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Abstract 

Myocardial infarction is a leading cause of mortality. While advances in the acute treatment have been 

made, the late-stage mortality is still high, driven by an incomplete understanding of cardiac remodeling 

processes1,2. Here we used single-cell gene expression, chromatin accessibility and spatial transcriptomic 

profiling of different physiological zones and timepoints of human myocardial infarction and human control 

myocardium to generate an integrative high-resolution map of cardiac remodeling. This approach allowed 

us to increase spatial resolution of cell-type composition and provide spatially resolved insights into the 

cardiac transcriptome and epigenome with identification of distinct cellular zones of injury, repair and 

remodeling. We here identified and validated mechanisms of fibroblast to myofibroblast differentiation that 

drive cardiac fibrosis. Our study provides an integrative molecular map of human myocardial infarction 

and represents a reference to advance mechanistic and therapeutic studies of cardiac disease.  
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 Coronary heart disease driving acute myocardial infarction (MI) is the largest contributor to 

cardiovascular mortality, which in turn is the leading cause of all deaths worldwide.3,4 Tremendous progress 

has been made in the acute therapy of MI focusing primarily on percutaneous coronary intervention and 

resulting in a decreased acute mortality.5 However, the morbidity and mortality caused by left ventricular 

cardiac remodeling post-MI remain unacceptably elevated.6,7 Cardiac remodeling after MI involves immune 

cell recruitment and demarcation of the infarcted area followed by tissue digestion, phagocytosis, 

myofibroblast activation, scar formation and neovascularization.8  Understanding the exact cellular and 

molecular mechanisms of cardiac remodelling processes from the acute ischemic event to the chronic 

cardiac scar formation in their spatial context will be key to developing novel therapeutics.  

Here we used a combination of single-cell gene expression and chromatin accessibility 

technologies and spatially resolved transcriptomics to study the cell-type specific changes in gene 

regulation, providing an integrated map of cardiac remodeling after MI. We defined candidate cis-

regulatory DNA elements (CREs, regions of non-coding DNA that regulate transcription of neighbouring 

genes) which revealed gene regulatory networks controlling specific cardiac cell types in health and disease. 

We projected this information onto specific tissue locations, thus allowing us to spatially map putative 

enhancers controlling gene regulation e.g. in the myocardial border zone area. This, in turn, enabled us to 

gain novel insights into gene-regulatory programs driving fibroblast to myofibroblast differentiation in 

cardiac scar formation. Our results provide a comprehensive spatially resolved characterization of gene 

regulation of the human heart in homeostasis and after myocardial infarction. We anticipate that this data 

will be a reference map for the field and can be utilized for future studies, and ultimately for the 

development of novel therapeutics.   

 

 

Results  
 

Integrative spatial and single-cell genomics of the human heart 

We applied an integrative single-cell genomic strategy with single nuclear RNA sequencing 

(snRNA-seq) and single nuclear Assay for Transposase-Accessible Chromatin sequencing (snATAC-seq) 

together with spatial transcriptomics from the same tissue (10x Genomics Visium) to map human cardiac 

cells in homeostasis and after MI at unprecedented spatial and molecular resolution (Fig. 1a-c). We 

compared a non-transplanted donor heart (control, C) as control to the necrotic core (ischemic zone, IZ), 

border zone (BZ) and the non-affected left ventricular myocardium (remote zone, RZ) of patients with acute 

MI (Fig. 1a). These acute MI specimens were obtained from hearts explanted 2-5 days after the onset of 

clinical symptoms (chest pain), before the patients received total artificial hearts due to cardiogenic shock 
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and as a bridge to transplantation. We also analyzed two human heart specimens at later stages after MI (3 

months and 12 years, fibrotic zone FZ) with ischemic heart failure that were available due to orthotopic 

heart transplantation. A non-transplanted donor heart served as a control (clinical characteristics are 

outlined in Extended Data Fig. 1a). We obtained 10µm cryo-sections of each cardiac specimen and isolated 

nuclei from the remaining specimen directly adjacent to the cryo-section with subsequent fluorescent 

activated nuclei sorting (FANS) for snRNA- and snATAC-seq (Fig. 1b). We obtained gene expression data 

from 40,530 nuclei in total, with an average of 1,335 genes per nucleus together with open chromatin in 

overall 18,213 nuclei with an average of 24,333 fragments per nucleus (n = 7). The spatial transcriptomics 

datasets contained an average of 3874.5 spots per specimen and 1,813 genes per spot with a large variability 

mainly due to the underlying biological process with cell-death after MI (Extended Data Fig. 1b-e). We 

used an integrative data analysis approach spanning all three modalities of our single-cell experiments to 

study cardiac cell specific information and their interactions in their spatial context (Fig. 1c, Extended Data 

Fig. 2).  

 

Single-cell transcriptome and chromatin landscape revealed heterogeneity of human cardiac cell-

types 

 To establish a consistent map of cell types with snRNA-seq across samples, we first clustered the 

data for each sample individually and annotated the clusters with curated marker genes from the literature.9–

11 To unify cell type annotations between samples, we integrated and batch-corrected data from all samples 

and clustered them based on the correlation of average gene expression (Fig. 1d, Extended Data Fig. 3a-b). 

This cluster analysis revealed 10 major cell types with several subpopulations (total n = 24 clusters) (Fig. 

