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Summary 

Atypical teratoid rhabdoid tumors (ATRT) are incurable high-grade pediatric brain 
tumors. Concepts for molecular-driven therapies in ATRTs lag behind, mainly due to 
the absence of actionable genetic alterations. We performed genome-wide 
CRISPR/Cas9 knockout screens in six human ATRT cell lines and identified a total of 
671 context-specific essential genes. Based on these genetic dependencies, we 
constructed a library of small-molecule inhibitors that we found to preferentially inhibit 
growth of ATRT cells. CDK4/6 inhibitors, among the most potent drugs in our library, 
are capable of inhibiting tumor growth due to mutual exclusive dependency of ATRTs 
on CDK4 or CDK6. These distinct dependencies drive heterogeneity in response to 
CDK4/6 inhibitors in ATRTs. Our approach might serve as a blueprint for fostering 
the identification of functionally-instructed therapeutic strategies in other incurable 
diseases beyond ATRT, whose genomic profiles also lack actionable alterations so 
far. 
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Introduction 

Genome-scale perturbation screens are a powerful tool to dissect context-dependent 
functional networks in cancer cells on a single gene level. Loss-of-function strategies 
using shRNA or CRISPR/Cas9 techniques have thus been used to reveal genetic 
dependencies, which can guide the development of functionally-instructed therapies 
for distinct tumor entities (Ghandi et al., 2019). This approach seems to be especially 
useful for those diseases, where conventional high-throughput next-generation 
sequencing strategies failed to identify actionable and druggable molecular 
alterations. This challenge becomes particularly evident in several types of pediatric 
brain tumors (Gröbner et al., 2018), the leading cause of cancer-related deaths in 
children and adolescents.  
Atypical teratoid rhabdoid tumors (ATRT) is a highly malignant brain tumor that 
accounts for up to 50 % of all central nervous system neoplasms in the first year of 
life (Hilden et al., 2004; Ostrom et al., 2019; Woehrer et al., 2010). Loss-of-function 
alterations of SMARCB1, and rarely SMARCA4, serve as diagnostic molecular 
markers. The presence of alterations in these two components of the SWI/SNF 
chromatin remodelling complex suggests a major role for epigenetic dysregulation 
during the initiation and/or progression of ATRTs (Biegel et al., 2002; Hasselblatt et 
al., 2014; Schneppenheim et al., 2010; Versteege et al., 1998). From a clinical 
perspective, however, the loss of a tumor suppressor (e.g. SMARCB1) gene cannot 
be exploited as therapeutic target. Thus, novel approaches of molecular profiling are 
needed. 
In spite of their consistent homogeneity on the genetic level, ATRTs display a 
remarkable epigenetic and transcriptional heterogeneity (Johann et al., 2016; Torchia 
et al., 2016). Based on these studies, ATRTs are currently segregated into three 
molecular subgroups: ATRT-SHH (formerly group 1), ATRT-TYR (group 2A), and 
ATRT-MYC (group 2B) (Ho et al., 2020). Whereas these distinct molecular profiles 
clearly correlate with clinical features, such as patient age and tumor location, it 
remains elusive if these molecular subgroups also enable molecular-driven 
therapeutic strategies. 
We hypothesized that genome-wide essentiality screens will identify genetic 
dependencies and functionally relevant molecular targets in ATRTs despite their 
“untargetable” genetic profile. Indeed, negative selection CRISPR/Cas9 knockout 
screens and informed small-molecule drug assays converged to reveal targetable 
vulnerabilities in ATRTs. These vulnerabilities were independent from molecular 
subgroups of ATRTs, suggesting a dominant role of the shared SMARCB1 alteration 
as a predisposing genetic factor to the discovered set of vulnerabilities. Our data 
provide a first comprehensive overview of genetic essentialities in ATRTs and reveal 
clinically available agents such as CDK4/6 inhibitors that might enable rapid 
translation to improve the outcome of ATRT patients. Most importantly, our study 
demonstrates the utility of large-scale functional genetic screening and subsequent 
validation in relevant preclinical models as a powerful platform approach for 
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functionally-instructed target discovery in cancer entities lacking actionable genetic 
mutations.  
 

Results 

CRISPR/Cas9 knockout screens reveal genetic dependencies of 

ATRTs 

In preparation for a large-scale perturbational screening approach, we first performed 
a detailed characterization of a set of seven human ATRT cell lines (BT12, BT16, 
CHLA02, CHLA04, CHLA05, CHLA06, CHLA266) including genetic, epigenetic, and 
transcriptional profiling. ATRT cell lines presented rather stable genomes with the 
exception of the SMARCB1 locus which was altered in all cell lines by either copy 
number loss and/or single nucleotide variation (Figure S1A,B; Table S1). No fusion 
genes were detected by RNA-seq analyses (data not shown). Based on global DNA 
methylation, ATRT cell lines matched best to primary ATRTs in a reference cohort of 
> 2,800 CNS tumors (Figure 1A). To further affiliate these cell lines with previously 
described molecular subgroups of ATRTs (Ho et al., 2020), we employed both gene 
set enrichment analyses and machine-learning prediction approaches on global 
transcriptional and DNA methylation profiles, respectively. Three cell lines (CHLA02, 
CHLA04, CHLA05) were consistently assigned to the ATRT-SHH (group 1) subgroup 
(Figure S1C-F). The remaining four cell lines (BT12, BT16, CHLA06, CHLA266) 
displayed a considerable degree of heterogeneity with respect to subgroup-specific 
epigenetic and transcriptional profiles. Yet, when taking our whole molecular data set 
into account, we suggest that BT12, BT16, CHLA06, CHLA266 cells fit best to the 
ATRT-TYR/MYC molecular subgroup (group 2) (Fig. S1G) as has been recently 
suggested (Ho et al., 2020). Thus, our collection of ATRT cell lines recapitulates the 
epigenetic and transcriptional diversity of primary ATRTs. 
To identify potential drug targets for ATRTs in an unbiased manner, we next 
performed genome-wide CRISPR/Cas9 knockout screens using the previously 
described Brunello library (Doench et al., 2016) in order to derive a list of context-
specific genetic dependencies in ATRTs (Figure 1B). Each cell line was transduced 
with the library at a MOI of 0.3 and cultured for 21 days in three technical replicates. 
Massive parallel sequencing was subsequently used to quantify gRNA integrants. 
Replicates agreed well for six out of seven screens, indicating consistent screen 
results in all cell lines except CHLA02 (Pearson r < 0.7 for technical replicates; Figure 
S2A; Table S2). The CHLA02 line was therefore omitted from further screen 
analyses. As expected, deep sequencing revealed a significant reduction in the 
diversity of gRNAs in ATRT screens as compared to the initial Brunello library 
plasmid pool from which the library virus was produced (Kolmogorov-Smirnov test p 
< 0.0001 for all screens, Figure 1C; Figure S2B). Known common essential genes 
showed strong gRNA depletion versus negative controls, indicating good screen 
signal for gRNAs that affect cell proliferation. On the gene level, we identified an 
average of 1,055 (range 480-1529) essential genes at FDR of 10 % across ATRT cell  
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Figure 1. CRISPR/Cas9 knockout screens reveal genetic dependencies of ATRTs. (A) t-SNE dimensionality 
reduction of global DNA methylation profiles from seven human ATRT cell lines (indicated in red) and a reference 
cohort of 2,801 primary CNS tumors. (B) Overview of experimental approach using CRISPR/Cas9 knockout 
screens to identify ATRT-specific genetic dependencies. (C) Cumulative frequency of log2 normalized gRNA read 
counts from six CRISPR/Cas9 knockout screens of distinct ATRT cell lines and the corresponding plasmid 
reference. (D) Bar graph showing the total number of identified dependencies in six ATRT cell lines at indicated 
false discovery rate (FDR). (E) Volcano blot illustrating depletion and enrichment on the gene level averaged 
across CRISPR/Cas9 screens in six ATRT cell lines. Known non-essential and pan-essential genes, as well as 
genes that are not known to be pan-essential but are significantly depleted across ATRT cell lines (≥ 4 cell lines) 
are color-coded. (F) Top 10 most significantly enriched gene ontology terms in ATRT-specific genetic 
dependencies. (G) Drug Gene Interaction database categorization of ATRT-specific essential genes into 
druggable categories, with 4 sub-categories depicted. For each category, selected genes are listed. See also 
Figures S1, and S2; Tables S1, and S2. 
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lines (Figure 1D; Table S2), showing a significant enrichment for pan-essential genes 
involved in key cellular processes (Figure S2C, D). After correction for pan-essential 
genes, we identified 124-405 context-specific essential genes (671 genes in total) per 
ATRT cell line, including 197 essentials that were depleted in four or more cell lines 
(Figure 1E; Figure S2E). Further gene ontology analyses of these essentials revealed 
significant enrichment of distinct functional annotations including dependencies 
associated with chromatin remodeling, being well in line with the notion that ATRTs 
are an epigenetically driven disease (Figure 1F; Figure S2F,G). We next aimed to 
nominate potential targets for pharmacologic inhibition in ATRTs. To first test the 
coherence of genetic and chemical vulnerabilities in our dataset, we used the Drug 
Signatures Database (Yoo et al., 2015) to benchmark our screens based on the 
previously described sensitivity of ATRTs to tyrosine kinase inhibitors (Oberlick et al., 
2019; Torchia et al., 2016). Using a set of non-ATRT cell lines previously screened 
with the Brunello library as a reference (DeWeirdt et al., 2020), we found 16 kinase 
inhibitor-induced signatures such as that produced by the multi-kinase inhibitor 
lenvatinib to be significantly enriched (nominal p value < 0.1) in ATRT-specific 
depleted genes (Figure S2H). Reassured by the concordance of our screens with 
previous results, we next searched the druggability of 671 context-specific essential 
genes from ATRT cell lines using the Drug Gene Interaction database (DGIdb) (Cotto 
et al., 2018), and found that 245 of these genes are in druggable categories (Figure 
1G). Among these are 37 genes which can be modulated with clinically available 
compounds, including cyclin-dependent kinases, receptor tyrosine kinases (RTKs), 
and regulators of p53 signaling. Taken together, our functional genomics approach 
provided the basis for subsequent functionally-instructed investigations of molecular-
based targeted therapies in ATRTs. 
 

