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Abstract   

Neural  activity  is  coordinated  across  multiple  spatial  and  temporal  scales,  and  these                         

patterns  of  coordination  are  implicated  in  both  healthy  and  impaired  cognitive  operations.                         

However,  empirical  cross-scale  investigations  are  relatively  infrequent,  due  to  limited  data                       

availability  and  to  the  difficulty  of  analyzing  rich  multivariate  datasets.  Here  we  applied                           

frequency-resolved  multivariate  source-separation  analyses  to  characterize  a  large-scale                 

dataset  comprising  spiking  and  local  field  potential  activity  recorded  simultaneously  in  three                         

brain  regions  (prefrontal  cortex,  parietal  cortex,  hippocampus)  in  freely-moving  mice.  We                       

identified  a  constellation  of  multidimensional,  inter-regional  networks  across  a  range  of                       

frequencies  (2-200  Hz).  These  networks  were  reproducible  within  animals  across  different                       

recording  sessions,  but  varied  across  different  animals,  suggesting  individual  variability  in                       

network  architecture.  The  theta  band  (~4-10  Hz)  networks  had  several  prominent  features,                         

including  roughly  equal  contribution  from  all  regions  and  strong  inter-network                     

synchronization.  Overall,  these  findings  demonstrate  a  multidimensional  landscape  of                   

large-scale  functional  activations  of  cortical  networks  operating  across  multiple  spatial,                     

spectral,   and   temporal   scales   during   open-field   exploration.   

  

  

  

Significance   statement   

Neural  activity  is  synchronized  over  space,  time,  and  frequency.  To  characterize  the                         

dynamics  of  large-scale  networks  spanning  multiple  brain  regions,  we  recorded  data  from                         

the  prefrontal  cortex,  parietal  cortex,  and  hippocampus  in  awake  behaving  mice,  and  pooled                           

data  from  spiking  activity  and  local  field  potentials  into  one  data  matrix.  Frequency-specific                           

multivariate  decomposition  methods  revealed  a  cornucopia  of  neural  networks  defined  by                       

coherent  spatiotemporal  patterns  over  time.  These  findings  reveal  a  rich,  dynamic,  and                         

multivariate   landscape   of   large-scale   neural   activity   patterns   during   foraging   behavior.   
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Introduction   

  

Neural  activity  is  coordinated  across  multiple  spatial  and  temporal  scales,  ranging  from                         

spike-timing  correlations  across  pairs  of  neurons   (Gray  et  al.,  1989)  to  resting-state  fMRI                           

networks   (Gusnard  et  al.,  2001) ,  and  from  ultra-fast  600  Hz  omega  oscillations  in  primary                             

sensory  cortex   (Timofeev  and  Bazhenov,  2005)  to  infra-slow  fluctuations  linked  to  0.05  Hz                           

oscillations  in  the  gastric  system   (Richter  et  al.,  2017) .  Coordinated  activity  is  thought  to                             

allow  for  neural  circuits  to  maximize  communication  efficiency,  multiplex  information,                     

flexibly  route  information  flow,  and  functionally  bind  cell  assemblies   (Jensen  and  Mazaheri,                         

2010;   Singer,   2009;   Wang,   2010) .   

  

However,  most  neuroscience  investigations  are  limited  to  a  single  spatial  scale,  and                         

cross-scale  investigations  are  often  limited  to  univariate  or  bivariate  analyses,  e.g.,                       

coherence  between  action  potentials  from  one  neuron  with  the  LFP  recorded  on  the  same                             

electrode   (Whittingstall  K  Logothetis,  2009) .  This  mass-univariate  approach  has  been  crucial                       

to  the  development  of  neuroscience,  for  example,  understanding  of  computational  principles                       

such  as  neural  tuning   (Carandini,  2005;  Hebart  and  Baker,  2018;  Hubel  and  Wiesel,  1959) .                             

However,  it  may  obscure  spatiotemporal  patterns  embedded  across  populations  of  neurons                       

within  and  across  brain  regions   (Cunningham  and  Yu,  2014;  Kriegeskorte  and  Kievit,  2013;                           

Ritchie   et   al.,   2019;   Williamson   et   al.,   2019) .   

  

In  contrast,  multivariate  data  analysis  methods  have  proven  useful  at  identifying  spatially                         

distributed  patterns  that  reflect  lower-dimensional  dynamics  or  that  encode  sensory                     

representations  or  memories (Pang  et  al.,  2016) .  Furthermore,  correlational  patterns  may                       

provide  a  “contextual  activation”  that  shapes  subsequent  local  computations   (Alishbayli  et                       

al.,   2019;   Cohen   and   Kohn,   2011;   Kohn   et   al.,   2016;   Priesemann   et   al.,   2014) .   

  

In  the  present  study,  a  recently  developed  set  of  multivariate  methods  (generalized                         

eigendecomposition;   (Cohen,  2017)  enabled  us  to  discover  multi-scale,  inter-regional                   

functional  networks  during  active  behavior  by  combining  data  from  multiunits  and  local  field                           

potentials.  We  found  a  salient,  empirical  grouping  of  the  networks  into  a  small  number  of                               

frequency  bands  (average  of  7).  In  each  frequency  bank,  multiple  subnetworks  were  both                           

simultaneously  and  independently  active.  Some  networks  (e.g.,  in  theta)  were  spatially                       

distributed  across  the  brain,  while  other  networks  (typically  in  higher  frequencies)  were  more                           

localized  to  one  or  two  regions.  Spiking  activity  contributed  less  systematically  to  brain-wide                           
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networks  compared  to  LFP.  The  analyses  revealed  both  idiosyncratic  and  reproducible                       

network  characteristics  within-  and  across-animals,  which  suggests  that  the  spatial                     

organization  of  large-scale  networks  is  subject  to  individual  variability.  Overall,  our  findings                         

reveal  a  complex  landscape  of  dynamic  neural  activity  that  spans  multiple  spatial,  spectral,                           

and   temporal   scales.     

  

  

Methods   

Data   acquisition   

Six  male  mice  with  Bl57/6jbackground  (B6;129P2-Pvalbtm1(cr)Arbr/J  or  Ssttm2.1(cre)Zjh/J)                 

between  4  and  5  months  of  age,  weighing  between  27g  and  34g,  were  used  in  this  study.  All                                     

experiments  were  approved  by  the  Dutch  central  commission  for  animal  research  (Centrale                         

Commissie  Dierproeven)  and  implemented  according  to  approved  work  protocols  from  the                       

local   University   Medical   Centre   animal   welfare   body   (approval   number   2016-0079).   

  

Each  animal  was  implanted  with  32  electrodes  (see  Figure  1a)  spread  across  the  prefrontal                             

cortex  (16  electrodes),  parietal  cortex  (8  electrodes),  and  hippocampus  (8  electrodes).                       

Inter-electrode  distance  was  250  μm  and  typical  impedances  were  between  0.1  and  0.9                           

MOhm.  Electrode  design  and  surgeries  are  detailed  elsewhere   (van  Hulten  J.  A.  Cohen  M.  X,                               

2020) .  A  metal  reference  screw  was  placed  on  the  skull  over  the  cerebellum.  Offline,  an                               

average  reference  was  computed  for  each  brain  region  and  subtracted  from  each  electrode                           

in   the   corresponding   region.   

