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Abstract  
The non-selective serotonin 2A (5-HT2A) receptor agonist lysergic acid diethylamide 

(LSD) holds promise as a treatment for some psychiatric disorders. Psychedelic drugs 

such as LSD have been suggested to have therapeutic actions through their effects on 

learning. The behavioural effects of LSD in humans, however, remain largely 

unexplored. Here we examined how LSD affects probabilistic reversal learning in healthy 

humans. Conventional measures assessing sensitivity to immediate feedback (“win-stay” 

and “lose-shift” probabilities) were unaffected, whereas LSD increased the impact of the 

strength of initial learning on perseveration. Computational modelling revealed that the 

most pronounced effect of LSD was enhancement of the reward learning rate. The 

punishment learning rate was also elevated. Increased reinforcement learning rates 

suggest LSD induced a state of heightened plasticity. These results indicate a potential 

mechanism through which revision of maladaptive associations could occur.  
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Introduction 
Research into lysergic acid diethylamide (LSD) as a potential therapeutic agent in 

psychiatry has been revitalised in recent years (Nutt and Carhart-Harris 2020; 

Vollenweider and Preller 2020). Theories on the putative beneficial effects of LSD on 

mental health centre on its effects on learning and plasticity (Carhart-Harris and Nutt 

2017), yet few studies have examined its effect on human behaviour. LSD acts 

principally but not exclusively as an agonist at the serotonin (5-HT; 5-

hydroxytryptamine) 2A [5-HT2A] receptor (Marona-Lewicka et al. 2005, 2007; Nichols 

2016). Indeed, blocking 5-HT2A receptors inhibits the psychedelic effects of LSD 

(Nichols 2016). The 5-HT2A receptor is involved in plasticity (Barre et al. 2016; Vaidya 

et al. 1997) and its modulation represents a putative neurobiological mechanism through 

which LSD could facilitate the revision of maladaptive associations (Carhart-Harris and 

Nutt 2017). Indeed, LSD and 5-HT2A agonists have been shown to improve associative 

learning in non-human animals (Harvey 2003; Harvey et al. 1988; Romano et al. 2010; 

Schindler et al. 1986). However, studies of human learning and cognitive flexibility 

under the influence of psychedelic drugs using objective tests (rather than subjective 

experience) are limited in number (Pokorny et al. 2019). Here we tested whether LSD 

altered probabilistic reversal learning in healthy volunteers, and explored how LSD 

altered underlying learning mechanisms, using reinforcement learning models. 

 

Serotonin is critically involved in adapting behaviour flexibly as environmental 

circumstances change (Barlow et al. 2015; Brigman et al. 2010; Clarke et al. 2004; 

Matias et al. 2017; Rygula et al. 2015), as well as processing aversive outcomes (Bari et 

al. 2010; Chamberlain et al. 2006; Cools et al. 2008; Crockett et al. 2009; Dayan and 

Huys 2009; Deakin 2013; den Ouden et al. 2013; Geurts et al. 2013). Both can be 

modelled in a laboratory setting using probabilistic reversal learning (PRL) paradigms. In 

these, individuals learn by trial and error the most adaptive action, in an “acquisition” 

stage, and this rule eventually changes in a “reversal” phase (Lawrence et al. 1999). 

Profound neurotoxin-induced depletion of serotonin from the marmoset orbitofrontal 

cortex (OFC) causes perseverative, stimulus-bound behaviour (Walker et al. 2009) – an 
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impaired ability to update action upon reversal (Clarke et al. 2004). At the same time, 

acute administration of selective serotonin reuptake inhibitors (SSRIs), which can 

paradoxically lower serotonin concentration (Nord et al. 2013), has resulted in an 

increased sensitivity to negative feedback (referred to as “lose-shift” behaviour) in 

healthy humans (Chamberlain et al. 2006; Skandali et al. 2018) and rats (Bari et al. 

2010). 

 

In addition to affecting the serotonin system, LSD has dopamine type 2 (D2) receptor 

agonist properties (Marona-Lewicka et al. 2005, 2007; Nichols 2004). Dopamine is 

particularly well known to play a fundamental role in learning from feedback (Schultz 

2019; Schultz et al. 1997) putatively mediating plasticity changes during associative 

learning (Shen et al. 2008; Yin and Knowlton 2006). Meanwhile, dopamine depletion of 

the marmoset caudate nucleus, like serotonergic OFC depletion, also induced 

perseveration (Clarke et al. 2011). Additionally, there is a body of evidence, across 

species, that D2-modulating agents affect instrumental reversal learning (Boulougouris et 

al. 2009; Kanen et al. 2019; Lee et al. 2007).  