1d-e) which is largely in line with the recent literature on healthy human hearts.9,11 We next clustered the 

snATAC-seq data for each sample (Fig. 1f). snATAC clusters were annotated using the most representative 

labels following label transfer from the snRNA-seq data, allowing the identification of 8 of the 10 major 

cell types across samples identified in snRNA-seq data (Fig. 1f). The promoter accessibility of marker genes 

in pseudo-bulk ATAC-seq data confirmed the cell type identities (Fig. 1g). We observed a consistent 

clustering of cell types after combination and batch-correction of all snATAC-seq samples and identified 

cell-type specific transcription factor binding activities with HINT-ATAC12(Extended Data Fig. 3b-c). Of 

note, while major cell types were present across most specimens, various cell types were only identified in 

individual specimens, likely reflecting a distinct cell-state during injury or repair (Extended Data Fig. 3d). 

Together, our integrative single-cell analysis defined a consistent and non-redundant catalog of cell types 

that comprise the adult human heart across multiple modalities and samples.  

We next investigated whether our spatial transcriptomics datasets reflected known biological 

processes of human myocardial infarction. To this end, we identified spatially variable gene expression 
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across samples with SPARK13 and identified overrepresented biological processes using hypergeometric 

tests. This analysis revealed functional and organizational differences consistent with the underlying 

biological conditions (Fig. 1h). In the acute MI ischemic zone, we observed an enrichment of spatially 

variable gene expression associated with the innate immune system, neutrophil degranulation and 

programmed cell-death, and a depletion of fibrotic and muscle contraction processes (Fig. 1h). Consistently, 

the chronic remodeled heart (late stage after MI) showed enrichment of spatially variable genes associated 

with extracellular matrix (ECM) proteoglycans, glycoproteins and other matrisome components in line with 

the expected fibrotic processes captured in these specimens. The borderzone specimens showed an 

enrichment of genes associated with mitochondrial complex I biogenesis and pyruvate metabolism/citric 

acid TCA cycle, both confirming the response to injury and potentially altered redox state and metabolism 

of this area. In the control and remote zone specimens, we observed an enrichment of spatially variable 

genes associated with muscle contraction linked to an overrepresentation of healthy cardiomyocytes in these 

samples. Overall, this analysis confirms that the spatial data clearly reflects known zones of biological 

processes after myocardial infarction.    

 

Integrative multi-omic analysis of the healthy human heart 

We first aimed to deeply characterize the integrated data of the control human heart specimens as 

a reference dataset (Extended Data Fig. 1a). We identified 12 cell types from snRNA-seq (n = 8,335) and 

8 cell types from snATAC-seq (n = 3,849), respectively (Fig. 2a-b, Extended Data Fig. 4a). Transcription 

factor (TF) footprinting analysis of snATAC-seq data revealed TF binding activity of known cell-specific 

TFs such as MEF2C in cardiomyocytes, ETV6 in macrophages and SOX8 in endothelial cells (Fig. 2c, 

Extended Data Fig. 4b-c). The activity of these TFs was further confirmed by cell-type specific expression 

of their target genes (Fig. 2d, Extended Data Fig. 4c). Clustering of the spatial transcriptomic data of the 

same left ventricular heart tissue resulted in 11 molecularly distinct clusters (Fig. 2e). Differential gene 

expression analysis revealed that cardiomyocytes were the major transcriptomic contributors to individual 

spatial clusters (Fig. 2e, Extended Data Fig. 4d). Of note, marker genes allowed for the identification of 

common cell types in the distinct areas, like cardiomyocytes, but also rare cardiac cell populations such as 

vascular smooth muscle cells (<1% of cells in the snRNA-seq data). Interestingly, mast cells (CPA3+) were 

identified in a distinct spatial cluster (cluster 9, Fig. 2e) while they were not detectable in either the snRNA- 

or the snATAC-seq datasets (Fig. 2a-b). Comparison of the top differentially expressed genes in both the 

snRNA-seq and spatial transcriptomic dataset confirmed the spatial annotation (Fig. 2e, Extended Data Fig. 

4d-e).  

We then integrated snRNA-seq and snATAC-seq data to generate a reference dataset which was 

used to map cell types to corresponding spatial transcriptomic data (Extended Data Fig. 5a-b). Since each 
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individual spot on the spatial transcriptomic slide putatively contains multiple cells, we transferred the 

labels from the integrated data to spatial gene expression data and mapped different cell-types on each 

individual spatial location (Extended Data Fig. 5c). Interestingly, we observed three different populations 

of endothelial cells (endothelial cells 1-3; Extended Data Fig. 5c), in three distinct areas (spatial clusters 1, 

6 and 7; Fig. 2e). Endothelial cells 3 were located in spatial cluster 7 (Fig. 2e), which was enriched with 

other cell types, yet showed an increased pathway activity of TGFβ signaling (Extended Data Fig. 5d), 

increased regulome-based activity of SMAD3 (Extended Data Fig. 5e) and close spatial colocalization with 

VSMCs (Fig. 2f, Extended Data Fig. 5c). This suggested a spatial arterial signaling niche and that 

endothelial cells 3 are arterial/arteriolar endothelial cells. We confirmed this finding by staining SEMA3G, 

an endothelial cells 3 specific marker, that indeed stained endothelial cells surrounded by ACTA2 positive 

VSMCs indicating an arterial location (Extended Data Fig. 5f). Of note, Litvinukova et al. also reported the 

presence of SEMA3G+ arterial endothelial cells recently9. 

