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Abstract 9 

Species’ life history traits have a wide variety of applications in ecological and conservation 10 

research, particularly when assessing threats. The development and growth of global species trait 11 

databases are critical for improving trait-based analyses; however, it is vital to understand the gaps 12 

and biases of available data. Bats are an extremely diverse and widely distributed mammalian 13 

order, with many species facing local declines and extinction. We conducted a literature review 14 

for bat wing morphology, specifically wing loading and aspect ratio, to identify issues with data 15 

reporting and ambiguity. We collected data on field methodology, trait terminology, and data 16 

reporting and quality. We found several issues regarding semantic ambiguity in trait definitions 17 

and data reporting. Globally we found that bat wing morphology trait coverage was low. Only six 18 

bat families had over 40% trait coverage, and of those none consisted of more than 11 total species. 19 

We found similar biases in trait coverage across IUCN Redlist categories with threatened species 20 

having lower coverage. Geographically, North America, Europe, and the Indomalayan regions 21 

showed higher overall trait coverage, while both the Afrotropical and Neotropical ecoregions 22 

showed poor trait coverage. The underlying biases and gaps with bat wing morphology data have 23 

implications for researchers conducting global trait-based assessments. Implementing imputation 24 
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techniques may address missing data, but only for smaller regional subsets with substantial trait 25 

coverage. However, due to the low overall trait coverage, increasing species representation in the 26 

database should be prioritized. We suggest adopting an Ecological Trait Standard vocabulary to 27 

reduce semantic ambiguity in bat wing morphology traits to improve data compilation and clarity. 28 

Additionally, we advocate that researchers adopt an Open Science approach to facilitate the growth 29 

of a bat wing morphology trait database.  30 

Keywords: Chiroptera, species traits, wing loading, aspect ratio, spatial biases, taxonomic biases, 31 

open science, reproducibility 32 

1. Introduction  33 

Bats are an incredibly diverse group constituting nearly one-fifth of all mammals and the second 34 

most diverse group of mammals globally. Bats provide a wide range of ecosystem services such 35 

as seed dispersal (Melo et al., 2009; Seltzer, Ndangalasi & Cordeiro, 2013) and pest control (Kunz 36 

et al, 2011; Maas et al, 2016). Globally, bat populations are under threat from a wide range of 37 

pressures (O’Shea et al., 2016; Frick, Kingston & Flanders, 2020) such as habitat loss and 38 

degradation (Meyer et al., 2016), wind farms (Arnett el al, 2016), and hunting (Mickleburgh, 39 

Waylen & Racey, 2009). Despite their ecological importance and conservation threats, bats have 40 

a notable lack of information when compared to other mammals and birds (Frick, Kingston & 41 

Flanders, 2020).  42 

Species traits, here defined as measurable characteristics of an organism, provide a wide range of 43 

applications for understanding systematics and macroevolution (Harmon et al., 2010; Zamudio, 44 

Bell & Mason, 2016) as well as species conservation (Jones, Purvis & Gittleman, 2003; Pacifici et 45 

al., 2015). Traits provide an important link to the functional role of species within an ecosystem, 46 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 8, 2020. ; https://doi.org/10.1101/2020.12.07.414276doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.07.414276
http://creativecommons.org/licenses/by-nc/4.0/


3 

 

and as such trait-based models for vulnerability are a valuable tool (Pacifici et al., 2015; Ramirez-47 

Bautista et al., 2020). However, the ability to apply trait-based assessments relies on having the 48 

appropriate trait coverage. Hortal et al (2015) presented the concept of the Raunkiaeran shortfall 49 

to describe the lack of knowledge on ecologically relevant species traits, as an important factor to 50 

consider when applying large-scale ecological analyses. Biases in the underlying trait data 51 

availability can lead to subsequent biases in any analyses. Typically, vertebrate trait data 52 

availability is biased taxonomically towards large more widely distributed species and with less 53 

representation for reptiles and amphibians, and geographically with less representation in 54 

biologically diverse tropical regions (González-Suárez, Lucas & Revilla, 2012; Etard, Morrill & 55 

Newbold, 2020). Understanding the underlying biases in a species trait or collection of traits is 56 

critical in assessing their applicability to any analysis. 57 

Wing morphology is an important trait in bats, as it links many different natural history traits such 58 

as diet (Norberg & Rayner, 1987; Norberg & Fenton, 1988), habitat association (Brigham, Francis 59 

& Hamdorf, 1997; Jennings et al., 2004), and range size (Luo et al., 2019). Bat wing morphology 60 

is traditionally described using aspect ratio and wing loading (Norberg & Rayner, 1987). For bats 61 

wing morphology, aspect ratio is typically defined as the wingspan squared divided by wing area, 62 

which describes flight efficiency and maneuverability (Norberg & Rayner, 1987). Higher aspect 63 

ratios (e.g. short, wide wings), correspond with faster turning but less efficient flight compared 64 

with higher aspect ratios (e.g. long, narrow wings) seen in more efficient flight such as soaring 65 

(Norberg & Rayner, 1987; Norberg, Brooke & Trewhella, 2000). Wing loading is calculated by 66 

dividing the weight (mass * gravity) of the bat by the wing area and provides a measure of lift 67 

potential and influences maneuverability and flight speed. In addition to identifying natural history 68 

traits, bat wing morphology has been used for conservation to predict extinct risk (Jones, Purvis & 69 
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Gittleman, 2003), habitat fragmentation vulnerability (Farneda et al, 2015), and association with 70 

urbanization (Jung and Threlfall, 2018). Thus, wing morphology is likely a useful metric for any 71 

trait-based assessment with bats.  72 

Globally available databases for species traits are proliferating, as they provide an open repository 73 

for assessment (Jones et al., 2009; Kattge et al, 2011; Oliveira et al., 2017). Norberg and Raynor 74 

(1987), compiled a global wing morphology database for bats and since then other studies have 75 

attempted to compile bat wing morphology either for specific regions (Marinello & Bernard, 2014) 76 

or globally (Jones, Purvis & Gittleman, 2003); however, a single centralized and open database 77 

does not currently exist for bat wing morphology. Prior to compiling a unified trait database, 78 

several key factors must be considered. First, compiled data should use standardized measurement 79 

and recording protocols among studies, including following a well-defined and standardized 80 

vocabulary (Schneider et al., 2019; Gallagher et al, 2020). Additionally, global trait databases 81 

typically contain large volumes of missing data. Missing data can occur both randomly and non-82 

randomly (e.g. geographically, taxonomically) creating potential biases that need to be understood 83 

to appropriately validate any results when using a data set, however, missing data can also be 84 

imputed to generate larger usable data sets (Taugourdeau et al., 2014).  85 

Our paper seeks to analyze issues associated with developing a global bat wing morphology 86 

database. Through a comprehensive literature review, we identify reporting and methodological 87 

issues for comparability. Understanding the underlying biases in global trait data is essential in 88 

assessing that ability to apply it to global analyses as well as highlight important regions or species 89 

to prioritize for study. We created a synthesized dataset for bat wing morphological traits, and then 90 

assessed underlying biases in species data availability.  91 
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2. Methodology 92 

