactive interface to access and 

explore all clinical and molecular data and drug screening results including summary overviews 

for each model (Supplementary Fig. 5) and tools to generate customized mutation oncoprints, 

gene expression heatmaps, and overlays of dose-response curves for selected drugs and cell 

lines. The well-characterized models reported here provide a rich resource for the pediatric 

brain tumor community. 
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MATERIALS AND METHODS 

 

Patient material: Genomic analyses of patient material and use of patient tumor samples to 

establish xenografts and cell lines were performed with informed consent and approval from 

the St Jude Institutional Review Board. 

 

PDOX establishment: Surgical or autopsy tumor samples were transported in neurobasal or 

DMEM/F12 media without additives at 4°C. Most tissues were processed directly, although 

samples stored overnight at 4°C also successfully engrafted to form tumors. Tissues were 

dissociated into a single-cell suspension by gentle pipetting in warm neurobasal media or by 

enzymatic dissociation with papain as described66. Intracranial implantation of 2 x 105 cells – 1 x 

106 cells in matrigel into CD-1 nude mice was completed as described67. Mice were monitored 

daily for neurological and health symptoms and euthanized at a humane end point. PDOX 

tumors were dissected from moribund mice, dissociated, and passaged into 5-10 recipient 

mice, or cryopreserved in either Millipore or Sigma cell freezing medium (see key resources 

table in Supplementary Methods).  Models were considered established after successfully 

engrafting through 3 passages. Recovery from cryopreserved cells typically showed delayed in 

vivo tumor growth of 1.5 to 2 times compared to passaging from fresh tumors. Many lines were 

transduced with a lentivirus to express luciferase and yellow fluorescent protein (CL20-

luc2aYFP) for in vivo imaging. Mice were maintained in an accredited facility of the Association 

for Assessment of Laboratory Animal Care in accordance with NIH guidelines. The Institutional 

Animal Care and Use Committee of SJCRH approved all procedures in this study. 

 

Cell line propagation and maintenance 

To establish pHGG cell lines SJHGGX2c, SJ-HGGX6c, SJ-HGGX42c, SJ-HGGX39c, SJ-DIPGX7c, SJ-

DIPGX9c, SJ-DIPGX29c, and SJ-DIPGX37c, fresh PDOX tumors were dissociated as described66 and 

plated in Corning® Ultra-low Attachment plates in media used for neural stem cells and glial 

progenitor cells consisting of a 1:1 mixture of Neurobasal™ without phenol red (with 2% of B27 

without vitamin A and 1% of N2) and ThermoFisher Knock-Out DMEM/F12 (with 2% of Stempro® 
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neural supplement) supplemented with 20ng/ml of human recombinant EGF, 20ng/ml of human 

recombinant bFGF, 10ng/ml of human recombinant PDGF-AA and –BB, 1% of Glutamax, 1% of 

sodium pyruvate, 1% of NEAA, 10mM of HEPES, 2µg/ml of heparin and 1× Primocin. In the first 

passage, the Miltenyi Biotec Mouse Cell Depletion Kit was used, and removal of residual mouse 

cells was verified by demonstrating successful PCR amplification with human, but not mouse-

specific, primer sets for H3F3A/h3f3a. Sequences of PCR products were verified. 

Immunofluorescent staining with anti-human mitochondria and anti-human nuclear antigen 

antibodies was performed to further verify that cultured cells were of human origin. 

Primer Names Sequence Amplicon size 

(bp) 

Human H3F3A-F GTA AAA CGA CGG CCA GTG ATT TTG GGT 

AGA CGT AAT CTT CA 

450 

Human H3F3A-R CAG GAA ACA GCT ATG ACC TTT CCT GTT 

ATC CAT CTT TTT GTT 

450 

Mouse h3f3A-F AGA CAC TAT CCC ACT GCT CGA CG 442 

Mouse h3h3A-R GGG GCG TCT CTC TGG TTT TGG C 442 

 

The cell lines were either maintained in suspension culture as tumorspheres or on human ESC-

qualified Geltrex artificial extracellular matrix coated tissue culture surface68 at 37°C, 5% CO2 and 

5% of O2.  