 

The aim of the current study was to examine the effects of LSD on learning in humans, to 

inform the psychological mechanisms by which LSD could have salubrious effects on 

mental health. To do so, we tested the acute effects of LSD on PRL, in a placebo-

controlled study of healthy human volunteers. We predicted LSD modulates either 

sensitivity to negative feedback or the impact of learned values on subsequent 

perseverative behaviour (den Ouden et al. 2013). Measuring “staying” (repeating a 

choice) or “shifting” (choosing another stimulus) after wins or losses assesses sensitivity 

to immediate reinforcement, but does not account for the integration of feedback history 

across multiple experiences to influence behaviour (Daw 2011). We applied 

computational models of reinforcement learning to test the hypothesis that LSD alters the 

rate at which value is updated following reward or punishment. Through modelling we 

additionally investigated whether LSD affects the degree to which behaviour is stimulus-

driven (“stimulus sticky”), independent of an action’s outcome. 
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Results 

Learning and perseveration  

First, we verified that LSD did not impair participants’ overall ability to perform the task. 

Behavioural performance is depicted in Figure 1 and 2. To examine whether LSD 

affected the number of times each stimulus was chosen, repeated-measures analysis of 

variance (ANOVA) was conducted with drug (LSD, placebo), phase (acquisition, 

reversal), and stimulus type (75%, 50%, or 25% rewarded) as within-subjects factors. 

This revealed a main effect of stimulus (F1,23 = 30.66, p = 3 x 10-6, ηp
2 = .63), a stimulus 

× phase interaction (F = 28.62, p = 2 x 10-6, ηp
2 = .61), and no interaction of LSD with 

stimulus or phase (F < 1.5, p > .24, ηp
2 < .08, for terms involving LSD). The number of 

correct responses did not differ between placebo and LSD during the acquisition (paired-

sample t test, t18 = 0.84, p = .4, d = .19) or reversal phases (t18 = 0.23, p = .8, d = .05).  

 

We then examined the relationship between initial learning and perseveration, following 

den Ouden et al. (2013) (Figure 2B). LSD enhanced the relationship between the number 

of correct responses during the acquisition phase and the number of perseverative errors 

made during the subsequent reversal stage (acquisition correct responses [LSD minus 

placebo] versus reversal perseverative errors [LSD minus placebo]: linear regression 

coefficient β = .56, p = 0.002). Confirming this, making fewer errors during the 

acquisition phase predicted more perseverative errors when on LSD (β = 0.44, p = 0.003) 

but not when under placebo (β = 0.04, p = .8). Perseverative errors, a subset of all 

reversal errors, alone did not differ between conditions (t18 = 0.03, p = .98, d = .01). 

 

Feedback sensitivity 

We next assessed whether LSD influenced individuals’ responses on trials immediately 

after positive versus negative feedback – whether participants stayed with the same 

choice after a win or a loss (win-stay/lose-stay; Figure 1D, 2D). Repeated-measures 

ANOVA with drug (LSD, placebo) and valence (win, loss) as within-subjects factors 

revealed a main effect of valence – participants “stayed” more after wins than losses 
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(F1,18 = 37.76, p = 8.0 × 10–6, ηp
2 = 0.68) – and no main effect of LSD (F1,18 = 0.20, p = 

.66, ηp
2 = .01). There was also no interaction of valence × LSD (F1,18 = 0.63, p = .44, ηp

2 

= .03). 

 

Choice of reinforcement learning model 

The core modelling results are displayed in Figure 2E. We fitted and compared three 

reinforcement learning models. Convergence was good with all three models having �̂ < 

1.2. Behaviour was best characterised by a reinforcement learning model with four 

parameters (Table 2). The four parameters in the winning model were: 1) reward learning 

rate, which reflects the degree to which the chosen stimulus value is increased following 

a positive outcome (reward prediction error); 2) punishment learning rate, degree to 

which the chosen stimulus value is decreased following a negative outcome (punishment 

prediction error); 3) reinforcement sensitivity (comparable to inverse temperature), which 

is the degree to which the values learned through reinforcement contribute to final 

choice; and 4) “stimulus stickiness”, which indexes the tendency to get “stuck” to a 

stimulus and choose it because it was chosen on the previous trial, irrespective of 

outcome. The last two parameters resemble the explore/exploit trade-off: low values of 

stickiness or reinforcement sensitivity index two different types of exploratory behaviour. 

