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Abstract 13 

The growth of biodiversity data sets generated by citizen scientists continues to accelerate. The 14 
availability of such data has greatly expanded the scale of questions researchers can address. Yet, 15 
error, bias, and noise continue to be serious concerns for analysts, particularly when data being 16 
contributed to these giant online data sets are difficult to verify. Counts of birds contributed to eBird, 17 
the world’s largest biodiversity online database, present a potentially useful resource for tracking 18 
trends over time and space in species’ abundances. We quantified counting errors in a sample of 1406 19 
eBird checklists by comparing numbers contributed by birders (N=246) who visited a popular birding 20 
location in Oregon, USA, with numbers generated by a professional ornithologist engaged in a long-21 
term study creating benchmark (reference) measurements of daily waterbird counts. We focused on 22 
waterbirds, which are easily visible at this site. We evaluated potential predictors of count 23 
differences, including characteristics of contributed checklists, of each species, and of time of day 24 
and year. Count differences were biased toward undercounts, with more than 75% of counts being 25 
below the daily benchmark value. When only checklists that actually reported a species known to be 26 
present were included, median count errors were -29.1% (range: 0 to -42.8 %; N=20 species). Model 27 
sets revealed an important influence of each species’ reference count, which varied seasonally as 28 
waterbird numbers fluctuated, and of percent of species known to be present each day that were 29 
included on each checklist. That is, checklists indicating a more thorough survey of the species 30 
richness at the site also had, on average, lower counting errors. However, even on checklists with the 31 
most thorough species lists, counts were biased low and exceptionally variable in their accuracy. To 32 
improve utility of such bird count data, we suggest three strategies to pursue in the future. One is to 33 
assess additional options for analytically determining how to select checklists that have the highest 34 
probability of including less biased count data, as well as exploring options for correcting bias during 35 
the analysis stage. Another is to add options for users to provide additional information that helps 36 
analysts choose checklists, such as an option for users to tag checklists where they focused on 37 
obtaining accurate counts. We also recommend exploration of opportunities to effectively calibrate 38 
citizen-science bird count data by establishing a formalized network of marquis sites where dedicated 39 
observers regularly contribute carefully collected benchmark data. 40 

Introduction 41 
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Contributions of volunteers to scientific databases are increasing as the popularity of citizen science 42 
continues to grow (Miller-Rushing et al., 2012; Chandler et al., 2017). Many citizen science projects 43 
are open-access and anyone can contribute observations without required training in best data 44 
collection practices (Cohn, 2008). eBird is an open online database with more than 560,000 users 45 
(eBirders) contributing millions of bird observations annually via checklists (Sullivan et al., 2009). 46 
Each checklist contains a list of bird species identified on a particular date and, ideally, counts of 47 
each species, as well as information on location visited, basic protocol used while birding (traveling, 48 
staying stationary, etc.), and duration of effort (Wood et al., 2011). The huge spatial extent of 49 
presence-absence data in eBird has facilitated efforts to model species distributions across continental 50 
and global spatial scales once data have been filtered to exclude potentially problematic checklists 51 
(Fink et al., 2013). The degree to which the count data may reliably inform scientific and 52 
management objectives remains unclear. 53 

Although efforts to quantify issues associated with bird species detection have been studied and 54 
continue to be developed, both in citizen science databases and in structured scientific surveys 55 
(Buckland et al., 2008; Hutto, 2016; Walker and Taylor, 2017), less is known about potential 56 
counting errors and biases leading to noisy data. Counting birds is difficult, even by the most 57 
proficient observers (Robbins and Stallcup, 1981; Robinson et al., 2018). Methods to account for 58 
detection issues in bird counting studies continue to expand with development of new data collection 59 
and analytical methods (Buckland et al., 2008; Barker et al., 2018). Nearly all the methods, however, 60 
require a sophisticated sampling protocol that would exclude most volunteer birder contributions and 61 
therefore limit the advantages of gathering data at massive geographic scales. Yet, the potential 62 
windfall from large quantities of data can quickly be eroded if a lack of structured protocols leads to 63 
data quality concerns (Kelling et al., 2019). Given that abundance is one of the fundamental 64 
influences on population dynamics, functional roles in ecosystems, and even extinction risk (Brown, 65 
1984), a better understanding of the potential value of count data contributed to massive online 66 
databases by untrained volunteers is needed (Greenwood, 2007). For example, species count errors in 67 
eBird data could limit our abilities to observe important abundance trends (Horns et al., 2018). 68 
Effective processes for evaluating and handling such errors need further development, owing to the 69 
potentially huge value of tracking population changes at a continental scale during this era of rapid 70 
environmental change (Bird et al., 2014; Fink et al., 2020). 71 