SU-DIPG-IV, SU-DIPG-VI, SU-DIPG-XIII, SU-DIPG-XVII, SUDIPG-XIX, and SU-DIPG-XXI17,22,23 were 

generous gifts from Dr. Michelle Monje. Normal cell type references were human neural stem 

cells induced from H9 ES cells (Invitrogen, N7800-100), Human iPSC-derived astrocytes (Tempo 

Bioscience), and Human brainstem astrocytes (ScienCell Research Laboratories, #1840). 

 

Short tandem repeat (STR) profiling. Molecular fingerprinting for PDOXs and cell lines was 

performed with Promega PowerPlex® 16 HS or PowerPlex Fusion® System (Promega Corporation, 

Madison, WI).  
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DNA methylation profiling and copy number analysis. 

DNA methylation profiles were evaluated using Illumina Infinium Methylation EPIC BeadChip 

arrays according to the manufacturer’s instructions. Raw IDAT files from pHGG patient tumors, 

PDOXs, and cell lines as well as a published reference cohort from13 were assessed for quality 

control and pre-processed using the minfi package in R69. Low-quality samples were excluded 

from the downstream analysis based on mean probe detection with p-value > 0.01. Relevant 

tumor subgroups were selected from the reference cohort and then subgroups with more than 

30 cases were randomly downsampled to be at most 30 cases. Methylation probes were 

filtered based on the following criteria: detection p > 0.01 in > 50% of the cohort, non-

specificity based on a published list from70, and probes residing on sex chromosomes. 

Methylation arrays then underwent single-sample Noob normalization to derive beta values, 

with the top 35,060 most variable probes (probe SD > 0.25) selected for downstream analysis. 

Distances between samples were calculated based on Pearson’s distance and then visualized 

with the t-SNE algorithm (Rtsne package v.0.11). 

 

Copy-number alteration (CNA) analysis was done using the conumee package (v 1.18.0) with 

default parameters. Probe intensities were normalized against a reference set of normal brain 

tissues profiled by MethylationEPIC array (n=34). CNA were then detected as significant positive 

or negative deviations, which encompassed more than 50% of the chromosomal arm, from the 

genomic baseline. 

 

Neuropathology assessment. Standard hematoxylin and eosin histopathologic preparations of 

5-μm formalin-fixed and paraffin-embedded tissue sections from patient tumors and derived 

PDOXs were centrally reviewed by a board-certified neuropathologist specialized in pediatric 

CNS tumors (J.C.) and blinded to the origin and genetic alterations of the PDOXs. 

 

Immunohistochemistry and FISH 

Immunohistochemistry (IHC) was performed as previously described71. For quantification of 

active Caspase 3 and phospho-histone H3 IHC,  Antibodies are listed in the key resources table 
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in Supplementary Methods.  Amplification of PDGFRA (4q12) and MYCN (2p24) was detected by 

interphase fluorescence in situ hybridization in a Clinical Laboratory Improvement 

Amendments (CLIA)-certified laboratory with probes developed in-house using the 

following BAC clones: PDGFRA (RP11-231C18 + RP11-601I15) with 4p12 control (CTD-2057N12 

+ CTD-2588A19) and MYCN (RP11-355H10 + RP11-348M12) with 2q35 control (RP11-296A19 + 

RP11-384O8). 

