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Our supplementary material is structured as follows. We first provide additional informa-14

tion on our proposed method in Section S2. In particular, we discuss conditions that ensure15

identifiability, i.e. unique estimates for our underlying haplotypes and their frequencies. We16

also provide algorithms and explain how we select the number of haplotypes (model selection),17

and how accuracy scores are computed that provide information on the quality of the estimates.18

In Section S3, we describe our model for the simulations. We provide additional results from19

our simulations, together with our analysis of the error under several experimental designs, in20

Section S4. We evaluate the accuracy measure introduced in Section S2-5 with our simulations21

in Section S5. Furthermore, additional results on the estimation of allele frequencies are pro-22

vided in Section S6. Section S7 provide an analysis of the simulation runs leading to outliers in23

the reconstruction error and Section S8 discusses the effects of different levels of recombination24

on our proposed approach. Additional results on the real data can be found in Sections S9,25

S10, and S11, S12. Lastly, Section S13 presents further details and results on the comparison26

with other methods.27

S1 Definitions and Notation28

• Box-plots: For boxplots, the lower and upper hinges correspond to the first and third29

quartiles. The whiskers extend to 1.5 × IQR from the hinges (where IQR is the inter-30

quartile range). The same applies to all boxplots in the manuscript.31

• Haplotype structure accuracy: The accuracy for the haplotype structure is computed32

as the proportion of mismatches between true and estimated haplotype structures.33

• Haplotype frequency accuracy: The accuracy for the haplotype frequency is com-34

puted as the absolute value of the difference between true and estimated frequency for35

each haplotype at each time point.36

• Allele frequency accuracy: The accuracy in allele frequency (α) is computed per37

sample as α =
1
N

∑N
i=1 |yi−ŷ

haplotypes
i |

1
N

∑N
i=1 |yi−ŷ

pool
i |

where N is the number of SNPs, yi is the true al-38

lele frequency of SNP i, ŷhaplotypesi is the allele frequency of SNP i estimated using the39

reconstructed haplotypes, and ŷpooli is the one estimated by pool sequencing.40

• Most frequent haplotype: Haplotype having the highest sum of the frequency over all41

samples.42
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• Best matching haplotype: True haplotype having the most similar structure to a given43

reconstructed haplotype.44

• Haplotype frequency accuracy intervals: The accuracy intervals for haplotype fre-45

quencies are the 0.025 and 0.975 quantiles of Ŵit(Y
∗) as detailed in S2-5.46

S2 Theory and Methods47

S2-1 Identifiability of structure and frequency from allele frequency48

(AF)49

[Behr and Munk, 2017] derived sufficient and necessary conditions under which the matrices S
and W (including the number of haplotypes m) are uniquely identifiable from their product
SW . With some slight modifications of their arguments, we can also show that under weak
identifiability assumptions on S and W , one can uniquely identify S, W , and b from the
population AFs F . More precisely, for W it is assumed that different combinations of SNPs
lead to different AFs, that is,

sW 6= s′W for all s 6= s′ ∈ {0, 1}m. (S1)

For the haplotype structure S it is assumed that there is at least one SNP which is unique to
a haplotype and at least one SNP that is only present in minor haplotypes, that is

for all i ∈ [m] there exists an n ∈ [N ] such that

Sni = 1 and Snj = 0 for all j 6= i

and there exists an n ∈ [N ] such that Sni = 0 for all i ∈ [m],

(S2)

(equivalently one can exchange 0 and 1 in (S2)). Both of these conditions are very reason-50

able in most real data situations, given that the number of essential haplotypes m is not too51

large. It is easy to see that condition S1 is necessary for identifiablity of haplotype struc-52

ture S and frequency W from AF Y in (2). A simple situation, where S1 does not hold is53

when two haplotypes have exactly the same proportion at all time points t ∈ [T ]. In that54

case, it is not possible to distinguish whether a SNP is present in one or the other haplo-55

type. Condition (S2) imposes a sufficient variability of individual haplotypes. A trivial non-56

identifiable counter example is, for instance, when one major haplotype is constant zero or57

constant one. Some further insights and examples on the specific condition in (S2) can be58

found in [Behr and Munk, 2017, Behr et al., 2018]. Note that (S2) requires that out of the59

2m possible variant combinations for the m haplotypes, at least those m combinations which60

correspond to the identity vectors e1 = (1, 0, . . . , 0), . . . , em = (0, . . . , 0, 1) and the one which61

corresponds to the zero vector (0, . . . , 0) appear at some of the locations n ∈ [N ].62

The conditions (S1) and (S2) do not just guarantee identifiability in an abstract way, but63

they also lead to an explicit algorithm for recovering S, W , b and m from the noiseless AFs64

SW + b in (2). Part of our reconstruction algorithm is built on this deterministic recov-65

ery algorithm that is based on a simple combinatorial reordering of the observations (see66

[Behr and Munk, 2017, Diamantaras and Chassioti, 2000] for very similar algorithms). The67

idea of this algorithm is that the discrete nature of S lets us identify both S and W from68

appropriate row vectors of Y as outlined in the following.69

The smallest norm among the rows of Y appears for any SNP that has variant 0 for all70

m haplotypes, in which case we observe only the bias term b. Similar, the second (and third)71

smallest possible row value of Y appears for a SNP with variant 0 on all haplotypes, except72

the one with the smallest frequency Wm· (second smallest frequency W(m−1)·), which lets us73
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identify Wm· and W(m−1)·. Among the remaining observed row values of Y the smallest one74

must correspond to W(m−2)·, and so on. In that way, one can successively recover all the75

frequencies Wi· and given W it is straightforward to recover S. We present pseudo code in76

Algorithm 1 below.77
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S2-2 Algorithms78

79

Algorithm 1 Recover S,W, b from exact data Y = SW + b

1: procedure HaploSepCombiExact
Input: Y = SW + 1b> such that (S1) and (S2) hold.
Output: S,W, b,m
2: Y ← {Y1·, . . . , YN ·}
3: b← arg miny∈Y ‖y‖
4: Y ← Y \ b
5: Y ← Y − b
6: W1· ← arg miny∈Y ‖y‖
7: Y = Y \W1·
8: m← 1
9: while Y 6= ∅ do
10: W(m+1)· ← arg miny∈Y ‖y‖
11: m← m+ 1
12: Y ← Y \ {