2.1 Literature review 93 

In September 2019 and again in February 2020 we searched Scopus and Web of Science databases 94 

for articles relating to bat wing morphology, Additionally, we searched Google Scholar using 95 

Publish or Perish (Harzing, 2007) software keeping only the first 300 results (Haddaway et al., 96 

2015). For each database we used the following terms: “wing” AND (“morphology” OR “shape” 97 

OR “loading” or “measurements”) AND (“bat*” or “chiroptera”). Finally, we also included studies 98 

found through reference lists in papers identified from the systematic searches.  99 

To screen papers, we adopted the PRISMA reporting procedure outlined in by Moher, Telzlaff, 100 

and Altman (2009). We excluded any papers that did not 1) study bat wing morphology (e.g. birds 101 

or robotics), 2) use wing morphology in their study (e.g. only reference wing morphology in the 102 

Discussion) or 3) collect primary wing morphology (e.g. reviews and meta-analysis).  103 

From each paper included in the analysis, we collected data on the basic methodology including 104 

whether the study used live bats or specimens, the wing area measurement method (e.g. photo, 105 

tracing), and whether they used only primary data. Norberg & Raynor (1987) noted important 106 

semantic ambiguity in the term “wing area”, and whether the body and/or tail membrane is 107 

included. We followed Bininda-Emonds & Russell, 1994 and use two distinct terms lifting surface 108 

area (LSA) and wing area (WA). Lifting surface area is defined following “wing area” set out by 109 

Norberg & Raynor (1987) which includes the area of the tail membrane, body excluding the head, 110 

and wing. We define wing area specifically referring to the area of the patagium only. To assess 111 

methods reporting quality we recorded whether the paper explicitly reported whether they used 112 
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LSA or WA. When the paper was unclear, we attempted to extrapolate which definition was used 113 

based on provided figures or references. 114 

We also collected information on data reporting and whether the study provided data for both 115 

direct field measures, mass, forearm, wingspan, and wing area as well as calculated variables, 116 

aspect ratio, wing loading, and relative wing loading. We considered data that were only displayed 117 

in a figure as absent because raw values could not be extracted. Recent work supports importance 118 

of incorporating and providing intraspecific trait variability (Guralnick et al., 2016; Kissling et al., 119 

2018), thus we also evaluated the reported data quality based on whether the study provided raw 120 

data for individuals, means and standard deviations, or only as means without SDs or sample sizes.  121 

2.2 Data availability and biases 122 

We assessed global data availability for bat wing morphology to assess taxonomic and geographic 123 

trends. First, we validated and updated the species names from the literature as older papers often 124 

used outdated scientific names; however, as different taxonomic backbones exist, we retained the 125 

original verbatim scientific name provided. As we investigated patterns in conservation status 126 

based on the IUCN Redlist, we corrected our scientific names to match the IUCN convention. We 127 

first checked for synonyms in the GBIF backbone naming system, and then followed the IUCN 128 

naming convention to allow for extracting threat status. We downloaded data on geographic realm 129 

and IUCN Redlist Conservation Status for each species, using package “rredlist” (Chamberlain, 130 

2020). We did not include data when individuals were not identified to species in the study, nor 131 

species that did not occur on the IUCN species list nor the Catalogue of Life. For valid species that 132 

did not occur on the IUCN Redlist we manually added the conservation status (Data Deficient) 133 

and realm (following the IUCN convention). We followed the terminology presented in Etard et 134 

al. (2020) for assessing trait data availability, with trait coverage referring to the proportion of 135 
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missing data for a specific trait, and trait completeness which is the proportion of traits have an 136 

available estimate for a given species. We then evaluated trait coverage and completeness based 137 

on conservation status, taxonomic family, and realm to review patterns.  138 

We assessed spatial patterns in trait coverage by first descriptively comparing the overall trait 139 

coverage for the ecoregions Palearctic, Nearctic, Neotropical, Afrotropical, Indomalayan, and 140 

Australasian ecoregions (following the WWF Ecoregions classification; Olson et al., 2004). Since 141 

the Palearctic realm covers a large geographic area, we further divided the area by geopolitical 142 

divisions into Asiatic Palearctic (Asiatic Russia and Eastern Asian), European Palearctic, Middle 143 

Eastern Palearctic (consisting of Central and Southwestern Asia), and Palearctic Africa. 144 

Additionally, we reviewed the assemblage-level trait coverage for wing loading and aspect ratio 145 

for each ecoregion. We overlapped species distributions from IUCN (Spatial Range Dataset IUCN, 146 

2020; downloaded October, 2020) and calculated the assemblage-level trait coverage globally 147 

using a grid size of approximately 50 km by 50  km using the package “fasterize” in R (Ross, 148 

2020). We then extracted the median and interquartile range for trait coverage values in each 149 

ecoregion.  150 

2.3 Trait data extraction, validation, and compilation 151 

When available, we extracted morphological data to compile a unified data set. As our objective 152 

was to compile a generalized database on bat species wing morphology, we first combined data 153 

for species within studies (e.g. when studies reported values for different sexes). For studies that 154 

used wing area instead of LSA we used the correction based on taxonomic family used by Norberg 155 

and Raynor (1987) which added the tail and body area as a percentage of reported wing area (20% 156 

Emballonurids, Rhinolophids, Hipposiderids, and Mormoopids, 25% for Verpertilionids, and 16% 157 

for Phyllostomidids).  158 
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When wing loading and/or relative wing loading was not reported but mass and wing area were, 159 

we estimated a mean wing loading and considered the estimate as a single observation, and thus 160 

did not calculate standard deviation. We also applied this procedure to estimate aspect ratio and 161 

relative wing loading. We estimated wing loading from relative wing loading and vice versa when 162 

only mass and either wing loading or relative wing loading were reported. 163 

We created a compiled data set with wing morphology data based on the reviewed literature. Prior 164 

to combining estimates for species from different studies we identified outlier records and either 165 

corrected or removed the data. To identify outliers, we first calculated the mean standard deviations 166 

for aspect ratio and wing loading. We defined an outlier as any species that exhibit a standard 167 

deviation above 1.5 times the mean. For the species we identified we reviewed all data from studies 168 

reporting for those species to determine whether the study exhibited systematic biases. For studies 169 

that exhibiting systematic biases we sought to identify and then rectify the issue, and if we could 170 

not then the data from the study was excluded from the final global data set. For individual species 171 

outliers (e.g. when the study did not exhibit systematic biases) we removed records that did not 172 

report sample size and standard deviation. We did not remove outliers, if the variation in the data 173 

arose potentially due to geographic or taxonomic variation (e.g. different sub-species). 174 