 

Reward and punishment learning rates 

The reward learning rate was significantly elevated on LSD (mean 0.87) compared to 

placebo (mean 0.28) (with the posterior 99.9% highest posterior density interval [HDI] of 

the difference between these means excluding zero; 0 ∉ 99.9% HDI; Figure 2E). There 

was also an increased punishment learning rate under LSD (mean 0.48) relative to 

placebo (mean 0.39) (drug difference, 0 ∉ 99% HDI). Importantly, LSD increased the 

reward learning rate to a greater extent than the punishment learning rate ([αrew,LSD – 

α
rew,placebo] – [αpun,LSD – αpun,placebo] > 0; drug difference, 0 ∉ 99% HDI). 

 

 

Stimulus stickiness and reinforcement sensitivity 
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Stimulus stickiness was lowered by LSD (mean 0.23) relative to placebo (mean 0.43) 

(drug difference, 0 ∉ 90% HDI; Figure 2E), whilst reinforcement sensitivity was not 

modulated by LSD (LSD mean 4.70, placebo mean 5.57; no drug difference, 0 ∈ 95% 

HDI). This is in line with the absence of an effect of LSD on the tendency to ‘stay’ 

following reward or punishment (see conventional analysis above).  

 

Discussion 

There has been a recent surge of interest in potential therapeutic effects of psychedelics, 

particularly LSD. Theorising on the mechanisms of such effects centres on their role in 

enhancing learning and plasticity. In the current study we tested these postulated effects 

of LSD in flexible learning in humans and find that LSD increased learning rates as well 

as the impact of previously learnt values on subsequent perseverative behaviour. 

Specifically, LSD increased the speed at which value representations were updated 

following prediction error (the mismatch between expectations and experience). Whilst 

LSD enhanced the impact of both positive and negative feedback, it augmented learning 

from reward significantly more than it augmented learning from punishment. 

 

The observation that LSD enhanced learning rates may be particularly important for 

understanding the mechanisms through which LSD might be therapeutically useful. 

Psychedelic drugs have been hypothesised to destabilise pre-existing beliefs (i.e. relax 

prior beliefs or “priors”), making them amenable to revision (Carhart-Harris and Friston 

2019). The notion of relaxed priors is directly compatible with increased reinforcement 

learning rates: in our study, LSD rendered subjects more sensitive to prediction errors, 

which naturally implies downweighting of prior beliefs (Carhart-Harris and Friston 

2019). That LSD affected a fundamental belief-updating process is notable given that 

psychedelics are under investigation trans-diagnostically for diverse clinical phenomena 

including depression (Carhart-Harris et al. 2016, 2018; Ross et al. 2016), anxiety 

(Griffiths et al. 2016; Grob et al. 2011), alcohol (Bogenschutz et al. 2015) and nicotine 

abuse (Johnson et al. 2014), OCD (Moreno et al. 2006), and eating disorders (Lafrance et 
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al. 2017); a unifying feature of these conditions is maladaptive associations in need of 

revision. 

 

Given the broad effect of LSD on a range of neurotransmitter systems (Nichols 2004, 

2016), it is not possible to determine the specific neurochemical mechanism underlying 

the observed LSD effects on learning. Nonetheless, obvious possibilities involve the 

serotonin and dopamine system, in particular 5-HT2A and D2 receptors (Marona-Lewicka 

et al. 2005, 2007; Nichols 2004, 2016). Specifically, the psychological plasticity 

purportedly promoted by psychedelics is believed to be mediated through action at 5-

HT2A receptors (Carhart-Harris and Nutt 2017) via downstream enhancement of NMDA 

(N-methyl-D-aspartate) glutamate receptor transmission (Barre et al. 2016) and brain-

derived neurotrophic factor (BDNF) expression (Vaidya et al. 1997). The hypothesis that 

the present results are driven by serotonergic effects of LSD is supported by two recent 

studies in mice. Optogenetically stimulating dorsal raphé serotonin neurons enhanced 

reinforcement learning rates (Iigaya et al. 2018), whilst activation of these neurons 

tracked prediction errors during reversal learning (Matias et al. 2017).  