Among the primary concerns are errors, bias and noise. Errors, for our purposes here, are differences 72 
in counts between a reference (benchmark) value and values included in eBird checklists for the same 73 
species on the same date. Errors are comprised of both bias and noise. Bias is the tendency for the 74 
errors to be consistently higher or lower than the reference value. Noise is the additional random 75 
counting error that increases variance of the counts. All three impede efforts to determine true count 76 
values, and are challenges common to many branches of biology (West, 1999; Guillery, 2002). We 77 
acknowledge that labeling such count differences as errors assumes the benchmark values have less 78 
error and doing so risks offending some eBird contributors. Given that reliable benchmarks are 79 
achieved by consistent application of best counting practices, we do consider deviations from the 80 
benchmark values here to be errors, not simply variation among observers. To acknowledge that 81 
there are sources of error in all measurements, however, we often refer to such deviations as count 82 
differences. We consider the terms ‘error’ and ‘count differences’ to be synonymous. 83 

Robust comparisons of count differences are improved when data are collected in situations where 84 
detectability challenges are expected to be low. Such situations are rare but uniquely valuable. We 85 
used an extensive data set focused on benchmarking the richness and abundances of birds at a water 86 
treatment site in Oregon, USA. We compared count data gathered by a professional ornithologist 87 
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focused specifically on creating an accurate benchmark measurement of daily fluctuations in 88 
waterbird counts with counts submitted by birders to eBird. We quantified the magnitude and 89 
directionality of count differences. Our data span 10 years and include 1406 eBird checklists 90 
contributed by 246 observers, as well as 2038 checklists in the benchmark data. The site is well 91 
suited for rigorous comparisons because all waterbirds are in the open, largely tolerant of human 92 
activity, and so provide a best-case scenario for detection, identification, and counting of birds. No 93 
adjustments for detectability or availability issues should be needed because all parts of the ponds are 94 
visible. Thus, discrepancies in counts between a professional observer focused on obtaining accurate 95 
numbers and data reported to eBird should be attributable to counting errors instead of availability 96 
and detectability issues. While there could be very minor detectability issues, like some diving 97 
waterbirds being under water briefly, the vast majority of error in this setting should be attributable to 98 
counting error. 99 
We first quantified count differences then sought to understand potential factors explaining the 100 
magnitude and directionality of count differences. We hypothesized that counting errors would be 101 
influenced by traits associated with the species being counted, with an index of observer experience 102 
(percent of species detected), and with seasonal changes in numbers of birds present. For example, 103 
we expected count differences might be slightly greater for diving ducks, which are sometimes 104 
briefly under water while foraging, and lower for dabbling species, which sit in the open 105 
continuously. We expected smaller count differences in checklists that included a higher proportion 106 
of the species present each day. We also hypothesized that count differences would be greater when 107 
overall total number of waterbirds present was high, potentially causing observers to be overwhelmed 108 
and therefore more prone to counting errors. Finally, we explored the possibility that, even if count 109 
data were biased on individual checklists, the waterbird community might be adequately 110 
characterized as a whole by combining count data from multiple observers and checklists. We 111 
conclude by proposing additional approaches that may reveal the extent to which citizen-science bird 112 
count data may be used to estimate abundances reliably. 113 

Methods 114 

Study Area 115 

Bird count data were gathered from 2010 to 2019 at the Philomath Wastewater Treatment facility, in 116 
Philomath, Oregon USA. The site contained two 35-ha ponds until 2011 when two additional 35-ha 117 
ponds were added. Each pond is rectangular and enclosed by a berm with a single-lane road. Birders 118 
circumnavigate the ponds typically by vehicle, rarely by walking or bicycling; WDR drove. 119 
Vegetation does not obscure the view at any pond. All shores are covered by large rocks (riprap). 120 
Birders circle all four ponds during a visit, very rarely restricting visits to fewer ponds. We found that 121 
the distribution of visit durations was unimodal (median = 60 min; Median Average Deviation 122 
(MAD) = 37; skew=1.161; N=1646 checklists) suggesting that birders use similar methods while at 123 
the ponds.  124 

 125 

Study species 126 

 127 

We included 20 species we refer to as “waterbirds,” species that swim in the open while on the ponds 128 
and should be easily seen (Table 1). The species are primarily ducks and geese, but also include 129 
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grebes, American Coot (Fulica americana), and gulls. These are species birders identify by sight, not 130 
by sound. We excluded species that occurred primarily as fly-overs, such as Cackling Goose (Branta 131 
hutchinsi), species whose counts rarely exceeded two per day, and species whose numbers varied 132 
strongly within a day. The number of waterbirds present at the site varied seasonally from a few 133 
dozen during mid-summer (June) to five thousand or more during fall migration (October-134 
November). 135 

 136 

Benchmark counts 137 

 138 

All birds of all species were counted during each site visit by WDR. We call these our benchmark 139 
counts (R*) and they serve as the reference values against which all other count data are compared. 140 
Waterbird counts were made to plus or minus one individual except for Northern Shoveler (Spatula 141 
clypeata), which were plus or minus 10 because they forage in constantly moving dense aggregations 142 
rendering more precise counts problematic, and Bufflehead (Bucephala albeola), which were counted 143 
to plus or minus 5 because they dive so frequently while foraging in the early morning period 144 
surveyed by WDR that more accurate counts were difficult. Counts were tallied separately for each 145 
pond then aggregated later. In the time frame of these counts, movements between ponds were 146 
normally minimal. Duration of counting time was recorded separately for each pond. To reduce 147 
possible use of WDR’s count data by eBirders who wanted to post numbers but may not have 148 
counted on their own, we used three steps to minimize copying of data. First, we imposed a time lag 149 
of one to four weeks between dates of counting and of uploading to eBird the WDR data. Second, we 150 
hid all of WDR’s checklists from the eBird public display in Recent Visits and, third, we posted only 151 
the pond-specific data, not the aggregated data. We used aggregated counts from the first visit each 152 
day as R* for comparison with counts reported on eBird checklists.  153 