Gene expression is the primary predictor for genetic dependencies 

in ATRTs 

The ability to predict gene essentiality from tumor features can provide further 
insights into the molecular biology of a given tumor and guide patient stratification. 
Best predictors for essentialities in cancer cell lines are genetic drivers (oncogene 
addiction), synthetic lethal interactions, and most notably mRNA expression levels 
that account for the vast majority of genetic dependencies (McDonald et al., 2017; 
Tsherniak et al., 2017). We therefore first used an in silico analysis to predict 
oncogenic mutations present in our ATRT cell lines, yielding a list of 30 potentially 
tumor-driving genetic alterations (Table S1). Only one of those mutations coincided 
with a significant gene dependency, which was, however, also present in three other 
cell lines not carrying this mutation. Thus, oncogene addiction is not a predictor of 
gene essentiality in our cell lines, being in line with the notion that loss of SMARCB1 
is the only recurrent tumor-driving event in ATRTs.  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 9, 2020. ; https://doi.org/10.1101/2020.12.09.417378doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.09.417378
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 
 

 

 

 

Figure 2. Gene expression is the primary predictor for genetic dependencies in ATRTs. (A) Heatmap 
illustrating the enrichment of TP53 and the depletion of negative regulators of p53 signaling MDM2 and MDM4 in 
CRISPR/Cas9 knockout screens of ATRT cell lines. (B) CDK4 dependency scores plotted versus mRNA 
expression of CDK6 in ATRT cell lines. (C) Scatterplot based on a two-dimensional Kernel density estimation 
illustrating the correlation of dependency scores and mRNA expression averaged across six ATRT tumor cell 
lines. (D) Correlation of dependency scores and mRNA expression for 671 ATRT-specific genes. The y axis 
represents the number of genes, and the x axis illustrates the corresponding Pearson correlation coefficients in 
0.1 bins. The dotted line shows the empirical null distribution. Significance was determined using the Wilcoxon 
rank sum test with continuity correction. (E) Selected genes with strong expression-based dependency profiles 
across ATRT cell lines. Genes determined to be essential by the STARS algorithm are indicated in red.  
 

In contrast, we identified several previously described synthetic lethal dependencies 
(McDonald et al., 2017). All TP53 wild-type ATRT cell lines were sensitive to loss of 
negative regulators of p53 signaling MDM2 and MDM4 (Figure 2A), representing a 
vertical pathway synthetic lethal dependency. Of note, loss of TP53 enhanced 
proliferation of all ATRT cell lines as the top enriched gene across our screens, 
further supporting previous results describing the p53 axis as a therapeutic 
vulnerability in rhabdoid tumors (Howard et al., 2019). As an example for an 
expression driven paralog lethality, we identified low expression of CDK6 to predict 
CDK4 dependency in ATRT cells (Figure 2B), a feature also seen in other tumor 
types regardless of tissue origin (McDonald et al., 2017). Due to the overall low 
mutational burden and stable genomes of ATRTs, we reasoned that the majority of 
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dependencies might be driven by high expression of the corresponding gene, as is 
true for most cancer dependencies (McDonald et al., 2017). Indeed, we observed an 
overall negative correlation between DNA promoter methylation and mRNA gene 
expression across ATRT cell lines (Pearson’s r = -0.38). We next correlated mRNA 
expression with gene level dependency across all ATRT cell lines, revealing a 
negative correlation, where high gene expression is associated with gene essentiality 
(Figure 2C). These data suggest that dependencies shared across all ATRT lines are 
best explained by high expression of the corresponding gene, but it does not explain 
whether gene expression differences between ATRT cell lines also account for 
distinct gene essentiality in subsets of ATRT lines. We therefore correlated 
dependencies with mRNA expression for 671 ATRT-specific essential genes by 
determining the Pearson correlation coefficient for each gene individually across 
ATRT cell lines (Figure 2D). We observed a statistically significant shift towards a 
negative correlation of gene dependency and expression, suggesting that essentiality 
may be predicted to a useful extent by high mRNA expression for some genes. For 
several clinically targetable genes, such as CCND2, FGFR2, and ERBB4 (Figure 
2E), the correlation is strong across the ATRT cell lines, suggesting that expression 
of these genes may be useful as markers for patient stratification. 
 

CRISPR screens guide the identification of chemical dependencies 

in ATRTs 

We reasoned that the list of ATRT-specific genetic dependencies could be used to 
select potential drugs for a molecular-based therapy in ATRTs. Using the DGIdb, we 
therefore generated a chemical library of 44 distinct small-molecule inhibitors, 
consisting of 37 compounds described as inhibitors of context-specific genetic 
dependencies in ATRT cell lines, five compounds previously shown to be efficacious 
in ATRTs in a subgroup-dependent manner (Torchia et al., 2016), and two broadly 
cytotoxic agents (Figure 3A). Using a three dose drug screen, we determined the 
effects of this library on the viability of seven ATRT cell lines and 12 non-ATRT 
control cell lines representing a diverse set of brain, blood, lung, and soft tissue 
tumors (Figure S3). To account for substantial differences in the division rate of 
tested cell models (doubling time range 23 h – 135 h for all cell lines; ATRT-SHH: 
113 h ± 24; ATRT-TYR/MYC: 57 h ± 19), we used growth rate inhibition (GR) and 
area-over-the-curve-response curves (AOC) metrics previously shown to be 
independent of cell division rate (Hafner et al., 2016) to measure potency and 
efficacy of each small molecule. As evidenced by unsupervised hierarchical 
clustering, the majority of ATRT cell lines showed a highly homogenous response to 
our drug library, and inhibitors with overlapping target profiles clustered together, 
suggesting on-target activity (Figure 3B; Table S3). Overall, all inhibitors that were 
picked on the basis of ATRT CRISPR screens (n = 37) were more potent in ATRT 
cell lines as compared to non-ATRT cell lines (Wilcoxon rank sum test P = 2.2 x 10-

16; Figure 3C), providing evidence for a tumor-specific sensitivity to these classes of 
compounds.  
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Figure 3. CRISPR screens guide the identification of chemical dependencies in ATRTs. (A) Schematic 
illustrating the identification of an informed drug library based on ATRT-specific genetic dependencies and 
downstream drug screening. (B) Unsupervised hierarchical clustering (1 minus Pearson correlation, average 
linkage) of z-scored growth rate inhibition area-over-the-curve values (GRAOC) derived from a three dose drug 
screen in 19 different cancer cell lines. ATRT tumor cell lines are indicated in red. Small-molecules chosen based 
on CRISPR/Cas9 screening results (n=37) are shown in black. (C) Kernel density estimation of z-scored GRAOC 
values from CRISPR/Cas9 screen-based small-molecules (n=37) grouped by ATRT and non-ATRT cell lines. 
Significance was determined using the Wilcoxon rank sum test with continuity correction (r = Wilcoxon effect 
size). (D) Neurotoxicity testing of selected small-molecules (GRmax < 0.5 in at least four ATRT cell lines, n=20) on 
postmitotic cerebellar granule neurons and human astrocytes. Bar graph on the right shows the number of 
compounds that do not significantly inhibit viability of either granule neurons or astrocytes as determined by one-
way ANOVA compared to DMSO control (n=4, duplicate for each condition). Venn diagram on the right shows the 
overlap of small-molecules that are not toxic to either neurons or astrocytes. See also Figure S3; Table S3. 
 