 

In addition to affecting the serotonin system, however, LSD also acts at dopamine 

receptors (Nichols 2004, 2016). Dopamine has long been known to play a crucial role in 

belief updating following reward (Schultz et al. 1997), and more recent evidence shows 

that dopaminergic manipulations may alter learning rates (Schultz 2019; Swart et al. 

2017). A dopaminergic effect would be in line with our previous study where genetic 

variation in the dopamine, but not serotonin transporter polymorphism, was associated 

with the same enhanced relationship between acquisition and perseveration as reported 

here under LSD (den Ouden et al. 2013).  

 

Serotonin–dopamine interactions represent another candidate mechanism that could 

underlie the present findings. For example, stimulation of 5-HT2A receptors in the 

prefrontal cortex of the rat, enhanced ventral tegmental area (VTA) dopaminergic activity 

(Bortolozzi et al. 2005). Indeed, the initial action of LSD at 5-HT2A receptors has been 

proposed to sensitise dopamine neuron firing, which subsequently potentiates the direct 
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dopaminergic effects of LSD (Nichols 2016). LSD action at D2 receptors, consequently, 

appears to be especially pronounced at a later time following LSD administration 

(Marona-Lewicka et al. 2005, 2007), which is relevant given the relatively long delay 

between LSD administration and performance of the current task (see Methods). 

However, arguing against a late dopaminergic effect is a previous study in rodents where 

the effects of LSD on reversal learning were consistent across four different time lags 

between drug administration and behavioural testing (King et al. 1974).  

   

LSD impaired flexibility such that under LSD, better initial learning led to more 

perseverative responding. This result was in line with a recent study showing that LSD 

induced spatial working memory deficits and higher-order cognitive inflexibility in a set-

shifting paradigm (Pokorny et al. 2019). Importantly, these effects were blocked by co-

administration of the 5-HT2A antagonist ketanserin (Pokorny et al. 2019), showing that 

the LSD-induced impairments were mediated by 5-HT2A agonism, consistent with a 5-

HT2A mechanism underlying the present results. These data collectively suggest that LSD 

“stamps in” new learning following drug administration, which may subsequently be 

harder to update.  

 

LSD’s effects to induce cognitive inflexibility are ostensibly at odds with the observation 

that LSD enhanced plasticity (through enhanced learning rates). However, these results 

can be reconciled by considering the timing of drug administration with respect to initial 

learning and tests of cognitive flexibility. In both the present experiment and the previous 

set-shifting study (Pokorny et al. 2019), all phases of learning (acquisition and reversal) 

were conducted after LSD administration. In contrast, when acquisition learning was 

conducted prior to LSD administration, LSD resulted in improved reversal learning 

(using a reversal paradigm in rats; King et al. 1974). Likewise, when acquisition learning 

was conducted prior to administration of a 5-HT2A antagonist, reversal learning was 

impaired (Boulougouris et al. 2008). Collectively, these findings suggest that whether a 

prior belief is down- or up-weighted under LSD may depend on whether the prior is 

formed before or during drug administration, respectively. This observation is of great 
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relevance for a putative therapeutic setting, where maladaptive beliefs will have been 

formed before treatment.  

 

In summary, LSD enhanced the rate at which humans updated their beliefs based on 

feedback. Learning rate was most enhanced by LSD when receiving reward, and to a 

lesser extent following punishment. This study represents one of the few applications of 

objective measures to investigate fundamental cognitive processes in humans under LSD. 

These findings have implications for understanding the mechanisms through which LSD 

might be therapeutically useful for revising deleterious associations.  

 

Methods 

Subjects and drug administration 

Nineteen healthy volunteers, over the age of 21, attended two sessions at least two weeks 

apart where they received either intravenous LSD (75μg in 10 mL saline) or placebo 

(10mL saline), in a single-blind within-subjects balanced-order design. All participants 

provided written informed consent after briefing on the study and screening. Participants 

had no personal history of diagnosed psychiatric disorder, or immediate family history of 

a psychotic disorder. Other inclusion criteria were normal electrocardiogram (ECG), 

routine blood tests, negative urine test for pregnancy and recent recreational drug use, 

negative breathalyser test for recent alcohol use, alcohol use limited to less than 40 units 

per week, and absence of a significant medical condition. Participants had previous 

experience with a classic psychedelic drug (e.g. LSD, mescaline, psilocybin/magic 

mushrooms, or DMT/ayahuasca) without an adverse reaction, and had not used these 

within six weeks of the study. Screening was conducted at the Imperial College London 

Clinical Research Facility (ICRF) at the Hammersmith Hospital campus, and the study 

was carried out at the Cardiff University Brain Research Imaging Centre (CUBRIC). 