On some days (N=84), WDR counted birds more than once. These second-visit data, which we call 154 
Ref2 counts, were also complete counts of the study species and averaged 13% shorter in duration,  155 
yet counts were generally similar. They were used to characterize within-day variability in numbers 156 
but provide a conservative estimate of that variability because they were largely conducted on days 157 
with exceptional levels of migratory movements. Thus, they estimate a probable upper bound on the 158 
expected amount of within-day variability in waterbird numbers (averaging 0 to -8%). We also used 159 
these Ref2 data to evaluate of time-of-day effects when comparing WDR counts with data from the 160 
ten observers contributing the most study site data to eBird, because eBirders tended to count birds 161 
later in the day than did WDR. The times of day eBird checklists were initiated as well as the 162 
difference in start times of eBird and benchmark checklists were unimportant in predicting percent 163 
error in our across-species and species-specific model sets. Therefore, we concluded that 164 
comparisons of count differences between R* and eBird checklists were appropriate and that possible 165 
time-of-day effects could be ignored. 166 

 167 

eBird checklists 168 

 169 
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We downloaded eBird checklists from the Philomath Sewage Ponds eBird hotspot as well as eBirder 170 
personal locations within 1 km from 2010 to 2019. Only data obviously restricted to the ponds were 171 
included. No other waterbird sites are present within 4 km of the site. Most eBirders used the pre-172 
established hotspot as the checklist location but some created new personal locations each time. We 173 
included eBird checklists following the stationary, traveling, and area protocols. We removed 174 
checklists with greater than ten observers or durations of over five hours. We included only complete 175 
checklists with all birds reported and removed any checklists where observers reported no waterbirds. 176 
From each complete eBird checklist, we collected data on date, start time, observer, duration of 177 
count, identity of waterbird species reported (to allow calculation of percent richness; see below), and 178 
count data for our twenty focal species. When species were recorded as present but not counted (X 179 
noted instead of a number), those data were excluded because no count difference could be 180 
calculated. 181 

 182 

Comparisons of count data 183 

 184 

We restricted our comparisons to dates where WDR counted birds and at least one eBird checklist 185 
was contributed on the same day (N=767 dates). Our questions were about counting differences and 186 
not detection rates of rare species, so we further restricted our comparisons to counts of greater than 187 
three for each species detected on WDR’s first visit (R*). We calculated the Count Difference for 188 
each species by subtracting R* from eBird counts on each checklist. Count differences were positive 189 
when eBird checklists reported higher numbers than R* or negative when eBird checklists reported 190 
fewer birds than R*. Numeric values of count differences spanned three orders of magnitude, so we 191 
focus on reporting Percent Error, which we calculated by converting each difference to a proportion 192 
of R*. 193 

 194 

 195 

Hypothesized predictors of percent error 196 

 197 

To evaluate factors hypothesized to be associated with percent error, we included variables 198 
associated with species, checklists, time of year and observer experience. Species characteristics 199 
included categorization as dabbler versus diver, degree to which species form dense aggregations, 200 
and the degree of sexual dimorphism. Checklist characteristics included start time, duration and 201 
number of observers. Time-of-year characteristics were associated with daily numbers of waterbirds 202 
(R*, Ref2 and their sums for all 20 species) and waterbird species richness present at the study site 203 
(measured as the richness detected by the professional [proRichness] as well as the aggregate of 204 
species listed in eBird checklists and proRichness). Because observer experience at the site might 205 
also influence counting accuracy, we compared data from the 10 observers who contributed the most 206 
checklists with the R* and Ref2 benchmark data. Additional details on each variable are explained 207 
below. 208 

 209 
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Species characteristics 210 

To explore patterns of species-specific variability in count data, we created categorical variables for 211 
species traits that might impact counts (Table 1). We categorized birds as dabblers versus divers. 212 
Dabblers were any species that foraged primarily by swimming on the surface of the water, which 213 
included gulls, American Coot, and Aix, Anas, Mareca, and Spatula ducks. Divers foraged below 214 
water regularly and included scoters, grebes, and Aythya and Bucephala ducks. 215 

We also included an index of spatial aggregation on the ponds. Some species, for example Northern 216 
Shoveler, often forage in densely packed groups, creating challenging circumstances to accurately 217 
count birds, while other species forage singly or as spatially-distanced groups where enumeration 218 
should be much easier. The aggregation index was simply a subjective binary classification (0 for 219 
foraging alone or in loose aggregations versus 1 for foraging in aggregations that might render 220 
counting difficult) based on our years of experience at the site. 221 