  

Animals  were  recorded  in  the  sessions  depicted  in  Figure  1b.  The  recording  sessions                           

alternated  between  their  familiar  home  cage  and  an  unfamiliar  location  that  contained  novel                          

objects.  In  particular,  each  mouse  went  through  the  same  succession  of  six  experiment                           

sessions:  (1)  Home  cage  recording  of  5  minutes.  (2)  Training  phase  of  10  minutes,  in  which                                 

the  animal  was  placed  in  an  unfamiliar  environment  that  contained  two  novel  objects.  (3)                             

Home  cage  recording  of  5  minutes.  One  hour  then  passed  (in  the  home  cage)  with  no                                 

recordings.  (4)  Home  cage  recording  of  5  minutes.  (5)  Testing  phase,  in  which  the  animal                               

was  returned  to  the  unfamiliar  environment  that  contained  one  object  seen  during  the                           

training  phase  and  one  novel  object.  (6)  Home  cage  recording  of  5  minutes.  Mice  were                               

connected  via  electrode  fibers  to  the  data  acquisition  board  via  a  cable  that  hung  from  top  of                                   

the  Faraday  cage,  but  were  otherwise  unrestrained.  There  was  no  particular  task  or  objective                             

that   was   trained,   nor   were   any   rewards   provided.   
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Mice  tended  to  explore  the  objects  for  brief  periods  of  time  (hundreds  of  ms  to  seconds),                                 

whereas  our  data  analysis  approach  utilized  longer  windows  for  temporal  filtering  and                         

averaging  to  ensure  high  signal-to-noise  quality.  We  therefore  focused  on  possible  state                         

changes  across  the  different  task  sessions  as  opposed  to  time-locking  to  the  on/offsets  of                             

transient   object   exploration   periods.   

  

LFP  data  were  down-sampled  to  1000  Hz.  Excessively  noisy  channels,  determined  based  on                           

visual  inspection,  were  removed  (0-4  per  recording  session;  average  of  1.2).  Independent                         

components  analysis  was  run  using  the  eeglab  toolbox   (Delorme  and  Makeig,  2004)  and  the                             

jade  algorithm  (joint  approximation  diagonalization  of  eigen-matrices),  which  defines                   

components  by  maximizing  kurtosis  (the  4th  order  statistical  moment  used  to  index                         

non-Gaussianity)   (Cardoso,  1999) .  Components  clearly  identifiable  as  non-neural  origins                   

were  projected  out  of  the  data.  Data  from  the  first  and  last  10  seconds  of  each  recording                                   

session   were   excluded   from   analyses.   

  

Data  and  MATLAB  analysis  code  will  be  made  publically  available  upon  acceptance  via  our                             

institute’s   data   repository.   

  

Spike-sorting   and   multiunit   extraction   

The  raw  (30 kHz)  voltage  recordings  were  regional-average-referenced  to  eliminate  possible                     

volume-conduction  artifacts,  and  were  then  filtered  between  300  and  6000  Hz  using  a  zero                             

phase-shift  FIR1  filter  kernel.  Spike-sorting  was  done  for  each  electrode  separately  given  the                           

inter-electrode  spacing  of  250  μm,  which  makes  it  unlikely  to  observe  the  same  neuron  on                               

multiple  electrodes.  Indeed,  we  did  not  find  excessive  correlations  across  units  from                         

different   electrodes   (see   Figure   1-1   for   an   example   between-unit   correlation   matrix).     

  

Because  our  goal  here  was  to  obtain  information  about  neural  spiking  activity  as  it  related  to                                 

the  population  and  to  LFP  dynamics  —  rather  than  evaluating  tuning  properties  of  individual                            

neurons  —  we  chose  an  automatic  spike-sorting  approach  that  separated  multiunits  from                         

noise  or  artifacts   (Trautmann  et  al.,  2019) .  We  therefore  term  these  signals  “multiunit”  to                             

indicate  that  the  resulting  time  series  may  reflect  a  mixture  of  action  potentials  from                             

multiple   neurons.   
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Multiunits  were  extracted  via  a  general  purpose  spike-sorting  suite  ( autoSort ,  available  via                         

our  open  code  repository         

bitbucket.org/benglitz/controller-dnp/src/master/Access/SpikeSorting),  implemented  in       

MATLAB.  Briefly,   autoSort  performs  the  following  sequence  of  steps  to  achieve  automatic                         

and   unbiased   sorting   of   neural   signals:   

● Candidate  spike  waveforms  ('spikes')  were  detected  based  on  a  negative  threshold  of  4                           

standard  deviations  of  the  background  noise  (estimated  as  1.48  times  the  median                         

absolute   deviation,   to   avoid   artifacts   that   inflate   the   standard   deviation).     

● Candidate  spikes  were  then  aligned  to  their  minimum  after  the  trigger  and  cut  out  within  a                                 

window   of   [-0.7,1.2] ms   relative   to   the   alignment   time.   

● Principal  components  analysis  was  performed  on  a  random  subset  of  spikes  (N S =5000                         

per  recording)  to  estimate  a  projector  to  a  6  dimensional  subspace  that  retained  most  of                               

the   variance   in   the   data.   

● Hierarchical  clustering  (based  on   Ward  distance)  with  a  set  maximal  number  of  clusters                           

(N C =3)  was  performed  on  this  representation,  and  all  spikes  beyond  the  N S -selection  were                           

assigned   to   these   clusters   on   the   basis   of   their   Euclidean   distance   to   the   cluster   centers.   

● Clusters  were  then  post-hoc  automatically  selected  and  fused  on  the  basis  of  the  shape                             

and  similarity  between  their  average  waveforms,  i.e.  (i)  clusters  were  excluded  if  they  had                             

no  significantly  positive  “hump”  after  the  negative  alignment  peak,  if  they  had  a                           

significantly  positive  peak  before  the  negative  alignment  peak,  or  if  the  waveform  was                           

longer  or  larger  than  expected  for  an  extracellular  spike;  and  (ii)  clusters  were  fused  if  the                                 

correlation  and  Euclidean  distance  between  their  average  waveforms  were  above  or                       

below   preset   thresholds,   respectively.   

  

These  steps  and  criteria  led  to  an  extraction  of  0-2  multiunits  per  electrode.  The  average  rate                                 

of  spikes  per  second  from  all  animals  and  recordings  was  13.2  (standard  deviation  5.9,                             

minimum  0.07,  maximum  51.6).  A  binary  spike  time  series  was  constructed  for  each                           

multiunit,  and  smoothed  with  a  30 ms  full-width  at  half-maximum  Gaussian  to  create  a                           

continuous  signal.  This  continuous  signal  was  entered  into  the  data  matrix  as  one  channel                             

(Figure   1C).   

  

Frequency-specific   components   using   generalized   eigendecomposition   

We  followed  existing  procedures  for  extracting  multivariate  components  that  have  been                       

detailed  and  validated  in  several  previous  publications   (Cohen,  2017;  de  Cheveigné  and                         

Parra,   2014;   Nikulin   et   al.,   2011;   Tomé,   2006) .   A   brief   overview   is   provided   here.   
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The  goal  is  to  identify  a  spatial  filter  that  provides  a  scalar  weight  for  each  data  channel  (LFP                                     

and  multiunits)  such  that  the  weighted  sum  of  narrowband-filtered  channel  time  series  is                           

maximally  different  from  the  broadband  channel  time  series.  The  method  is  based  on  data                             

covariance  matrices  because  they  contain  all  pairwise  linear  relationships,  making  the                       

method  multivariate.  As  described  below,  two  covariance  matrices  are  compared,  one  matrix                         

( R )  based  on  the  broadband  (non-temporally  filtered)  data,  and  one  matrix  based  on  the                             

narrowband   filtered   data   ( S ).   