Endothelial cells 2 cells were defined by high periostin (POSTN) expression, suggesting a 

mesenchymal phenotype14 (Extended Data Fig. 4e), and expression of genes that might indicate an 

endocardial origin (NPR3 and CDH11)15 (Extended Data Fig. 5g).  

We next estimated to what extent the spatial neighborhood of specific cell-types in the tissue 

influenced their gene expression, using MISTy16. MISTy models the expression of cell-type markers 

using spatially contextualized views, for example in the detection spot itself (intraview) or the 

surrounding (paraview). In this model, an increment in the prediction of gene expression after using 

spatially contextualized views points at a potential relationship between a spot and its neighbors. This 

relationship may represent coordinated functions in areas of the tissue or intercellular interactions. 

After modeling the spatially resolved expression of endothelial cell marker genes, we observed that the 

local expression of NPPA, LEPR, and INHBA predicted the expression of endothelial cells 2 marker genes 

(Fig. 2g, Extended Data Fig. 5h). NPPA has been previously described as a marker of trabecular 

myocardium in the subendocardial zone17 thus suggesting an endocardial location of endothelial cells 2. To 

validate this hypothesis, we performed multiplex in situ hybridizations (ISH) for POSTN and PECAM1 in 

human myocardial tissue confirming a distinct endocardial localization of PECAM1+/POSTN+ cells 

(Extended Data Fig. 5i).  

Next, we modeled the spatially resolved expression of the two fibroblast subclusters fibroblast 1+2 

(Fig. 2h) and identified several cytokines that explained the location of fibroblast 2. Interestingly, the model 

revealed that local expression of IL13RA1, linked to macrophage subtype 2 (Extended Data 5j), predicted 

the expression of the fibroblasts 2 marker FBN1, suggesting potential signaling between specific 

subpopulations of fibroblasts and macrophages in cardiac homeostasis (Fig. 2h, Extended Data Fig. 5j).  
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Demarcation of the ischemic zone visualized by distinct gene expression and regulation 

We next investigated the ischemic zone specimens of the acute human MI tissue that was collected 

2-5 days after severe infarction (Fig. 3a-b, Extended Data Fig. 6a-d). snRNA-seq and snATAC-seq showed 

decreased cell capture rates due to the underlying biological process with ischemia-associated cell-death 

(Fig. 1h). We identified four distinct cell types in these datasets (Extended data Fig. 6e). From the spatial 

gene expression assays, we were able to generate data from this partially necrotic area with over 8,000 

genes per spot in some locations (Extended Data Fig. 1e, IZ slides). Clustering of the spatial transcriptome 

data revealed a distinct pattern compared to the control heart with a demarcation of the infarcted tissue zone 

(Fig. 3a). We identified a core ischemic zone (spatial cluster 3) in the center of the specimen (Fig. 3a, right 

panel) surrounded by basophilic areas detectable in the hematoxylin and eosin-stained slide (Fig. 3a, left 

panel). This indicated the front of neutrophil granulocyte infiltration as the typical demarcation of non-

perfused myocardial infarction. The front of neutrophil infiltration was detectable as cluster 8 surrounding 

the ischemic zone with expression of key neutrophil markers (NCF1, ALOX5AP) (Extended Data Fig. 6f). 

We further detected a strong gradient of CXCL8 expression (cluster 2), a well-known neutrophil attractant 

chemokine (Fig. 3b). The severely damaged demarcated zone in the center of the specimen (cluster 3) was 

surrounded by concentric clusters of distinct gene expression (Fig. 3a-b). Of note, in this area the total 

number of genes detected was reduced compared to the other heart samples, in line with the expected cell-

death in this ischemic area and explaining why the snRNA and snATAC data could only recover a few cell-

types (Extended Data Fig. 1e). TNNI3 (troponin) expression, a typical cardiomyocyte marker gene9, was 

identified in viable myocardium at the left edge of this specimen (Fig. 3b). Expression of the NPPB gene, 

coding for the widely used heart-failure biomarker brain natriuretic peptide (BNP)18, suggested a spatial 

zone of stressed surviving cardiomyocytes (Extended Data Fig. 6f). A zone of macrophage migration 

inhibitory factor (MIF) expression pointed towards strong macrophage infiltration and distinct zones of 

COL3A1 expression indicated the presence of early activated fibroblasts (Fig. 3b, Extended Data Fig. 6f). 

We discovered a high importance of neighborhood expression of S100A1 adjacent to the region of increased 

hypoxic signaling (Fig. 3c-d). Upregulation of S100A1, a calcium-binding protein that interacts with the 

contractile apparatus in cardiomyocytes19, has been shown to increase contractility in cardiomyocytes after 

myocardial infarction. The hypoxic signaling activity was highest in the area surrounding the necrotic zone, 

which could be explained by an enrichment of viable cells expressing hypoxia response genes (Fig. 3d). In 

addition to CXCL8,  we also observed that the expression of ANGPTL4, a known facilitator of macrophage 

polarization in cardiac repair20 and AREG, a growth factor reported to be protective in cardiac ischemia21, 

were important predictors of distinct spatial zones (Fig. 3c). Furthermore, we found that the local expression 

of S100A1 consistently predicts the expression of cardiomyocyte markers in both ischemic slides (Fig. 3c, 

Extended Data Fig. 7i).   
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To explore the TFs associated with spatial regions, we mapped TF binding activity from snATAC-

seq data to space using cell type scores. We observed locally increased NRF-1 binding activity in the area 

that also showed high hypoxia signaling (Fig. 3d) and collagen expression (Fig. 3b, Extended Data Fig. 6e). 