Participants were blinded to the condition but the experimenters were not. A cannula was 

inserted and secured in the antecubital fossa and injection was performed over the course 

of two minutes. Participants reported noticing subjective effects of LSD 5 to 15 minutes 

after dosing. The PRL task was administered approximately five hours after injection. 

Once the subjective drug effects subsided, a psychiatrist assessed suitability for 
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discharge. This experiment was part of a larger study, the data from which are published 

elsewhere (e.g. Carhart-Harris et al. 2016). Additional information, including subjective 

ratings, can be found in Carhart-Harris et al. (2016). 

 

Probabilistic reversal learning task 

A schematic of the task is shown in Figure 1A. On every trial, participants could choose 

from three visual stimuli, presented at three of four randomised locations on a computer 

screen. In the first half of the task (40 trials), choosing one of the stimuli resulted in 

positive feedback in the form of a green smiling face on 75% of trials. A second stimulus 

resulted in positive feedback 50% of the time, whilst the third stimulus yielded positive 

feedback on only 25% of trials. Negative feedback was provided in the form of a red 

frowning face. The first stimulus that was selected, was defined as the initially rewarded 

stimulus; the choice on trial 1 always resulted in reward. The second stimulus that was 

selected was defined as the mostly punished stimulus, and by definition the 3rd stimulus 

was then the “neutral” stimulus. After 40 trials, the most and least optimal stimuli 

reversed, such that the stimulus that initially was correct 75% of the time was then only 

correct 25% of the time, and likewise the 25% correct stimulus then resulted in positive 

feedback on 75% of trials. This is a novel version (Kandroodi et al. 2020) of a widely 

used PRL task (Lawrence et al. 1999; den Ouden et al. 2013): novel due to the addition of 

a 50% “neutral” stimulus in order to distinguish learning to select the mostly rewarding 

stimulus from learning to avoid the mostly punishing stimulus.  

 

Conventional analysis of behaviour 

We examined whether LSD impaired participants’ overall ability to perform the task by 

analysing the number of responses made to each stimulus during the acquisition and 

reversal phases. We measured feedback sensitivity by determining whether participants 

stayed with the same choice following positive or negative feedback (win-stay or lose-

stay). The win-stay probability was defined as the number of times an individual repeated 

a choice after a win, divided by the number of trials on which positive feedback occurred 

(opportunities to stay after a win). Lose-stay probability was calculated in the same 

manner: number of times a choice was repeated following a loss, divided by the total 
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losses experienced. Note that in previous studies with a choice between only two stimuli 

(or responses), this metric is usually referred to as “win-stay / lose-shift”, which also 

captures the tendency to repeat (rather than switch) responses following a win, and the 

tendency to switch (rather than repeat) choices following a loss. Random choice would 

result in 50% win-stay and 50% lose-shift; however, in the current paradigm with 3 

stimuli, this base rate is 33% (win-)stay and 67% (lose-)shift. We therefore encode both 

variables with respect to the stay (rather than shift) rate, but they are still conceptually 

identical to earlier studies. Perseveration was defined according to den Ouden et al. 

(2013) and was assessed based on responses in the reversal phase. A perseverative error 

occurred when two or more (now incorrect) responses were made to the previously 

correct stimulus, and these errors could occur at any point in the reversal phase. The first 

trial in the reversal phase (trial 41 of 80) was excluded from the perseveration analysis, 

however, as at that point behaviour cannot yet be shaped by the new feedback structure. 

Note again that this metric is not entirely identical to the previous studies cited employing 

two stimuli, as the base-rate choice for each stimulus is now 1/3, so the “chance” level of 

perseverative errors is lower. Null hypothesis significance tests used α = 0.05. 

 

Computational modelling of behaviour 

Model fitting, comparison, and interpretation  

These methods are based on our previous work (Kanen et al. 2019). We fitted three 

reinforcement learning (RL) models to the behavioural data using a hierarchical Bayesian 

method, via Hamiltonian Markov chain Monte Carlo sampling implemented in Stan 

2.17.2 (Carpenter et al. 2017). Convergence was checked according to �̂, the potential 

scale reduction factor measure (Gelman et al. 2012; Brooks and Gelman 1998), which 

approaches 1 for perfect convergence. Values below 1.2 are typically used as a guideline 

for determining model convergence (Brooks and Gelman 1988). We assumed the three 

models had the same prior probability (0.33). Models were compared via a bridge 

sampling estimate of the marginal likelihood (Gronau et al. 2017a), using the 

“bridgesampling” package in R (Gronau et al. 2017b). Bridge sampling directly estimates 

the marginal likelihood, and therefore the posterior probability of each model given the 

data (and prior model probabilities), as well as the assumption that the models represent 
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the entire group of those to be considered. Posterior distributions were interpreted using 

the 95% highest posterior density interval (HDI), which is the Bayesian “credible 

interval”. Parameter recovery for this modelling approach has been confirmed in a 

previous study (Kanen et al. 2019). 