In fact, 11 of 37 inhibitors displayed a significantly higher potency in ATRT cell lines 
compared to non-ATRT cell lines as judged by GRAOC values (p < 0.05, two-way 
ANOVA with Sidak correction). By ranking both on potency across ATRT cell lines 
and fold change sensitivity over non-ATRT cell lines, the top 10 hits included a 
diverse set of inhibitors of cyclin-dependent kinases (CDKs), epidermal growth factor 
(EGF) and phosphoinositide 3-kinase (PI3K) signaling, mitogen-activated protein 
kinases (MAPK), as well as other inhibitors targeting distinct cellular components 
such as the Na/K-ATPase and the proteasome. 
Many of those drugs significantly inhibit the growth of ATRT cells, but they might also 
exhibit substantial toxicity to normal cells, thereby limiting their use in a clinical 
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setting. To test the neurotoxicity profile of the most promising compounds in our 
library, we tested drugs with the most reliable efficacy in GR inhibition across ATRT 
cells lines (GRMAX < 0.5 in at least 4 ATRT lines, n = 20) on post-mitotic cerebellar 
granule neurons and astrocytes. Overall, 9 compounds including inhibitors of 
CDK4/6, MAPK, and EGF signaling did not significantly inhibit viability of normal cells 
(one-way ANOVA, compared to DMSO control; Figure 3D), suggesting that these 
classes of compounds represent chemical vulnerabilities of ATRTs with a broad 
therapeutic window. 
ATRT subgroups exhibit distinct chemical sensitivities (Torchia et al., 2016). We 
therefore re-analyzed both our genetic and chemical dependency screens, focusing 
on differential vulnerabilities of ATRT-SHH (group1) and ATRT-TYR/MYC (group 2). 
We first used multi-set intersection analyses (Wang et al., 2015) to investigate a 
potential subgroup-specific, differential enrichment of context-specific genetic 
dependencies from our ATRT CRISPR screens. All possible intersections of 
essentialities between any two ATRT cell lines were highly significant (Bonferroni 
adjusted p-values < 2.39 x 10-101, fold enrichments > 33.67; Figure 4A), possibly 
underlining the common oncogenic event shared by all ATRTs. However, we did not 
find any apparent clustering of dependency intersections associated with ATRT 
subgroups. For example, while ATRT-SHH cell lines (CHLA04 and CHLA05) share 
152 genetic dependencies, CHLA05 ATRT cells share many more essentialities with 
most of ATRT-TYR/MYC cell lines (average 173, range 72 – 225), and CHLA04 cells 
show a similar overlap with these cell lines (average 131, range 76 – 157). In line 
with these findings, pairwise dependency set similarities as measured by Jaccard 
indices and corresponding p-values of intersections do not support a subgroup-driven 
enrichment of single gene dependencies in ATRTs (Figure 4B). However, chemical 
vulnerabilities, especially those involving multi-targeted inhibitors, might actually not 
be directly related to single gene dependencies. Analyzing the mean GRAOC in our 3 
dose drug screen testing 44 small-molecules, there was a highly significant positive 
correlation between ATRT-SHH and ATRT-TYR/MYC cell lines (Figure 4C), 
indicating that cell models from distinct ATRT subgroups show similar sensitivity to 
most drugs in our library. To further strengthen these results, we performed detailed 
15 point GR dose-response analyses for selected compounds from our library that 
might show selectivity for ATRT subgroups based on preliminary data from our 3 
dose drug screen (Figure 4D; Table S3). Both dasatinib and nilotinib, multi-targeted 
kinase inhibitors previously described to selectively inhibit viability of ATRT-
TYR/MYC cell lines (Torchia et al., 2016), did not show any significant difference in 
their ability to inhibit the growth rate of ATRT-SHH and ATRT-TYR/MYC cell lines 
(unpaired t test of GR50 values). In essence, none of the selected drugs from our 
informed chemical library including inhibitors of RTKs and CDKs displayed a 
significant selectivity for a specific ATRT subgroup. Together, these data strongly 
suggest that chemical vulnerabilities are a result of entity-specific molecular 
mechanisms in ATRTs, rather than a consequence of epigenetic and transcriptional 
features defining ATRT subgroups. 
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Figure 4. Chemical vulnerabilities are independent from molecular subgroups in ATRTs. (A) Multi-layer 
circular plot illustrating all possible intersections of ATRT-specific essential genes from six ATRT cell lines. The 
inner panels show absence (white) or presence (blue) of a specific cell line in a given intersection. The outer bar 
height represents the intersection size, and the bar color intensity represent statistical significance. (B) Heatmaps 
illustrating the Jaccard indices (left) and the corresponding significance (right) of pairwise intersections of ATRT-
specific essential genes. The order of the heatmap was determined by unsupervised hierarchical clustering (1 
minus Pearson correlation, average linkage) of the samples based on their Jaccard indices. (C) Scatterplot show-
ing the correlation of mean GRAOC values from ATRT-SHH and ATRT-TYR/MYC cell lines for all 44 small-
molecules from the ATRT drug library tested in a 3 dose drug screen (see Figure 3). (D) 15 point growth rate 
dose-response-curve analyses for selected small-molecules in ATRT-SHH (CHLA02, CHLA04, CHLA05) and 
ATRT-TYR/MYC (BT12, BT16, CHLA06, CHLA266) cell lines. Mean GR50 values for ATRT-SHH and ATRT-
TYR/MYC subgroup cell lines are shown. 

 