The degree of plumage dimorphism and similarity to other species could influence error and bias in 222 
counts because of species misidentification. We categorized species as those with weak or no obvious 223 
plumage dichromatism during most of the period of time when each species was present (e.g., geese, 224 
coots) versus strong dichromatism (males and females distinctly visually different).  225 

To evaluate the possibility that species identification of similar species might influence count 226 
differences, we used another subjective binary category called “Doppelganger;” 1 indicated the 227 
species co-occurred with a similar species whereas 0 indicated the species was unique in appearance 228 
and unlikely to be confused with other species. The categorization may vary seasonally, especially in 229 
late summer when many waterbirds molt to eclipse plumage. Because total waterbird numbers were 230 
low during late summer, we utilized one value for each species.  231 

Checklist characteristics 232 

Daily start time among eBird checklists was highly variable, covering all daylight hours. The mean 233 
start time was 4 hours later than the mean start time for WDR visits. Although we only compared 234 
counts conducted on the same day, we wanted to evaluate potential effects of time-of-day and 235 
temporal lag between the eBird checklist counts and R*. To do so, we converted checklist start time 236 
to minutes since midnight then calculated the difference in start time between eBird checklists and 237 
WDR first visits.  238 

Because our Ref2 counts occurred later in the day when more eBird checklists were initiated, we 239 
included Ref2 as an “additional observer” in some comparisons to provide an important check on 240 
within-day variability in counts as a possible explanation for count differences between R* and eBird 241 
checklists. Because Ref2 counts were generated on days with high levels of migratory movement, we 242 
consider the count differences between R* and Ref2 to represent an upper bound on expected levels 243 
of within-day variability in waterbird numbers. 244 

Additional factors associated with each checklist could influence count differences. We reasoned that 245 
duration of time spent at the site should be positively related to count accuracy. All complete eBird 246 
checklists are required to have a measurement of event duration.  247 

Number of observers might also influence counting accuracy, so we included the reported number of 248 
observers for each eBird checklist. The R* and Ref2 counts were made when WDR was alone more 249 
than 99% of all dates. 250 
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 251 

Time-of-year characteristics 252 

Date influences the number of species present as well as the abundances of each species. Both 253 
richness and abundance could influence counting accuracy so we included day of year in our models. 254 
Because we hypothesized that total number of all waterbirds combined may influence counting 255 
accuracy, we included R* counts of all 20 study species and the combined daily total of all waterbirds 256 
in our model sets. In that way, we established the baseline numbers of waterbirds known to be 257 
present as a function of date. In calculating total waterbird abundance, we used data limited to the 20 258 
study species and excluded a subset of species known to have high daily variability in counts, such as 259 
geese, which occurred primarily as fly-overs. The other species excluded from our focal group of 20 260 
species were numerically rare. Further, to determine if percent error was influenced by the number of 261 
each particular species as opposed to overall waterbird abundance, we included R* of each relevant 262 
species in our model sets. 263 

We hypothesized overall waterbird species richness present at the site on a given date may influence 264 
counting accuracy. A higher number of species to identify could reduce focus for achieving accurate 265 
counts, particularly for the more regularly-occurring and common species (e.g., Mallards, Northern 266 
Shovelers). Therefore, we included in our models the total waterbird richness detected by WDR each 267 
day. Our analyses indicated that richness observed by WDR and total waterbird richness detected by 268 
all eBird contributors were highly correlated. We calculated daily Percent Richness based on the 35 269 
possible waterbird species at the site and included that richness in our models (see Supplemental Text 270 
for a list of species). The other 15 species that formed our set of 35 waterbird species included: Snow 271 
Goose (Anser caerulescens), Greater White-fronted Goose (Anser albifrons), Cackling Goose 272 
(Branta hutchinsii), Canada Goose (Branta canadensis), Blue-winged Teal (Spatula discors), 273 
Eurasian Wigeon (Mareca penelope), Redhead (Aythya americana), Tufted Duck (Aythya fuligula), 274 
Greater Scaup (Aythya marila), White-winged Scoter (Melanitta deglandi), Black Scoter (Melanitta 275 
americana), Long-tailed Duck (Clangula hyemalis), Common Goldeneye (Bucephala clangula), 276 
Barrow’s Goldeneye (Bucephala islandica), and Common Merganser (Mergus merganser). 277 

 278 

Observer experience 279 

 280 

Observer experience at the site could also be influential, so we compared percent error in counts from 281 
the ten observers contributing the most eBird checklists at our study site with the R* and Ref2 counts.  282 

 283 

Data analyses 284 

 285 

We used the “lmer” package in R (R Core Team, 2020) to run mixed-effects models. Our 286 
overarching goal was to identify factors informative for explaining variation in Percent Error, our 287 
dependent variable in all models. We included observer ID and species as random effects to account 288 
for observer- and species-specific error when appropriate. We included four categorical species 289 
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characteristics as fixed effects in our model sets: Dabbler or Diver; Sexually Dichromatic or not; 290 
Doppelganger or not; and Aggregated or not. Five checklist-related characteristics were included as 291 
fixed effects: start time (minutes since midnight), difference in start time between WDR’s first count 292 
of a day and each eBird checklist, duration (minutes), number of observers, and day of year. Four 293 
fixed-effects related to time-of-year were also included: R* (WDR’s reference count of each species, 294 
which varied seasonally), waterbird abundance (aggregated across all species), total waterbird species 295 
richness and percent richness, our index of observer skill at species identification. We included 296 
models with the quadratic effects of species-specific abundance, waterbird abundance, waterbird 297 
richness, duration, number of observers, day of year, and percent richness to examine potential 298 
nonlinear shapes of their effects.  299 