We next corroborated that the spatial TF binding activity corresponded to the expression of specific NRF-

1 target genes (Extended Data Fig. 6h). NRF-1 regulates the expression of genes encoding respiratory chain 

subunits and other genes involved in mitochondrial function22,23,  in line with cellular response to hypoxia.   

The spatial transcriptomic data of the ischemic zone within the second acute MI specimen showed 

similar demarcation (Extended Data Fig. 7). Predictive features of these zones were conserved when 

compared to the remote area of the same heart specimen (Extended Data Fig. 8). Interestingly, we observed 

early signs of neo-angiogenesis in an ischemic area (cluster 2) with expression of EGFL7 and SOX4 and a 

spatial cardiomyocyte cluster that showed ER stress marker gene expression24 such as HERPUD1 (cluster 

4) (Extended Data Fig. 7a-d).  In summary, the data indicated distinct spatial gene regulation in response 

to the ischemia associated cell-death with gene regulation driving the acute cardiac injury response.  

 

Spatially distinct cardiomyocyte subpopulations in the border zone 

The border zone of the myocardial infarction is of particular interest, since spatial remodeling of 

this area is inextricably linked to the recovery of cardiac function25. Despite homogenous hematoxylin and 

eosin staining and UMI distribution across the slide (Fig. 4a and Extended Data Fig. 1e), we observed 

extensively heterogeneous spatial gene expression and identified a specific spatial transition zone in the 

center of the specimen (cluster 1) (Fig. 4a, Extended Data 9a-d). This zone separated distinct areas of gene 

expression in the upper left part from the lower right of the specimen (Fig. 4a). We identified 13 cell types 

from snRNA-seq (n = 6,081) and eight cell types from snATAC-seq (n = 3,101) (Fig. 4b-c, Extended Data 

Fig. 9a). Interestingly, both datasets identified two distinct cardiomyocyte populations (cardiomyocytes 1 

and 2) (Fig. 4b-c). While cardiomyocytes 1 were solely located below the transition zone (injured area) 

cardiomyocytes 2 were primarily located above the transition zone (Fig. 4d). Differential gene expression 

analysis in the scRNA-seq data revealed significant upregulation of NPPB, ANKRD1 and MYO18B in 

cardiomyocytes 1 (Fig. 4d, Extended data Fig. 9e). Both NPPB and ANKRD1 have been reported to be 

upregulated in the border zone after MI.26,27 Pathway analysis of the spatial gene expression data indicated 

increased TGFβ activity within the injury area (lower right) while we identified homogeneous distribution 

of hypoxia activity (Fig. 4d, Extended Data Fig. 9f).  

Footprinting analysis of the snATAC-seq data revealed that both cardiomyocytes 1 and 2 had high 

binding activity of known cardiomyocyte lineage-specific TFs such as GATA4, MEF2C, and MYOD1, 

whereas cardiomyocytes 1 showed increased binding activity of NFE2L1 (Fig. 4e-f). NFE2L1 regulates a 

wide variety of cellular responses, several of which are related to important aspects of protection from 
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ischemic stimuli28. Importantly, we observed increased binding activity of stress- and inflammation-

associated TFs such as SMAD2/3, JUN, FOS (AP-1 signaling) in cardiomyocytes 1 compared to 

cardiomyocytes 2 (Fig. 4e). Interestingly, these gene regulatory programs of cardiomyocytes 1 were partly 

shared with cardiac fibroblasts (Fig. 4e). The overall switch of MEF2 to an AP-1 driven gene program has 

previously been described in the context of the border zone of murine MI29. Mapping of the TF binding 

activity into space indicates GATA4 TF binding activity in cardiomyocyte 2 location, whereas NFE2L1 

and RUNX2 are associated with cardiomyocyte 1 and fibroblast 1 location, which we validated by 

analyzing the spatial expression of their cell-type specific target genes (Fig. 4g-h).   

To further investigate cis-regulatory interactions differentiating these cardiomyocyte cell types, we 

detected peak-to-gene links by integrating snATAC- and snRNA-seq data (Extended data Fig. 10a)30. We 

next identified genes with the highest number of links specific to the cardiomyocyte 1 or 2 population 

(Extended data Fig. 10b). ANKRD1 is among the top genes with significantly elevated peak-gene links in 

cardiomyocytes 1 compared to  cardiomyocytes 2 (Extended data Fig. 10b). Interestingly, we detected two 

footprint-supported NFE2L1 binding sites in cardiomyocyte 1 specific peaks upstream of the ANKRD1 

promoter site (Fig. 4i). Additionally, high H3K4me1 signals in these regions supports enhancer function of 

these cis-regulatory elements in cardiomyocytes (Fig. 4i)31. These results indicate a direct regulation of 

ANKRD1 by NFE2L1 in cardiomyocytes 1. Additionally, we identified footprints of NFE2L1 in enhancer 

regions of MYO18B and RUNX2 binding sites in enhancer regions of the COL1A1 and CREB3L2 gene 

(Extended data Fig.10c-e). Interestingly, we also observed that several cytokines were associated with the 

location of these cardiomyocyte subtypes (Extended Data Fig. 10f). After modeling the spatially resolved 

expression of cardiomyocyte cell marker genes, we observed that the local expression of CCR2 predicted 

the expression of cardiomyocyte 1 marker genes in the injured zone of the specimen (Fig. 4j). CCR2+ 

resident cardiac macrophages have been reported as key regulators of an inflammatory response to 

myocardial injury32. Interestingly, CCR2 was also of particular importance for predicting the localisation 

of fibroblast 1 together with TGFβ2 pathway activity suggesting potential crosstalk (Extended Data Fig. 