Additionally, when forearm and/or were missing for a species, we used values from the 175 

PanTHERIA database (Jones et al., 2009) when available. We used the finalized data set to 176 

evaluate patterns in missing data taxonomically, geographically, and in conservation status.  177 

 2.4 Methodological impact assessment  178 

We investigated the effect of area measurement method and area definition on wing area/lift 179 

surface area values. From our methodological review, we only included studies that clearly 180 

reported how wing area was defined and how wing area was measured. Next, we only included 181 
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species that had area measurements from at least two different methods and specifically stated in 182 

the methods that they used the lifting surface area definition for “wing area”. The available data 183 

did not provide a large enough sample to make viable comparisons between wing area definitions 184 

for different families (only 5 species from 3 genera had measurements for both definitions). We 185 

ran Bayesian generalized linear mixed model using the package “brms” in R Studio (Bürkner, 186 

2017), with a lognormal likelihood, and 6 chains with 6,000 iterations each (1,000 set as burn-in). 187 

We kept default flat priors, with measurement method (tracing vs. photograph) set as a fix8282.ed 188 

effect, and species and study ID as random effects. We checked for model convergence using trace 189 

plots and R-hat values, and assessed model fit through posterior predictive checks, leave-one-out 190 

cross-validation and Bayesian R2 (Bürkner, 2017). We ran all analyses and visualizations in R 191 

Studio using R v3.6.3 (R Core Team, 2020) 192 

3. Results 193 

3.1 Method variation and reproducible reporting 194 

Our search returned 738 references and yielded 147 sources after screening and full-text 195 

assessment (Supp File S1) covering 508 species from 18 families. Area measurement techniques 196 

varied, but most studies either used wing tracings (n = 71) or photographs (n = 49), with ~10% of 197 

studies not reporting how area measurements were obtained (n = 15; Figure 1). Other methods 198 

included using photos of bats in flight, or directly estimating area in the field with a planimeter. 199 

Roughly half of the studies reviewed clearly distinguished whether they used LSA or wing area 200 

(56.4%), while 24.8% did not report methods in a way that an area definition could be extrapolated 201 

(Figure 1). All but three studies used the term “wing area”, regardless of the area definition 202 

described in the methodology. 203 
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 204 

Figure 1 Methods used to measure wing area in bats (A), and how studies defined wing area either 205 

using lift surface area (LSA) or wing area (wing) with “ext” denoting that the definition was 206 

extrapolated based on the provided reference. Lift surface area includes the area of the patagium 207 

uropatagium, and the body excluding the head, and wing area refers to only the area of the 208 

patagium. 209 

Overall, 83 studies (56.5 %) provided all the relevant trait measurements (mass, wingspan, wing 210 

area) for calculating wing loading, relative wing loading, and aspect ratio. Conversely, 19 studies 211 

did not report data for directly measured traits, and a further five studies did not report any raw 212 

data despite using the data for analysis. For directly measured traits, both wingspan and wing area 213 

exhibited higher missing data rates than mass (Figure 2).  214 
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 215 

Figure 2 A) Reporting coverage for each bat wing morphology trait and the B) density of reporting 216 

completeness for studies that collected bat wing morphology traits. 217 

Measured traits had a higher missing rate than calculated variables, except for relative wing 218 

loading, which was not typically calculated (only 15 of 147 studies calculated RWL with 13 219 

reporting values). Of the 13 studies that reported relative wing loading, two studies did not provide 220 

the base measurements mass and/or wing area to estimate wing loading. However, the data loss of 221 

those two studies resulted in 66 records and 14 unique species not having available wing loading 222 

data. Similarly, 19 studies that did not report relative wing loading also did not provide the 223 

necessary data to calculate relative wing loading, leading to 24 unique species without relative 224 

wing loading estimates. Not reporting mass led to a loss of 38 species with complete wing 225 

morphology data from the final database. From the literature we identified 487 species which had 226 

estimates for both wing loading and aspect ratio. Overall, reporting issues and methodological 227 

inconsistencies led to 141 of the studied species (~28%) to have no wing loading nor aspect ratio 228 

data in the final data set.  229 
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When provided, data quality also varied with only 14 of 147 studies providing complete individual 230 

level data; however, of those studies only two provided the data as an available supplement. Most 231 

studies (71.4%) reported species-level mean and a measure of dispersion (either standard deviation 232 

or standard error), and a smaller portion only reporting a mean (9.5%).  233 

3.2 Influence of field measurement method on area 234 

From the available data, 47 species had records for lift surface area using both tracing and 235 

photographs allowing for direct comparison. The models converged, showing caterpillar-like trace 236 

plots, and all R-hat values approximated 1. Posterior predictive checks indicated that predicted and 237 

observed data had similar distributions, and reflected adequate model fit. However, Pareto shape 238 

k parameters indicated the presence of outliers with high influence for both models (Supp. File 239 

S2). Measuring lift surface area using a tracing compared to photographs did not show any effect 240 

on area estimate (Table 1; Supp. File S2).  241 

Table 1 Bayesian regression outputs for the model comparing between measuring lift surface area 242 

using a tracing or a photograph. 243 

Model structure Estimate Est.Error 
L95% 

CI 

U95% 

CI 
Rhat 

Bulk 

ESS 

Tail 

ESS 

 Group-Level 

Effects:  
       

sd(Reference ID)  0.09 0.03 0.04 0.16 1 4602 7051 

sd(Scientific Name)  0.49 0.05 0.40 0.61 1 2803 6403 

 Population-Level 

Effects: 
       

Intercept 4.96 0.08 4.80 5.12 1 1960 4458 

method MeasurementTrace 0.01 0.06 -0.09 0.13 1 7001 10561 

      