Before running mixed effects models, we scaled and centered all numeric variables. We assessed 300 
model performance through BIC and propagated best-performing shapes for each variable to multi-301 
variable models. We used a forward stepwise approach and added additional potentially influential 302 
variables to the best-performing model until a stable (i.e., model remained the top model after the 303 
inclusion of additional variables) top-performing BIC model was identified.  304 

Although count difference was normally distributed, percent error was not. Non-detections of species 305 
that were detected by WDR (eBird counts of zero) equal negative 100 percent error. Non-detections 306 
caused a bimodal distribution of percent error with a second peak at negative 100 percent. We 307 
removed non-detections to create a unimodal distribution of percent error. When non-detections were 308 
removed, percent error was heavily right-skewed due to the high number of negative percent errors 309 
and the few very large positive percent errors. To adjust skew, we added a constant to make all 310 
values positive and log (base 10) transformed percent error. In addition to adjusting skew, removal of 311 
non-detections improved the focus of our analyses on count errors, reducing chances that inclusion of 312 
zero counts of species might actually be species detection or identification problems instead of 313 
counting errors. Our restriction of counting error analyses to species detected in numbers of 3 or 314 
greater probably limited most effects of zero counts. In this paper we focus on analyses of data 315 
excluding non-detections but report some analyses in supplemental materials to show the effects of 316 
including non-detections (zero counts) on results. It is possible that an unknown number of zero 317 
counts were a result of reporting errors (data entry mistakes), but we assume this type of error is 318 
relatively rare.  319 

 320 

Species-specific model sets 321 

 322 

To understand the (in)consistency of variables influencing species-specific percent error, we ran 323 
standardized linear model sets of the effects of the explanatory variables described above on 324 
transformed percent error for each species. As above, we included models with quadratic effects of 325 
species abundance, waterbird abundance, waterbird richness, duration, number of observers, day of 326 
year, and percent richness. As each model set was species-specific, we excluded variables of species 327 
characteristics from these model sets. We included observer ID as an explanatory variable to examine 328 
its comparative influence. In these standardized model sets, we included separate models of the main 329 
effect of each variable and propagated the best shape for each variable into more complex models. 330 
Since start time and difference in start time were highly correlated, we use the top-performing of the 331 
two in subsequent models. We used a forward step-wise approach to determine the top-performing 332 
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model of checklist covariates. We then ran models with pairs of all non-checklist explanatory 333 
variables with and without the variables in the top checklist covariate model. We used BIC to 334 
compare model performance and select top models.  335 

 336 

Non-metric Multidimensional Scaling (NMDS) 337 

 338 

To compare the overall communities described in eBird checklists, we conducted ordination in 339 
species space with NMDS on count data. We grouped checklists by observers to simplify the 340 
analysis. To visualize differences in community characterization, we chose to contrast January and 341 
October because January represents a time of year when waterbird migration is minimal and so daily 342 
numbers are relatively stable, whereas migration is at its peak during October, so richness is high and 343 
volatility in numbers can be high. To evaluate how characterization of waterbird abundance at these 344 
times varied with respect to eBirder checklists, we first removed all checklists that included an “X” 345 
for the count of any of our 20 study species. We then calculated the mean and median values of 346 
species counts across checklists for each observer during each month. To evaluate the idea that group 347 
collective contributions of multiple eBird checklists might characterize the waterbird community 348 
more similarly to R*, we calculated mean counts of species across observers in January and October 349 
to create combined count values, which we call the Borg number (𝐵). We similarly aggregated 350 
WDR’s first-visit species counts as a Reference community. To ensure that our 𝐵 NMDS positions in 351 
species space were not driven overwhelmingly by an eBirder with the largest number of checklists, 352 
we reran the NMDS without checklists from the top-contributing observer included in 𝐵. We used 353 
two dimensions and a maximum of 20 iterations to run NMDS with the “vegan” package in R 354 
(version 3.6.1).  355 

 356 

 357 

Results 358 

 359 

We compared benchmark counts of waterbirds from WDR (R*) and at least one eBirder on 672 dates, 360 
representing a total of 1406 comparisons (checklists). eBird checklist contributions varied seasonally 361 
with lows during winter and summer and highs during migration periods (Supplemental Figure 1). 362 
Our analyses included 246 different eBirders who contributed from 1 to 321 checklists.   363 