 

The Bayesian hierarchy consisted of “drug condition” at the highest level, and “subject” 

at the level below. For each parameter, each drug condition (e.g. LSD) had its own mean 

(with a prior that was the same across conditions, i.e. with priors that were unbiased with 

respect to LSD versus placebo). This was then merged with the intersubject variability 

(assumed to be normally distributed; mean 0 by definition, standard deviation determined 

by a further prior). The priors used for each parameter are shown in Table 1. For instance, 

the learning rate for a given subject under LSD was taken as: the group mean LSD value 

for learning rate, plus the subject-specific component of learning rate. The learning rate 

for a given subject under placebo was taken as: the group mean placebo value for 

learning rate, plus the subject-specific component of learning rate for the same subject. 

This method accounts for the within-subjects structure of the study design. This was done 

similarly (and separately) for all other model parameters.  

 

To determine the change (LSD – placebo) in parameters, we calculated [group mean LSD 

learning rate] – [group mean placebo learning rate] for each of the ~8,000 simulation runs 

and tested them against zero via the HDI. This approach also removes distributional 

assumptions and provides an automatic multiple comparisons correction (Gelman and 

Tuerlinckx 2000; Gelman et al. 2012; Kruschke 2011). 

 

Models 

The parameters contained in each model are summarised in Tables 1 and 2. With Model 

1, we tested the hypothesis that positive versus negative feedback guides behaviour 

differentially, and that LSD affects this. We augmented a basic RL model (Rescorla & 

Wagner 1972) with separate learning rates for reward αrew and punishment αpun. Positive 

feedback led to an increase in the value Vi of the stimulus i that was chosen, at a speed 

governed by the reward learning rate αrew, via Vi,t+1 ← Vi,t + αrew(Rt – Vi,t). Rt represents 
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the outcome on trial t (defined as 1 on trials where positive feedback occurred), and (Rt – 

Vi,t) the prediction error. On trials where negative feedback occurred, Rt = 0, which led to 

a decrease in value of Vi at a speed governed by the punishment learning rate αpun, 

according to Vi,t+1 ← Vi,t + αpun(Rt – Vi,t). Stimulus value was incorporated into the final 

quantity controlling choice according to Qreinf
t = τreinfVt. The additional parameter τreinf, 

termed reinforcement sensitivity, governs the degree to which behaviour is driven by 

reinforcement history. The quantities Q associated with the three available choices, for a 

given trial, were then input to a standard softmax choice function to compute the 

probability of each choice: 

 

��action�� � softmax����...��� �
�Q�

∑ �Q��
k��

 

 

for n = 3 choice options. The probability values for each trial emerging from the softmax 

function (the probability of choosing stimulus 1) were fitted to the subject’s actual 

choices (did the subject choose stimulus 1?). Softmax inverse temperature was set to β = 

1, and as a result the reinforcement sensitivity parameter (τreinf) directly represented the 

weight given to the exponents in the softmax function.  

 

Model 2 again augmented a simple RL model, but now also described the tendency to 

repeat a response, irrespective of the outcome that followed it (in other words, the 

tendency to “stay” regardless of outcome). With Model 2 we tested the hypothesis that 

LSD affects this basic perseverative tendency. This was implemented using a “stimulus 

stickiness” parameter τstim. The stimulus stickiness effect was modelled as Qstim
t = τstimst–1, 

where st–1 was 1 for the stimulus that was chosen on the previous trial and was 0 for the 

other two stimuli. In this model we used only a single learning rate αreinf. Positive 

reinforcement led to an increase in the value Vi of the stimulus i that was chosen, at a 

speed controlled by the learning rate αreinf, via Vi,t+1 ← Vi,t + αreinf(Rt – Vi,t). The final 

quantity controlling choice incorporated the additional stickiness parameter as Qt = Qreinf
t 

+ Qstim
t. Quantities Q, corresponding to the three choice options on a given trial, were 

then fed into the softmax function as above. It should be noted that if τstim is not in the 

model (or is zero), then τreinf is mathematically identical to the notion of softmax inverse 
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temperature typically implemented as β. The notation τreinf is used, however, because it 

contributes to Qreinf
t but not to Qstim

t. A standard implementation of β, by contrast, would 

govern the effects of both Qreinf
t and Qstim

t by weighting the sum of the two (Qt). 