Bayes 

R2 
94.99% 

 
 244 
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From the collected wing morphology data, only 6 species (Cynopterus sphinx, Cynopterus 245 

brachyotis, Cynopterus horsefieldii, Molossus molossus, and Pteropus tonganus) had records 246 

using both definitions of area. The primary difference between lift surface area and wing area is 247 

the inclusion of the uropatagium in LSA and from the available species only Molossus molossus 248 

has a relatively large uropatagium. As such, while modeling was not possible to determine the 249 

differences between using wing area or lift surface area on wing loading and aspect ratio, we did 250 

see a difference in wing loading (LSA definition mean wing loading = 19.7 Nm-2; wing area 251 

definition mean wing loading = 16.5) and aspect ratio (LSA aspect ratio = 7.7; wing area aspect 252 

ratio = 8.7) estimates for Molossus molossus. The observed pattern is consistent theoretically 253 

considering that as the tail area increases in relation to the size of the wing area both aspect ratio 254 

and wing loading will decrease as they are inversely proportional to area.  255 

3.3 Global species data availability 256 

After removing outlier records and correcting for methodology we compiled a dataset comprised 257 

of 430 species with at least some available wing morphology data (wingspan, wing area, wing 258 

loading, relative wing loading or aspect ratio), representing approximately 27.8 % of global bat 259 

species. When data was available, trait completeness was high as 311 of the 430 species had 260 

estimates for all relevant traits (mass, wingspan, wing area, aspect ratio, wing loading, and relative 261 

wing loading). However, overall wing morphology data showed low trait coverage across most 262 

bat families, with only 7 families showing ≥ 50% data availability and only one of those families 263 

(Mormoopidae) consisted of more than 6 species (Figure 3). For genus level trait coverage, 79 264 

genera (36.1%) had no species with available data. Within families that had at least one species 265 

with available data, the percent of genera without any data ranged from 22.6% to 66.7% (Suppl 266 

Table S1). Primarily, species wing loading data were derived from one or two studies (78.7%), 267 
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while only 23 species had five or more references. Aspect ratio showed a similar pattern with only 268 

25 species with five or more references.  269 

 270 

 271 

Figure 3 Wing morphology data availability for bat species by family, showing species with no 272 

data (e.g. without wing loading and aspect ratio), partial data (wing loading and aspect ratio but 273 

not mass, wingspan, and/or lift surface area) or complete data (all relevant trait data available) 274 

along with the percent of species within each family that have at least some data available. 275 

Across all IUCN categories wing morphology data exhibited a high volume of missingness (Figure 276 

4). The distribution of available data follows a similar pattern to overall species categorization. 277 

Only 17 of the 193 species listed in a Threatened category (Vulnerable, Endangered, Critically 278 

Endangered), have wing morphology data and all 17 had full trait completeness (i.e. available data 279 
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for mass, wingspan, wing area, wing loading, relative wing loading, and aspect ratio). When 280 

looking at listed threats under the IUCN assessment for threatened species, we saw similar patterns 281 

of low trait coverage across threat categories. Additionally, all the threats identified as high impact 282 

from the IUCN assessment had no wing morphology data available (Supp. Table S2).  283 

 284 

Figure 4 Bat wing morphology data availability (species with both wing loading and aspect ratio) 285 

for IUCN Redlist category Least Concern (LC), Near Threatened (NT), Vulnerable (VU), 286 

Endangered (EN), Critically Endangered (CR), Extinct (EX), Data Deficient (DD), and species 287 

not currently assessed by the IUCN. Percentages above the bars indicates percent of species with 288 

at least some available trait data for each category. 289 

 290 
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Trait coverage for wing loading and aspect ratio varied between ecoregions but was typically low 291 

overall (Supplemental Table S3). Only the Nearctic realm exhibited trait coverage over 50% with 292 

an ecoregion wide trait coverage of 65.5% for both wing morphology and aspect ratio. The 293 

Nearctic also exhibited the highest median assemblage-level trait coverage for both wing loading 294 

and aspect ratio, followed by the Palearctic and Indomalayan realms; however, several realms 295 

showed high variation in assemblage-level trait coverage (Figure 5b). Trait coverage varied within 296 

the geopolitical regions we defined for the Palearctic, with the Asiatic Palearctic exhibiting lower 297 

median trait coverage than the other regions (Figure 5c). The global wing morphology dataset 298 

showed geographic biases with North America and Europe having higher overall trait coverage 299 

for species, while Asiatic Palearctic, tropical Australasia, and tropical Africa had relatively lower 300 

data coverage.  301 
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 302 

 303 

Figure 5 (A) Global assemblage-level wing loading trait coverage. Darker colors highlight regions 304 

with relatively fewer number of species with available data. Light grey indicates that either no bat 305 

species are present or that range data was not available. (B) Assemblage-level wing loading trait 306 

coverage density for each with the median coverage value. (C) Median and interquartile range of 307 

wing loading trait coverage for geopolitical regions within the Palearctic ecoregion. 308 
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4. Discussion 309 

Overall, bat wing morphology data exhibits poor trait coverage, with a small proportion (< 30%) 310 

of species with available data for each trait we assessed. We identified several underlying issues 311 

within the wing morphology literature that inhibit consolidating a global database. From the 312 

available data, bat wing morphology trait coverage showed both taxonomic and geographic biases 313 

which limits assessing conservation status and threat risks globally with the currently available 314 

data.  315 

While we found variation in field techniques for measuring wing area, most studies adopted one 316 

of two methods which produced similar area estimates. One of the biggest issues arose from 317 

semantic ambiguity in terminology, primarily wing area definition, and this should be addressed. 318 

We suggest following Schneider et al., (2019) and adopting an Ecological Trait-data Standard 319 

Vocabulary (ETS), which as a minimum requires studies to report a value (column named 320 

traitValue), standard units for the value (traitUnit), a unified descriptive name (traitName), and a 321 

scientific taxon (scientificName). Using the standard column naming is not required but facilitates 322 

faster inclusion into a unified database. Trait name is important for maintaining consistency across 323 

studies, and for bat wing morphology we propose a set of unambiguous trait names (Table 2; 324 

Figure 6).  325 

  326 
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Table 2 Proposed unified terminology for bat wing morphology traits, with the current potentially ambiguous terms the suggested 327 

unified trait name, the suggested trait unit, and an unambiguous definition for the proposed trait 328 

Current terms unified traitName traitUnit Description 

Wingspan wingspan cm The linear distance from wing tip to wing tip or 

measured as the distance from the midline of the body 

to a single wing tip doubled 

Wing area; Lifting 

surface area 

wing_area cm2 The full area of the patagium, directly measured from a 

wing tracing or photograph 

lifting_surface_area cm2 The total area of the patagium, uropatagium (if present), 

and body excluding the head 

wing_area_rec cm2 The rectangular approximation of the patagium based on 

the wing length (measured from the edge of the body to 

the wing tip) multipiled by the wing wing width 

(measured starting at the fifth digit down to the tip of the 

fifth digit) 

Aspect ratio partial_aspect_ratio NA The wingspan squared divided by wing_area 

total_aspect_ratio NA The wingspan squared divided by lifting_surface_area 

Wing loading partial_wing_loading Nm-2 mass x gravitational constant divided by wing_area 

total_wing_loading Nm-2 mass x gravitational constant divided by 

lifting_surface_area 

Relative wing 

loading; geometric 

wing loading 

relative_partial_loading NA partial_wing_loading divided by mass raised to 1/3. 