 

Whole-genome and whole-exome sequencing analysis 

Both whole-genome sequencing (WGS) and whole-exome sequencing (WES) were performed 

on the majority of the samples with a few samples having only WGS or WES. Paired-end 

sequencing was conducted on Illumina HiSeq platform with a 100-bp or 125-bp read length or 

NovaSeq with 150-bp read length. Paired-end reads from WGS and WES were mapped to 

GRCh37-lite using BWA-aln and quality checked (QC) as previously described72-74. For PDOX 

samples, mapped reads were cleansed of mouse read contamination by XenoCP75. For patient 

tumors and PDOX samples with matched germline samples, somatic mutations including SNVs 

and Indels were called and classified as previously described73,76. Non-silent mutations including 

missense, nonsense, in-frame insertion, in-frame deletion, frameshift, and splice mutations 

were reported. Potentially pathogenic germline variants were reported based on these filters: 

1) non-synonymous mutations with variant allele frequency (VAF) > 0.2 and coverage > 10x; 2) 

minor allele frequency (MAF) in general populations < 1e-3 in ExAC77; and 3) REVEL score > 

0.578, if available, for missense mutations. For patient tumors and PDOX samples without 

matched germline samples, variants were called and annotated by Bambino and Medal 

Ceremony79,80; variants meeting these criteria were reported as potentially pathogenic variants: 

1) any ‘Gold’ variants annotated by Medal Ceremony with alternative allele count > 4; 2) non-

Gold but non-silent variants with VAF > 0.3, alternative allele count > 4, and MAF in general 

populations < 1e-3 in ExAC77, 1000 Genomes, and NHLBI. Mutations in pHGG signature gene list 

(Supplementary Table 2b) were manually reviewed. Oncoprints were created using the online 

tool ProteinPaint81. CNAs were called and annotated by CONSERTING82, and focal CNA covering 

signature genes were manually reviewed.  
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RNA sequencing analysis.  

Paired-end RNA sequencing (RNA-seq) was conducted on Illumina HiSeq platform with 100-bp 

read length or 125-bp read length. Paired-end reads from RNA-seq were mapped as previously 

described83. For PDOX samples, mapped reads were cleansed of mouse read contamination by 

XenoCP. Read counts per gene per sample were quantified by HTSeq-Count v 0.11.2 using level 

1 and level 2 transcripts of GENCODE v19 annotation83. Expression heatmap was plotted based 

on log-CPM of genes from three expression signatures across the entire cohort, excluding four 

samples due to different RNA-seq protocol (patient diagnostic and recurrent samples from SJ-

HGGX2, patient and PDOX samples from SJ-HGGX6) and four PDOX samples from earlier 

passages (one PDOX from SJ-DIPGX29, one PDOX from SJ-HGGX39, and two PDOXs from SJ-

DIPGX7). Differential expression analyses were carried out on 16 one-to-one matched pairs of 

PDOXs from the most recent passages and the patient samples from which they were derived 

using edgeR (v 3.28.0) and limma (v 3.42.0) following the RNAseq123 workflow84. Subsequent 

gene set enrichment analyses were conducted using a custom R script based on 

hypergeometric test against hallmark gene sets downloaded from MSigDB v 5.285.  

Fusion genes were detected using CICERO86. 

 

High throughput screening (HTS) 

Growth curves for each cell line were established in 384-well plates (Corning 3707 or 3765) 

coated with 40 µls of 1% Geltrex matrix with varying cell numbers to determine optimal seeding 

density for 7-day treatments (Supplementary Table 4). For HTS, all assays were performed with  

the negative control (DMSO, 0.35%) and the positive control (staurosporine, 19-35 μM) in 

parallel. The FDA single-point assays were performed at a final concentration of 33 μM [95% CI 

16-46 μM]. Dose-response experiments were performed with 10-point, 3-fold serial dilution 

(19683-fold concentration range), and the mean top concentration tested was 35 μM [95% CI 

16-50 μM] (Supplementary Table 5). 
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The assay plates were loaded into an automated cell culture compatible LiCONiC incubator (37 

ºC, 5% CO2 and humidified) (LiCONiC US, Woburn, MA) that was integrated into an automated 

high-throughput screening system (HighRes Biosolutions, Beverly, MA). All compounds were 

transferred with a pin tool (V&P Scientific, San Diego, CA) and tested in triplicate, and drug 

exposure time was 7 days except for the fast-growing iAstro cells (shortened to 3 days). At the 

end of the experiment, the assay plates were equilibrated to room temperature for 20 minutes. 