10g). The second border-zone specimen overall showed similar findings (Extended Data Fig. 11). 

In summary, the analysis indicated spatially distinct gene-expression and regulation in the border-

zone with cardiomyocyte subsets that are specifically located within distinct regions of injury, inflammation 

and remodeling. 

 
Remodeling of the myocardium post-MI 

Scar formation after MI is important for cardiac tissue integrity since failed scar formation can lead 

to ventricular rupture and death. One chronic remodeled specimen contained two visible scars, with one 

located in the center forming a U-shape (Fig. 5a, arrows) and a second one in the upper right corner of the 
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specimen (Fig. 5a, arrowheads). Clustering of the spatial transcriptomics data revealed that the two scars 

aligned with distinct clusters (cluster 2 and cluster 9) and were separated by a larger area of endothelial 

cells reflecting neo-angiogenesis (Fig. 5a). We identified distinct subpopulations of fibroblasts and 

endothelial cells from snRNA-seq (n = 2,869) and snATAC-seq (n = 1,605) that showed an interesting 

spatial distribution in regard to the two scars (Fig. 5b-c, Extended Data Fig. 12a-c).  

Integration of snRNA and snATAC with spatial transcriptomics allowed us to increase the spatial 

resolution demonstrating the dominance of fibroblasts 3 within the central scar with a sharp border to a 

region that was dominated by endothelial cells 1 (Fig. 5d). This area was surrounded by an area with an 

increased abundance of pericytes also pointing towards neo-angiogenesis around the scar (Fig. 5d, Extended 

Data Fig. 12a). Interestingly, fibroblasts 5 were mainly present in the scar at the upper right corner of the 

slide surrounded by endothelial cells 5 (Fig. 5c). This scar showed less extracellular matrix (ECM) 

expression as compared to the central scar, which potentially represents a different stage of scar formation 

(Fig. 5d). Of note, the snRNA-seq and spatial transcriptomics data only identified a small population of 

cardiomyocytes (Fig. 5c-d) in line with the replacement scar formation after MI. Differential analysis of 

spatial features revealed increased JAK-STAT and TGFβ activity, both important pathways of fibrotic 

remodeling, in areas where fibroblasts 3 were enriched (spatial cluster 2) (Extended data Fig. 12e). The 

areas enriched with fibroblasts 5 also contained damaged endothelial cells and increased hypoxia pathway 

activity (Fig. 5d, Extended Data Fig. 12f). We observed that the local expression of TGFβ3, PDGFRa and 

PDGFA were highly important predictors of the presence of fibroblasts 3, which are abundant in the central 

scar area (Fig. 5e-f). SERPINE1 (PAI-1), which is associated with active scarring in tissues33, showed a 

high importance in cluster 9 and was associated with higher hypoxia and VEGF-A signaling (Fig. 5e-f, 

Extended data Fig. 12g). In contrast, the central scar area (spatial cluster 9) was also associated with higher 

binding activity of NRF-1 and the TF FOS (Fig. 5h). We further validated this using the parallel snATAC-

seq data which suggest a higher binding activity of SMAD2/3 downstream in the TGFβ pathway (Extended 

data Fig. 12h). Altogether this data suggests a temporal difference between the two scar areas represented 

by the presence of a younger scar (upper right) with strong hypoxia signaling and a distinct fibroblast 

subpopulation and an older chronic large scar in the center with high matrix production involving FOS, 

SMAD2/3, NRF1 and RUNX1 (Extended Data Fig. 12h). This finding was also supported by higher spatial 

RUNX1 activity in fibroblasts 1 location of the second chronic dataset (Extended Data Fig. 13 a-j).   

Since fibrotic response and scarring are the major feature of remodeling at late stage MI and are 

associated with cardiac stiffening, decreased systolic and diastolic function as well as triggering electric 

instability34–36, we next asked which mechanisms underlie fibroblast to myofibroblast differentiation in 

cardiac fibrosis.   
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Trajectory analysis revealed RUNX1 as a regulator of myofibroblast differentiation in the human 

heart 

To dissect mechanisms of myofibroblast differentiation we reclustered all fibroblasts from the integrated 

snRNA-seq dataset and identified 9 sub-clusters (Fig. 6a) suggesting an unappreciated heterogeneity of the 

cardiac stroma. Pseudotime analysis indicated a differentiation gradient of the integrated fibroblasts 

originating from cluster 3 and terminating in cluster 1 (Fig. 6a, right panel, Extended Data Fig. 14a). We 

have recently identified SCARA5 as a marker for fibroblasts in the human kidney and demonstrated that 

SCARA5+ fibroblasts are one origin of renal myofibroblasts.37 Therefore we used cells with the highest 

expression of SCARA5 (cluster 3) as root cells in the pseudotime analysis. Periostin (POSTN) is a marker 

of myofibroblast differentiation that seems to be conserved between human and mouse and also plays a role 

in kidney fibrosis.37 Cluster 1 showed the highest expression of POSTN, COL1A1 and FN1 as well as 

collagen enrichment (NABA collagen score) compared to the SCARA5+ cluster 3 (Fig. 6b-c, Extended Data 