CDK4 and CDK6 are distinct predictors of CDK4/6 inhibitor 

sensitivity in ATRTs 

CDK4/6 inhibitors were among the most potent small-molecules in our drug screen, 
which preferentially inhibited growth of ATRT cell lines, while sparing normal neural 
cell types. CDK4/6 inhibition is predicted to lead to cell cycle arrest in G1 phase, and 
this is also true for ATRT cell lines (Figure S4A). To first test the general feasibility of 
CDK4/6 inhibition as a therapeutic strategy for ATRTs, we again performed detailed 
dose-response analyses on several ATRT cell lines including ATRT-311FHTC, a 
PDX-derived ATRT-SHH cell line (Brabetz et al., 2018), using abemaciclib, the most 
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potent CDK4/6 inhibitor in our drug screen. In keeping with our above findings using 
palbociclib (Figure 4D), abemaciclib exerted a cytotoxic effect in all cell lines, but did 
not show a significant difference in its potency towards ATRT-SHH and ATRT-
TYR/MYC cells (Figure 5A). Furthermore, ATRT cell lines showed a similar sensitivity 
to abemaciclib in colony formation assays as MCF7 cells (Figure 5B), an ER+ breast 
cancer line known to be highly susceptible to CDK4/6 inhibition (Finn et al., 2009). To 
test the efficacy of abemaciclib in inhibiting ATRT tumor growth in vivo, we next 
employed a orthotopic xenograft mouse model using BT16 as a model for ATRT-
MYC. Mice treated orally with abemaciclib (75mg/kg) for 3 weeks had significantly 
prolonged survival compared with corresponding vehicle-treated controls (p = 0.0202; 
Figure 5C), arguing that abemaciclib is able to cross the blood-brain-barrier as 
suggested previously (Raub et al., 2015) to inhibit ATRT tumor growth in vivo.  
To gain further insights into the mechanisms underlying CDK4/6 inhibitor sensitivity in 
ATRTs, we first re-investigated our CRISPR screen dataset. All ATRT cell lines 
depend on either CDK4 or CDK6 expression in a mutually exclusive manner, a 
pattern recapitulated by most human cancer cell lines (Figure S4B), and this did not 
correlate with the three molecular subgroups (Figure 5D). Validating this by shRNA-
based knockdown approaches, we found that knockdown of either CDK4 or CDK6 
differentially inhibited the proliferation of distinct ATRT cell lines in line with our 
CRISPR screen results (Figure 5E). In addition, BT16 and CHLA06 cell lines were 
also differentially dependent on distinct D type cyclin paralogs, further supporting a 
heterogeneous mechanism underlying CDK4/6 inhibitor sensitivity in CDK4- versus 
CDK6-dependent ATRTs. We reasoned that differential expression of members of 
the CDK/D-type cyclin axis might be responsible for this heterogeneity, as already 
suggested by our findings that low expression of CDK6 predicts CDK4 dependency 
(Figure 2B). We validated this synthetic lethal interaction by investigating protein 
expression levels in ATRT cell lines, which also uncovered an unexpected 
heterogeneity in the expression of CDKs and D-type cyclins (Figure 5F). Indeed, we 
identified cyclin D2 and CDK6 expression as a molecular predictor for CDK4- and 
CDK6-dependent cell lines: while CDK4 expression does not predict CDK4 
essentiality, CDK4-dependency strongly correlated with CCND2 expression (Figure 
5G) and a complete lack of CDK6 protein detection. In contrast, CDK6-dependent 
ATRT cells show high expression of CDK6, both on the mRNA and protein level. 
Notably, this correlation is conserved across human cancer cell lines, where low 
expression of CDK6 is correlated with CDK4 dependency, whereas high expression 
of CDK6 is a predictor for CDK6 dependency itself (Figure S4C). However, CDK4 
dependency across diverse lineages of tumor cell lines is clearly correlated with high 
expression of cyclin D1 rather than cyclin D2, contrasting our results from ATRT cell 
lines. To further validate our surprising data in clinical samples, we tested protein 
expression of CDK6 and cyclin D2 in 17 primary ATRTs histology samples using 
immunohistochemistry (Figure 5H). In fact, we found a clear negative correlation of 
CDK6 and cyclin D2 protein expression (Pearson’s r = -0.53), where high CDK6 
expression correlated with low cyclin D2 expression, and vice versa (Figure 5I).  
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Figure 5. CDK4 and CDK6 are distinct predictors for CDK4/6 inhibitor sensitivity in ATRTs. (A) 15 point 
growth rate dose-response-curve analyses for the CDK4/6 inhibitor abemaciclib in ATRT-SHH (CHLA02, 
CHLA04, CHLA05, ATRT-311FHTC) and ATRT-TYR/MYC (BT12, BT16, CHLA06, CHLA266) cell lines. (B) 
Colony-formation assay of several ATRT cell lines treated with abemaciclib. An ER+ breast cancer cell line 
(MCF7) and a medulloblastoma cell line (UW228) are also shown as reference. (C) Kaplan-Meier survival 
analysis of a BT16 cell-based intracranial transplantation mouse model treated daily with 75mg/kg abemaciclib (n 
= 8) or vehicle (n = 7), monitored for 130 days after tumor cell transplantation. (D) Heatmap illustrating gene level 
log fold changes and corresponding FDR statistics for CDK4, CDK6, and all D type cyclins in ATRT CRISPR 
knockout screens. (E) Bar graphs showing the effect of shRNA-mediated knockdown of CDK4, CDK6, CCND1, 
CCND2, and CCND3 in BT16 and CHLA06 cells (n = 3 independent experiments; 2 distinct shRNAs for each 
target; Two-way ANOVA with Dunnett correction for multiple comparisons). As a control, a shRNA for knockdown 
of the pan-essential gene RPL14 was included, and values were normalized to the effect of a shRNA targeting the 
luciferase gene. Genes in red were determined to be essential in the corresponding cell line by CRISPR screen. 
Data are mean ±SEM. (F) Western blot analyses showing the protein expression levels of CDK4, CDK6, and D 
type cyclins in the indicated ATRT cell lines. (G) Correlation analyses to illustrate CDK4 or CDK6 dependency 
prediction by CCND2 and CDK6 mRNA expression. Pearson’s r values are shown. (H) Representative H&E 
stains and immunohistochemistry for CDK6 and cyclin D2 (DAB as brown chromogen) in sections from FFPE 
ATRT tissue from 6 distinct patients ordered by column. (I) Correlation analysis of immunoreactivity for CDK6 and 
cyclin D2 in primary ATRT tissue from a total of 17 patients. See also Figure S4. 
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Together, our data suggest that ATRT cells segregate into two groups with distinct 
dependencies within the CDK4/6-D type cyclin axis, making them highly susceptible 
to CDK4/6 inhibition. 