Cell viability was measured using CellTiter-Glo® (Promega, Madison, WI). Luminescent signal was 

read with an EnVision® multimode plate reader (PerkinElmer, Waltham, MA). Screening 

experiments were processed, and the results visualized using two in-house developed programs: 

RISE (Robust Investigation of Screening Experiments) and AssayExplorer.  

 

Data analysis of drug responses 

Raw data processing – log2 RLU dose-response fits 

Raw luminescence relative light unit (RLU) values for each compound at each concentration were 

log2 transformed, normalized to obtain % activity using the following equation: 100× 

[(mean(negctrl) – compound) / (mean(negctrl) – mean(posctrl))]; and then pooled from replicate 

experiments prior to fitting. Here, negctrl and posctrl refer to the negative (DMSO) and positive 

controls (staurosporine) on each plate.  

 

Dose-response curves were fit using the drc87 package in R [R Core Team (2012). R: A language 

and environment for statistical computing. R Foundation for Statistical Computing, Vienna, 

Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/]. Both a three-parameter (with y0, 

the response without drug, set to zero) and a four-parameter model (y0 allowed to vary) were fit 

using the sigmoidal function LL2.4.  The hill slope was constrained to be between -10 and 0, and 

EC50 was constrained to be between 10-11 and 10-4 (which roughly equated to the drug 

concentration range tested in these experiments). For the three-parameter model, yFin, the 

maximum response of the dose-response curve, was constrained to be between zero and the 

maximum of the median activities calculated at each concentration overall pooled 

measurements. For the four-parameter model, y0 and yFin were both constrained to be between 
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the minimum and the maximum of the median activities calculated at each concentration overall 

pooled measurements. The model with the lowest corrected Akaike information criterion (AICc) 

was selected as the best fit model.  

 

Area under the curve (AUC) was calculated from the fitted curve using the trapezoid rule in the 

concentration range 10-11 and 10-4 Molar. In the event of a failure to fit a sigmoidal dose-response 

curve, the smooth.spline option in R was used to fit a curve that could be used to determine AUC.  

 

QC metrics for HTS 

The z-prime statistic was calculated using the following formula: 1 - ((3×sd(negctrl)) + 

(3×sd(posctrl))) / abs(mean(negctrl) – mean(posctrl)).  

 

BRAID model for quantitative synergy analysis 

Drug combination experiments were analyzed using the BRAID response surface model43. Raw 

RLU values were processed as described above for the single-agent experiments, except no log2 

transformation was applied. 

 

In vivo testing of paxalisib and mirdametinib. 

Paxalisib (GDC0084) and mirdametinib (PD0325901) were formulated at 1.8 mg/mL or 2.5 

mg/mL, respectively, in 1% Methylcellulose and 1% Tween 80 with sonication. The combination 

was co-formulated and administered as a single gavage. 

  

Pharmacodynamic assays: SJ-DIPGX37 or SJ-DIPGX7 tumors were implanted in the brain and 

treated when mice showed decreased activity consistent with large tumors and confirmed 

visualization of brain tumors by MRI. Mice were dosed by oral gavage, daily for five days with 

mirdametinib (17mg/kg), paxalisib (12mg/kg), mirdametinib and paxalisib (17 mg/kg and 12 

mg/kg, respectively), or vehicle. Two hours after the last dose, mice were perfused with PBS to 

remove blood, a small piece of tumor was grossly dissected and snap-frozen for Western blot 

analysis, and the remainder of the tumor and brain was processed for FFPE histology and IHC.  
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Long-term treatment at these doses caused toxicity manifested as loss of >20% of body weight. 