Note that mass and not weight (mass * g) should be used 

relative_total_loading NA  total_wing_loading divided by mass raised to 1/3. Note 

that mass and not weight (mass * g) should be used 

329 
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 330 

Figure 6 Bat wing outline designating regions included in the "wing area" definition (left) and 331 

lifting surface area (right). 332 

We also identified numerous gaps in data reporting across studies. We documented that primary 333 

morphological traits such as forearm, mass, wingspan, and wing area were underreported in the 334 

literature. Additionally, few studies (14) provided fully open available individual level data, and 335 

more problematically several studies (13) either provided no data, did not provide species level 336 

data, or only presented data in a figure. Open Science can facilitate the development and accelerate 337 

the growth of trait datasets (Gallagher et al 2020), thus we suggest that studies collecting bat wing 338 

morphology traits should adopt an Open Science approach to address the data reporting gap. 339 

Omitting trait values limits the ability to unify trait data and estimate additional variables. For 340 

instance, we saw that not reporting mass along with either wing loading or relative wing loading 341 

meant that we were not able to generate an estimate for both traits. Additionally, while we focused 342 

on wing loading and aspect ratio, several other methods exist for comparing bat wing morphology 343 

such as geometric analysis (Dietz, Dietz & Siemers, 2006; Schmieder et al., 2015), and indices 344 
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based on skeletal measures (Findley, Studier & Wilson, 1972; Bader et al., 2015). Providing values 345 

for all relevant traits measured in a study, can help either estimate or even calculate other trait 346 

values strengthening the overall data availability.  347 

Wing morphology data are not available for most bat species across multiple families and regions. 348 

Geographically, several regions showed low data availability particularly South America, 349 

Madagascar, parts of Oceania, the Middle East, and Asiatic Palearctic. The geographic biases raise 350 

several concerns with applying a global approach to meta-analysis using wing morphology data. 351 

Bat populations face a myriad of threats which vary depending on the region (Frick, Kingston & 352 

Flanders, 2020). We found a similar trend in low trait coverage for threatened species (González-353 

Suárez, Lucas & Revilla, 2012). We identified gaps in data coverage for IUCN threatened category 354 

species, as well as when considering trait coverage for specific high impact threats. Given the 355 

underlying low trait coverage and biases, it is critical for researchers using bat wing morphology 356 

to consider the missingness mechanism within their framework (Nakagawa & Freckleton, 2008; 357 

Baraldi & Enders, 2010). For instance, missing data patterns within conservation status and 358 

specific threats could confound results and inhibit conservation-based conclusions 359 

Missing data pattens (e.g. whether data is missing at random or not) within available trait data, 360 

also relates to how ecologists should handle missing data cases (Nakagawa & Freckleton, 2008). 361 

Missing data rarely occurs completely at random, which means that simple approaches such as 362 

case deletion can introduce strong biases (Nakagawa & Freckleton, 2008; González-Suárez, Lucas 363 

& Revilla, 2012; Pakeman, 2014). As missing data is ubiquitous across fields, multiple new 364 

techniques have been developed to impute non-random missing data (Bruggeman, Heringa, & 365 

Brandt, 2009; Pantanowitz & Marwala, 2009; van Buuren & Groothuis-Oudshoorn, 2010). A 366 

major concern with applying any imputation with is the volume of missing data relative to 367 
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available data. Penone et al. (2014) showed that some techniques could handle up to 40% missing 368 

data when traits were phylogenetically conserved. In addition to accounting for phylogeny, 369 

relationships between traits can be used in imputation models. Incorporating additional traits to 370 

impute bat wing morphology data may provide a promising approach, as other traits are globally 371 

well sampled for mammals; however, it unclear whether this is the case specifically for bats (Etard 372 

et al., 2020). Globally trait coverage for bat wing morphology does not meet the 40% criteria, but 373 

studies focused on a smaller subset could still benefit from data imputation.  374 

Caveats 375 

We did not conduct our literature review searches in additional languages, which may change the 376 

data availability coverage especially in regions where English is not the primary language. Some 377 

of the geographic biases we observed may be a factor of limiting our search language to English. 378 

English is not the primary language in several of the regions with low trait coverage. However, 379 

our English search provides a large starting centralized dataset and additionally provides a 380 

framework for adding bat wing morphology data from non-English sources and from grey 381 

literature. Additionally, the English search did return three papers in Chinese. We advocate for 382 

using the data presented in this study only as a starting point for developing a more robust global 383 

repository for bat wing morphology. As the global database grows it will be important to revisit 384 

our assessment of taxonomic and geographic biases. To this end we have provided R code to easily 385 

facilitate future reevaluations, as well as a bat wing morphology database with three levels: 386 

individual level data, study level data, and pooled species level data.  387 

 388 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 8, 2020. ; https://doi.org/10.1101/2020.12.07.414276doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.07.414276
http://creativecommons.org/licenses/by-nc/4.0/


23 

 

Acknowledgements 389 

We would like the thank King Mongkut’s Petchra Pra Jom Klao Scholarship for supporting the 390 

project. 391 

References 392 

Arnett EB, Baerwald EF, Mathews F, Rodrigues L, Rodríguez-Durán A, Rydell J, Villegas-Patraca 393 

R, Voigt CC. 2016. Impacts of wind energy development on bats: a global perspective. In: 394 

Bats in the Anthropocene: conservation of bats in a changing world. Springer Cham, 295–395 

323. 396 

Bader E, Jung K, Kalko EKV, Page RA, Rodriguez R, Sattler T. 2015. Mobility explains the 397 

response of aerial insectivorous bats to anthropogenic habitat change in the Neotropics. 398 

Biological Conservation 186:97–106. DOI: 10.1016/j.biocon.2015.02.028. 399 

Baraldi AN, Enders CK. 2010. An introduction to modern missing data analyses. Journal of School 400 

Psychology 48:5–37. DOI: 10.1016/j.jsp.2009.10.001. 401 

Bininda-Emonds ORP, Russell AP. 1994. Flight style in bats as predicted from wing 402 

morphometry: the effects of specimen preservation. Journal of Zoology 234:275–287. 403 