CDK4 and CDK6 dependency drives heterogeneity in response to 

CDK4/6 inhibition 

Finally, we aimed to investigate to what extent these differences in CDK4/6 
dependency affect downstream molecular mechanisms in ATRT cells, and, from a 
clinical perspective, whether this will predict the response of ATRT to CDK4/6 
inhibition. Grouping ATRT cell lines according to CDK4 or CDK6 dependency, we 
found a highly significant difference in global gene expression profiles with a total of 
2,643 dysregulated genes (│log2 fold change│ ≥ 1; adjusted p < 0.01), which we did 
not detect by randomly assigning CDK4 or CDK6 dependency status to ATRT cells 
(Figure 6A, Table S4). While most enriched gene ontologies were clearly associated 
with the regulation of signaling pathways, mutually exclusive enrichment of functional 
terms such as MAPK or G protein-coupled receptor signaling further supported 
distinct biological processes active in CDK4- and CDK6-dependent ATRT cells 
(Figure 6B, Table S4). We further assessed possible cellular heterogeneity in the 
response to CDK4/6 inhibition related to CDK4 and CDK6 dependency. To this end, 
we performed single cell RNA-seq (scRNA-seq) on CDK4- and CDK6-depencent 
ATRT cells (BT12, BT16, CHLA06) treated with abemaciclib or vehicle. Data from an 
average of 4,383 DMSO-treated and 3,816 abemaciclib-treated cells per cell line that 
met quality control criteria were used for transcriptomic analysis. Visualization of the 
data from vehicle-treated cells via uniform manifold approximation and projection 
(UMAP) revealed that ATRT cells were broadly segregated according to their CDK4 
and CDK6 dependency status (Figure 6C). Distinct cell populations recapitulated 
gene expression profiles with respect to marker genes of distinct CDK dependencies 
(Figure 6D, Figure S5A). Further analyses identified nine transcriptionally distinct cell 
cluster that were unrelated to cell cycle phase (Figure 6E, Figure S5B). Of note, 
clusters 1, 4, 5, and 6 contained cells from all ATRT cell lines, but were largely 
dominated by CDK6-dependent BT12 (cluster 1, 6) and BT16 cells (cluster 1, 4, 5), 
whereas cluster 8 only contained cells from BT12 cells. In contrast, transcriptionally 
distinct cell clusters 2, 3, 7, and 9 were exclusively comprised of CHLA06 cells, thus 
containing the vast majority of this ATRT cell line. These results suggest that ATRT 
cell lines present inter- and intratumoral heterogeneity that is at least in part driven by 
differential CDK4 and CDK6 dependency. 
We next incorporated data from the same ATRT cell lines treated with abemaciclib 
and found that, in each cell line, abemaciclib treatment induced a strong shift of 
discrete subpopulations that were either enriched or depleted (Figure 6F), suggesting 
that intratumoral heterogeneity contributes to differential response to CDK4/6 
inhibition. In addition, using all cell lines together, cells still clustered by cell line 
rather than treatment condition (Figure S5C), suggesting that CDK4/6 inhibition does  
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Figure 6. CDK4 and CDK6 dependency drives heterogeneity in response to CDK4/6 inhibition. (A) Volcano 
plot illustrating global gene expression differences in CDK4- and CDK6-dependent ATRT cell lines. (B) Selected 
gene ontology terms enriched in CDK4- and CDK6-dependent ATRT cell lines. (C) UMAP dimensionality 
reduction of scRNA-seq data from control BT12, BT16, and CHLA06 ATRT cell lines. (D) UMAP embedding of 
scRNA-seq data from control BT12, BT16, and CHLA06 cell lines with enrichment projection of gene signatures 
indicative of CDK4 or CDK6 dependency derived from bulk RNA-seq data (genes with log2 fold change > 4). (E) 
UMAP projection of single cell profiles from control BT12, BT16, and CHLA06 cell lines clustered by 
transcriptional similarities (top). Bar chart indicates cell cluster composition of cell lines (bottom). (F) UMAP 
embedding with superimposed Kernel density estimation for abemacilib- and vehicle-treated cells individually 
plotted for each cell line. The density estimate for each cell from treated and untreated conditions was calculated, 
and a Δ density contrast (abemaciclib – vehicle) was constructed to determine cell populations either enriched (> 
80th percentile of all Δ values) or depleted (< 20th percentile) under abemaciclib treatment. (G) UMAP embedding 
and clustering of scRNA-seq data from BT12, BT16, and CHLA06 cells treated with vehicle (DMSO) or 
abemaciclib. Dominating cell type for clusters is indicated. (H) Heatmap showing unsupervised hierarchical 
clustering of cell cluster and the expression of the top 20 markers per cluster across a total of 24,597 single cells 
from BT12, BT16, and CHLA06 cells treated with vehicle (DMSO) or abemaciclib. (I) Heatmap illustrating 
enrichment of top 10 process networks in marker genes for each cell cluster. 
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not impose major transcriptional changes in ATRT cells. However, abemaciclib 
treatment induced a strong G1 cell cycle arrest in all cell lines (Figure S5D, E). 
Clustering based on transcriptional features revealed 10 distinct cell clusters, still 
largely segregated by differential dependency on CDK4 or CDK6 (Figure 6G). Similar 
to vehicle-treated ATRT cell lines, most clusters were dominated by one cell line. 
However, we did not observe a cluster-specific association with a particular treatment 
condition (Figure S5F), again suggesting that cluster identity is mainly driven by cell 
intrinsic mechanisms rather than CDK4/6 inhibition. A notable exception is cluster 7, 
and to lesser extent cluster 6, which were greatly diminished under CDK4/6 inhibition. 
This is in line with the fact that these clusters were almost exclusively comprised of 
cells in S or G2/M phase (Figure S5G), which are expected to be preferentially 
depleted under CDK4/6 inhibition. Cell clusters dominated by the same cell line were 
highly similar with respect to their marker gene expression (Figure 6H). Accordingly, 
we observed distinct molecular phenotypes enriched in clusters dominated by 
different cell lines, including mitochondrial energy processes, RNA metabolism, and 
cell migration (Figure 6I). These data indicate that, apart from G1 cell cycle arrest, 
ATRT cells respond differently to CDK4/6 inhibition, and that differences in response 
might at least in part be attributed to gene expression profiles associated with CDK4 
and CDK6 dependency in ATRTs. 
 

Discussion 

High-throughput next-generation sequencing is a powerful approach to discover 
molecular alterations in disease entities and to drive translational innovations, e.g. by 
molecular-based patient stratification and/or molecular-driven therapies. Yet, the 
translational impact of next-generation sequencing can only be fully exploited if 
actionable genetic alterations are present in the investigated tissue. Consequently, 
the impact on molecular-driven clinical innovations in diseases without actionable 
genetic alterations, like ATRT, is rather limited. Furthermore, genomics or 
transcriptomics alone provide a “static” molecular analysis and thereby leaves out 
any alterations by adaptivity. Functional genomics and subsequent validation steps in 
clinically relevant models might bridge these limitations. We applied this novel 
approach to ATRTs, an incurable pediatric brain tumor. Our study provides an 
unprecedented view of genetic dependencies in ATRTs at genome scale, and 
illustrates various molecular mechanisms underlying tumor cell-specific 
dependencies.  
We identified known molecular feature/dependency interactions (McDonald et al., 
2017; Tsherniak et al., 2017) in the ATRT cell lines, confirming their utility for the 
purpose of our study. The genetic profile combined with our CRISPR screen data 
(Figure S1, Figure 2) suggests inactivation of SMARCB1 as the sole recurrent 
genetic driver in ATRTs supporting previous studies (Johann et al., 2016; Torchia et 
al., 2016). In contrast, synthetic lethal interactions, in which a non-self-association is 
correlated with a specific genetic dependency, account for some of the observed 
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essentialities. All ATRT cell lines were highly sensitive to alterations in the p53 
signaling pathway (Figure 2), in line with observations that rhabdoid tumors are 
particularly sensitive to MDM2/4 inhibition (Howard et al., 2019). Furthermore, the 
CDK4/6 signaling axis in ATRTs reflects distinct mechanisms of gene essentiality, 
contributing to mutual exclusive dependencies on either CDK4 or CDK6. While CDK4 
dependency is strongly correlated with low CDK6 expression, representing a 
synthetic lethal interaction present in diverse sets of tumor entities (McDonald et al., 
2017), CDK6 essentiality itself is an mRNA expression-based genetic dependency. 
Small-molecule inhibitor screening revealed a striking sensitivity of ATRT cells over 
non-ATRT cells to compounds that we selected based on context-specific 
dependencies from ATRT CRISPR screens (Figure 3). We are aware that genetic 
dependencies such as CDK4 and CDK6 are not ATRT-specific per se and occur in a 
variety of distinct tumor entities. However, the unique combination of context-specific 
dependencies might well be specific for ATRT cells as suggested by our drug screen. 
In particular, the potential mechanisms of escape for ATRT from targeting of any of 
these dependencies may share some commonalities in ATRT versus other cancers. 
Thus, our data might pave the way for novel investigations on resistance 
mechanisms and potential synergistic combinations in ATRTs.  
Of note, the dependencies identified by CRISPR screening and corresponding 
chemical vulnerabilities in our study do not correlate with specific molecular ATRT 
subgroups (Figure 4). This finding is in contrast to a previous study observing 
subgroup-specific sensitivities in ATRTs. Yet, this study relied on relative viability 
assays (Torchia et al., 2016). As the quantification of drug assays using relative cell 
counts can be largely confounded by the cell division rate of in vitro model systems 
(Hafner et al., 2016; Hafner et al., 2017), we suggest that the lack of subgroup-
specific chemical vulnerabilities in our study are due to our different experimental 
approach. The impact of cell division rates on quantifications of drug sensitivities 
might be of particular importance when using ATRT cell lines, because these cells 
present a wide range of doubling times, with ATRT-SHH cell lines dividing 
substantially slower than ATRT-TYR/MYC cells, thereby preventing reliable 
quantification of drug potencies based on relative cell counts. Our analyses using 
growth rate inhibition drug dose-responses (Figure 3) are in line with intersection 
analyses of genetic dependencies from ATRT cells, which did not provide any 
evidence for subgroup-specific enrichment. Since the best common genetic predictor 
for our identified subgroup-independent ATRT dependencies is loss of the tumor 
suppressor SMARCB1, we suggest to investigate these vulnerabilities in other 
SMARCB1-deficient tumors beyond ATRTs, e.g. extracranial rhabdoid tumors, 
epithelioid sarcomas, or malignant peripheral nerve sheath tumors (Margol and 
Judkins, 2014). 
According to our data, CDK4/6 inhibitors are among the most promising candidates 
for molecular-driven therapies in ATRT patients as these compounds showed 
preferential efficacy in ATRT cells over non-ATRT cells, while sparing normal brain 
cell types. In addition, CDK4/6 inhibitors have a well-known safety profile as they 
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have approval for treatment of certain types of breast cancer (Wu et al., 2020) and 
cross the blood-brain barrier (Nguyen et al., 2019).  
Our study reveals for the first time a mutual exclusive dependency pattern of CDK4 
and CDK6 in ATRT cells (Figures 5), which correlates with a distinct downstream 
gene expression profile (Figure 6). Since all currently available CDK4/6 inhibitors 
have similar affinities to both CDK4 and CDK6 (Marra and Curigliano, 2019), it is 
unlikely that the potency of a current inhibitor is influenced by CDK4 and CDK6 
dependency in ATRT cells, and we detected no such tendency in ATRT cell lines. 
However, we identified distinct bulk and single cell gene expression profiles 
corresponding to distinct CDK dependencies in ATRT cell lines, and primary ATRTs 
might display these differences as well as evidenced here by negative correlation of 
CDK6 and cyclin D2 protein expression levels (Figure 5). While clonal heterogeneity 
has been recently suggested also in primary ATRTs (Jessa et al., 2019), our data 
show that this type of heterogeneity shapes the molecular response of ATRT cells to 
CDK4/6 inhibition. This suggests that CDK4- and CDK6-dependent ATRT cells might 
display differential mechanisms of synthetic lethal interactions and resistance in 
response to CDK4/6 inhibition, that in turn might enable potential combination or 
sequential therapies. Genome-scale perturbation screens will be a promising 
experimental approach to answer these fundamental questions. 
In summary, we present a comprehensive ressource for investigations on molecular-
based therapeutic strategies for ATRTs. Our results particularly warrant further 
clinical translation of CDK4/6 inhibitors as a promising therapeutic approach for 
ATRTs. Furthermore, this study might serve as a blueprint how target discovery by 
large-scale genetic screens and their comprehensive validation by independent 
methods and in clinically relevant samples contribute to the development of 
functionally-instructed molecular therapies for diseases lacking actionable genetic 
events. 
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STAR methods 