Fig. 14a-b), which was indicative of a terminally differentiated myofibroblast population. The trajectory 

analysis inferred a differentiation trajectory from SCARA5+ to POSTN+ cells which was in line with our 

hypothesis. This data suggested downregulation of genes like SCARA5 and PCOLCE2 with increased 

expression of ECM genes and runt-related transcription factor 1 (RUNX1) during myofibroblast 

differentiation (Fig. 6d). To understand mechanisms of fibroblast to myofibroblast differentiation we next 

sorted genes, pathways and GO-terms (gene ontology) along this pseudotime trajectory which demonstrated 

late integrin signaling and ECM pathway enrichment consistent with fibroblast to myofibroblast 

differentiation (Extended Data Fig. 14b). Interestingly some of these findings, including reduced SCARA5 

and PCOLCE2 expression in fibroblast to myofibroblast differentiation, appear to be conserved across 

different organs since we also observed this in the human kidney37. As suggested by our pseudotime 

analysis, we validated the presence of high SCARA5+ expression in fibroblasts by co-staining with the pan-

fibroblast/myofibroblast marker COL15A1+ (Fig. 6 e, Extended Data Fig.14c-d) in human heart tissues. 

The direction of the trajectory was further confirmed by an accumulation of POSTN+, COL1A1+ 

myofibroblasts in fibrotic heart tissues of human heart failure patients (Fig. 6f, Extended Data Fig. 14e-f). 

We further verified this differentiation trajectory using the snATAC-seq data. Sub-clustering of all 

fibroblasts identified 11 distinct populations (Extended Data Fig. 14g). We next mapped the trajectory from 

snRNA-seq to snATAC-seq using ArchR38 (Fig. 6g-h). Importantly, we also observed cells with high 

accessibility of the POSTN and SCARA5 promoter region in distinct ends of the diffusion map (Fig. 6g-h). 

To identify TFs that regulate this process, we integrated gene scores and TF motif activity along the 

trajectory and identified several TFs that showed a significant correlation between gene accessibility and 

motif activity along the trajectory (Fig. 6i, Extended Data Fig. 14h). We observed increased gene 

accessibility and motif activity for the Hedgehog transcription factor Gli2 along the fibroblast to 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 10, 2020. ; https://doi.org/10.1101/2020.12.08.411686doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.08.411686
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

            12 

myofibroblast differentiation trajectory (Extended Data Fig. 14i) which is in line with our reported role of 

Gli2 in regulating myofibroblast expansion39. We also observed an increase of SMAD1 activity and 

accessibility (Fig. 6j), which is a downstream TF of TGFβ signaling, one of the hallmark pathways of 

myofibroblast differentiation40.  Interestingly, we observed that RUNX1 and RUNX2 also showed a gene 

accessibility and motif activity that increased from fibroblast to myofibroblast differentiation (Fig. 6k, 

Extended Data Fig. 14i).  RUNX1 has been reported to physically interact with SMAD proteins and thus 

direct TGFβ signaling40. Our temporal TF analysis suggested SMAD1 was increasingly activated before 

RUNX1 (Fig. 6i) which is further supported by spatially co-localized RUNX1 TF binding activity and 

TGFβ signaling (Fig. 6l-m) and RUNX1/SMAD1 co-binding motif analysis (Extended Data Fig. 14j). The 

role of RUNX1 has been primarily studied in cardiomyocytes41 where deficiency protects against ischemic 

injury42. In the heart, the role of RUNX1 in non-myocytes is not defined in detail yet one recent study has 

reported the RUNX1 binding motif as a main motif in cardiac fibroblast-specific active enhancers43. 

To validate the potential role of RUNX1 in myofibroblast differentiation we generated a human 

heart PDGFRβ+ fibroblast cell-line by FACS and lentiviral SV40LT and HTERT transduction (Extended 

Data Fig. 14k). Interestingly, lentiviral overexpression of RUNX1 in this cell-line increased TGFβ induced 

myofibroblast differentiation with increased expression of COL1A1, ACTA2 and FN1 (Fig. 6n). Therefore, 

our data indicates that RUNX1 is an important previously unappreciated driver of myofibroblast 

differentiation and acts by amplification of TGFβ signaling. Together with the known role of RUNX1 in 

cardiomyocytes this TF might be a very promising therapeutic target in cardiac remodeling after MI.  

 

 

Discussion  

In multicellular organs, like the human heart, cellular function depends on the balance of interaction 

between neighbouring individual cell-types, which leads to tissue homeostasis. Single-cell technologies can 

profile the molecular heterogeneity of the different cell-types and their changes during disease. However, 

without spatial context it is unclear how these different cell types coordinate tissue functions. Here we 

provide a comprehensive resource map of the human heart at early and late stages after MI compared to 

control hearts (non-transplanted donor hearts), integrating spatial transcriptomics with single-cell gene 

expression and chromatin accessibility data. The use of spatial transcriptomics data allowed us to study 

links between cell lineages and functions that couldn’t be achieved from single-cell technologies alone.   