∑m
i=1 siWi· : s ∈ {0, 1}m}

13: end while
14: for n = 1 to N do
15: Sni ← arg mins∈{0,1}m ‖Yn· − sW‖
16: end for
17: put Wi· in the reverse order
18: return S,W, b,m
19: end procedure

80

81

82
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Algorithm 2 Initialize Ŵ , b̂ from Y in (2)

1: procedure HaploSepCombi
Input: Y ∈ [0, 1]N×T and m ∈ [N ]
Output: Ŵ , b̂
2: {C1, . . . , C2m} ← hierarchical clustering of {Yn· : n ∈ [N ]} with 2m centers ⊂ [0, 1]T .
3: Ĉ ← {C1, . . . , C2m}
4: b̂← arg minc∈Ĉ ‖c‖
5: Ĉ ← Ĉ \ b
6: Ĉ ← Ĉ − b
7: Ŵ1· ← arg minc∈Ĉ ‖c‖
8: Ĉ ← Ĉ \ Ŵ1·
9: for l = 2 to m do
10: Ŵl· ← arg minc∈Ĉ ‖c‖
11: for s ∈ {0, 1}l−1 do
12: Ĉ ← Ĉ \ {arg minc∈Ĉ ‖c−

∑l−1
i=1 siŴi· − Ŵl·‖}

13: end for
14: end for
15: return Ŵ , b̂
16: end procedure

Algorithm 3 Recover S,W, b from Y in (2)

1: procedure HaploSep
Input: Y ∈ [0, 1]N×T ,m ∈ [N ], δ > 0
Output: Ŵ , b̂, Ŝ
2: (Ŵ , b̂)← HaploSepCombi(Y,m)
3: for n = 1 to N do
4: Ŝn· ← arg mins∈{0,1}m ‖Yn· − sŴ − 1b̂>‖
5: end for
6: E0 ← 0
7: En ← ‖Y − ŜŴ − 1b̂>‖
8: while |En − E0| > δ do
9: E0 ← En

10: (Ŵ , b̂)← arg minW,b ‖Y − ŜW − 1b>‖
11: such that Wit, bt ∈ [0, 1],

∑m
i=1Wit ≤ 1

12: for n = 1 to N do
13: Ŝn· ← arg mins∈{0,1}m ‖Yn· − sŴ − 1b̂>‖
14: end for
15: En ← ‖Y − ŜŴ − 1b̂>‖
16: end while
17: return Ŵ , b̂, Ŝ
18: end procedure

5



83

S2-3 Computational aspects of haploSep84

In the following we provide more details on computational aspects of the haploSep procedure.85

Recall that haploSep takes as input a matrix Y ∈ [0, 1]N×T with allele frequency data, as86

well as an integer m, which gives the number of estimated haploypes. From a computational87

perspective, the relevant regime for haplotype reconstruction is when N is large (typically larger88

than 100), T is of small or moderate size (typically smaller than 100) and m is small (typically89

around 2−8). In the following, we consider each of the different steps in the haploSep procedure90

separately and analyze computational aspects.91

1. (Clustering) In the haploSepCombi initialization algorithm, see Algorithm 2, the first92

step is to cluster the N rows of the matrix Y into 2m groups. To this end, we employed93

hierarchical clustering via the R function hclust from the R package stats with Eucle-94

dian distance metric. The complexity to compute the distance matrix between the N95

different rows, each of dimension T , is O(N2T ). For the whole haploSep procedure, this96

is the only part which has a quadratic dependence on the number of sample N (all other97

steps are linear in N) and hence, for a typical sample size regime in haplotype separation,98

this part is the computational bottleneck of the current implementation. Nevertheless,99

for all the scenarios considered in this paper, the overall computation time of haploSep100

never took longer than a few seconds on a standard laptop. If needed, however, one may101

replace hierarchical clustering with a computationally faster algorithm, as, e.g., k-means,102

in which case the overall computational complexity of haploSep will be linear in the103

number of variants N .104

2. (Combinatorial Initialization) Given the 2m cluster centers, each of dimension T , from105

the previous step, haploSepCombi as in Algorithm 2 then reconstructs an estimate for the106

haplotype frequency Ŵ and the bias term b̂. Note that 2m � N . Thus, the computation107

time of this part is completely independent of N and therefore typically negligible. More108

precisely, computation time of this part is of order O(22mT ).109

3. (Lloyd’s-type Iteration) Given the initialization (Ŵ , b̂) from the previous step,110

haploSep (see Algorithm 3) then iteratively updates (Ŵ , b̂) and Ŝ until convergence. An111

individual update step of Ŝ amounts to comparing the distances of the N rows of Y to112

the current 2m centers as in (4), each of dimension T , and thus, has computation time113

O(2mNT ). An individual update step of (Ŵ , b̂) amounts to linear regression (with convex114

constraints), which has a linear worst case computational complexity w.r.t. the number115

of sample N (as well as a linear computational complexity w.r.t. the number of time116

points T ). To solve this part efficiently, we use the lsei function form the R package117

limSolve. Note that both update steps of Ŝ and of (Ŵ , b̂) result in a monotone decrease118

of the overall L2 error, ‖Y − ŜŴ − 1b>‖ ≥ 0 and therefore, will converge eventually. In119

practice, we found that haploSep usually converges within a couple of iterations, and for120

any stopping threshold δ ≤ 0.001 (in our simulations we chose δ = 0.001) results were121

almost completely independent of the choice of δ. We provide a detailed simulation study122

which illustrates this below.123

In summary, haploSep is computationally very efficient, with a linear computational complexity124

in the number of SNP locations N (up to, potentially, the initial clustering step). In the125

following we illustrate these computational aspects with simulation examples, which were all126

performed on a standard laptop with Intel Core i7 processor.127
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Figure S1: Runtime analysis for haploSep. Runtime (y-axis) against number of SNPs N ,
for different values of number of generations T (see legend for color code), and number of
reconstructed haplotypes m (left: m = 2 and right: m = 4). Results are averaged over 100
Monte Carlo runs. See text for details of simulation setup. As can be seen, even for a large
number of generations M (e.g., M = 100) and a large number of variants (e.g., N = 2500),
haploSep has a runtime of only a few seconds.