  

Channel-by-channel  covariance  matrices  were  created  by  multiplying  the  mean-centered                   

data  matrices  by  their  transpose.  To  increase  covariance  stability,  we  cut  the  continuous                           

data  into  a  series  of  non-overlapping  2 second  segments,  and  computed  the  covariance                         

matrix  of  each  segment.  The  even-numbered  epochs  were  used  to  create  the   S  (signal)                             

covariance  matrix  and  the  odd-numbered  epochs  were  used  to  create  the   R  (reference)                           

covariance  matrix.  This  was  done  to  have  non-identical  data  across  the  two  matrices.  After                             

computing  covariance  matrices  for  each  segment  (there  were  around  70  segments  in  the                           

home  cage  sessions  and  140  segments  in  the  training/testing  sessions),  the  average                         

covariance  matrices   S  and   R  were  computed  across  segments.  Euclidean  distance  from                         

each  individual  covariance  matrix  to  the  average  was  computed  (this  is  equivalent  to  the                             

Frobenius  norm  of  the  matrix  difference),  and  any  segments  with  a  distance  greater  than                             

three  standard  deviations  from  the  average  were  excluded,  and  the  final  covariance  matrix                           

was  re-computed  without  the  outliers.  On  average,  0.85%  of  covariance  matrices  were                         

excluded   per   analysis   (range:   0   to   3%).   

  

To   create   the   spatial   filter   per   frequency,   we   start   from   maximizing   the   Rayleigh   quotient:   

  

(3)   

  

Where   S  and   R  are  channel  covariance  matrices  obtained  from  the  narrowband  filtered  data                             

and  the  broadband  data,  respectively  (Figure  1C).  One  can  think  of  equation  3  as  a                               

multivariate  signal-to-noise  ratio,  and  the  goal  is  to  find  a  channel  vector   w  that  maximizes                               

this  ratio.  The  solution  comes  from  a  generalized  eigenvalue  decomposition  on  the  two                           

matrices.   
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(4)   

  

The  diagonal  matrix   contains  the  eigenvalues,  each  of  which  is  the  ratio  of  equation  3  for                                   

the  corresponding  column  of   ,  which  is  a  matrix  in  which  the  columns  are  the                               

eigenvectors.  Thus,  we  obtain   m  spatial  filters  for  an   m -channel  dataset.  The  solutions  are                             

linearly  independent  from  each  other,  though  they  are  not  constrained  to  be  orthogonal  as                             

with  PCA  (this  is  because  eigenvector  orthogonality  is  guaranteed  only  for  symmetric                         

matrices,  and   R -1 S  is  non-symmetric).  Equation  4  is  repeated  for  a  range  of  temporal                             

frequencies  (see  below),  each  using  a  different   S  matrix  (the  covariance  matrix  created  from                             

narrowband   filtered   data)   with   the   same    R    matrix.   

  

A  small  amount  of  shrinkage  regularization  (1%)  was  applied  to  the   R  matrix  in  order  to                                 

improve  the  quality  of  the  decomposition   (Lotte  and  Guan,  2011) .  In  our  experience,  1%                             

shrinkage  has  no  appreciable  effect  on  decompositions  of  clean,  full-rank,  and  easily                         

separable  data,  and  considerably  improves  the  decompositions  of  noisy  or  reduced-rank                       

data.  In  equation  5  below,   is  the  amount  of  shrinkage  (0.01,  corresponding  to  1%),   is  the                                     

average   of   all   eigenvalues   of    R ,   and    I    is   the   identity   matrix.   

  

(5)   

  

We  refer  to  each  spatial  filter  as  a  “component.”  The  component  time  series  is  obtained  by                                 

multiplying   w  by  the  channels-by-time  data  matrix  (this  is  how  the  eigenvector  is  a  spatial                               

filter).  For  all  signals,  any  time  series  values  exceeding  four  standard  deviations  from  the                             

mean  of  the  time  series  were  excluded.  This  reduced  the  possible  impact  of  residual                             

artifacts  or  edges  influencing  the  results.  The  component  map  is  obtained  by  multiplying   w                             

by   the    S    covariance   matrix    (Haufe   et   al.,   2014) .   

  

The  entire  procedure  described  above  was  repeated  independently  for  each  animal,                       

experiment  session,  and  filtering  frequency.  This  allowed  us  to  examine  the  reproducibility  of                           

the   components   both   within   and   across   animals.   

  

Data  were  temporally  narrowband  filtered  by  convolution  with  a  Morlet  wavelet,  defined  here                           

as  a  Gaussian  in  the  frequency  domain   (Cohen,  2019) .  Extracted  frequencies  ranged  from  2                             

Hz  to  200  Hz  in  100  logarithmically  spaced  steps.  The  full-width  at  half-maximum  of  the                               

Gaussian  varied  from  2  to  5  Hz  with  increasing  frequency.  The  multiunit  channels  were  not                               
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narrowband  filtered  (they  were  already  smoothed  with  a  30-ms  Gaussian).  Any  large-scale                         

spike-field  coherence  patterns  would  manifest  as  cross-channel  terms  in  the                     

frequency-specific   covariance   matrices.   

  

We  computed  a  “region  bias  score”  to  determine  whether  the  components  were  driven  by                             

one  region  or  whether  all  regions  contributed  to  the  component.  This  was  quantified  as  the                               

square  root  of  the  average  squared  eigenvector  elements  per  region.  That  produces  a                           

3 element  vector,  which  we  normalized  to  sum  to  1.  The  region  bias  score  was  defined  as                                 

the  Euclidean  distance  between  this  empirical  vector  and  an  “ideal  shared  region”  vector  of                             

[1  1  1]/3.  The  idea  is  that  if  all  brain  regions  have  average  eigenvector  components  that  are                                   

equal  in  magnitude,  then  that  vector  will  be  close  to  [1  1  1]/3,  and  thus  the  empirical  distance                                     

to  the  ideal  vector  will  approach  zero.  As  one  or  two  regions  start  to  dominate  the                                 

component,  the  normalized  average  eigenvector  elements  vector  (e.g.,  producing  an                     

empirical  vector  of  [0.6  0.3  0.1])  will  move  further  away  from  the  ideal  vector.  The  maximum                                 

possible   distance   is   1.   

  

Subspace  dimensionality  was  computed  via  permutation  testing.  The  ability  to  derive                       

inferential  statistical  values  is  one  of  the  important  advantages  of  generalized                       

eigendecomposition  over  descriptive  decompositions  such  as  PCA  or  ICA.  The  idea  here                         

was  to  generate  a  distribution  of  maximal  eigenvalues  that  could  be  expected  under  the  null                               

hypothesis  that   S  and   R  contain  the  same  information  (note  from  equation  3  that  the                               

expected  eigenvalue  under  the  null  hypothesis  is  1,  but  maximum  eigenvalues  could  be                           

larger  due  to  sampling  variability).  To  generate  this  empirical  null-hypothesis  distribution,  we                         

randomly  assigned  each  2-second  segment  to  average  into  the   S  or   R  covariance  matrices.                             

From  each  iteration,  the  largest  generalized  eigenvalue  was  stored.  After  200  iterations  for                           

each  frequency,  the  maximum  of  the  largest  eigenvalues  was  taken  as  the  most  extreme                             

eigenvalue  that  can  be  expected  under  the  null  hypothesis  that  there  are  no  differences                             

between  the   S  and   R  matrices.  The  number  of  actual  eigenvalues  (from  the  analysis  without                               

shuffling)  above  this  extreme  H0  value  was  taken  as  the  dimensionality  of  the  subspace.                             

Note  that  this  permutation  method  accounts  for  multiple  comparisons  over  M  components                         

because  it  selects  the  most  extreme  value  of  M  components  on  each  iteration.  Cleaning  the                               

covariance  matrices  via  Euclidean  distances  was  performed  during  permutation  testing  as                       

described   above.   