To identify doses tolerated for longer treatment needed for survival studies, we treated CD-1 

nude mice without tumors in one of seven arms: 1) vehicle; 2) paxalisib at 8 mg/kg; 3) paxalisib 

at 12 mg/kg; 4) mirdametinib at 14 mg/kg  5) mirdametinib at 17 mg/kg; 6) paxalisib at 8 

mg/kg+mirdametinib at 14 mg/kg or 7) paxalisib at 12 mg/kg and mirdametinib at 17 mg/kg. 

Three mice per arm were treated for five consecutive days, and then the brains were collected 2 

hours after the final dose for pharmacodynamic analysis of pathway inhibition (pAKT and pERK) 

by Western blotting. An additional 3 mice per arm were treated on cycles of 5 days on, two days 

off for 3 cycles. Body weight and behavioral changes were monitored daily. Paxalisib (8 mg/kg) 

and mirdametinib (14 mg/kg) alone and in combination were tolerated without loss of >20% body 

weight, so these doses were selected for a survival study. Western blots for pharmacodynamic 

studies were performed as previously described71 using antibodies listed in the key resources 

table.  

 

Survival study:  Cryopreserved SJ-DIPGX37 PDOX cells were thawed, and 2.4 ´ 105 cells in 7.5µl 

of Matrigel/mouse were implanted into brains of 24 mice as previously described67. 

Bioluminescence imaging (BLI) was monitored weekly, and fifty days after implantation when all 

mice reached a threshold BLI  total flux > 2´105, they were randomized into four treatment 

groups (6 mice per group) and treated with vehicle, paxalisib (8mg/kg), mirdametinib (14mg/kg) 

or paxalisib + mirdametinib daily, 5-days on and 2/3-days off.  Mice were euthanized when they 

reached moribund status. 

 

Pharmacokinetic (PK) study and analysis:  The plasma and brain PK of mirdametinib and paxalisib 

was studied in non-tumor bearing mice to determine potential for a PK drug-drug interaction 

(DDI). Mice were dosed mirdametinib and paxalisib daily, either alone or in combination, for up 

to 5 days. Blood samples were obtained from the retro-orbital plexus under anesthesia or by 

cardiac puncture upon termination.  Brains were harvested after cardiac puncture and aortic 

perfusion with PBS. Samples were stored at -80 °C until analysis with qualified LC-MS/MS 

methods. Plasma concentration-time (Ct) data were analyzed using nonlinear mixed effects 
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modeling implemented in Monolix 2019R2 (Lixoft, Antony, France). To enhance modeling 

precision and power, additional paxalisib plasma Ct data from a separate DDI study with another 

targeted compound was added to the analysis. Combination status was tested as a covariate 

upon the apparent clearance (CL/F) of each compound using the likelihood ratio test.  Brain 

concentrations were log transformed and analyzed using two-way ANOVA with sample time and 

combination status as factors. Practically impactful interactions were defined as a ≥ twofold 

change in the parameters of interest, consistent with the conventionally accepted threshold for 

preclinical and DDI studies44,45. Additional details are presented in the Supplementary Materials. 

 

Data availability:  DNA methylation profiles are available in Gene Expression Omnibus (GEO), 

accession GSE152035. All whole-genome, whole-exome and RNA-sequencing will be deposited 

at the European Genome-phenome Archive (EGA), which is hosted by the European 

Bioinformatics Institute (EBI).  Interactive visualizations of data can be explored in the Pediatric 