For different values of N, T, and m we evaluated the run time of haploSep. To this end,128

we randomly generated an N ×m binary matrix as a haplotype structure and then applied the129

function haploSimulate from our R package haploSep to simulate an allele frequency matrix130

Y ∈ [0, 1]N×T with effective population size equal to 300, at generations 0, 10, 20, . . . , 10·(T−1),131

and with mean sequencing coverage of 80. We took the average over 100 Monte Carlo runs.132

Results are shown in Fig. S1. As can be seen, even for as many as 100 generations and 2500133

variants, haploSep’s runtime, e.g., for 4 haplotypes, is just a little bit over a second, which134

shows that computation time will almost never be problematic for real data applications in a135

typical sample size regime.136

Moreover, we evaluated the number of iterations that haploSep performs update stpes of137

(Ŵ , b̂) and Ŝ, respectively, for different values of stopping thresholds δ. As an example, we138

considered N = 500,m = 3, T = 10, with Y generated in the same way as for the previous sim-139

ulations. Fig. S2 shows the average number of iterations (y-axis) for δ = 10−2, 10−3, . . . , 10−10140

(x-axis) over 1, 000 Monte Carlo runs, with standard deviation shown as error bars. As can141

be seen, on average haploSep performs between 2 and 3 iterations, even when δ is as small as142

10−10.143

To further illustrate robustness with respect to the δ parameter, we compared the recon-144

structed Ŵ and Ŝ for different values of δ. More precisely, we considered the same simulation145

setup as before and let Ŵ i, Ŝi, for i = 1, 2 be the reconstruction for δ1 = 10−3 (which is the146

default value for our simulations) and δ2 = 10−6. Fig. S3 shows the mean absolute deviation147

|Ŵ 1
ij−Ŵ 2

ij| (left) and |Ŝ1
ni− Ŝ2

ni| (right) averaged over i = 1, . . . , 3, j = 1, . . . , 10, n = 1, . . . , 500,148

and 1, 000 Monte Carlo runs with Y as in the previous setup. As can be seen, the difference149

between (Ŵ 1, Ŝ1) and (Ŵ 2, Ŝ2) is negligible, and hence, we conclude that the choice of δ is not150

of major concern.151

152
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Figure S2: Simulation analysis for the number of iterations that the haploSep procedure
requires for the Lloyd’s-type update setps. Number of iterations (y-axis) for − log10(δ) =
2, 3, . . . , 10 (x-axis) averaged over 1, 000 Monte Carlo simulations, with standard deviation
shown as error bars. See text for details of simulation setup. As can be seen, haploSep

typically converges after a few iterations.
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Figure S3: Simulation analysis for the difference in haploSep’s reconstruction of S and W for
different values of the threshold parameter δ. Histogram of absolute difference of reconstructed
frequency matrices, |Ŵ 1

ij − Ŵ 2
ij|, (left) and haplotype structure, |Ŝ1

ni − Ŝ2
ni|, (right) over i =

1, . . . , 3, j = 1, . . . , 10, n = 1, . . . , 500, and 1, 000 Monte Carlo runs with Y as described in the
main text. Here, Ŵ i, Ŝi, for i = 1, 2, denotes the reconstruction with threshold value δ1 = 10−3

(which is our default value) and δ2 = 10−6, respectively.
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153

S2-4 Model selection via SVD154

Note that in the noiseless population case (Y = SW + b in (2)) the number of dominant
haplotypes m can directly be obtained via the rank of the AF matrix with

rank(SW + 1b>) = m+ 1. (S3)

To see this, note that the tth column of SW + b can be written as

m∑
i=1

S·iWit + bt(1, . . . , 1)>

and thus

rank(SW + 1b>) = dim(span(S·1, . . . , S·m, (1, . . . , 1)>)) = m+ 1,

where the last equality follows from the identifiability condition (S2). Thus, estimation of m
from Y corresponds to estimating the (low) rank of the matrix SW + b from its noisy version
Y . A more general strategy for the noisy case is to consider the singular values s1, . . . , sT of Y
(assuming that N ≥ T ) and then estimate

m̂+ 1 = #{si ≥ τ : i ∈ [min(N, T )]} (S4)

for some threshold τ . [Gavish and Donoho, 2014] derived optimal thresholds (in terms of matrix
denoising) that are approximately

τ ≈ (0.5(T/N)3 − 0.95(T/N)2 + 1.82(T/N) + 1.43) smed, (S5)

where smed denotes the median of the singular values s1, . . . , sT of Y . In summary, we estimate155

m̂ as in (S4) with τ as in (S5).156

S2-5 Accuracy scores157

In practice, it may happen that our modeling assumption of a small number of major haplotypes
m� T,N is violated, e.g., because only few haplotypes are lost over time under some neutral
scenario without selection. Alternatively, the selected haplotypes may get lost early on due to
random genetic drift. In such a case, a low dimensional haplotype representation will often yield
a poor fit to the data Y , which we measure using the well known coefficient of determination

R2 = 1 − ‖Y−ŜŴ−1b̂
>‖2

‖Y−Y ‖2 . Besides R2, we also report the uncertainty of the proposed estimates

via bootstrap confidence scores and bands [Efron, 1979]. Recall that the haplotype structure S
is constant over the time points t ∈ [T ]. Thus, in order to evaluate uncertainty in the estimate
Ŝ, we propose to resample (with replacement) from the empirical distribution on {Y·1, . . . , Y·T},
that is,

Y ?
t

i.i.d.∼ 1

T

T∑
t=1

1Y·t , (S6)

where 1y denotes the dirac measure on y. For each haplotype i ∈ [m] and SNP location n ∈ [N ]

via sampling Y ? = (Y ?
1 , . . . , Y

?
T ) from (S6), we compute the variance of Ŝni(Y

?). As stability
score for the ith haplotype estimate we report the following score:

StabScoreSi = 1− 1

N

N∑
n=1

|Ŝni −
1

K

K∑
k=1

Ŝkni| ∈ [0, 1]. (S7)
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A stability score of StabScoreSi = 1 suggestes an unbiased estimate of the ith haplotype158

and stability score of StabScoreSi = 0 a highly biased estimate, which may occur due to159

model misspecification (i.e., violation of the major haplotype assumption or the identifiability160

conditons).161

For the haplotype frequencies W , we observe that they are invariant for different locations
n ∈ [N ]. Thus, to evaluate uncertainty for W we resample from

Y ∗n
i.i.d.∼ 1

N

N∑
n=1

1Yn· (S8)