 364 

Percent error 365 

Across all twenty species, 76 percent of all counts fell short of R* (Figure 1, Supplemental Figure 2), 366 
indicating that count data in eBird checklists regularly contained apparent counting errors. eBird 367 
checklists with species non-detections excluded (that is, no counts of zero included, even if the 368 
species was known to be present that day) had counts below R* values by a median of 29.1% but 369 
errors were quite variable across species (Figure 1a), with median absolute deviations of percent 370 
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error averaging 44.6% (Supplemental Table 1). At the extremes, count differences across waterbird 371 
species ranged from negative 99% for severe under-counts to more than 3788% too large. In real 372 
numbers, counting differences ranged from being too low by 1443 to too high by 1048 (both for 373 
Northern Shoveler; Figure 1b). Median percent error was negative, indicative of undercounting, for 374 
all waterbird species except the uncommon Surf Scoter (0%; R* was always less than 11).  375 

Percent error, when averaged across species and all observers, was fairly consistent at 30% when 376 
counts were 30 or greater. Below thirty, counts were more accurate, being closest to zero error when 377 
counts were of 8-10 birds (Figure 2A). Percent error was related to the percent richness (our index of 378 
observer skill where higher percentages indicated an observer included more of the species known to 379 
be present that day on their checklists) in a curvilinear fashion. Checklists including the lowest 380 
richness tended to overcount (Figure 2B). Those including 50% of the expected species undercounted 381 
by 50% on average, while checklists including 90% or more of the species reported on R* checklists 382 
averaged errors of 15% or less in count. 383 

 384 

BIC Top models 385 

In our multi-species mixed-effects model set, our top model garnered 70 percent of the model weight 386 
and was over four BIC from the next most competitive model (Table 2). Our BIC top model 387 
indicated that a quadratic effect of R* and a linear effect of percent richness best explained variation 388 
in percent error.  389 

Seasonality in bird numbers was also captured when the second-order R* was included as the most 390 
informative variable predicting percent error. Numbers of all species varied considerably across each 391 
year (Figure 3). Likewise, total waterbird abundance varied several-fold from its nadir in June to a 392 
maximum in October and November (Supplemental Figure 3). Yet, total waterbird abundance was 393 
rarely an informative variable in our model sets. Only in counts of American Coot did it appear in the 394 
most parsimonious models (in combination with percent richness). In California Gull,  waterbird 395 
abundance appeared as an informative variable but only in a weakly competitive model (19% of the 396 
model weight).  397 

Within the species-specific model sets, the combination of R* and percent richness carried most of 398 
the model weight (mean=0.83, SD=0.18) in 13 of our 18 non-gull species (Supplemental Table 2). 399 
For gulls, top models struggled to outcompete the null. Altogether, R* and/or percent richness were 400 
in the top model sets for 17 of 18 non-gull waterbirds.  401 

 402 

Associations with bird characteristics 403 

Within our full model, bird characteristics were rarely influential on percent error (Table 2). 404 
Similarly, species-specific models rarely discovered bird traits to be informative variables 405 
(Supplemental Table 2).  406 

 407 

Observer effects 408 
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Our models often identified percent richness as an influential variable on percent error, so we related 409 
percent richness to percent error as means across all checklists contributed by each observer (Figure 410 
4a). The two were positively related, yet only six of the 246 observers averaged percent errors of less 411 
than 10%. The range in percent error for observers detecting 90% or more of waterbird species was 412 
actually greater than the range for observers who detected less than 60% of species, indicating that 413 
percent error alone is an unreliable predictor of counting accuracy. The relationship was not 414 
necessarily driven by site experience because four of the six observers with the most accurate counts 415 
were contributing very few checklists (Figure 4b).   416 

We then selected checklists from the ten observers who contributed the most. Those checklists also 417 
showed evidence of undercounting. In nearly all 20 species, percent error was 10 to 60% greater than 418 
even the Ref2 counts (Figure 5). Percent error was highly variable across species. In some species, 419 
such as American Coot, three of the 10 observers reported counts averaging very near the Ref2 420 
counts, whereas in others, such as Pied-billed Grebe, all observers undercounted by at least an 421 
average of 20%. Again, percent error was highly variable in all species even when median percent 422 
error did not deviate far from zero. 423 

 424 

Community visualization 425 

We visualized characterization of the richness and abundance of the daily waterbird community with 426 
NMDS through ordination of checklists (grouped by observer) in species space. Observers 427 
characterizing the community and its species abundance patterns similarly to R* fell nearer to R* 428 
whereas those positioned increasingly further from R* described the community in increasingly 429 
dissimilar details. In both January (Figure 6a) and October (Figure 6b) high inter-observer variability 430 
in how their checklists characterized the waterbird community led to a general lack of clustering near 431 
R*. In both months, observers reporting more species, contributing more checklists, and surveying 432 
for more time tended to group nearer R*. The collective average, 𝐵, was nearer R* than any 433 
individual observer during January but one observer was closely positioned near 𝐵 during October. 434 
Removal of checklists from the observer contributing the most data had minimal effects on results. 435 