 

RESOURCE AVAILABLILITY 

Lead contact 
Further information and requests for resources and reagents should be directed and 
will be fulfilled by the Lead Contact, Ghazaleh Tabatabai (ghazaleh.tabatabai@uni-
tuebingen.de). 
 
Materials Availability 
This study did not generate new unique reagents. 
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Data and Code Availability 
All datasets generated in this study are either available as supplemental information, 
or will be made freely available upon acceptance of this manuscript. 
 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

Animals 
For orthotopic transplantation of tumor cells, Crl:CD1-Foxn1Nu/Nu nude mice were 
used (Charles River). All mice were female, and between 8 and 10 weeks old. For 
treatment procedures, mice were randomly assigned to experimental groups. Sample 
size calculation was performed by a biometrician. All animal experiments were 
approved by the Regierungspräsidium Tübingen (N 09/20 G and N 11/20 M). All 
experiments were conducted in accordance with the animal law. Animals were 
closely monitored. For reporting, we followed the ARRIVE guidelines (version 2.0).  
 
Archived tissue samples from ATRT patients 
For immunohistochemistry studies, we used archival tissue from 17 ATRT patients. 
Both female and male patients were included. Average age of patients was 1.9 years 
± 2.5. Molecular subgroups of ATRT tumors had been determined by global DNA 
methylation profiles within the clinical routine diagnostics using the methylation 
classifier for central nervous system tumors (www.molecularneuropathology.org). 
The Ethics Committee of the Medical Faculty of the University Hospital Tübingen 
approved the study (870/2020A). 
 
Cell lines 
The following cell lines were used in this study: CHLA02 (RRID: CVCL_B045), 
CHLA04 (RRID: CVCL_0F38), CHLA05 (RRID: CVCL_AQ41), CHLA06 (RRID: 
CVCL_AQ42), CHLA266 (RRID: CVCL_M149), BT12 (RRID: CVCL_M155), BT16 
(RRID: CVCL_M156), H1048 (RRID: CVCL_1453), A172 (RRID: CVCL_0131), 
LN229 (RRID: CVCL_0393), LNZ308 (RRID: CVCL_0394), DAOY (RRID: 
CVCL_1167), UW228 (RRID: CVCL_0572), Rh30 (RRID: CVCL_0041), HL60 (RRID: 
CVCL_0002), Jurkat (RRID: CVCL_0367), HT1080 (RRID: CVCL_0317), TC71 
(RRID: CVCL_2213), MCF7 (RRID: CVCL_0031), and ATRT-311FHTC (Brabetz et 
al., 2018). CHLA02, CHLA04, CHLA05, and CHLA06 cell were grown in DMEM/F12 
media supplemented with B27, EGF, FGF, GlutaMAX and HEPES. CHLA266, BT12, 
Rh30, and TC71 cells were grown in IMDM media supplemented with 10% FCS and 
1x ITS (Insulin-Transferrin-Selenium). BT16, DAOY, HL60, Jurkat, and HT1048 cells 
were grown in RPMI media supplemented with 10% FCS. A172, LN229, LNZ308, 
UW228, HT1080, and MCF7 cells were grown in DMEM media supplemented with 
10% FCS. All these cell line media were supplemented with gentamycin. PDX-
derived ATRT-311FHTC cells were grown in laminin-coated plates in NeuroCult NS-
A Basal media supplemented with NS-A Proliferation Supplement, EGF, FGF, 
Heparin, and penicillin/streptomycin. Cell lines were not authenticated.  
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METHOD DETAILS 

DNA methylation profiling by 850k EPIC array 
Global DNA methylation from seven human ATRT cell lines was assessed using 
Illumina Infinium MethylationEPIC 850k arrays according to the manufacturer’s 
instructions. Raw idat files were read and processed using the minfi Bioconductor 
package in R (3.6.0). Briefly, all probes (n = 865,859) were subjected to quality 
control metrics, removing all probes with p detection values > 0.01. Furthermore, all 
probes targeting site on sex chromosomes were removed. Also, all probes with SNPs 
at the CpG site were removed. In total, 813,439 distinct probes were kept in order to 
generate β values. For prediction of ATRT subgroups, we first generated several 
models using machine-learning algorithms using a test cohort of 150 primary ATRTs 
(Johann et al., 2016). In order to combine 450k and 850k methylation arrays, we 
generated virtual arrays using the minfi package. Employing the 2 % probes (n = 
8,513) showing highest variability across all three molecular subgroups in the test 
cohort, we generated prediction models using the caret package with the following 
machine-learning algorithms: random forest (rf), stochastic gradient boosting (gbm), 
support vector machine (SVM), linear discriminant analysis (lda), k-nearest neighbors 
(knn), nearest shrunken centroids (PAM), decision tree (dt), and classification and 
regression trees (cart). The three models that predicted ATRT subgroups with 
highest accuracy in the test cohort (rf, gbm, svm) were used for further prediction 
studies. Our random forest model was last evaluated on a validation cohort 
comprising 121 primary ATRTs (Capper et al., 2018). t-SNE dimensionality reduction 
of global DNA methylation data from human ATRT cell lines and a primary CNS 
tumor reference (n = 2,801) was performed as previously described (Capper et al., 
2018). 
 

Custom oncopanel sequencing  
For DNA sequencing, 200 ng of genomic DNA was fragmented to 150-200 bp pairs 
using ultrasonication on the LE220 Focused-ultrasonicator (Covaris). Library 
preparation was performed using the SureSelect XT Library Prep Kit (Agilent 
Technologies) and enrichment of gene of interest was performed using the 
SureSelect XT Target Enrichment System with custom-designed bait-sets (ssSC v5) 
covering 708 cancer related genes, 7 promoter regions and selected fusions. The 
libraries were sequenced as paired-end 75 bp reads on an Illumina NextSeq500 
(Illumina) with a sequencing depth of approximately 25 million clusters per sample. 
DNA raw data QC and processing was performed using the in-house megSAP 
Pipeline (https://github.com/imgag/megSAP, version 0.1-1223-gf2879e3) combined 
with ngs-bits package (https://github.com/imgag/ngs-bits, version 2019_08) 
(Schroeder et al., 2017). Briefly, sequencing reads were aligned to the human 
reference genome (GRCh37) by BWA-MEM, variants were called using Strelka2 
(Kim et al., 2018) and annotated with VEP (McLaren et al., 2016). To obtain high-
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confidence results filter criteria for variants were defined as a tumor and normal depth 
of at least 20x, an allelic frequency of 5% or more and a minimum of 3 reads.  
 