We report the 0.025 and 0.975 quantiles of Ŵit(Y
∗) as bootstrap confidence bands and the162

average width of those confidence bands as stability scores.163

In practice, we found the above scores to perform reasonable, but we clearly note that there164

are many other possibilities to construct quality scores for our setting, such as other bootstrap165

based scores, or also Bayesian credible scores, or frequentist p-values that are based on explicit166

modeling assumptions, potentially conditioning on either Ŵ or Ŝ to construct conditional167

confidence statements for the other.168

We determine a criterion for accepting scenarios where the reconstruction has enough ac-169

curacy overall and consider the structure and frequency specific accuracy scores only for those170

scenarios. Our criterion is based on the R2 scores and the frequency change of the haplotype171

reaching highest frequency. More specifically, we require R2 > 0.8 and the frequency change of172

the haplotype reaching highest frequency > 0.1.173

S3 Simulation setup174

We evaluate our approach using extensive simulations. In our simulations we considered three175

experimental designs aiming to reproduce the three data sets we analyze in Section 4, i.e. the ex-176

periments explained in [Noble et al., 2019], [Castro et al., 2019] and [Barghi et al., 2019]. They177

cover three very different organisms used in E&R experiments (Caenorhabditis elegans, mice,178

and Drosophila simulans) with various complexities leading to three different starting condi-179

tions for the experiments. Indeed, mice populations need to be small because of the mainte-180

nance effort involved, whereas this is not the case for Drosophila simulans and even less for181

Caenorhabditis elegans. The latter two organisms thus give more freedom to choose the number182

of different starting haplotypes.183

Selection is an important factor in E&R experiments where researchers attempt to under-184

stand the genetic architecture of adaptation. In the literature, several E&R experiments have185

been discussed that involve different stressful conditions. Sources of stress can be high/low-186

quality food, body size constraints (e.g. only sufficiently small or large organisms are allowed187

to reproduce), or heat. Our three data sets consider stress conditions on the reproduction188

regime [Noble et al., 2019], on the body size [Castro et al., 2019] and the temperature regime189

[Barghi et al., 2019]. Other publications focus on desiccation resistance [Griffin et al., 2017],190

pathogen resistance [Kraaijeveld and Godfray, 2008], and selection on flying speed191

[Weber, 1996].192

In our simulations, we consider starting populations with the same numbers of haplotypes,193

and of individuals, as in the real data applications discussed in Section 4. As some of the194

founder haplotypes from [Barghi et al., 2019] were made available to us by the authors, starting195

populations were obtained by sampling from these haplotypes. For our basic scenario, we196

introduce a simple selection regime with selection strength s = 0.05 for a beneficial allele present197

at three different founder haplotypes. The genetic composition of generation n is obtained by198

multinomial sampling from the previous generation. Sequencing data are generated every tenth199
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generation at 16 different time points (G0, G10, . . . , G150). From the simulated haplotype data,200

we compute the true allele frequencies via the regression model Y = SW in Section 2 of the201

main text as the matrix product of the simulated haplotype structure and frequency. Afterward,202

we simulate observed allele frequencies using binomial sampling with sample size n equal to the203

local sequencing coverage, taken from a Poisson(80) distribution. This is to mimic that real204

allele frequency data in most E&R experiments are noisy because individuals are sequenced as205

a pool with a given depth (coverage) that changes according to the available resources. With206

pool sequencing the DNA of all organisms is mixed and sequenced together. An extensive207

explanation of pool sequencing can be found in [Schlötterer et al., 2014]. A detailed description208

of this binomial sampling step can be found in [Waples, 1989] and [Jónás et al., 2016].209

Beyond our basic scenario, we also investigate several alternative scenarios, and consider210

how design parameters of E&R experiments affect the quality of our haplotype reconstruction.211

Parameter values not mentioned in our results have been chosen as in our basic scenario.212
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S4 Simulation results213

Complementing Section 3.1, we provide results for our three simple selection scenarios on the214

comparison between the reconstructed and the true haplotype structure in Fig. S4.

S4a Longshankmice exp. S4b C. elegans S4c D. simulans

Figure S4: Result of one simulation run from the simple selection scenario with the experimental
design from the Longshank mice experiment (a), C. elegans (b), and Drosophila simulans (c).
This figure shows inconsistencies between true and reconstructed haplotype structure. Blue
line indicates mismatches.

215

Most of the mismatches that we observe in Fig. S4 are in the low-frequency haplotypes.216

In order to reconstruct haplotypes correctly, they need to be present in the population at217

an appreciable frequency for several generations. In particular our approach usually cannot218

accurately reconstruct the structure of haplotypes reaching zero frequency in the earlier part219

of the experiment. Even so, those haplotypes are not of interest for most analyses trying to220

understand the architecture of adaptation because they do not provide any contribution to it.221

Since the number of true haplotypes can be much larger than the number of haplotypes we222

reconstruct, we match the (true) haplotype having the closest possible structure to the given223

reconstructed one to compute the error for our estimated haplotypes. As for the figures in224

the main text, we filter again using our criteria on R2 and the frequency change of the most225

abundant haplotype as explained in Section S2-5. See Section S7 for the remaining simulation226

runs. Based on 100 simulation runs, Fig. S5 shows very low error for both frequency and227

structure of the selected haplotype(s). However, looking at the different time points, the error228

is higher for initial generations, whereas it drops for later stages of evolution (see Fig. S5b).229

The differences between earlier and later time points can be pronounced depending on the230

experimental design. Indeed when selection occurs, our method provides better estimates for231

later time points than for earlier ones, if the number of reconstructed haplotypes is much smaller232

than the number of haplotypes in the starting population. Similar conclusions can be drawn233

also for the results about the experimental design based on [Noble et al., 2019], shown in Fig.234

S6.235

Starting from these three simple selection scenarios, we did simulations for different values of236

important parameters for E&R in order to assess how they affect our haplotype reconstruction.237

We focus on the selection coefficient, the number of haplotypes in the founder population, the238

number of haplotypes carrying the beneficial allele, the coverage and the number of time points239

where the sequencing data are collected. For each simulation run the number of haplotypes240

being reconstructed is estimated via our model selection step as explained in Section S2-4. All241

the results discussed in this section are simulated with the parameters introduced in Section S3242
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Figure S5: Haplotype reconstruction error for our basic selection scenario with Drosophila
simulans based on 100 simulation runs. (a) Proportion of wrongly classified SNPs for each
reconstructed haplotype. The haplotypes are displayed in decreasing order according to their
cumulative frequency over time. (b) Absolute difference between the true and estimated hap-
lotype frequencies for each time point at which sequencing information is available.