DOI: 10.1111/j.1469-7998.1994.tb06075.x. 404 

Brigham RM, Francis RL, Hamdorf S. 1997. Microhabitat Use by Two Species of Nyctophilus 405 

Bats: a Test of Ecomorphology Theory. Australian Journal of Zoology 45:553. DOI: 406 

10.1071/ZO97026. 407 

Bruggeman J, Heringa J, Brandt BW. 2009. PhyloPars: estimation of missing parameter values 408 

using phylogeny. Nucleic Acids Research 37:W179–W184. DOI: 10.1093/nar/gkp370. 409 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 8, 2020. ; https://doi.org/10.1101/2020.12.07.414276doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.07.414276
http://creativecommons.org/licenses/by-nc/4.0/


24 

 

Bürkner P-C. 2017. brms: An R package for Bayesian multilevel models using Stan. Journal of 410 

statistical software 80:1–28. 411 

Chamberlain S. (2020). rredlist: 'IUCN' Red List Client. R package version 0.6.0. https://CRAN.R-412 

project.org/package=rredlist 413 

Dietz C, Dietz I, Siemers BM. 2006. Wing Measurement Variations In The Five European 414 

Horseshoe Bat Species (Chiroptera: Rhinolophidae). Journal of Mammalogy 87:1241–415 

1251. DOI: 10.1644/05-MAMM-A-299R2.1. 416 

Etard A, Morrill S, Newbold T. 2020. Global gaps in trait data for terrestrial vertebrates. Global 417 

Ecology and Biogeography:geb.13184. DOI: 10.1111/geb.13184. 418 

Farneda FZ, Rocha R, López-Baucells A, Groenenberg M, Silva I, Palmeirim JM, Bobrowiec 419 

PED, Meyer CFJ. 2015. Trait-related responses to habitat fragmentation in Amazonian 420 

bats. Journal of Applied Ecology 52:1381–1391. DOI: 10.1111/1365-2664.12490. 421 

Frick WF, Kingston T, Flanders J. 2020. A review of the major threats and challenges to global 422 

bat conservation. Annals of the New York Academy of Sciences 1469:5–25. DOI: 423 

10.1111/nyas.14045. 424 

Gallagher RV, Falster DS, Maitner BS, Salguero-Gómez R, Vandvik V, Pearse WD, Schneider 425 

FD, Kattge J, Poelen JH, Madin JS, Ankenbrand MJ, Penone C, Feng X, Adams VM, Alroy 426 

J, Andrew SC, Balk MA, Bland LM, Boyle BL, Bravo-Avila CH, Brennan I, Carthey AJR, 427 

Catullo R, Cavazos BR, Conde DA, Chown SL, Fadrique B, Gibb H, Halbritter AH, 428 

Hammock J, Hogan JA, Holewa H, Hope M, Iversen CM, Jochum M, Kearney M, Keller 429 

A, Mabee P, Manning P, McCormack L, Michaletz ST, Park DS, Perez TM, Pineda-Munoz 430 

S, Ray CA, Rossetto M, Sauquet H, Sparrow B, Spasojevic MJ, Telford RJ, Tobias JA, 431 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 8, 2020. ; https://doi.org/10.1101/2020.12.07.414276doi: bioRxiv preprint 

https://cran.r-project.org/package=rredlist
https://cran.r-project.org/package=rredlist
https://doi.org/10.1101/2020.12.07.414276
http://creativecommons.org/licenses/by-nc/4.0/


25 

 

Violle C, Walls R, Weiss KCB, Westoby M, Wright IJ, Enquist BJ. 2020. Open Science 432 

principles for accelerating trait-based science across the Tree of Life. Nature Ecology & 433 

Evolution 4:294–303. DOI: 10.1038/s41559-020-1109-6. 434 

González-Suárez M, Lucas PM, Revilla E. 2012. Biases in comparative analyses of extinction risk: 435 

mind the gap: Data biases in comparative analyses. Journal of Animal Ecology 81:1211–436 

1222. DOI: 10.1111/j.1365-2656.2012.01999.x. 437 

Guralnick RP, Zermoglio PF, Wieczorek J, LaFrance R, Bloom D, & Russell L. (2016). The 438 

importance of digitized biocollections as a source of trait data and a new VertNet resource. 439 

Database, 2016  baw158. https://doi.org/10.1093/database/baw158 440 

Haddaway NR, Collins AM, Coughlin D, Kirk S. 2015. The Role of Google Scholar in Evidence 441 

Reviews and Its Applicability to Grey Literature Searching. PLOS ONE 10:e0138237. 442 

DOI: 10.1371/journal.pone.0138237. 443 

Harmon LJ, Losos JB, Jonathan Davies T, Gillespie RG, Gittleman JL, Bryan Jennings W, Kozak 444 

KH, McPeek MA, Moreno-Roark F, Near TJ, Purvis A, Ricklefs RE, Schluter D, Schulte 445 

II JA, Seehausen O, Sidlauskas BL, Torres-Carvajal O, Weir JT, Mooers AØ. 2010. Early 446 

Bursts Of Body Size And Shape Evolution Are Rare In Comparative Data. Evolution 447 

64:2385–2396. DOI: 10.1111/j.1558-5646.2010.01025.x. 448 

Harzing, AW. 2007. Publish or Perish, available from https://harzing.com/resources/publish-or-449 

perish 450 

Hortal J, de Bello F, Diniz-Filho JAF, Lewinsohn TM, Lobo JM, Ladle RJ. 2015. Seven Shortfalls 451 

that Beset Large-Scale Knowledge of Biodiversity. Annual Review of Ecology, Evolution, 452 

and Systematics 46:523–549. DOI: 10.1146/annurev-ecolsys-112414-054400. 453 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 8, 2020. ; https://doi.org/10.1101/2020.12.07.414276doi: bioRxiv preprint 

https://doi.org/10.1093/database/baw158
https://doi.org/10.1101/2020.12.07.414276
http://creativecommons.org/licenses/by-nc/4.0/


26 

 

Jennings NV, Parsons S, Barlow KE, Gannon MR. 2004. Echolocation Calls and Wing 454 

Morphology of Bats from the West Indies. Acta Chiropterologica 6:75–90. DOI: 455 

10.3161/001.006.0106. 456 

Jones KE, Bielby J, Cardillo M, Fritz SA, O’Dell J, Orme CDL, Safi K, Sechrest W, Boakes EH, 457 

Carbone C, Connolly C, Cutts MJ, Foster JK, Grenyer R, Habib M, Plaster CA, Price SA, 458 