 436 

 437 

Discussion 438 

Benchmark data are often designed to understand temporal change in biodiversity (Curtis and 439 
Robinson, 2015; Curtis et al., 2016; Robinson and Curtis, 2020). Here, we show that they can also be 440 
used to establish standards that aid in quantification of potential errors in citizen-science data. 441 
Through comparisons with such a standard, we discovered that bird count data contributed to eBird 442 
from our study site were consistently biased toward undercounting. Counts averaged approximately 443 
30% too low whenever benchmark counts were of 30 or more birds. Importantly, however, errors 444 
exhibited high variability across species and observers. Benchmark data like ours can subsequently 445 
inform decisions regarding what subsets of data should be selected to most rigorously address 446 
particular scientific questions or management decisions, analogous to how checklist calibration 447 
indices help researchers choose suitable eBird checklists based on site- and time-specific 448 
expectations of species richness (Yu et al., 2010; Kelling et al., 2015; Johnston et al., 2018). Yet, 449 
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situations in which such informative standards may be developed and compared appear to be rare 450 
currently. 451 

Our study site presented a unique opportunity to compare bird count data contributed to a citizen 452 
science database (eBird) with benchmark reference data collected by a professional observer focused 453 
on generating accurate daily counts. Characteristics of the site, where all birds were in the open and 454 
identified by sight, minimized issues of availability and therefore the need for detectability 455 
adjustments to compare counts. Data were contributed by 246 observers and included 676 dates 456 
across 10 years, providing an unusual opportunity to explore patterns and potential sources of error. 457 
Although the extent to which our results may be generalized to other sites remains unclear given the 458 
rarity of opportunities like this one, the situation probably represents a best-case scenario given that 459 
birds were in the open and easy to observe. Despite the advantages, count differences in 20 species of 460 
waterbird were highly variable across the calendar year, species, and observer. Coefficients of 461 
variation were high, averaging 6.6 across the 20 species and ranging from 1 to 35.6. For comparison, 462 
in an experimental study of observer counting errors of singing birds, which should have been much 463 
harder to detect and identify but had a lower range of abundances than our waterbird community, 464 
coefficients of variation averaged 0.1 (Bart, 1985).  465 

Our quantification of counting error is actually conservative because we excluded counts of zero on 466 
eBird checklists, even for species known to be present. We did so to minimize the potential confound 467 
of misidentifications and reporting errors (failing to enter a count for a species that was actually 468 
observed) from our analysis of counting errors. Yet, it is possible that some fraction of 100% 469 
undercounts were indeed counting errors in the sense that the species was one that observers were 470 
knowledgeable enough to identify but failed to count or report. The median percent error across the 471 
20 species was -48.6 plus or minus 50.9% (MAD) when zero counts were included versus -29.1 plus 472 
or minus 44.6% when zero counts were excluded. Inclusion of zero counts, therefore, has a large 473 
influence on the median, but percent errors were highly variable regardless.  474 

Our top overall mixed-effects model carried nearly 70% of the model weight and contained only two 475 
variables. The species-specific R* count as a quadratic, which captured the seasonality in numbers 476 
present at the site, was the most informative variable when combined with a linear effect of percent 477 
richness. The inclusion of R* indicates that eBird count data were related to the benchmark numbers 478 
but that other factors were also influential. Checklists with a more complete list of the species known 479 
to be present each day had lower counting errors. Yet, checklists including 100% of expected species 480 
still undercounted by an average of 15%. Count differences on checklists from the ten observers who 481 
most often visited the site were still exhibiting undercounts even compared to the Ref2 values, which 482 
were benchmark counts made later each day during weeks with high levels of migratory movements.  483 

We documented strong directional bias toward undercounts and also a smaller percentage of large 484 
overcounts, leading to inconsistent patterns in count differences across species. Our comparisons 485 
revealed that undercounting was pervasive, yet very large numbers of a species being present 486 
sometimes led to severe overcounting as well. Interestingly, the influence of number of birds 487 
appeared to be species-specific. The total number of waterbirds of all species present on a given day 488 
was not an influential variable in our overall model explaining percent error, except for one species, 489 
American Coot. This pattern suggests that count differences were unlikely to have been caused by 490 
observers being overwhelmed by the total number of birds to observe, identify and count. Instead, it 491 
appears that each species presented different challenges to observers. Given that our models rarely 492 
identified species’ traits as being informative, it remains unclear what species-specific factors are 493 
responsible. 494 
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The degree of variability across species in count differences should influence potential decisions 495 
regarding use of eBird count data. Our analyses clearly reveal that off-the-shelf acceptance of count 496 
data for assessments of absolute abundance should be done with great care and thoughtfulness. In 497 
addition, if researchers wish to avoid focus on absolute abundance by instead evaluating relative 498 
abundance, our results suggest further caution is warranted. We found great interspecific variability 499 
in count differences. That is, although bias was nearly uniformly directional toward undercounting, 500 
the magnitude of undercounts varied substantially across species indicating that processes generating 501 
errors are inequivalent across species. Therefore, judging differences in one species’ abundance 502 
relative to others requires careful thought. If explorations of relative abundance are focused on 503 
within-species changes across sites, care is also warranted because we found substantial differences 504 
among observers in count accuracy. If different sites have different observers, then error/bias 505 
processes will be expected to be different as well. Effective use of relative abundance data depends 506 
on assumptions of consistent errors across species and sites, which appears to be largely untrue in our 507 
data. Further exploration of techniques to determine the degree to which assumptions of similar 508 
counting errors across species might be relaxed to preserve the utility of relative abundance analyses 509 
are warranted. The use of abundance categories could be explored to maximize the information 510 
content gleaned from count data. 511 