(s = 0.05, 150 generations of E&R where allele frequencies are available every 10 generations,243

one locus carries the beneficial allele in three individual haplotypes, genotypes from the founder244

population used in [Barghi et al., 2019]). Fig. S7 shows the accuracy depending on the selec-245

tion pressure. As we expect, the error decreases when the selection pressure increases. We can246

observe that the effect is very pronounced for the experimental designs with large population247

size. This is because the reconstruction results become more and more accurate as the changes248

in haplotype frequency throughout time increase. When the populations size is small (e.g. in249

experiments using bigger organisms like mice), these haplotype frequency changes can occur250

under neutrality as well.251

Our method requires information from multiple sources, which for E&R experiments corre-252

spond to sequenced time points. The number of time points at which the sequencing data are253

available mainly depends on the time and costs allocated to the experiment. As it is shown254

in the lower panel of Fig. S8 (and with a less pronounced effect in the upper panel), four time255

points do not contain enough information for any experimental design to obtain satisfactory256

results. However when the number of time points increases the error drops and this is consistent257

for all three experimental designs as well. It is also important to notice that the number of258

haplotypes we can reconstruct is smaller or equal to the number of available time points. This259

can also influence the power of our method under certain experimental designs where a high260

number of haplotypes is needed to capture the true dynamic of the haplotype frequencies in261

the given experiment.262

In Fig. S9 we consider different numbers of haplotypes sharing the same beneficial allele. The263

more haplotypes share the same selective advantage, the less accurate the reconstruction be-264

comes, unless the experiment is run for enough time to resolve the competition. If the competi-265

tion is resolved and one or few haplotype(s) prevail, the reconstruction can reach high accuracy,266

however.267
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Figure S6: Haplotype reconstruction error for our basic selection scenario with C. elegans based
on 100 simulation runs. (a) Proportion of wrongly classified SNPs for each reconstructed hap-
lotype. The haplotypes are displayed in decreasing order according to the cumulative frequency
over time. (b) Absolute difference between the true and estimated haplotype frequencies for
each time point at which sequencing information is available.

When looking at Fig. S10 we can see that a coverage of 5 is too low for accurate pooled allele268

frequency estimates. Thus our method cannot provide good estimates. When the coverage269

increases above λ = 20, not much accuracy is gained anymore. For our considered designs,270

more time points will be more beneficial than more reads in terms of accuracy. Compare for271

example, the results from our three experimental designs with fewer time points (e.g. 4) and272

high coverage (λ = 80) from Fig. S8 against those with more time point (16) and low coverage273

(e.g.λ = 20) from Fig. S10.274

The last parameter we considered is the number of different haplotypes in the founder popu-275

lation (Fig. S11). Our simulations do not show a clear trend here. An intermediate number276

of haplotypes relative to the population size often seems to lead to the highest accuracy, this277

may be since in this case some - but not all- of the beneficial haplotypes tend to get lost by drift.278

279
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Figure S7: Dependence of the quality of our reconstruction approach on the selection coefficient.
Simulation setup: s ∈ 0, 0.02, 0.05, 0.1 and all the other parameters as in Section S3. Results
for D. simulans (solid lines), C. elegans (dashed lines), and the mice experiment (dotted
lines) are shown. (a) Error in reconstructing the haplotype structure versus different values
of the selection coefficient. For each experimental design, results for the three most frequent
haplotypes are shown: hapID 1 (black lines), hapID 2 (red lines), and hapID 3 (green lines).
(b) Error in reconstructing the haplotype frequencies versus different values of the selection
coefficient. For each experimental design, results for time points T0 (black lines), T70 (red
lines), and T150 (green lines) are shown.
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Figure S8: Dependence of the quality of our reconstruction approach on the number of se-
quenced time points. Results for D. simulans (solid lines), C. elegans (dashed lines), and the
mice experiment (dotted lines) are shown. (a) Error in reconstructing the haplotype structure
versus different numbers of sequenced time points. For each experimental design, results for
the three most frequent haplotypes are shown: hapID 1 (black lines), hapID 2 (red lines), and
hapID 3 (green lines). (b) Error in reconstructing the haplotype frequencies versus different
numbers of sequenced time points. For each experimental design, results for time points T0
(black lines), T70 (red lines), and T150 (green lines) are shown.
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Figure S9: Dependence of the quality of our reconstruction approach on the number of hap-
lotypes sharing the beneficial allele. Simulation setup: Number of haplotypes sharing the
beneficial allele ∈ 1, 3, 5 and all the other parameters as in Section S3. Results for D. simulans
(solid lines), C. elegans (dashed lines), and the mice experiment (dotted lines) are shown. (a)
Error in reconstructing the haplotype structure versus different numbers of haplotypes sharing
the beneficial allele. For each experimental design, results for the three most frequent haplo-
types are shown: hapID 1 (black lines), hapID 2 (red lines), and hapID 3 (green lines). (b)
Error in reconstructing the haplotype frequencies versus different numbers of haplotypes shar-
ing the beneficial allele. For each experimental design, results for time points T0 (black lines),
T70 (red lines), and T150 (green lines) are shown.
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Figure S10: Dependence of the quality of our reconstruction approach on the mean coverage
value λ. Simulation setup: λ ∈ 5, 20, 40, 80 and all the other parameters as in Section S3.
Results for D. simulans (solid lines), C. elegans (dashed lines), and the mice experiment
(dotted lines) are shown. (a) Error in reconstructing the haplotype structure versus different
values of λ. For each experimental design, results for the three most frequent haplotypes are
shown: hapID 1 (black lines), hapID 2 (red lines), and hapID 3 (green lines). (b) Error in
reconstructing the haplotype frequencies versus different values of λ. For each experimental
design, results for time points T0 (black lines), T70 (red lines), and T150 (green lines) are
shown.
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Figure S11: Dependence of the quality of our reconstruction approach on the number of different
haplotypes in the founder population. Simulation setup: Number of different haplotypes in the
founder population ∈ 15, 50, 100, 189 and all the other parameters as in Section S3. Results for
D. simulans (solid lines), C. elegans (dashed lines), and the mice experiment (dotted lines) are
shown. (a) Error in reconstructing the haplotype structure versus different number of different
haplotypes in the starting population. For each experimental design, results for the three most
frequent haplotypes are shown: hapID 1 (black lines), hapID 2 (red lines), and hapID 3 (green
lines). (b) Error in reconstructing the haplotype frequencies versus different number of different
haplotypes in the starting population. For each experimental design, results for time points T0
(black lines), T70 (red lines), and T150 (green lines) are shown.
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S5 Accuracy measures280