We proposed a computational framework to integrate the multi-omics datasets of each patient. We 

related cell types across samples to achieve a high degree of consistency of the cell-type annotation. We 

increased the resolution of spatial transcriptomics by mapping cell-types to specific locations. Additionally, 

we provided a catalog of local biological processes that capture signaling and transcriptional regulatory 
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events. Our findings provide detailed insights across cardiac cell-types and their response to ischemic injury 

of the human heart. We observed early demarcation of the infarcted area with regional influx of immune-

cell populations guided by regional expression of cytokines. The border zone surrounding the injured 

myocardium showed indeed a sharp border between injured and none-injured cell-types. Cardiomyocytes 

that differed by location with regard to the boundary revealed a distinct gene expression pattern and gene 

regulatory profile including enhancer accessibility. Late-stage remodeling after MI was driven by fibrosis 

with fibroblast to myofibroblast differentiation in distinct scars that were surrounded by areas of neo-

angiogenesis. Our data provides novel insights into myofibroblast differentiation in human hearts after MI, 

with distinct gene expression and gene regulatory programs driving this process including RUNX1 as an 

amplifier of TGFβ signaling.  

We envision that our work will serve as a reference for future studies integrating single cell 

(epi)genomics with spatial gene expression data. Furthermore, we believe that our data will facilitate the 

understanding of spatial gene expression and gene regulatory networks within the human myocardium and 

will be a resource for future studies that aim to understand the function of distinct cardiac cell types in 

cardiac homeostasis and ischemic disease. 
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Fig. 1. Multi-omic analysis of the human heart in health and disease. a. Overview of patients and 
samples in this study. In total 8 tissue samples were studied from 5 human hearts in three different 
modalities (snRNA-seq, snATAC-seq and spatial gene expression (Visium)). Areas included control (C), 
remote zone (RZ), border zone (BZ), ischemic zone (IZ) and fibrotic zones (FZ). b. A cryo-section of the 
selected tissue sample was used for spatial gene expression assay (Visium) and the contiguous remnant 
tissue was used for nuclei isolation followed by FANS (fluorescent activated nuclei sorting). c. Schematic 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 10, 2020. ; https://doi.org/10.1101/2020.12.08.411686doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.08.411686
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