Rigby EA, Rist J, Teacher A, Bininda-Emonds ORP, Gittleman JL, Mace GM, Purvis A. 459 

2009. PanTHERIA: a species-level database of life history, ecology, and geography of 460 

extant and recently extinct mammals: Ecological Archives E090-184. Ecology 90:2648–461 

2648. DOI: 10.1890/08-1494.1. 462 

Jones KE, Purvis A, Gittleman JL. 2003. Biological Correlates of Extinction Risk in Bats. The 463 

American Naturalist 161:601–614. DOI: 10.1086/368289. 464 

Jung K, Threlfall CG. 2018. Trait-dependent tolerance of bats to urbanization: a global meta-465 

analysis. Proceedings of the Royal Society B: Biological Sciences 285:20181222. DOI: 466 

10.1098/rspb.2018.1222. 467 

Kattge J, Díaz S, Lavorel S, Prentice IC, Leadley P, Bönisch G, Garnier E, Westoby M, Reich PB, 468 

Wright IJ, Cornelissen JHC, Violle C, Harrison SP, van Bodegom PM, Reichstein M, 469 

Enquist BJ, Soudzilovskaia NA, Ackerly DD, Anand M, Atkin O, Bahn M, Baker TR, 470 

Baldocchi D, Bekker R, Blanco CC, Blonder B, Bond WJ, Bradstock R, Bunker DE, 471 

Casanoves F, Cavender-Bares J, Chambers JQ, Chapin Iii FS, Chave J, Coomes D, 472 

Cornwell WK, Craine JM, Dobrin BH, Duarte L, Durka W, Elser J, Esser G, Estiarte M, 473 

Fagan WF, Fang J, Fernández-Méndez F, Fidelis A, Finegan B, Flores O, Ford H, Frank 474 

D, Freschet GT, Fyllas NM, Gallagher RV, Green WA, Gutierrez AG, Hickler T, Higgins 475 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 8, 2020. ; https://doi.org/10.1101/2020.12.07.414276doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.07.414276
http://creativecommons.org/licenses/by-nc/4.0/


27 

 

SI, Hodgson JG, Jalili A, Jansen S, Joly CA, Kerkhoff AJ, Kirkup D, Kitajima K, Kleyer 476 

M, Klotz S, Knops JMH, Kramer K, Kühn I, Kurokawa H, Laughlin D, Lee TD, Leishman 477 

M, Lens F, Lenz T, Lewis SL, Lloyd J, Llusià J, Louault F, Ma S, Mahecha MD, Manning 478 

P, Massad T, Medlyn BE, Messier J, Moles AT, Müller SC, Nadrowski K, Naeem S, 479 

Niinemets Ü, Nöllert S, Nüske A, Ogaya R, Oleksyn J, Onipchenko VG, Onoda Y, 480 

Ordoñez J, Overbeck G, Ozinga WA, Patiño S, Paula S, Pausas JG, Peñuelas J, Phillips 481 

OL, Pillar V, Poorter H, Poorter L, Poschlod P, Prinzing A, Proulx R, Rammig A, Reinsch 482 

S, Reu B, Sack L, Salgado-Negret B, Sardans J, Shiodera S, Shipley B, Siefert A, Sosinski 483 

E, Soussana J-F, Swaine E, Swenson N, Thompson K, Thornton P, Waldram M, Weiher 484 

E, White M, White S, Wright SJ, Yguel B, Zaehle S, Zanne AE, Wirth C. 2011. TRY - a 485 

global database of plant traits: TRY - A Global Database of Plant Traits. Global Change 486 

Biology 17:2905–2935. DOI: 10.1111/j.1365-2486.2011.02451.x. 487 

Kissling WD, Walls R, Bowser A, Jones MO, Kattge J, Agosti D, Amengual J, Basset A, van 488 

Bodegom PM, Cornelissen JHC, Denny EG, Deudero S, Egloff W, Elmendorf SC, Alonso 489 

García E, Jones KD, Jones OR, Lavorel S, Lear D, Navarro LM, Pawar S, Pirzl R, Rüger 490 

N, Sal S, Salguero-Gómez R, Schigel D, Schulz K-S, Skidmore A, Guralnick RP. 2018. 491 

Towards global data products of Essential Biodiversity Variables on species traits. Nature 492 

Ecology & Evolution 2:1531–1540. DOI: 10.1038/s41559-018-0667-3. 493 

Kunz TH, Braun de Torrez E, Bauer D, Lobova T, Fleming TH. 2011. Ecosystem services 494 

provided by bats: Ecosystem services provided by bats. Annals of the New York Academy 495 

of Sciences 1223:1–38. DOI: 10.1111/j.1749-6632.2011.06004.x. 496 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 8, 2020. ; https://doi.org/10.1101/2020.12.07.414276doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.07.414276
http://creativecommons.org/licenses/by-nc/4.0/


28 

 

Luo B, Santana SE, Pang Y, Wang M, Xiao Y, Feng J. 2019. Wing morphology predicts 497 

geographic range size in vespertilionid bats. Scientific Reports 9:4526. DOI: 498 

10.1038/s41598-019-41125-0. 499 

Maas B, Karp DS, Bumrungsri S, Darras K, Gonthier D, Huang JC-C, Lindell CA, Maine JJ, 500 

Mestre L, Michel NL, Morrison EB, Perfecto I, Philpott SM, Şekercioğlu ÇH, Silva RM, 501 

Taylor PJ, Tscharntke T, Van Bael SA, Whelan CJ, Williams-Guillén K. 2016. Bird and 502 

bat predation services in tropical forests and agroforestry landscapes: Ecosystem services 503 

provided by tropical birds and bats. Biological Reviews 91:1081–1101. DOI: 504 

10.1111/brv.12211. 505 

Marinello MM, Bernard E. 2014. Wing morphology of Neotropical bats: a quantitative and 506 

qualitative analysis with implications for habitat use. Canadian Journal of Zoology 507 

92:141–147. DOI: 10.1139/cjz-2013-0127. 508 

Melo FPL, Rodriguez-Herrera B, Chazdon RL, Medellin RA, Ceballos GG. 2009. Small Tent-509 

Roosting Bats Promote Dispersal of Large-Seeded Plants in a Neotropical Forest. 510 

Biotropica 41:737–743. DOI: 10.1111/j.1744-7429.2009.00528.x. 511 

Meyer CFJ, Struebig MJ, Willig MR. 2016. Responses of tropical bats to habitat fragmentation, 512 

logging, and deforestation. In: Bats in the Anthropocene: conservation of bats in a 513 

changing world. Springer Cham, 63–103. 514 

Mickleburgh S, Waylen K, Racey P. 2009. Bats as bushmeat: a global review. Oryx 43:217. DOI: 515 