When applying our method to real data the true haplotypes are unknown and the error cannot281

be assessed. For this reason, we provide measures of accuracy for the full reconstruction (namely282

R2) for the haplotype structures and for the haplotype frequencies (see Section S2-5 for a more283

detailed explanation on how the scores are computed). To see how well these accuracy measures284

coincide with the actual amount of error, we provide simulation results for our three simple285

selection scenarios. We expect high scores when the error is low and vice-versa.286

We plot R2 against the overall error in the reconstruction of the haplotype frequency for our287

three simple selection scenarios in Fig. S12. This figure shows that for the scenario with small288

population size the correlation between R2 and error is relatively high (0.799), however for289

large population sizes either the correlation is low (0.421) or the R2 is underestimating our290

error in reconstruction (see Fig. S12c). When the correlation is low, the error is only slightly291

over estimated by R2, whereas in the case of Fig. S12c we have a group of scenarios where the292

R2 is too liberal. However, if we discard the scenarios where the haplotype frequency change293

of the most frequent reconstructed haplotype is small (< 0.1) then the correlation in Fig. S12b294

increases up to 0.521 and the scenarios where R2 is underestimating the error in S12c are not295

included in the analysis anymore. If the frequency change of the dominant haplotype is small,296

it means that selection is either not present (neutral dynamic in a large population), or its297

signal cannot be captured by our method. Therefore we recommend to look at the combination298

of both R2 and frequency change. This was the motivation for our filtering criteria proposed299

in Section S2-5.300

Our structure specific stability score (see equation S7 in section S2-5) is also correlated with301

the error in the reconstructed haplotype configuration (see Figs. S13a, S14a, and S15a). The302

high correlation shows that this measure is useful in applications. To test our accuracy measure303

for the haplotype frequencies, we checked how often each true frequency is contained inside the304

accuracy interval. The results in Fig. S16 show a high match between our bands and the true305

haplotypes, especially for late time points. Histograms of band sizes for these three scenarios306

can be found in figures S13b, S14b, and S15b, and they reveal that the bands are usually quite307

small (about 50% or more of the observed bandwidth being smaller than 0.05 in the worst308

scenario). These results demonstrate that these scores are concordant with the actual errors.309

We recommend to use the haplotype specific stability intervals and stability scores after ensuring310

that our overall quality measures (R2 and frequency change of the dominant haplotype) are311

good enough.312
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Figure S12: Mean error in reconstructing the haplotype frequency versus 1 − R2 for (a) the
Longshank mice experimental design, (b) the D. simulans experimental design, and (c) the C.
elegans experimental design
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Figure S13: (a) Proportion of incorrectly estimated alleles when reconstructing the haplotype
structure versus the corresponding accuracy scores for the Longshank mice experimental design.
(b) Size of the accuracy intervals for the reconstructed haplotype frequency for the Longshank
mice experimental design.
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Figure S14: (a) Proportion of incorrectly estimated alleles when reconstructing the haplotype
structure versus the corresponding accuracy scores for the D. simulans experimental design.
(b) Size of the accuracy intervals for the reconstructed haplotype frequency for the D. simulans
experimental design.
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Figure S15: (a) Proportion of incorrectly estimated alleles when reconstructing the haplotype
structure versus the corresponding accuracy scores for the C. elegans experimental design. (b)
Size of the accuracy intervals for the reconstructed haplotype frequency for the C. elegans
experimental design.

25



T0 T20 T40 T60 T80 T100 T120 T140

0.
0

0.
5

1.
0

P
ro

po
rt

io
n 

of
 s

ta
bi

lit
y 

in
te

rv
al

s 
co

nt
ai

ni
ng

 tr
ue

 h
ap

lo
ty

pe

Generation

Experimental design

D. simulans
C. elegans
Mice

Figure S16: Proportion of stability intervals containing the true haplotype for our three simple
selection scenarios.

26



S6 Improved allele frequency estimates: additional re-313

sults314

10−2

10−1.5

10−1

10−0.5

100

100.5

T0 T10 T20 T30 T40 T50 T60 T70 T80 T90 T100T110T120T130T140T150

Generation

α

S17a D. simulans

10−1

10−0.5

100

T0 T10 T20

Generation

α

S17b C. elegans

Figure S17: Error ratio (α) between haplotype based allele frequency estimates (numerator) and
the pool sequencing estimates (denominator) plotted on a log-scale. Results from 100 simulation
runs based on the experimental designs in [Barghi et al., 2019] and [Noble et al., 2019].

Late time points for the C. elegans example are not shown as both errors in reconstruct-315

ing the allele frequency data are negligible and thus the ratio cannot be computed. Further316

information on the later time point can be found in Fig. S20c where all scenarios are included.317
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S7 Analysis of outliers318

Here we consider all the simulation results for the three simple selection scenarios without319

filtering using R2 and the frequency change of the haplotype with highest frequency. Figs. S18,320

S19, and S20 show the quantiles of the errors in reconstructing the haplotype frequency and321

structure and for α. The proportion of scenarios leading to outliers in the error measurements is322

15%, 19%, and 78% for the simulations based on the Drosophila simulans, Longshank mice, and323

C. elegans experimental design respectively. For C. elegans the proportion of outlier simulation324

runs is considerably higher than for the other two scenarios. Indeed, the population size in325

the C. elegans experiment is much larger than for the other organisms. When the dynamic is326

neutral in such a large population, there is a large number of haplotypes at very low frequency.327

These haplotypes are often aggregated within a few estimates at intermediate (and constant)328

frequency.329
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Figure S18: Quantiles of the error in reconstructing the haplotype structure for (a) the Long-
shank mice experimental design, (b) the D. simulans experimental design, and (c) the C.
elegans experimental design.