 

Model 3 was the full model that incorporated separate reward and punishment learning 

rates as well as the stimulus stickiness parameter. With Model 3, we tested the hypothesis 

that LSD affects both how positive versus negative feedback guides behaviour 

differentially, and how LSD affects a basic perseverative tendency. Again, the final 

quantity controlling choice was determined by Qt = Qreinf
t + Qstim

t. 
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Figures 
Figure 1. A) Schematic of the probabilistic reversal learning task. Subjects chose one of 
three stimuli. The timeline of a trial is depicted: stimuli appear, a choice is made, the 
outcome is shown, a fixation cross is presented during the intertrial interval, stimuli 
appear for the next trial (etc.) (RT, reaction time). One stimulus delivered positive 
feedback (green smiling face) with a 75% probability, one with 50%, and one with 25%. 
The probabilistic alternative was negative feedback (red sad face). Midway through the 
task, the contingencies for the best and worst stimuli swapped. s = seconds. B) Trial-by-
trial average probability of choosing each stimulus, averaged over subjects and sessions, 
collapsed across LSD and placebo sessions. A sliding 5-trial window was used for 
smoothing. The vertical dotted line indicates the reversal of contingencies. Shading 
indicates 1 standard error of the mean (SE). C) Distributions depicting the average per-
subject probability (scattered dots) of choosing each stimulus during the acquisition 
(shown in dark blue) and reversal (light blue) phases, collapsed across LSD and placebo 
sessions. Mean value for each distribution is illustrated with a single dot at the base of 
each distribution, and the mean values for the probability of choosing different stimuli in 
each phase are connected by a line. One SE is shown by black error bars around the mean 
value. Horizontal dotted line indicates chance-level stay-behaviour (33%). D) 
Distributions depicting the average per-subject probability (scattered dots) of repeating a 
choice (staying) after receiving positive or negative feedback during the acquisition (dark 
blue) and reversal (light blue) phases, collapsed across LSD and placebo sessions. 
Horizontal dotted line indicates chance-level stay-behaviour (33%). 
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Figure 2. A) Trial-by-trial average probability of choosing each stimulus, averaged over 
subjects, separated by drug session. A sliding 5-trial window was used for smoothing. 
The vertical dotted line indicates the reversal of contingencies. Shading indicates 1 
standard error of the mean (SE). B) Better initial learning was predictive of more 
perseveration on LSD and not on placebo. Shading indicates 1 SE. C) Distributions 
depicting the average per-subject probability (scattered dots) of choosing each stimulus 
while under placebo (shown in dark blue) and LSD (light blue). Mean value for each 
distribution is illustrated with a single dot at the base of each distribution, and the mean 
values for the probability of choosing different stimuli in each condition are connected by 
a line. One SE is shown by black error bars around the mean value. Horizontal dotted line 
indicates chance-level stay-behaviour (33%). D) Conventional analyses of feedback 
sensitivity were unaffected by LSD. Distributions depicting the average per-subject 
probability (scattered dots) of repeating a choice (staying) after receiving positive or 
negative feedback under placebo (dark blue) and LSD (light blue). Horizontal dotted line 
indicates chance-level stay-behaviour (33%). E) Effects of LSD relative to placebo on 
model parameters. Contrasts with the posterior 95% (or greater) highest posterior density 

interval [HDI] of the difference between means excluding zero (0 ∉ 95% HDI) are 

shown in red. Orange signifies 0 ∉ 90% HDI. The third row represents a difference of 
differences scores: [αrew

LSD – αpun
LSD] – [αrew

placebo – αpun
placebo]. 
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Tables 
 