  

Entropy   was   computed   for   each   data   channel   using   k=40   bins   for   discretization.   
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(6)   

  

Finally,  within-frequency,  inter-component  phase  synchronization  was  computed  via  the                   

weighted  phase-lag  index   (Vinck  et  al.,  2011) ,  which  is  a  modification  of  phase                           

synchronization  designed  to  remove  any  possible  artifacts  of  volume  conduction.  This  was                         

important  for  our  analyses  because  all  networks  were  derived  by  different  weightings  of  the                             

same  channels,  and  because  the  separate  components  at  the  same  frequency  were  not                           

constrained   to   orthogonality.   
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Results   

Data   matrices   and   narrowband   source   separation   

We  created  channels X time  data  matrices  with  50-80  channels  per  animal  (28-32  LFP                         

channels  plus  all  detected  multiunits)  (Figure  1),  and  applied  a  dimensionality-reduction  and                         

guided  source-separation  method  that  isolates  features  of  the  data  that  maximally  separate                         

narrowband  from  broadband  activity  based  on  generalized  eigendecomposition  (GED)  of                     

covariance  matrices   (Cohen,  2017) .  GED  was  applied  after  narrowband  filtering  the  data                        

from  2-200  Hz  in  100  logarithmically  spaced  steps,  producing  a  succession  of  narrowband                           

components.  Each  component  is  a  weighted  average  of  channels  that  maximizes  energy  at                           

that  frequency.  There  are  multiple  components  per  frequency  that  were  sorted  according  to                           

their  eigenvalue,  which  encodes  the  separability  between  the  narrowband  and  broadband                       

energy.   
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Figure  1 .  Overview  of  recording  locations,  task  design,  data  analysis,  and  sample  data.  A)                             

32-channel  custom-designed  electrode  array  (HIP:  hippocampus;  PAR:  parietal  cortex;  PFC:                     

prefrontal  cortex).  The  line  drawing  underneath  illustrates  the  approximate  locations  of  the                         

electrodes  on  a  sagittal  slice.  B)  Task  flow  and  timing  (HC1-4:  home  cage  sessions  1-4;  TR:                                 

training;  TE:  testing).  The  red  diamonds  and  green  square  indicate  objects  placed  in  the  arena.                               

The  picture  underneath  is  from  a  camera  placed  overhead.  C1)  A  data  matrix  with  combined                               

LFP  and  multiunits  (smoothed  with  a  30-ms  FWHM  Gaussian)  from  three  different  regions.                           

C2)  Data  covariance  matrices  for  the  data  snippet  shown  in  C1,  either  narrowband-filtered  ( S )                             
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or  broadband  ( R ).  A  generalized  eigendecomposition  of  these  two  matrices  (panel  C3)                         

provides  a  set  of  eigenvectors  ( w )  and  corresponding  eigenvalues  (λ),  from  which  three  pieces                             

of  information  are  extracted:  The  component  spatial  map  (the  eigenvector  multiplied  by  the                           

covariance  matrix),  the  component  time  series  (the  eigenvector  multiplied  by  the  data  matrix),                           

and  the  separability  of  narrowband  vs.  broadband  activity  (the  eigenvalue  for  one  frequency;                           

the  eigenvalues  over  frequencies  creates  an  eigenspectrum).  Illustrated  here  is  one  eigenvalue                         

solution  for  one  frequency;  in  practice,  the  number  of  solutions  ( w /λ  pairs)  corresponds  to  the                               

number  of  data  channels,  and  this  entire  procedure  is  repeated  across  a  range  of  frequencies.                               

D)  Multiple  components  can  be  isolated  from  each  frequency,  with  distinct  temporal                         

dynamics.  Example  component  power  time  series  are  illustrated  from  20  seconds  of  a                           

recording;  each  row  corresponds  to  a  distinct  component.  Frequency  groups  are  based  on                           

empirical  frequency  boundaries  (described  later)  and  components  are  sorted  within  each                       

frequency   band   based   on   total   component   energy.   

  

  

  

Figure  2  illustrates  results  from  one  example  recording  session.  This  example  highlights                         

several  consistent  features  that  are  expanded  on  later,  including  (1)  different  frequencies                         

engage  different  electrodes  across  different  regions;  (2)  some  frequencies  (e.g.,  theta)                       

recruit  multi-regional  networks  whereas  other  frequencies  preferentially  engage  one  or  two                       

regions;  (3)  large-scale  networks  were  dominated  by  LFP  whereas  multiunits  made  relatively                         

little  (though  significant)  contributions;  (4)  the  local  regional  referencing  ensured  that  the                         

components  reflected  the  coordination  of  multiple  local  dipoles  (seen  as  the  balance                         

between  blue  and  red  colors  in  the  map)  instead  of  long-range  volume-conducted  fields.  The                             

components  time  series  had  non-Gaussian  distributions,  indicative  of  true  signals  rather                       

than   noise,   which   is   expected   to   be   Gaussian-distributed   (Figure   2-1).   
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Figure  2 .  Generalized  Eigendecomposition  enables  spectrally  resolved  source  separation                   

across  3  areas  for  a  single  recording.  A)  Spatial  maps  over  all  three  regions  per  frequency                                 

(each  column  corresponds  to  one  frequency).  The  thick  horizontal  dashed  lines  show                         

inter-regional  boundaries,  and  thin  horizontal  dashed  lines  show  within-region  boundaries                     

between  LFP  (top)  and  multiunit  (bottom)  channels.  Within-region  rows  are  ordered  according                         

to  the  channel  index  in  the  dataset,  not  according  to  anatomical  location.  The  colors  indicate                               

the  strength  of  the  contribution  of  that  channel  to  the  brain-wide  component  (data  were                             

per-frequency  normalized,  so  the  color  values  are  arbitrary  but  comparable  across                       

frequencies),  vertical  dashed  lines  show  the  empirically  defined  frequency  boundaries                     

(detailed  later):  red  lines  indicate  the  lower  bounds  of  the  frequency  band  and  blue  lines                               

indicate  the  upper  bounds.  B)  Eigenspectra  from  the  largest  three  components  per  frequency,                           

which  highlights  that  there  can  be  multiple  separable  components  at  the  same  frequency.  The                             

map  in  panel  A  is  only  for  the  top  eigenspectrum  (blue  line).  C)  Example  topographical  maps                                

of  the  anatomical  distribution  of  the  filter  projections  for  the  indicated  frequency  ranges.  Each                             

black  dot  is  the  location  of  an  electrode.  In  all  columns,  medial  is  to  the  left  and  anterior  is  to                                         

the   top.   

  

  

Empirically   derived   frequency   bands   

Electrophysiology  data  are  often  grouped  into  frequency  bands  according  to  integer                       

boundaries  (e.g.,  4-10  Hz),  which  may  miss,  artificially  separate,  or  artificially  combine  the                           

rhythms  naturally  occurring  in  the  brain.  We  therefore  applied  a  recently  established  method                           

(gedBounds)  to  derive  empirical  frequency  bands  based  on  the  definition  of  a  “frequency                           

band”  as  a  range  of  frequencies  that  have  highly  correlated  spatiotemporal  dynamics                         