Brain Tumor Portal (pbtp.stjude.cloud).  Source data are provided with this paper. 
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Figure 1:  
Overview of PDOX and cell line establishment, characterization and preclinical testing, and 
pHGG data available in Pediatric Brain Tumor Portal  
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Figure 2: DNA methylation classification of patient tumors is conserved in corresponding 
PDOXs and cell lines.  (a) t-SNE plot showing tumor subgroups based on DNA methylation 
profiling. Nineteen patient tumors (circles), 21 PDOXs (squares) and 14 cell lines (diamonds) are 
outlined in black. Lines connect PDOXs and cell lines with the patient tumors from which they 
were derived.  Tumor subgroup classifications are color-coded and circles without outlines are 
reference samples from Capper et al.  Dashed square shows region containing all HGG samples. 
Classifications: Embryonal Tumors: atypical teratoid rhabdoid tumors (ATRT), embryonal tumor 
with multilayered rosettes (ETMR), high-grade neuroepithelial tumor with BCOR alteration 
(HGNET_BCOR) and medulloblastoma (MB). Ependymal Tumors: ependymoma (EPN), 
subependymoma (SUBPEN), myxopapillary ependymoma (MPE), posterior fossa (PF), 
supratentorial (ST). Glioblastoma: diffuse midline glioma (DMG) and glioblastoma (GBM). Other 
Glioma: anaplastic pilocytic astrocytoma (ANA_PA), high-grade neuroepithelial tumor with MN1 
alteration (HGNET_MN1), anaplastic pleomorphic xanthoastrocytoma (PXA). Control tissue, 
inflammatory tumor microenvironment (CONTR_INFLAM).  (b) Enlarged view of boxed region in 
(a).  Dashed oval shows patient tumors with MMRD and derived PDOX models. 
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Figure 2: DNA methylation classification of patient tumors is conserved in corresponding 
PDOXs and cell lines.   

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 7, 2020. ; https://doi.org/10.1101/2020.12.06.407973doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.06.407973


38 

Figure 3: Histopathology of PDOX recapitulates salient features of the patient tumor from 
which it was derived. H&E staining of HGG PDOX SJ-HGGX6 (a), shown as a representative 
example, recapitulates histologic features of its corresponding primary human tumor (b), 
including infiltration of the CNS parenchyma (→), perivascular invasion (►), and apparent 
mitotic activity (*).  Nuclear ATRX immunoreactivity, while retained in the entrapped neurons, 
is lost in the PDOX tumor cells (c), as in its corresponding primary human tumor (d).  N: 
Entrapped cerebral cortical neurons.  Scale bar: 50 µm.  
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Figure 4. Genomic landscapes of PDOX and cell lines conserve alterations present in the 
matched patient tumor and represent a variety of pHGG subtypes.  Alterations in genes 
recurrently mutated in pHGG are indicated on the left. Pathways are indicated on the right. 
Columns show tumor samples. PDOX and cell lines are grouped together with patient tumors 
from which they were derived. Numbers are the PDOX identifier IDs across the top, sequence 
file IDs across the bottom. Rows show the location of patient tumors, DNA methylome 
classification, and tumor sample type. In some cases, patient tumor samples from recurrence or 
autopsy are included along with the diagnostic sample. Asterisk in tumor sample type indicates 
the patient tumor from which the PDOX was derived. PDOX* (dark gray box) indicates xenograft 
generated by implanting the associated cell line. Mutations in signature genes shown as rows 
are indicated by Mutation Type color code. G in block indicates germline mutation. 
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Figure 5: Gene expression signatures of PDOX models recapitulate glioma expression 
subgroups. Unsupervised hierarchical clustering of RNA-seq quantification (logCPM) of genes 
from three expression signatures recapitulating glioma subgroups Proliferative, Proneural, and 
Mesenchymal across the patient tumors, PDOXs, and cell lines. 
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Figure 6: Analysis of screening results from 93 compounds across 14 pHGG models and two 

normal astrocyte lines. (a) Distribution of normalized drug AUC (the drug AUC in that cell 

model minus the median AUC for that drug across all models). Each dot represents the result 

from a single drug tested in the associated model. Normalizing in this way controls for the 

inherent potency of the drug and emphasizes selectivity across models. The most selective drug 

for each model is highlighted in blue. Cell models are color coded by histone mutation status. 