Table 1. Prior distributions for model parameters 
 

Model 

parameters 

Models using 
each 
parameter 

Range Prior Reference 

reward learning 
rate, αrew 

1, 3 [0, 1] Beta(1.2, 1.2) den Ouden et al. 
(2013) 

punishment 
learning rate, αpun 

1, 3 [0, 1] Beta(1.2, 1.2) den Ouden et al. 
(2013) 

combined 
reward/punishment 
learning rate, αreinf 

2 [0, 1] Beta(1.2, 1.2) den Ouden et al. 
(2013) 

reinforcement 
sensitivity, τreinf 

1, 2, 3 [0, +∞] Gamma(α=4.82, 
β=0.88) 

Gershman (2016) 

stimulus stickiness, 
τstim 

2, 3 [–∞, +∞] Normal(0, 1) Christakou et al. 
(2013) 

Intersubject 

variability in 

parameters 

    

Intersubject 

standard 

deviations for 
αrew, αpun, αreinf, τloc 

As above [0, +∞] Half-normal: 
Normal(0, 0.05) 
constrained to ≥0 

Kanen et al. 
(2019) 

Intersubject 

standard 
deviations for τreinf 

As above [0, +∞] Half-normal: 
Normal(0, 1) 
constrained to ≥0 

Kanen et al. 
(2019)  

 

rew reward, pun punishment, reinf reinforcement, stim stimulus 
 
 
Table 2. Model comparison  
 

Rank Name Parameters log marginal 
likelihood 

log posterior P(model) 

2 Model 1 α
rew, αpun, τreinf -2401.49 -33.28 

3 Model 2 α
reinf, τreinf, τstim -2428.52 -60.32 

1 Model 3 α
rew, αpun, τreinf, τstim -2368.21 0 

 
rew reward, pun punishment, reinf reinforcement, stim stimulus 
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Supplementary information 
 

Simulation: Methods 

We simulated behavioural data from the winning model to determine how behavioural 

patterns in the synthetic data compared to the raw data. Simulated data were analysed for 

win-stay probability, lose-stay probability, acquisition performance, and perseveration, as 

was done for the original raw data analysis. For each condition (placebo and LSD), we 

simulated 100 “virtual subjects” using the posterior mean parameters from that condition, 

from the winning model, per Kanen et al. (2019).  

 

Simulation: Results  

Simulated behavioural data, generated using parameter estimates from the winning 

model, were analysed using conventional methods in order to assess whether the winning 

model could capture the observed effects of LSD on raw behaviour. Simulated data are 

shown in Supplementary Figure 1. Consistent with the original data, lose-stay probability 

was unaffected by LSD in the simulated behaviour (t99 = –0.37, p = .71, d = .03) and 

acquisition performance was also unaffected (t99 = 0.25, p = .81, d = .03). Perseveration 

was enhanced by LSD in the simulation (t99 = –2.24, p = 0.03, d = .22), which differs 

slightly from, yet is in line with, the original analyses showing an enhanced relationship 

between acquisition and perseveration under LSD. Linear regression examining whether 

correct responses during the acquisition phase (LSD minus placebo) predicted more 

perseverative errors in the reversal stage (LSD minus placebo) was not significant in the 

simulated data (β = 0.15, p = 0.13). Separate regressions for each condition also showed 

no significant relationship between acquisition performance and perseveration for LSD (β 

= 0.12, p = 0.25) or for placebo (β = 0.01, p = .91). Win-stay probability was diminished 

under LSD in the simulated data (t99 = 11.91, p = 8.21 × 10–21, d = 1.19) whereas it was 

unaffected by LSD in the raw data analysis.  
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Supplementary Figure 1. Simulated data. A) Trial-by-trial average probability of 
choosing each stimulus, averaged over simulated subjects, separated by drug session. A 
sliding 5-trial window was used for smoothing. The vertical dotted line indicates the 
reversal of contingencies. Shading indicates 1 standard error of the mean (SE). B) 
Relationship between initial learning and perseveration on LSD versus placebo in 
simulated data. Shading indicates 1 SE. C) Distributions depicting the average per-
subject probability (scattered dots) of simulated subjects choosing each stimulus while 
under placebo (shown in dark blue) and LSD (light blue). Mean value for each 
distribution is illustrated with a single dot at the base of each distribution, and the mean 
values for the probability of choosing different stimuli in each condition are connected by 
a line. One SE is shown by black error bars around the mean value. Horizontal dotted line 
indicates chance-level stay-behaviour (33%). D) Distributions depicting the average per-
subject probability (scattered dots) of simulated subjects repeating a choice (staying) after 
receiving positive or negative feedback under placebo (dark blue) and LSD (light blue). 
Horizontal dotted line indicates chance-level stay-behaviour (33%). 
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