Gene expression profiling using bulk RNA-seq 
For RNA sequencing, mRNA fraction was enriched using polyA capture from 200ng 
of total RNA using the NEBNext Poly(A) mRNA Magnetic Isolation Module (NEB). 
Next, mRNA libraries were prepared using the NEB Next Ultra II Directional RNA 
Library Prep Kit for Illumina (NEB) according to the manufacturer’s instructions. The 
libraries were sequenced as paired-end 50bp reads on an Illumina NovaSeq6000 
(Illumina) with a sequencing depth of approximately 25 million clusters per sample. 
RNA raw data QC and processing was performed using megSAP (version 0.2-135-
gd002274) combined with ngs-bits package (version 2019_11-42-gflb98e63). Reads 
were aligned using STAR v2.7.3a (Dobin et al., 2013) to the GRCh38 and alignment 
quality was analyzed using ngs-bits. Normalized read counts for all genes were 
obtained using Subread (v2.0.0) and edgeR (v3.26.6).  
 

Single cell RNA-seq 
The final ATRT cell preparations contained over 78% (ranging from 78 to 88%) live 
cells at a concentration of 600-1300 cells/μL. Single-cell suspension concentration 
and cell viability were determined by automatic cell counting (DeNovix CellDrop, DE, 
USA) using an AO/PI viability assay (DeNovix, DE, USA). scRNA-seq libraries were 
generated using the 10X Chromium Next gel beads-in-emulsion (GEM) Single Cell 3’ 
Reagent Kit v3.1 according to the manufacturer’s instructions. Approximately 14,000 
cells per sample were loaded on the Chromium Next GEM Chip G, which was 
subsequently run on the Chromium Controller (10X Genomics, CA, USA) to partition 
cells into GEMs. Cell lysis and reverse transcription of poly-adenylated mRNA 
occurred within the GEMs and resulted in cDNA with GEM-specific barcodes and 
transcript-specific unique molecular identifiers (UMIs). After the breaking of the 
emulsion, cDNA was amplified using 10 or 11 cycles according to manufacturer’s 
instructions, enzymatically fragmented, end-repaired, extended with 3′ A-overhangs, 
and ligated to adapters. P5 and P7 sequences, as well as sample indices (Chromium 
i7 Multiplex kit, 10X Genomics, CA, USA), were added during the final PCR 
amplification step. The fragment size of the final libraries was determined using the 
Bioanalyzer High-Sensitivity DNA Kit (Agilent, CA, USA). Their concentration was 
determined using the Qubit dsDNA HS Assay Kit (Thermo Fisher Scientific, MA, 
USA). scRNA libraries were pooled and paired-end-sequenced on the Illumina 
NovaSeq 6000 platform. Raw data was pre-processed using CellRanger software 
(10x Genomics). Batch correction was performed using harmony 
(https://github.com/immunogenomics/harmony). All downstream analyses were 
performed using the seurat package in R (https://github.com/satijalab/seurat).  
 

Copy number analysis  
We followed two distinct strategies in this study to assess copy number changes in 
ATRT cell lines to complement each other. One, for DNA methylation-based analysis 
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of copy-number variation from 850k EPIC arrays, we used the conumee package in 
R (http://bioconductor.org/packages/conumee/). Two, for somatic copy number alter-
ation detection, we used ClinCNV (version 1.16). By analyzing off-target reads, the 
tool can generate copy-number information about the whole genome, also for target-
ed panel sequencing data. A gene with an integer copy-number (CN) of ≥ 4 was de-
fined as amplified. A heterozygous deletion was assumed with an integer CN = 1, a 
homozygous deletion when CN = 0. 
 
Gen set and gene ontology analyses 
Gene set enrichment analyses (GSEA) were performed using the GSEA software 
(version 3.0) from the Broad Institute (https://www.gsea-msigdb.org/gsea). All gene 
sets enriched at FDR < 25 % were considered significant. Single sample GSEA was 
performed as previously described (Barbie et al., 2009). For gene ontology analyses, 
we used Metascape (Zhou et al., 2019).  
 

Genome-wide CRISPR/Cas9 knockout screens 
CRISPR/Cas9 screens using a genome-wide knockout gRNA library were performed 
as previously described (Doench et al., 2016). Briefly, ATRT cell lines were 
transduced by spinfection with lentiviral particles representing the gRNA library in an 
all-in-one version containing Cas9 enzyme at a MOI ~0.3. Cell numbers were 
estimated to ensure a 500x library coverage in the transduced cell population. On the 
second day, cells were split to three pseudo-replicates, selected by puromycin for five 
days, and kept in culture for a total for 21 days to allow for the depletion of cells 
where gRNA-guided knockouts affect cell survival or proliferation. For each ATRT cell 
line individually, optimal transduction and growth conditions were pre-determined. 
Library coverage was kept at 500x at all sub-culturing steps. After 21 days, genomic 
DNA was isolated using the QIAamp Blood Maxi kit (Qiagen), and subjected to next 
generation sequencing for quantification of gRNA distribution in the remaining cell 
population. Illumina sequencing was performed as previously described, and the 
STARS gene-ranking algorithm was used to determine statistically depleted and 
enriched gRNAs (Doench et al., 2016). 
 

Cell culture and growth rate inhibition assays  
Cells were cultured in the above-mentioned media under empirically optimized 
conditions. All cells were cultured in 100 µl supplemented with the corresponding 
compound at three distinct concentrations (10 nM, 100 nM, 1000 nM) in 96 well 
plates. Each plate contained a DMSO control that was used to normalize all data 
from this plate. Each condition on each plate contained 8 replicate values that were 
averaged upon analysis. We performed the drug screen in two session, and tested 
the coherence of both sessions constructing a similarity index (Indahl et al., 2018). 
Cell viability was assessed using CellTiter-Blue (Promega). 
 

Neurotoxicity assays  
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For assessment of neurotoxic activity of selected drugs from the ATRT compound 
library, we used postmitotic cerebellar granule neurons as well as human astrocytes 
as surrogates for normal cell types of the brain. Granule neurons were generated 
from wildtype pups at P5. Cerebella were dissected in der the scope, meninges 
removed, and cerebella were triturated in trypsin/EDTA containing DNase. After 
washing, cells were counted, and seeded in DMEM/F12 media supplemented with 10 
% FCS, 25 mM KCL, 1x GlutaMAX, and Pen/Strep onto polyornithine-coated 96 well 
plates. On the second day, 10 µM Ara-C were added for 4 days in order to enrich for 
postmitotic granule neuron cells. In order to test our compounds in a glia-
representing lineage, we used normal human astrocytes (NHA) cells from Lonza 
which were cultured according to manufacturer’s instructions.  
 

shRNA-based gene knockdown 
Two distinct shRNA for each target gene were cloned into pLKO.1 puro (Addgene 
#8453) according to the corresponding protocol. Lentiviral particles were produced in 
HEK293T cells, and ATRT cell lines were subsequently transduced with viral 
supernatants using spinfection. 48 hours after transduction, transduced cells were 
selected using puromycin for 5 days, and subsequently cultured in triplicates in 96 
well plates. Cell viability was assessed at several time points after seeding using 
CellTiter-Blue (Promega). Cell viability was compared as percent viability of a 
corresponding condition using a shRNA directed against the luciferase gene.  
 

Orthotopic xenograft studies 
We injected 200,000 BT16 cells into the forebrain (2 mm lateral and 1 mm anterior to 
bregma) of Crl:CD1-Foxn1Nu/Nu nude mice (male and female, 6 to 8 weeks old). Mice 
were randomized to treatment arms. Both vehicle and abemaciclib treatment was 
scheduled daily at a concentration of 75 mg/kg by oral gavage for 3 weeks, with 2 
day drug holidays on weekends. Animals were closely monitored.  
 

Western blotting  
Whole cell lysates were prepared using RIPA buffer. Protein gels were run using 10% 
BOLT Bis-Tris or 4-12 % NuPAGE Bis-Tris polyacrylamide precast gels. Proteins 
were blotted onto PVDF membranes and detected using antibodies to CDK4, CDK6, 
cyclin D1, cyclin D2, cyclin D3, and GAPDH (see KEY RESOURCES TABLE) as per 
standard methods. Visualization was done using HRP-coupled, species-specific 
secondary antibodies.  
 