(b) Distribution of AUC for select drugs that have been evaluated in clinical trials or implicated

as promising agents in preclinical studies for adult or pediatric glioma. Each dot represents the

result for that drug in one model and is color coded by the histone mutation status of the

model. (c) Select dose-response curves for the drugs highlighted in (b). Normal reference iAstro

is depicted in black dashed lines and HABS in black solid lines. pHGG models are colored gray or

by histone mutation status for specific models indicated. (d) Unsupervised hierarchical

clustering of drug AUC z-scores for the 25% most active compounds out of the 93 tested.

Column and column labels are color coded by histone mutation status. Clusters 1 and 2 (gray

boxes) highlight two compound clusters that show distinct activity profiles across the models in

this study. The color code for histone mutation status is: H3-wt (red), H3.3 G34R (blue), H3.1

K27M (turquoise), and H3.3 K27M (green). Control cell lines (iAstro and HABS) are black. Color 

code for mechanism of action is shown on the right and annotated in heatmap row color blocks 

at left in d. 
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Figure 7: Paxalisib and mirdametinib drive synergistic growth inhibition in a subset of pHGG 
cell lines. The BRAID model presents synergistic effects of paxalisib (pax) and mirdametinib 
(mir) following a 7-day treatment in 7-cell lines: H3.3 K27M DIPGs; SJ-DIPGX37c, SJ-DIPGX29c, 
SJ-DIPGX7c, H3.3 G34R pHGGs; SJ-HGGX42c, SJ-HGGX6c, and astrocyte controls HABS and 
iAstro. The parameter κ measures the type of interaction: κ < 0 implies antagonism, κ = 0 
implies additivity, and κ > 0 implies synergy). The index of achievable efficacy (IAE) quantifies 
the degree to which the drug combination achieves a minimal level of efficacy within a defined 
concentration range. Higher IAE means the combination was more efficacious. In this 
experiment, it was defined as a 50% reduction of cell viability (black line) at concentrations ≤ 1 
μM (dotted lines). The 90% reduction of viability isobole (white line) is included for reference.  
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Figure 8: Paxalisib and mirdametinib show selective effects on cell survival and proliferation 
in vivo. (a). Left: Western blot of lysates from intracranial PDOX SJ-DIPGX37 (untreated, lane 1), 
and SJ-DIPGX7 (lanes 2-9) treated with vehicle (veh), paxalisib (pax), mirdametinib (mir) or the 
combination of paxalisib and mirdametinib (pax+mir) as indicated; antibodies are indicated at 
right. Quantification of IHC in sections from SJ-DIPGX7 tumors treated with agents shown along 
x axis for active caspase 3 (middle) and phospho-histone H3 (right), n= 3 tumors for veh, mir 
and n=4 tumors for pax and pax+mir. (b). Left: IHC for pAKT Ser473 and pERK in SJ-DIPGX37 
tumors in representative tumors treated with veh, pax, mir, or pax+mir as indicated. 
Quantification of IHC staining in sections from SJ-DIPGX37 tumors treated with agents shown 
along x axis for active caspase 3 (middle) and phospho-histone H3 (right), n=3 tumors for each 
treatment. NS, not significant; * p<0.05; **p<0.01; ***p<0.001, ****p<0.0001 using ANOVA 
with post-hoc Tukey test. Scale bar in B left panel = 100 µm. 
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Figure 9: Combined treatment with paxalisib and mirdametinib significantly extends survival 
of SJDIPGx37 bearing mice. Mice were randomized 50 days after implantation into 4 treatment 
arms (6 mice per arm) and treated with vehicle, paxalisib (8 mg/kg), mirdametinib (14 mg/kg), 
or paxalisib + mirdametinib daily, 5-days ON and 2/3-days OFF. paxalisib + mirdametinib vs 
vehicle, p=0.0056, mirdametinib vs vehicle, p=0.16, paxalisib vs vehicle, p=0.48 (Mantel Cox log-
rank test). Arrow shows the time point for randomization and initiation of treatment. Kaplan–
Meier survival analysis. 
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