(Cohen,  2020) .  GedBounds  works  by  clustering  the  matrix  of  squared  correlations  across  the                           

eigenvectors  from  all  frequencies  (Figure  3a).  It  is  a  purely  data-driven  alternative  to  labeling                             

frequencies   based   on   a   priori   expectations.   
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Figure  3 .  Distinct  frequency  bands  separate  clearly  in  the  LFP  data  with  specific                           

spectrotemporal  profiles  A)  R 2  correlation  matrix  across  all  pairs  of  frequency-specific                       

eigenvectors,  with  pink  boxes  drawn  around  empirically  derived  clusters  (based  on  the  dbscan                           

algorithm),  from  one  recording.  The  cluster  boundaries  separate  spatially  distinct                     

topographies  across  different  frequency  ranges.  B)  Topographical  maps  of  the  spatial  filter                         

from  the  frequency  bands  in  panel  A.  White/black  numbers  indicate  corresponding                       

bands/maps.  C)  Aggregated  results  of  the  number  of  empirical  frequency  bands  per                         

experiment  session  (H1-4  indicate  home  sessions;  Tr  indicates  training  session;  Te  indicates                         

test  session).  Error  bars  show  standard  deviations  across  the  six  animals.  C)  Center                           

frequencies  for  each  group  as  defined  by  k-means  clustering  analysis  over  animals.  Error  bars                             

show  standard  deviations  across  100  repeats  of  the  k-means  clustering  algorithm  with                         

different  random  initializations,  and  the  numbers  above  each  data  point  shows  the  average                           

center   frequency   from   that   band.   
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This  analysis  revealed  an  average  of  7  bands  in  the  range  of  2-200  Hz  (Figure  3b).  The                                   

number  of  frequency  bands  was  not  significantly  different  between  experiment  sessions                       

(one-way  ANOVA:  F(5,25)=.45).  Average  center  frequencies  were  computed  by  k-means                     

clustering  on  the  empirical  frequencies.  Because  k-means  can  produce  different  clusters  on                         

each  run,  we  re-seeded  the  clustering  100  times.  The  average  cluster  center  frequencies,                           

along   with   their   standard   deviations,   are   shown   in   Figure   3c.   

  

These  results  show  that  grouping  electrophysiology  time  series  into  spectral  bands  has  an                           

empirical  basis  and  is  not  arbitrary  or  an  artifact  imposed  by  narrowband  filtering.  The                             

empirically  derived  frequency  ranges  varied  over  animals  and  task  sessions,  and  were  not                           

systematically  affected  by  the  task  session.  However,  we  treated  frequency  as  a  continuous                           

variable   in   subsequent   analyses   rather   than   grouping   into   discrete   bins.   

  

Component   reproducibility   

The  anatomical  targets  of  the  electrode  implants  were  identical  in  all  animals.  However,                           

individual  variability  in  functional  organization  can  mean  that  the  GED  patterns  are                         

idiosyncratic  and  thus  different  across  animals.  Likewise,  if  the  spatiotemporal  patterns  that                         

GED  isolates  reflect  stable  features  of  the  brain,  then  the  patterns  should  be  highly  similar  in                                 

different  experiment  sessions  within  the  same  animal.  On  the  other  hand,  it  is  possible  that                               

the  spatiotemporal  patterns  are  dynamic  and  are  more  affected  by  cognitive  factors  than  by                            

individual   differences.   

  

To  address  questions  about  component  map  reliability,  we  measured  map  reproducibility,                       

quantified  as  spatial  correlations,  both  across  experiment  sessions  within  each  animal,  and                         

in  the  same  session  across  animals.  When  pooling  across  all  experiment  sessions,  we                           

observed  robust  within-animal  component  topographies  (R 2  spatial  correlations  in  the  range                       

of  0.4  to  0.8  over  the  frequency  spectrum;  see  Figure  4a).  In  contrast,  spatial  correlations                               

across  animals  were  low,  with  averaged  R 2  values  below  0.2.  Because  the  decompositions                           

were  performed  on  the  data  from  each  session  independently,  this  pattern  of  results                           

indicates  that  (1)  the  components  were  stable  within  each  animal  over  different  sessions                           

(over  the  course  of  the  ~2-hour  recording),  and  that  (2)  component  maps  are  idiosyncratic,                             

with   different   spatial   patterns   in   different   animals.   
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The  spatial  correlations  described  above  were  done  using  only  the  component  with  the                           

largest  eigenvalue  for  each  session  and  each  frequency.  It  is  possible  that  the  same                             

neurophysiological  network  was  identified  as  “component  1”  in  one  experiment  session  and                         

“component  2”  in  a  different  session.  We  therefore  modified  the  correlation  analysis  to                           

compute  the  four  unique  correlations  across  the  top  two  components  from  each                         

session/frequency,  and  stored  only  the  largest  correlation  coefficient.  Although  this                     

selection  procedure  is  biased  because  we  selected  the  strongest  correlation  out  of  a  set,  the                               

same  bias  was  applied  within-  and  across-animals.  The  correlations  were  overall  stronger,                         

but  the  conclusion  is  the  same  as  when  correlating  only  the  top  components:  spatiotemporal                             

patterns   were   stable   within   animals,   and   variable   across   animals.   

  

  

Figure  4 .  Component  topographies  are  reproducible  within  animals  in  different  sessions,  yet                         

differ  across  animals.  A)  R 2  spatial  correlations  per  frequency.  The  analysis  was  run  on  the                               

components  with  the  largest  eigenvalue  per  frequency  (“top  comp.”),  and  by  selecting  the                           

largest  correlation  amongst  the  top  two  components  (“max”).  B)  Each  individual  correlation,                         

separated  according  to  the  experiment  sessions  from  which  the  spatial  map  pairs  were  drawn                             

(“T-T”  indicates  train-test  pairs,  “H-H”  indicates  home-home  pairs).  Black  bars  indicate  the                         

mean  R 2 .  The  color  of  each  dot  is  the  average  of  the  eigenvalues  of  the  component  pair  (which                                     

indicates  the  separability  of  the  narrowband  from  broadband  signals),  and  the  r-value  on  top  of                               

each   column   is   the   correlation   between   the   spatial   map   R 2    and   the   average   eigenvalue .   
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We  next  assessed  whether  the  maps  were  modulated  by  the  different  experiment  sessions                           

by  separating  R 2  values  according  to  experiment  session.  The  scatter  plots  in  Figure  4B                             

show  all  frequencies  (each  dot  is  an  animal-frequency  pair),  but  we  averaged  frequencies                           

together  for  the  statistics  because  Figure  4A  indicates  comparable  relationships  across  the                         

frequency  domain.  We  then  tested  the  correlation  coefficients  in  a  one-way  ANOVA  with  the                             

factors  train-test,  home-home,  and  train/test-home.  In  other  words,  we  tested  whether  the                         

maps  were  more  similar  to  each  other  when  the  animals  were  in  a  similar  experiment                              

context.   However,   this   effect   was   not   statistically   significant   (F(2,10)=2.17,   p=.16).     

  

Inspection  of  the  distribution  of  R 2  values  in  Figure  4b  show  considerable  spread  of  the                               

correlations,  which  was  only  partially  resolved  by  selecting  the  maximum  correlation  of  the                           

top  two  components.  We  suspected  that  at  least  some  of  this  variation  could  be  due  to  the                                   

separability  of  the  components  from  broadband.  “Separability”  in  a  GED  analysis  is                         

quantified  as  the  eigenvalue,  which  is  the  multivariate  ratio  between  the  narrowband  from                           

the  broadband  covariance  matrices  along  the  direction  of  the  eigenvector.  We  therefore                         

correlated  the  R 2  values  with  the  average  of  the  eigenvalues  of  each  component-pair.  Most                             

correlations  between  map-similarity  and  eigenvalue  were  in  the  range  of  0.1-0.2.  Thus,  it                           

appears  that  —  to  some  extent  —  the  narrowband  components  that  are  better  separated                             

from   the   background   spectrum   are   more   likely   to   be   stable   over   time.   

  

  

Region-specificity   of   components   

Given  that  our  data  matrices  included  signals  from  three  brain  regions,  we  next  determined                             

whether  the  components  truly  reflected  inter-regional  temporally  coherent  networks,  or                     

whether  they  were  driven  by  a  single  region.  This  was  assessed  through  a  regional  bias                               

score,  in  which  a  score  of  zero  indicates  exactly  equal  contributions  from  all  three  regions,                               

whereas  a  bias  score  of  one  indicates  that  the  component  is  driven  entirely  by  one  region                                 

with   no   contributions   from   the   other   two   regions   (Figure   5A).   