Immunohistochemical analyses 
For immunohistochemistry to assess CDK6 and cyclin D2 in samples from ATRT 
patients, we used archived formalin-fixed, paraffin-embedded (FFPE) tumor material. 
FFPE tissue specimens were cut to 2,5 µm thick sections using a microtome, 
mounted on glass slides and subjected to immunhistochemical (IHC) staining. The 
stainings were performed using either CDK6 monoclonal  rabbit anti-human antibody 
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(Clone EPR4515, dilution 1:250, Abcam, Cambridge, UK) or Cyclin D2 monoclonal 
rabbit anti-human antibody (Clone D52F9, dilution 1:50, CellSignaling, Cambridge, 
UK). The IHC procedure was conducted using an automated immunostainer 
(BenchMark ULTRA IHC/ISH Staining Module, Hoffmann-La Roche, Basel, CH) 
together with the respective reagents (as listed below) and according to the protocols 
provided by the manufacturer. For detection the OptiView DAB IHC protocol was 
used including the following steps: Deparaffinization for 4 min at 72°C, washing with 
EZ Prep, incubation with Cell Conditioner No.1 for 64 min at 100°C, incubation with 
OV PEROX IHBTR for 4 min, incubation with primary antibody for 32 min at 37°C, 
and incubation in sequence with OV HQ UNIV LINKR, then incubation with OV HRP 
MULTIMER and then incubation with OV DAB and OV H2O2 for 8 min each, last 
incubation with OV Copper for 4 min. The counterstaining was performed with 
hematoxylin for 20 minutes upon which the tissues were incubated with BLUING 
REAGENT for 8 min prior to mounting the coverslips. Multiple intervening washing 
steps were included. All images were derived from tissue areas with evident tumor 
pathology, corresponding to approximately 1500 cells per sample and obtained using 
bright-field microscopy with a 40x objective (Olympus BX61). After adjusting a 
common threshold in all images to highlight stained cells, immunoreactivity was 
measured on ImageJ software as percentage area of CDK6 or cyclin D2 positive 
cells.  
 

QUANTIFICATION AND STATISTICAL ANALYSIS 

No statistical methods were used to predetermine sample sizes except for in vivo 
studies, but the sample sizes here are similar to those reported in previous 
publications. Differences were considered statistically significant if p < 0.05, and 
sample sizes are indicated in each figure legend. For the comparison of gRNA read 
count distributions from CRISPR screens, we used the Kolmogorov-Smirnov test. For 
the analysis of CRISPR screens, two distinct metrics were used. One, we used the 
probability mass function of a hypergeometric distribution to assign p-values for each 
gene covered by the genome-wide gRNA library. Second, a negative binomial 
distribution (STARS algorithm) was used on a ranked list of gRNAs to assign the 
least probable perturbation for each gene as the STARS score. Permutation testing 
of the list of perturbations was used to calculate FDR statistics as previously 
described (Doench et al., 2016). For all correlation studies, a line derived from 
nonlinear regression was fitted onto the data, and correlation was computed using 
Pearson’s r. To compare the distribution of z scores relating to drug screen data, we 
used the Wilcoxon signed-rank test and calculated the corresponding effect size. 
Intersection analyses for genetic dependencies were calculated using the 
SuperExactTest package (Wang et al., 2015). All growth rate inhibition assays were 
analyzed using the GRmetrics package (Hafner et al., 2016). For survival analyses, 
we used the Log-rank test, and survival was defined as the time period between 
surgery and the onset of neurological symptoms, or the presence of any other 
exclusion criteria defined by local authorities. Differential gene expression analyses 
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from RNA-seq data was performed using DESeq2 (Love et al., 2014), using a cutoff 
of log2 fold change > 1 and adjusted p-value < 0.01 for significance. For comparisons 
of more than 2 groups across more than 2 variables, we used Two-way ANOVA with 
Dunnett correction for multiple testing. All statistical analyses were performed in 
GraphPad Prism 8 or R.  
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Figure S1. Detailed molecular classification of human ATRT cell lines, related to Figure 1. (A) 
Representative CNV plots for selected ATRT cell lines. Brain-tumor associated genes are highlighted. (B) 
Overview of SMARCB1 alterations in ATRT cell lines. (C) Heatmap illustrating the enrichment of ATRT subgroup-
associated gene signatures in ATRT cell lines. (D) Accuracy of several machine learning algorithms in predicting 
ATRT subgroups in the validation cohort. (E) Confusion matrix illustrating accuracy of the random forest model in 
predicting ATRT subgroups in the test cohort. (F) Subgroup probabilities for human ATRT cell lines as predicted 
by the random forest model. (G) Overview of key molecular and clinical parameters of ATRT cell lines including 
prediction of subgroup affiliation based on gene expression and global DNA methylation. 
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Figure S2. Detailed molecular classification of human ATRT cell lines, related to Figure 1. (A) Heatmap 
showing pairwise correlations (Pearson’s r) of pseudo-replicates from CRISPR/Cas9 ATRT screens based on 
normalized gRNA read counts. (B) Plotting of normalized gRNA read counts for plasmid reference and 6 ATRT 
CRISPR/Cas9 screens. (C) Pairwise correlations of normalized gRNA read counts from the reference control and 
the BT12 CRISPR/Cas9 screens, highlighting non-essential and pan-essential genes. Also, significantly enriched 
and cell context-specific depleted gRNAs are color-coded as well. (D) GSEA analysis showing the top 5 most 
significantly depleted gene sets averaged across 6 ATRT CRISPR/Cas9 screens. (E) Circos plot illustrating the 
overlap of cell context-specific dependencies from 6 distinct ATRT cell lines. (F) Heatmap of the top 100 most 
significantly enriched gene ontology terms in context-specific dependencies from ATRT cell lines. (G) Network 
layout of representative gene ontology terms affected in CRISPR/Cas9 screens, with circle size being proportional 
to number of input genes, and circle color indicating contributing ATRT cell lines. (H) Enrichment of selected drug 
signatures using the drug signatures database in ATRT cell line dependencies as compared to non-ATRT 
dependencies. To construct a ranked list of gene dependencies, depletion of enrichment of a specific gene was 
determined by contrasting results from 6 ATRT screens with results from essentiality screens using 4 non-ATRT 
cell lines (A375, HAP1, Meljuso, Ovcar8). 
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Figure S3. Extended analyses for 3 dose drug screen, related to Figure 3. (A) Diamond plots showing the 
similarity matrices index for the comparison of session 1 and session 2 of the 3 dose drug screen based on the 
effects on cell viability relative to DMSO control. (B) Heatmaps illustrating the z-scored effect of the ATRT drug 
library on cell viability as compared to DMSO control (1 minus Pearson correlation, average linkage). ATRT cell 
lines are indicated in red. 
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Figure S4. Extended analyses for CDK4/6 inhibitor sensitivity in ATRT cells, related to Figure 5. (A) FACS 
analyses using PI staining illustrating cell cycle phase shift after abemaciclib treatment in ATRT cell lines. (B) 
Correlation of CDK4 and CDK6 dependency (CERES scores) for a total of 789 human cancer cell lines from the 
Achilles project (https://depmap.org/portal). (C) Correlation of CDK4 and CDK6 dependency and mRNA 
expression of CDK4, CDK6, CCND1, CCND2, and CCND3 in 789 human cancer cell lines. Central nervous 
system cancer cell lines are indicated in red. 
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Figure S5. Single cell RNA-seq data of human ATRT cell lines in the context of CDK4 and CDK6 
dependency, related to Figure 6. (A) UMAP embedding of vehicle-treated ATRT cell lines (BT12, BT16, and 
CHLA06) with projected expression of CDK4, CDK6, CCND1, CCND2, and CCND3. (B) UMAP embedding of 
scRNA-seq data from control BT12, BT16, and CHLA06 ATRT cells with cell cycle phase prediction based on cell 
cycle marker genes. Corresponding 9 transcriptionally distinct cell clusters are indicated according to Figure 6E. 
(C) UMAP plot of ATRT cell lines treated with vehicle or abemaciclib color-coded by cell line and treatment 
condition. (D) Bar graph showing the percentage of cells per cell line and condition in indicated phases of the cell 
cycle. (E) Heatmap showing the top 3 enriched process networks per cell line by abemaciclib treatment as 
compared to vehicle. (F) Percentage of cells from abemaciclib- and vehicle-treated BT12, BT16, and CHLA06 
cells per cluster from corresponding cell line and treatment condition. (G) Bar graph illustrating percentage of cells 
from distinct clusters in indicated phases of the cell cycle. 
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