            19 

of the integrative data analysis pipeline (for details see Figure S1). d. UMAP embedding of integrated 
40,530 single nuclei transcriptomes from all 8 human heart tissue samples. Colors refer to annotated cell-
types. CM (cardiomyocytes), Fib (fibroblasts), Neuro (neuronal cells), VSMCs (vascular smooth muscle 
cells), Mac (Macrophages), Pe (pericytes), T (T-cells), Endo (endothelial cells). e. Heatmap showing 
average expression of marker genes in each cell-type. f. UMAP embedding of 18,213 single nuclei 
chromatin accessibility profiles. g. Pseudo-bulk ATAC-seq tracks showing chromatin accessibility of 
selective marker genes. h. Heatmap showing overrepresented gene-sets in the spatially variable genes of 
each spatial gene expression dataset using hypergeometric tests. RTK = receptor tyrosine kinase, UPR = 
unfolded protein response, ECM = extracellular matrix, DEG = degradation, ORG = organization, PY = 
pyruvate, DCM = dilatative cardiomyopathy. Colours indicate biological processes; cell signalling process 
(orange), immune process (violet), cellular matrix process (pink), metabolic process (blue), and cardiac-
muscle process (green).    
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Fig. 2. Multi-omic analysis of the healthy human heart. a. UMAP embedding of 8,335 single nuclei 
transcriptomes from a control human heart resulting in 12 clusters. Colors refer to annotated cell types. CM 
(cardiomyocytes), Fib (fibroblasts), Neuro (neuronal cells), VSMCs (vascular smooth muscle cells), Mac 
(Macrophages), Pe (pericytes), Endo (endothelial cells). b. UMAP embedding of 3,849 single nuclei open 
chromatin profiles resulting in 8 clusters. c. Line plot showing footprint of MEF2C from the control human 
heart. Y-axis represents the average ATAC-seq signal around the transcription factor binding sites. d. Violin 
plot showing summarized levels of expression of MEF2C-regulated genes per cell-type using module 
scores. e. HE-staining of the control heart tissue section (left). Clustering of each individual spatial detection 
spot resulted in 10 clusters (middle). Colors indicate the cluster assignments. UMAP embedding of spatial 
detection spots (right). Scale bar = 1mm. f. Cell-type score per spot by label transfer showing the 
distribution of cardiomyocytes, endothelial cells, VSMCs and endothelial cells 3. See Extended Data Fig. 
5c for other cell-types. g. MISTy mean importances of the spatial expression of extracellular matrix and 
cytokine genes to predict the expression of marker genes of different subtypes of endothelial cells and h. 
fibroblasts.  
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Fig. 3. Spatial gene expression analysis of acute human myocardial ischemic tissue. a. Overview of the 
ischemic myocardial tissue (HE staining). Note the increments in blue staining (arrow) in the lower right 
area, indicating inflammatory cell infiltration. Clustering of the spatial detection spots resulted in 14 distinct 
clusters. Colors indicate individual clusters. UMAP embedding of spatial detection spots. Scale bar = 1mm. 
b. Scaled gene expression levels of CXCL8 (neutrophil recruitment), TNNI3 (cardiomyocytes), COL3A1 
(fibroblasts). c. MISTy mean importances of the spatial expression of extracellular matrix and cytokine 
genes to explain the expression of marker genes of each cluster (for marker genes see Supplementary file 
2). d. Paraview-transformed spatial expression (l = 10, see Methods) of S100A1 (left) and Hypoxia pathway 
activity (middle). Transcription factor (TF)-binding activity of NRF-1 mapped to each spot (right). 
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Fig. 4. Gene regulatory changes of a cardiac borderzone delineated by multi-omic analysis. a. HE-
staining of broderzone tissue showing homogenous tissue architecture. Unsupervised clustering of the 
spatial spots resulted in 10 clusters (left). UMAP embedding of the spatial spots (right). Scale bar = 1 mm.  
b. UMAP embedding of the snRNA-seq and c. snATAC-seq data. d. Cell-type score per spot by label 
transfer showing the distribution of cardiomyocyte 1 and cardiomyocyte 2. Scaled gene expression of the 
cardiac stress markers NPPB and ANKRD1. PROGENy’s44,45 Hypoxia and TGFβ pathway activity. Note 
that a gradient of hypoxia was not detected. e. Transcription factor (TF)-binding activity using HINT. Note 
the cardiomyocyte 1-specific activity of AP-1 complex TFs (JUN/FOS). f. Footprint profiles of GATA4 
and NFE2L1 across different cell-types. Y-axis represents the average ATAC-seq signal around the TF-
binding sites. g. Spatial distribution of GATA4, NFE2L1, and RUNX2 TF-binding activity. h. Violin plot 
comparing the summarized levels of expression using module scores of regulated genes of GATA4, 
NFE2L1, and RUNX2 of spots with high and low predicted TF-binding activities (Wilcoxon Rank Sum 
test, for GATA, NFE2L1 and RUNX2 p ≦ 9.1e-32). The 0.9 quantile separates high and low classes (high 
n = 467, low n = 4,194). i. Peak-to-gene links of ANKRD1 for cardiomyocyte 1 and cardiomyocyte 2. Each 
loop represents a putative link between ANKRD1 and a peak. Loop height represents the significance of 
the correlation and dash line represents threshold of significance (p = 0.05). ATAC-seq tracks were 
generated from pseudo-bulk chromatin profiles of cardiomyocyte 1 and cardiomyocyte 2. H3K4me1 ChIP-
seq track of cardiomyocytes was obtained from an adult non-failing heart (Gilsbach, Ralf et al. 2018). 
Binding sites of NEF2L1 supported by ATAC-seq footprints are highlighted. j. Paraview-transformed 
spatial expression (l = 10) of CCR2.   
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Fig. 5. Temporal scar differences of fibrotic human heart. a. Overview of myocardial fibrotic tissue 
(HE-staining). Note the central U-shaped scar (arrows) and the top right corner scar (arrowheads). 
Clustering of the spatial spots resulted in 10 clusters. Cluster 2 and 9 aligned with observed scars. Scale bar 
= 1 mm. b. UMAP embedding of the snRNA-seq data with 15 cell types. Note that cardiomyocytes 
represent a minor fraction. c. Aggregated expression of extracellular matrix (ECM)-associated genes (top 
left). Cell-type score per spot by label transfer showing the distribution of cardiomyocytes, fibroblasts 5, 
fibroblasts 3, and endothelial cells. PROGENy’s44,45 hypoxia pathway activity (bottom right). Note the 
increased activity in the central U-shaped scar area and the enhanced activity in the right upper corner. d. 
Visualization of the distribution of cell-type scores at the interface of a fibrotic scar and adjacent endothelial 
cells. e. MISTy mean importances of the spatial expression of ECM, cytokine and cytokine receptor 
associated genes to explain the expression of marker genes of fibroblasts 5 and fibroblasts 3. For marker 
genes see Supplementary File 2. f. Paraview-transformed spatial expression (l = 10, see Methods) of TGFβ3 
and SERPINE1. h. NRF1 and FOS transcription factor (TF)-binding activity mapped onto the spatial 
dataset from a. 
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Fig. 6. Trajectory analysis of cardiac myofibroblast differentiation. a. UMAP embedding of 14,637 
fibroblasts from all snRNA-seq profiles (left), and Monocle3 pseudotime (right). b. Gene expression of 
SCARA5, POSTN, COL1A1, showing POSTN- and SCARA5-enrichment in clusters 1 and 3, respectively. 
c. Collagen score projected onto UMAP from a. d. Heatmap of differentially expressed genes across 
pseudotime from a. e. Representative in-situ hybridisation of SCARA5 and COL15A1 on human heart tissue. 
Scale bars: 20 μm. f. Quantification and comparison of SCARA5+/POSTN+ cells vs. POSTN+/COL1A1+ 
cells in human heart failure tissues (n=7). Mann-Whitney test. Error bars = S.D. g.   Pseudotime trajectory 
of SCARA5+ and POSTN+ cells in snATAC-seq. The line represents a fitted trajectory across pseudotime. 
h. Scatter plot showing gene scores of SCARA5, POSTN, COL1A1 and FN1. i. Pseudotime heatmap 
showing gene scores (left) and TF motif activity (right) along the trajectory. j. Gene score (left) and motif 
accessibility (right) across the fibroblasts trajectory of SMAD1 and k. RUNX1. Each dot represents an 
individual pseudotime-ordered cell. l. RUNX1 motif activity in spatial data. m. TGFβ signaling in spatial 
data. n. Expression of COL1A1, ACTA2 and FN1 by RNA qPCR after RUNX1 overexpression with and 
without TGFβ compared to empty vector (EV) (n = 6). One-way ANOVA followed by Bonferroni 
correction. Error bars = S.D.  
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