  

The  bias  scores  were  mostly  between  0.4  and  0.6  within  each  animal  (Figure  5A),  indicating                               

that  all  three  regions  contributed  to  the  components  to  varying  degrees.  The  frequency                           

range  that  stood  out  was  theta,  which  exhibited  a  notable  dip  in  the  bias  score.  Thus,  all                                   

three   brain   regions   contributed   to   large-scale   networks   in   the   theta   range.   
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This  bias  score  is  an  aggregate  measure;  we  next  investigated  the  contributions  of  each                             

region  to  each  frequency,  separately  for  each  animal.  Figure  5B  shows  both  diversity  and                             

commonalities  in  the  regional  contributions  across  the  different  animals.  In  these  plots,                         

overlapping  lines  at  y=1/3  indicates  that  all  three  regions  contributed  equally  to  the                           

components,  whereas  regional  dominance  is  reflected  by  a  separation  of  lines  on  the  y-axis.                             

Figure  5C  illustrates  the  commonalities  across  all  six  animals  that  are  identified  through                           

averaging.  For  example,  across  animals,  PFC  generally  dominated  the  low-frequency  (<8  Hz)                         

networks  whereas  the  hippocampus  generally  dominated  high-frequency  networks  between                   

80-150   Hz.   

  

  

Figure  5 .  All  recorded  regions  contributed  to  the  components  per  frequency,  with  some                           

frequencies  showing  regional  dominance.  A)  The  region  bias  index  for  each  animal  (A1)  and                             

averaged  over  animals  for  each  experiment  session  (A2).  Values  close  to  0  indicate  equal                             

spread  of  components  across  all  three  brain  regions,  whereas  values  close  to  1  indicate  that  a                                 

single  region  dominates  the  component.  B)  The  fraction  of  total  component  energy                         

attributable  to  each  region,  normalized  to  the  sum  over  all  three  regions  (thus,  the  sum  per                                 

frequency  is  1).  Each  panel  is  a  different  animal,  averaged  over  experiment  sessions.  Patches                             

indicate  one  standard  deviation  above  and  below  the  mean  across  sessions,  which  illustrates                           

the  reproducibility  of  these  characteristics  over  time  (six  sessions  spanning  2  hours).  All                           

panels  have  the  same  tick  marks  and  axis  labels  as  the  lower-left  panel.  The  group-average                               

regional  fractions  are  shown  in  panel  C.  Horizontal  lines  at  1/3  and  2/3  indicate  equal                               

contribution  of  all  three  regions  to  the  component.  D)  The  modality  dominance  spectrum                           

quantitatively  showed  that  components  were  predominantly  driven  by  LFP  instead  of  by                         
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multiunits.  B)  Entropy  spectrum  shows  that  LFP  channels  had  higher  entropy  compared  to  the                             

multiunits  (multiunits’  entropy  is  the  same  for  all  frequencies).  F)  The  multiunits  made                           

significant  contributions  to  the  components  over  most  frequencies  except  in  the  range  of                           

20-90  Hz.  Positive  values  indicate  better  separability  when  multiunits  are  included.  The  black                           

line  is  the  average  over  all  animals,  and  the  surrounding  patch  indicates  one  standard                             

deviation  around  that  average.  Red  lines  show  significant  changes  relative  to  zero  at  p<.05,                             

FDR   corrected   for   multiple   comparisons   over   frequencies.   

  

  

  

  

Contributions  of  LFP  vs.  multiunits .  We  next  investigated  the  relative  contribution  of  spikes                           

and  LFPs  to  the  components.  This  was  quantified  as  modality  dominance   (Zuure  et  al.,                             

2020) ,  which  is  the  normalized  difference  between  the  root-mean-square  of  the  LFP                         

eigenvector  elements  and  the  root-mean-square  of  the  multiunit  eigenvector  elements.  A                       

modality  dominance  value  of  zero  indicates  equal  contribution  of  LFP  and  multiunits,                         

whereas  a  value  of  one  indicates  no  contribution  of  multiunits  (a  value  of  minus  one  would                                 

indicate   no   contribution   of   LFP   channels).   

  

The  modality  dominance  values  were  close  to  one  for  all  animals,  recording  sessions,  and                             

frequencies  (Figure  5D).  This  was  not  attributable  to  a  difference  in  signal  scaling  between                             

LFP  and  multiunits,  because  all  time  series  signals  were  normalized  to  a  mean  of  zero  and  a                                   

variance  of  one.  However,  normalizing  to  the  first  and  second  statistical  moments  does  not                             

preclude  the  possibility  of  differences  in  higher-order  statistical  characteristics.  For  example,                       

the  LFP  channels  had  overall  higher  entropy  (around  4  bits,  averaged  over  all  channels,                             

animals,  and  experiment  sessions)  compared  to  the  multiunits  (1.7  bits  on  average)  (Figure                           

5E).   

  

On  the  other  hand,  it  was  not  the  case  that  multiunits  made  no  contributions  to  the                                 

GED-identified  networks.  We  re-ran  the  source  separation  for  each  frequency,  excluding  all                         

multiunits  from  the  dataset,  and  computed  a  t-test  at  each  frequency  between  the  top                             

eigenvalues  from  the  multiunit-including  and  multiunit-excluding  datasets.  The  difference                   

was  statistically  significant  (correcting  for  multiple  comparisons  using  the  false  discovery                       

rate  method   (Benjamini  and  Hochberg,  1995)  for  most  frequencies  except  around  30-90  Hz                           

(Figure   5F).   
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Thus,  the  (Gaussian-smoothed)  multiunits  made  a  minor  though  statistically  significant                     

contribution  to  the  matrix  decomposition.  This  overall  pattern  is  not  surprising,  considering                         

that  the  LFP  samples  a  larger  volume  and  thus  more  neurons.  On  the  other  hand,  there  were                                   

more  multiunit  channels  in  the  data  matrix  than  LFP  channels,  and  many  of  our  multiunits                               

may  have  reflected  a  combination  of  several  neurons;  thus,  we  interpret  this  finding  to                             

indicate  that  LFP  signals  are  a  richer  source  of  information  regarding  cross-regional  network                           

formation   than   are   action   potentials.   

  

Within-frequency   component   dimensionality   

The  eigenvectors  from  the  GED  analysis  carve  out  a  low-dimensional  subspace  of                         

narrowband  activity,  and  we  defined  the  dimensionality  of  that  subspace  as  the  number  of                             

eigenvalues  that  were  larger  than  a  significance  threshold  based  on  a  null-hypothesis                         

distribution   of   eigenvalues   derived   from   permutation   testing    (Zuure   et   al.,   2020) .   

  

The  subspace  dimensionality  ranged  from  2  to  16,  and  generally  increased  with  higher                           

frequencies  (Figure  6A-B).  Higher  dimensionality  corresponds  to  the  number  of  statistically                       

separable  networks  operating  at  the  same  frequency.  It  is  noteworthy  that  there  is  no                             

pronounced   “bump”   in   the   theta   range   (~4-10   Hz).   