29



0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Generation

E
rr

or
 in

 r
ec

on
st

ru
ct

in
g 

th
e 

ha
pl

ot
yp

e 
fr

eq
ue

nc
y

T0 T20 T40 T60 T80 T100 T120 T140

25% quantile
50% quantile
75% quantile
85% quantile
95% quantile

S19a Longshankmice exp.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Generation

E
rr

or
 in

 r
ec

on
st

ru
ct

in
g 

th
e 

ha
pl

ot
yp

e 
fr

eq
ue

nc
y

T0 T20 T40 T60 T80 T100 T120 T140

25% quantile
50% quantile
75% quantile
85% quantile
95% quantile

S19b D. simulans

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Generation

E
rr

or
 in

 r
ec

on
st

ru
ct

in
g 

th
e 

ha
pl

ot
yp

e 
fr

eq
ue

nc
y

T0 T20 T40 T60 T80 T100 T120 T140

25% quantile
50% quantile
75% quantile
85% quantile
95% quantile

S19c C. elegans

Figure S19: Quantiles of the error in reconstructing the haplotype frequency for (a) the Long-
shank mice experimental design, (b) the D. simulans experimental design, and (c) the C.
elegans experimental design.
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reconstructing haplotypes versus pool sequencing (α) for (a) the Longshank mice experimental
design, (b) the D. simulans experimental design, and (c) the C. elegans experimental design.
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S8 Recombination330

We simulated data involving recombination with MimicrEE2 [Vlachos and Kofler, 2018]. For331

this purpose, we considered a population of 500 individuals with 10 founder haplotypes and a332

range of recombination rates between 0 and 20 cM/Mb. We used a sample from the Drosophila333

melanogaster genetic reference panel [MacKay et al., 2012] to build our starting population.334

We ran our simulations for 150 generations assuming that there are three SNPs each having335

a beneficial allele under selection of strength s = 0.1. High recombination rates increase the336

probability of recombination events putting beneficial SNPs on a new more beneficial haplotype337

that could rise then considerably in frequency. We store data every tenth generation at time338

points G0, G10, . . . , G150. After obtaining the simulated populations, we add sequencing noise339

to our allele frequency data via binomial sampling under a Poisson coverage with mean 80. The340

recombination rate has been assumed to be homogeneous throughout the whole region. As in341

Section 3.1, we performed 100 simulation runs per recombination rate. The results were filtered342

and those kept for further analysis, where R2 > 0.8 and a frequency change of more than 0.1343

was observed for the most frequent haplotype. Our recombination rate in cM/Mb is converted344

by MimicrEE2 to a lambda-value of a Poisson distribution using Haldane’s map function.345

The figures below summarize our simulation results and are discussed in Section 3.3.346
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Figure S21: Mean number of haplotypes present at the time points {0, 10, 20, . . . , 150}. Each
color represents a different recombination rate. For details on this simulation experiment, see
the text in this Section.
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S9 Validation of our results using read data347

We used read data from [Barghi et al., 2019] as a further validation of our reconstructed hap-348

lotypes. These data are provided by the authors after the reads were trimmed and mapped to349

the genome and after duplicates have been removed. These steps, as well as the DNA extrac-350

tion and library preparation are described in [Barghi et al., 2019]. In order to be consistent351

with the allele frequency data and thus with the reconstructed haplotypes we only used SNPs352

analysed in the original paper. Furthermore, as in [Barghi et al., 2019] for a given SNP we353

kept the information from the reads only when the respective base quality score was higher354

than 20. As in Section 4, for this analysis we chose a region under selection according to the355

p-values from the modified chi-squared test in [Spitzer et al., 2020]. Here, we considered the356

region from 11.239636 to 11.733131 Mb of chromosome 2L in replicate three. All comparisons357

with the reads are performed at generation 60.358

For each read partially overlapping the region of interest we apply the following steps. First,359

we combined paired end reads to a long sequence with a missing part in the middle because360

read pairs belong to the same haplotype. Then, we polarize the set of read data for the rising361

allele, as we did for the allele frequency data.362

In order to compare the read data with the reconstructed haplotypes, we considered sliding363

windows of 1000 SNPs and performed the following analysis on each window. For our first364

comparison, we selected the most similar read for each reconstructed haplotype and window.365

Fig. S24 shows the proportion of mismatches between haplotype and corresponding read without366

considering missing data. From the example we can see that most haplotypes have a good367

match with the reads, which is a further validation of the fact that the haplotype structure368

we reconstruct with our method is accurate. However, the number of positions entering this369

comparison for each read is limited (between 32 and 59). Indeed, there are always many missing370

values in each read as read length is limited and they might not overlap a region entirely and371

genomic positions might be filtered out for low base quality scores.372

We decided then to examine these results in terms of haplotype frequency as well. Because373

reads are short and insert sizes generate missing values, we cannot compare the frequencies of374

the reads with those of the haplotypes directly. At the same time, using single SNPs would375

not be informative in this situation because we already validated the power of our method in376

reconstructing allele frequency data (see Section 3.2). Thus, we decided to consider the smallest377

available linked unit, and we performed our comparison on pairs of subsequent SNPs using the378

frequencies of the four possible genotypes of each pair.379

The results from this comparison are shown in Fig. S25. From these examples we can see that380

also the frequency of the pairs of SNPs are estimated with low error from our reconstructed381

haplotypes, which strongly suggests that the reconstructed haplotypes capture the signal from382

the true haplotypes in the population correctly.383
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Figure S25: Residuals of the estimated frequency of pairs of SNPs from read data versus the
estimated frequency of pairs of SNPs from reconstructed haplotypes.
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S10 Results for the Longshank mice experiment384
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Figure S26: (a) Observed time-series of allele frequencies. (b) Reconstructed haplotype fre-
quencies with accuracy intervals (in yellow) and mean accuracy scores.
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S11 Additional results from the C. elegans data set from385

[Noble et al., 2019]386
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Figure S27: Haplotype reconstruction for data from [Noble et al., 2019] (a) Match between the
haplotype structure reconstructed from the allele frequency data and the sequenced founder
haplotypes. Blue lines indicate mismatch positions. (b) Reconstructed haplotype frequencies
with accuracy intervals (in yellow) and mean accuracy scores.
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S28a Structure
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Figure S28: (a) Match between reconstructed haplotype structure and sequenced founder hap-
lotypes using all the three replicates from [Noble et al., 2019] at the same time. Blue lines
indicate mismatches. (b) Reconstructed haplotype frequencies with accuracy intervals (in yel-
low) and mean accuracy scores using all the three replicates from [Noble et al., 2019] at the
same time.
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S12 Results from the HIV data set from387

[Zanini et al., 2015]388
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Figure S29: Errors in reconstructing the haplotype structure (left), haplotype frequency (cen-
ter) and allele frequency (right) for haploSep applied to our real data set from patient 1 of
[Zanini et al., 2015] and compared on the vpu region.
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S13 Comparison with other methods389