10.1017/S0030605308000938. 516 

Nakagawa S, Freckleton RP. 2008. Missing inaction: the dangers of ignoring missing data. Trends 517 

in Ecology & Evolution 23:592–596. DOI: 10.1016/j.tree.2008.06.014. 518 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 8, 2020. ; https://doi.org/10.1101/2020.12.07.414276doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.07.414276
http://creativecommons.org/licenses/by-nc/4.0/


29 

 

Norberg UML, Brooke AP, Trewhella WJ. 2000. Soaring and Non-soaring bats of the family 519 

Pteropodidae (Flying Foxes, Pteropus spp.): Wing morphology and flight performance. 520 

The Journal of Experimental Biology 203:651–664. 521 

Norberg UM, Fenton MB. 1988. Carnivorous bats? Biological Journal of the Linnean Society 522 

33:383–394. DOI: 10.1111/j.1095-8312.1988.tb00451.x. 523 

Norberg UM, Rayner J. 1987. Ecological morphology and flight in bats (Mammalia; Chiroptera): 524 

wing adaptations, flight performance, foraging strategy and echolocation. Philosophical 525 

Transactions of the Royal Society of London. B, Biological Sciences 316:335–427. DOI: 526 

10.1098/rstb.1987.0030. 527 

Oliveira BF, São-Pedro VA, Santos-Barrera G, Penone C, Costa GC. 2017. AmphiBIO, a global 528 

database for amphibian ecological traits. Scientific Data 4:170123. DOI: 529 

10.1038/sdata.2017.123. 530 

O’Shea TJ, Cryan PM, Hayman DTS, Plowright RK, Streicker DG. 2016. Multiple mortality 531 

events in bats: a global review: Multiple mortality events in bats. Mammal Review 46:175–532 

190. DOI: 10.1111/mam.12064. 533 

Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GVN, Underwood EC, 534 

D'Amico JA, Itoua I, Strand HE, Morrison JC, Loucks CJ, Allnutt TF, Ricketts TH, Kura 535 

Y, Lamoreux JF, Wettengel WW, Hedao P, and Kassem KR. Terrestrial Ecoregions of the 536 

World: A New Map of Life on Earth. BioScience 51:933-938. 537 

Pacifici M, Foden WB, Visconti P, Watson JEM, Butchart SHM, Kovacs KM, Scheffers BR, Hole 538 

DG, Martin TG, Akçakaya HR, Corlett RT, Huntley B, Bickford D, Carr JA, Hoffmann 539 

AA, Midgley GF, Pearce-Kelly P, Pearson RG, Williams SE, Willis SG, Young B, 540 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 8, 2020. ; https://doi.org/10.1101/2020.12.07.414276doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.07.414276
http://creativecommons.org/licenses/by-nc/4.0/


30 

 

Rondinini C. 2015. Assessing species vulnerability to climate change. Nature Climate 541 

Change 5:215–224. DOI: 10.1038/nclimate2448. 542 

Pakeman RJ. 2014. Functional trait metrics are sensitive to the completeness of the species’ trait 543 

data? Methods in Ecology and Evolution 5:9–15. DOI: 10.1111/2041-210X.12136. 544 

Pantanowitz A, Marwala T. 2009. Missing Data Imputation Through the Use of the Random Forest 545 

Algorithm. In: Yu W, Sanchez EN eds. Advances in Computational Intelligence. Advances 546 

in Intelligent and Soft Computing. Berlin, Heidelberg: Springer Berlin Heidelberg, 53–62. 547 

DOI: 10.1007/978-3-642-03156-4_6. 548 

Penone C, Davidson AD, Shoemaker KT, Di Marco M, Rondinini C, Brooks TM, Young BE, 549 

Graham CH, Costa GC. 2014. Imputation of missing data in life-history trait datasets: 550 

which approach performs the best? Methods in Ecology and Evolution 5:961–970. DOI: 551 

10.1111/2041-210X.12232. 552 

Ross N. 2020. fasterize: Fast Polygon to Raster Conversion. R package version 1.0.3. 553 

https://CRAN.R-project.org/package=fasterize 554 

R Core Team. 2020. R: A language and environment for statistical computing. R Foundation for 555 

Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. 556 

Ramírez‐Bautista A, Thorne JH, Schwartz MW, Williams JN. 2020. Trait‐based climate 557 

vulnerability of native rodents in southwestern Mexico. Ecology and Evolution 10:5864–558 

5876. DOI: 10.1002/ece3.6323. 559 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 8, 2020. ; https://doi.org/10.1101/2020.12.07.414276doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.07.414276
http://creativecommons.org/licenses/by-nc/4.0/


31 

 

Schmieder DA, Benítez HA, Borissov IM, Fruciano C. 2015. Bat Species Comparisons Based on 560 

External Morphology: A Test of Traditional versus Geometric Morphometric Approaches. 561 

PLOS ONE 10:e0127043. DOI: 10.1371/journal.pone.0127043. 562 

Schneider FD, Fichtmueller D, Gossner MM, Güntsch A, Jochum M, König‐Ries B, Le Provost 563 

G, Manning P, Ostrowski A, Penone C, Simons NK. 2019. Towards an ecological trait‐564 

data standard. Methods in Ecology and Evolution 10:2006–2019. DOI: 10.1111/2041-565 

210X.13288. 566 

Seltzer CE, Ndangalasi HJ, Cordeiro NJ. 2013. Seed Dispersal in the Dark: Shedding Light on the 567 

Role of Fruit Bats in Africa. Biotropica 45:450–456. DOI: 10.1111/btp.12029. 568 

Taugourdeau S, Villerd J, Plantureux S, Huguenin‐Elie O, Amiaud B. 2014. Filling the gap in 569 

functional trait databases: use of ecological hypotheses to replace missing data. Ecology 570 

and Evolution 4:944–958. DOI: 10.1002/ece3.989. 571 

Van Buuren S, and Groothuis-Oudshoorn K. 2011. Mice: multivariate imputation by chained 572 

equations in R. Journal of Statistical Software. 45:1–67. 573 

Zamudio KR, Bell RC, Mason NA. 2016. Phenotypes in phylogeography: Species’ traits, 574 

environmental variation, and vertebrate diversification. Proceedings of the National 575 

Academy of Sciences 113:8041–8048. DOI: 10.1073/pnas.1602237113. 576 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 8, 2020. ; https://doi.org/10.1101/2020.12.07.414276doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.07.414276
http://creativecommons.org/licenses/by-nc/4.0/