  

Note  that  this  measure  is  not  the  total  dimensionality  of  the  signal;  it  is  the  dimensionality  of                                   

the  subspace  that  differentiates  narrowband  from  broadband  activity.  Normalizing  these  raw                       

numbers  to  the  total  dimensionality  of  the  signal  (assessed  as  the  rank  of  the  corresponding                               

data  covariance  matrix)  revealed  that  most  narrowband  subspaces  occupied  around  8-10%                       

of   the   total   signal   space   (Figure   7C).   
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Figure  6 .  Generalized  eigendecomposition  reveals  that  narrowband  subspaces  are                   

multidimensional  (quantified  as  the  number  of  statistically  significant  components),  and                     

components  within  each  frequency  are  partially  synchronized  but  non-  redundant.  A-B)                       

Subspace  dimensionality  across  animals  (A)  and  experiment  sessions  (B).  C)  The  distribution                         

of  all  component  dimensionalities,  normalized  to  percent  of  the  maximum  possible                       

dimensionality  (the  rank  of  the  covariance  matrices),  revealed  that  the  narrowband                       

components  spanned  around  10%  of  the  total  possible  signal  dimensionality.  D-F)  Phase                         

synchronization  between  the  top  two  components  per  frequency  indicates  both  coordination                       

and  independence  across  within-frequency  networks.  Volume-conduction-independent  phase               

synchronization  tended  to  decline  with  frequency  except  for  a  prominent  peak  in  theta/alpha                           

(~7-13  Hz)  and  a  smaller  prominence  in  beta  (~15-30  Hz).  The  patterns  were  similar  over                               

different  animals  (D)  and  different  sessions  (E).  F)  Average  synchronization  in  the  theta/alpha                           

range   for   the   different   sessions.   

  

  

  

We  investigated  the  dynamics  within  these  subspaces  by  computing  a                     

volume-conduction-independent  measure  of  phase  synchronization  (weighted  phase  lag                 

index)  between  the  top  two  components  for  each  frequency  and  task  session  (note  that  GED                               

eigenvectors  are  not  constrained  to  orthogonality  as  with  PCA,  and  thus  within-frequency                         

components  can  be  arbitrarily  strongly  correlated  as  long  as  they  remain  linearly  separable).                           

Synchronization  strength  varied  between  around  .2  and  .6  depending  on  the  frequency,  with                           

strongest  synchronization  around  theta  and  a  smaller  departure  from  the  1/f  decay  around                          
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the  beta  band  (Figure  6D-F).  A  repeated-measures  ANOVA  on  session  differences  in  the  7-12                             

Hz   range   indicated   no   main   effect   of   task   session   (F(5,25)=1.3,   p=.29).   

  

  

  

  

  

Discussion   

In  this  study,  we  explored  multivariate  LFP  and  multiunit  data  from  three  brain  regions  in                               

awake  behaving  mice  using  a  combination  of  established  and  novel  multivariate  analysis                         

methods  to  decompose  the  data  into  multiple  spatial-spectral-temporal  modes.  We  found                       

that  these  were  stable  within  each  animal,  but  variable  across  animals.  These  findings  reveal                             

a  rich  and  multidimensional  landscape  of  brain  dynamics  that  highlight  the  complexity  of                           

on-going   neural   activity.   

  

Feature-guided   source   separation   identifies   large-scale   narrowband   networks   

There  are  several  dimension-reduction  methods  that  are  regularly  applied  in  neuroscience,                       

including  principal  and  independent  components  analyses,  factor  analyses,  and  Tucker                     

decompositions   (Cunningham  and  Yu,  2014) .  It  is  often  unclear  which  algorithms  or  which                           

parameters  are  optimal   (Cohen  and  Gulbinaite,  2014) ,  and  different  algorithms  can  give                         

similar  or  divergent  results   (Cohen,  2017;  Delorme  et  al.,  2012)  depending  on  their                           

maximization   objectives.  

  

GED  has  several  advantages,  including  that  it  (1)  separates  narrowband  from  broadband                         

activity  while  holding  constant  behavioral,  cognitive,  and  other  factors;  (2)  reduces  the                         

impact  of  artifacts  or  non-brain  sources  that  have  a  relatively  wide  frequency  distribution;  (3)                             

is  amenable  to  inferential  statistical  thresholding,  whereas  other  decompositions  are                     

descriptive  and  thus  selecting  components  for  subsequent  interrogation  may  be  subjective                       

or  biased;  (4)  takes  into  account  both  spatial  and  temporal  dynamics  instead  of  only  spatial                               

or  only  temporal  features;  (5)  has  higher  signal-to-noise  ratio  characteristics  and  is  more                           

accurate  at  recovering  ground  truth  simulations  compared  to  principal  or  independent                       

components  analyses   (Cohen,  2017;  de  Cheveigné  and  Parra,  2014;  Nikulin  et  al.,  2011;                           

Zuure   and   Cohen,   2020) .   
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An  important  finding  here  is  the  discovery  that  a  single  frequency  band  can  group  multiple                               

distinct  but  spatially  overlapping  networks.  In  typical  univariate  or  bivariate  analyses,  the  LFP                           

from  a  single  electrode  is  treated  as  an  independent  statistical  unit,  based  on  the  implicit                               

assumption  that  the  volume  of  tissue  recorded  by  an  electrode  contains  only  one  functional                             

circuit.  But  a  more  likely  scenario  is  that  each  electrode  records  a  mixture  of  signals  from                                 

multiple  local  circuits  in  the  scale  of  hundreds  of  microns  to  a  few  mm,  particularly  in  the                                   

presence  of  local  coherence   (Lindén  et  al.,  2011) .  Thus,  LFP  is  prone  to  the  same  kind  of                                   

source  mixing  that  affects  MEG  and  EEG   (Nunez  and  Srinivasan,  2006) ,  though  to  a  lesser                               

extent.  This,  however,  is  fortuitous  for  multichannel  recordings,  because  it  means  that  linear                           

separation  methods  that  have  been  established  in  the  EEG  community  are  likely  to  be  fruitful                               

in   invasive   recordings.   

  

The  high  reproducibility  across  sessions  within  each  animal   (Morrow  et  al.,  2020) ,  coupled                           

with  the  low  reproducibility  across  animals,  suggests  that  the  large-scale  networks  that                         

manifest  as  coordinated  LFP  dynamics  develop  in  idiosyncratic  ways  across  different                       

individuals.  This  result,  of  course,  does  not  invalidate  the  standard  neuroscience  approach  of                           

targeting  the  same  XYZ  coordinates  in  different  individuals  and  pooling  the  results  together,                           

but  our  findings  highlight  that  the  spatial  topographies  of  larger  networks  may  be  unique                             

across   individuals,   which   should   be   taken   into   consideration   in   future   studies.   

  

The   special   role   of   theta   in   large-scale   network   formation   

The  theta  frequency  band,  typically  defined  as  4-10  Hz  in  rodents  in  4-8  Hz  in  humans,  is                                   

widely  implicated  in  a  large  range  of  cognitive  processes,  including  spatial  exploration,                         

memory,  motor  function,  and  executive  functioning.  Clearly,  there  is  no  simple  mapping  of                           

frequency  band  to  cognitive  process  and  indeed,  even  the  same  brain  regions  can  generate                             

multiple  sources  of  theta  independently   (López-Madrona  et  al.,  2020;  Zuure  et  al.,  2020) ,                           

which  may  serve  different  cognitive  functions  (Mikulovic  et  al.,  2018;  Töllner  et  al.,  2017) .  In                             

the  rodent  brain,  theta  is  most  robust  in  the  hippocampus,  but  also  synchronizes  with                             

independent  theta  generators  in  the  medial  prefrontal  cortex   (O’Neill  et  al.,  2013;  Sigurdsson                           

and  Duvarci,  2015) .  Intracranial  EEG  studies  in  humans  have  confirmed  that  theta                         

synchronization   is   widespread   and   linked   to   cognitive   operations    (Solomon   et   al.,   2017) .   