In this section we present more details on our method comparison in Section 5. For this purpose390

we carried out simulations for HIV scenarios. Furthermore, a real data example has also been391

considered. In this context, we compared haploSep with CliqueSNV on both the simulated and392

real data. Unfortunately, we could not obtain results for CliqueSNV for all simulated data sets393

since CliqueSNV crashed for 10 samples that were generated in 6 of the 20 simulation runs. We394

hypothesize that this occurred due to memory problems caused by a large number of candidate395

haplotypes (30GB memory were allocated to the task). We also considered a comparison with396

the read based method PoolHapX from [Cao et al., 2020]. For our simulated data we could397

not obtain any results for PoolHapX, again because of memory problems with the initial graph398

coloring part of the algorithm. Nevertheless, we were able to run PoolHapX on a very short399

genomic segment taken from our D. simulans E&R real data example. All comparisons have400

been done using standard model selection provided by the methods to choose the number of401

reconstructed haplotypes. Further details on the simulation setup are given in Section S13-1402

and details on the results are presented in Sections S13-2, S13-3, and S13-4.403

S13-1 Simulation design404

We simulated the data for this comparison using SLiM [Haller and Messer, 2019] using the405

simulation scenario considered in [Cao et al., 2020]. We followed the script sweep 200loci.slim406

(PoolHapX 1.0.0, downloaded 2/11/2020), but adapted this script to simulate 24 populations.407

We ran the simulations for a chromosome of length 9719 base pairs, the genome length of HIV.408

The reads were then aligned to an HIV reference genome available in the PoolHapX repository.409

We simulated 10,000 haploid generations under a sweep scenario. For further information410

see the SI in [Cao et al., 2020]. From the simulated data we extracted the true haplotype411

structures and frequencies, as well as the allele frequency data. As input data for CliqueSNV,412

we simulated reads matching the data following the pipeline from [Cao et al., 2020], and we413

used DWGSIM version 0.1.13 [Homer, 2010] to simulate the reads. haploSep has been applied414

to allele frequency data extracted from these reads.415
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S13-2 Simulations results416
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Figure S30: Error ratio (α) between haplotype based allele frequency estimates (numerator)
and the pool sequencing estimates (denominator) plotted on a log-scale for haploSep versus
CliqueSNV. See Section 3.2 for the definition of α. All SNP positions where the observed minor
allele frequency is larger than 0.05 in all samples have been used. These results have been
derived using the same simulated data as for Fig.5
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Figure S31: Quantiles of the errors in reconstructing haplotype frequency (a) and structure (b)
for both compared methods. The same data were used as in Figure 5.
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Figure S32: Quantiles of the error ratio (α) between haplotype based allele frequency esti-
mates (numerator) and the pool sequencing estimates (denominator) plotted on a log-scale for
haploSep versus CliqueSNV. The same data were used as in Figure S30.
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S13-3 HIV real data example417

Our data consist of 10 time points from HIV patient number 1 in [Zanini et al., 2015]. These418

data are available in a pre-processed form with the PoolHapX package. Our method comparison419

focuses on the vpu window containing 249 SNPs. Besides structure and frequencies, we also420

compared the sample allele frequencies to the ones reconstructed from the haplotypes and their421

estimated frequencies using haploSep and CliqueSNV. For a discussion of Figs. S33 and S34 we422

refer to Section 5 in the main text. In Fig. S35 we show that haploSep leads to fewer outliers,423

the same median accuracy, and slightly worse 75% percentiles. This is remarkable since this424

good performance is achieved using fewer haplotypes (4) than the competitor (7–9, depending425

on the sample), i.e., a less complex model.426
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Figure S33: Error in estimating the haplotype structure for haploSep (left) and CliqueSNV

(right) using our real longitudinal data set of patient 1 from [Zanini et al., 2015].
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Figure S34: Error in estimating the haplotype frequencies for haploSep (left) and CliqueSNV

(right) using patient 1 longitudinal data from [Zanini et al., 2015].
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Figure S35: Error in estimating the allele frequencies for each SNP and each time point for
haploSep (left), CliqueSNV (right) using patient 1 longitudinal data from [Zanini et al., 2015].
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S13-4 Drosophila simulans real data example.427

We considered a 2200bp region of the Drosophila simulans genome containing 95 SNPs, and428

took our data from [Barghi et al., 2019] (chromosome 2L:11419333-11421533). We tried to429

apply CliqueSNV on this data set using the -os and -oe options to select the above mentioned430

chromosomal region from the FASTA files provided as reference genome. We obtained run time431

errors however, indicating that the (20GB) memory of our machine was insufficient. We tried432

to progressively decrease the window size, but were not able to resolve the problem.433

Since CliqueSNV did not run for this data, we applied PoolHapX instead. PoolHapX required434

2631 minutes to finish on this small data set. Since PoolHapX filters SNPs according to their435

minor allele frequency (SI of [Cao et al., 2020]), we used the same set of remaining SNPs when436

we applied our method. As an input to haploSep allele frequencies were computed from the437

available ”.bam” files using samtools and Popoolation2 [Kofler et al., 2011].438

As the founder haplotype sequences are available in this experiment, we compared the439

reconstructed haplotypes from both methods with the 189 founder sequences. For each method440

we consider the most similar founder haplotype and report the percentage of SNPs of the441

reconstructed haplotypes being identical to the founder sequences. haploSep reconstructs three442

haplotypes and the proportions of matching SNPs are 0.64, 0.48, and 0.72. On the other hand443

PoolHapX reconstructs 21 haplotypes typically less accurately, with proportions of matching444

SNPs ranging from 0.48 to 0.60.445

We also investigated the goodness of fit between the observed and predicted allele frequen-446

cies for the competing methods. Fig. S36 shows that the product of the reconstructed haplotype447

structures with their estimated frequencies provides a closer match to the observed allele fre-448

quencies with haploSep. It is worth noting that this better fit is achieved based on a much less449

complex model that uses 3 haplotypes compared to 21 with PoolHapX. Therefore the better fit450

cannot be explained by overfitting.451
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Figure S36: Error in estimating the allele frequencies for each SNP and each time point for
haploSep (left) and PoolHapX (right) using [Barghi et al., 2019] data.
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From a computational point of view, there is a striking difference in run time between these452

two methods. Indeed, the run time for haploSep was 0.572 seconds here, whereas for PoolHapX453

the run time was almost 2 days (2631 minutes) on a Mac Pro (2013) machine with 2,7 GHz454

12-Core Intel Xeon E5 Processor.455
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