  

The  theta  band  stood  out  in  many  of  our  analyses,  for  example  by  having  relatively  strong                                 

within-frequency,  cross-component  synchronization  (Figure  6),  sub-Gaussian  kurtosis               

(Figure  2-1),  and  roughly  equal  contribution  from  all  three  regions  (Figure  5).  Additionally,                           
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theta-band  networks  appeared  to  have  the  most  anatomically  consistent  topographies                     

across  animals  (see  the  small  peak  around  theta  in  Figure  4a).  On  the  other  hand,  the                                 

subspace  dimensionality  of  theta  was  not  higher  than  other  frequencies  (Figure  6a-b),                         

suggesting  that  the  theta  is  important  for  computational  reasons,  and  is  not  simply  the                             

dominant   frequency   in   general.   

  

LFP   vs.   multi-unit   contributions   to   large-scale   networks   

It  is  perhaps  unsurprising  that  the  multiunits  made  relatively  little  statistical  contribution  to                           

the  narrowband  components,  considering  that  LFP  samples  a  larger  volume,  has  more  signal                           

complexity,  and  can  be  meaningfully  separated  into  narrow  frequency  bands.  On  the  other                           

hand,  the  multiunits  were  recorded  from  the  same  electrodes,  added  unique  information  to                           

the  narrowband  covariance  matrices,  and  improved  the  overall  separability  of  the                       

narrowband   components   from   broadband   across   most   frequency   ranges.   

  

It  is  possible  that  LFP  carries  most  of  the  inter-regional  signaling   (Yuste,  2015) ,  considering                             

that  LFP  reflects  a  multitude  of  intra-  and  extracellular  processes   (Buzsáki  et  al.,  2012;                             

Reimann  et  al.,  2013)  that  are  modulated  by  population  dynamics  of  excitatory  and  inhibitory                             

cells   (Mitzdorf,  1985) .  It  is  also  possible  that  spikes  carry  important  information  that  is                             

spatiotemporally  targeted  and  sparse,  and  therefore  make  contributions  at  a  spatial  scale                         

smaller  than  what  we  investigated.  Indeed,  the  eigendecomposition  will  prefer  larger                       

patterns  of  covariance  over  patterns  driven  by  a  single  data  channel.  On  the  other  hand,  LFP                                 

is  generally  considered  a  proxy  of  the  local  input  to  a  circuit  while  spikes  are  considered  a                                   

proxy  of  the  output  of  the  circuit.  Nonetheless,  multiunits  and  LFP  are  rarely  incorporated                             

into  the  same  data  matrix  as  we  have  done,  so  their  relative  contributions  should  be                               

quantitatively   evaluated   rather   than   intuitively   inferred.   

  

Implications   for   novelty   and   memory   

The  main  network  characteristics  we  identified  were  not  significantly  different  across  the                         

task  sessions.  This  seems  to  suggest  that  these  network  dynamics  reflect  stable  neural                           

architectures   as   opposed   to   fluctuating   cognitive   states.   

  

It  is,  however,  possible  that  behavior  modulates  these  network  dynamics  at  a  faster                           

timescale  than  experiment  sessions.  Indeed,  neural  signatures  of  novelty  processing  may  be                         

transient,  lasting  only  hundreds  of  ms   (Ranganath  and  Rainer,  2003)  or  tens  of  seconds                             

when  first  introduced  to  a  novel  environment   (França  et  al.,  2014) .  For  example,  our  camera                               
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tracking  data  (not  reported  here)  revealed  that  animals  tended  to  explore  the  objects  for                             

brief  windows  of  time  —  sometimes  only  a  few  hundred  ms.  These  windows  may  have  been                                 

too  brief  for  sufficient  neural  network  estimation,  and  due  to  the  novelty  of  the  data  analysis                                 

methods,  we  chose  to  focus  on  characterizing  the  neural  networks  using  maximal  data  to                             

ensure  high  data  quality.  This  could  be  explored  in  future  studies  by  ensuring  that  a                               

particular   behavior   is   expressed   for   a   longer   period   of   time.   
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Extended   data   

  

  

  

Figure  1-1 .  Left  plot  shows  an  example  multiunit  correlation  matrix  from  one  recording                           

session.  The  right  plot  shows  a  histogram  of  all  unique  off-diagonal  correlation  values.  These                             

plots  illustrate  that  our  spike-sorting  approach  was  not  overly  contaminated  by  identifying  the                           

same   units   on   multiple   channels.   
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Figure  2-1 .  Kurtosis,  a  measure  of  non-Gaussianity  of  a  distribution  (see  text  below),                           

computed  on  frequency-specific  component  time  series.  The  red  and  blue  lines  in  panel  A                             

show  kurtosis  per  frequency  for  the  narrowband-filtered  time  series  (blue)  and  amplitude                         

envelope  (red),  averaged  over  all  animals  and  sessions.  The  horizontal  dashed  line  indicates                           

the  expected  kurtosis  of  a  pure  Gaussian  distribution.  B)  Kurtosis  over  frequencies  for  each                             

animal  separately.  Note  the  striking  decrease  in  kurtosis  in  the  theta  band  in  all  animals.  C)                                 

Example  time  series  histograms  illustrating  the  platykurtic  effect  at  8  Hz  and  11  Hz  for  two                                 

different   animals   and   sessions.   

  

  

Distribution  shape  via  kurtosis .  Non-Gaussianity  is  considered  an  indicator  of  an                       

information-rich  signal.  This  comes  from  the  central  limit  theorem,  which  leads  to  the                          

assumption  that  random  noise,  and  random  linear  mixtures  of  signals,  will  produce  Gaussian                           

distributions.  We  therefore  quantified  the  kurtosis  (4th  statistical  moment  of  a  distribution;                         

the  kurtosis  of  a  pure  Gaussian  distribution  is  3)  as  a  measure  of  the  non-Gaussianity  of  the                                   

component  time  series.  We  computed  kurtosis  for  the  narrowband  filtered  signal  and  its                           

amplitude   envelope   at   each   component.     

  

Component  time  series  kurtosis  was  computed  as  the  4th  statistical  moment  of  the                           

component  time  series.  We  extracted  kurtosis  from  both  the  real  part  of  the  narrowband                             

signal  and  the  amplitude  envelope  (extracted  via  the  Hilbert  transform).  The  amplitude                         
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envelope  had  overall  higher  kurtosis  (Figure  2-1),  which  is  not  surprising  considering  that                           

amplitude   is   a   strictly   non-negative   quantity.   

  

Nearly  all  frequencies  had  kurtosis  higher  than  3,  indicating  leptokurtic  distributions                       

characterized  by  narrow  peaks  and  fatter  tails.  This  is  consistent  with  suggestions  that  brain                             

activity  is  characterized  by  extreme  events  and  long-tailed  distributions   (Buzsáki  and                       

Mizuseki,  2014) .  Curiously,  all  six  animals  exhibited  a  dip  in  kurtosis  in  the  theta  band  (~9                                 

Hz)  (Figure  2-1b),  indicating  a  platykurtic  distribution  with  data  values  clustered  towards                         

zero  and  relatively  fewer  data  points  having  extreme  values  (the  tails  of  the  distributions)                             

(Figure  2-1c).  This  may  be  related  to  the  known  sawtooth-like  shape  of  hippocampal  theta                             

(Scheffer-Teixeira   and   Tort,   2016) .     

  

Note  that  unlike  independent  components  analysis,  GED  is  based  purely  on  the  signal                           

covariance  (second  moment)  and  not  on  any  higher-order  statistical  moments.  Thus,                       

non-Gaussian  distributions  are  not  trivially  imposed  by  the  decomposition  method,  but                       

instead   arose   from   the   data   without   bias   or   selection.   

  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 8, 2020. ; https://doi.org/10.1101/2020.12.08.416248doi: bioRxiv preprint 

https://paperpile.com/c/FMYt98/OpQq
https://paperpile.com/c/FMYt98/OpQq
https://paperpile.com/c/FMYt98/UlE2
https://doi.org/10.1101/2020.12.08.416248
http://creativecommons.org/licenses/by-nc-nd/4.0/