What role might species misidentifications have played in counting errors? Count differences were 512 
regularly so large that we conclude species misidentification was unlikely to be an important factor. 513 
Probably the most challenging identifications involved female or eclipse-plumaged ducks, which 514 
observers might ignore and exclude from checklists if identification is uncertain. We consider such 515 
omissions to be unlikely for at least three reasons. First, degree of dichromatism was uninformative 516 
in our models explaining percent error. Second, assuming that females represent approximately half 517 
of each species present during most months of a year, count differences might be expected to average 518 
50% if males were counted accurately but females were not. Instead, percent error varied widely 519 
across species. Finally, count differences of monochromatic versus dichromatic species were not 520 
obviously different. However, it is possible that observers were more accurate for some species than 521 
others because of paying greater attention to unusual or favorite species (Schuetz and Johnston, 522 
2019). At our site, most charismatic species of great interest to birders are rarities and so were not 523 
included in our analyses. Counts of Surf Scoter, a species that occurs during a narrow window of 524 
time in fall, were generally accurate, but we cannot attribute the accuracy to celebrity alone given its 525 
occurrence in such small numbers. 526 

Based on our analyses of count differences at this site, it appears that count data on eBird checklists 527 
from similar situations should be used with great care and thoughtfulness. Aside from a 528 
predominantly directional bias toward undercounts, we found few consistent species-specific patterns 529 
in percent error. Errors differed in magnitude across species, observers, and time of year. Therefore, 530 
development of some type of calibration effort, where checklist numbers are adjusted to more closely 531 
approximate species-specific abundances poses an interesting challenge. The variability in raw count 532 
data suggests that tracking trends across time without additional steps to filter data or analytically 533 
adjust for noise could be especially problematic. Depending on the particular scientific question of 534 
interest, needs for precision might decline, so other analytic approaches could be implemented. For 535 
example, if abundances can be binned into categories and approaches such as ordinal or quantile 536 
regression used (Ananth and Kleinbaum, 1997; Koenker and Hallock, 2001; Howard et al., 2014), 537 
less precisely defined trends over time might be identified. Furthermore, our observation that percent 538 
richness, which we assume to be a correlate of observer experience, was often an informative 539 
variable, suggests that additional exploration of count calibration approaches for data contributed by 540 
the most experienced observers might be informative. 541 
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If questions about patterns in abundances among species in the waterbird community are of interest, 542 
our NMDS ordination results suggest that combining checklists across multiple observers may 543 
produce results closer to those generated by professional benchmark data. The vectors in NMDS 544 
results may also inform decisions about which criteria to use when filtering data to maximize 545 
inclusion of checklists with the greatest value for specific scientific questions. For example, the 546 
waterbird community at our site was better characterized by observers who included more species on 547 
their checklists, invested more time searching the site each time, and contributed more checklists 548 
overall. Although species-specific numbers remained inconsistently related to the R* counts, the level 549 
of general characterization of the entire community was improved. In a detailed comparison of eBird 550 
data with structured survey results near Sydney, Australia, overall characterization of the bird 551 
communities was similar as well, but the collectively greater effort expended by eBirders resulted in 552 
discovery of a greater number of uncommon species (Callaghan et al., 2018). 553 

Determining the extent to which results from our site and observers may be generalized more widely 554 
will require identification of other sites with benchmark data sets. We also recommend further 555 
investigation of approaches for identifying checklists with higher probability of having the most 556 
accurate count data. New approaches for categorizing checklists based on expected numbers of 557 
species have recently been developed but it remains unclear if these same criteria also apply to bird 558 
counting accuracy (Callaghan et al., 2018). Our index of checklist quality was based solely on the 559 
percent of species reported on checklists that were also detected that day by the professional 560 
observer. Percent richness was regularly in top models, so does have explanatory influence on count 561 
differences. Yet, direct comparisons of data from those observers and the R* and Ref2 numbers still 562 
showed substantial differences, primarily of undercounting. 563 

If a sufficiently detailed benchmark data set is available, however, adjustments for seasonal 564 
fluctuations in numbers of each species could conceivably be implemented. Such calibrations might 565 
be conducted more effectively if individual observers exhibited consistency in counting errors, an 566 
issue we have not explored here. It is unknown if observers improve their counting skills over time in 567 
the same way that observers are expected to improve abilities to detect species or if temporal 568 
stochasticity drives counting errors. A goal could be to develop a count calibration metric for each 569 
observer so that it can be extended and applied to counts from sites lacking data from a professional 570 
observer if those sites are likely to have similar species composition and relative abundances. 571 
However, given the high level of variability in count data we quantified across observers, species and 572 
time, such calibration metrics may be quite challenging to develop. Complex models such as the 573 
Bayesian hierarchical models using Markov chain Monte Carlo approaches like those implemented 574 
with Christmas Bird Count data (Link et al., 2006), might be helpful in the absence of additional 575 
information on checklist accuracy and reliability. Our community ordination results suggested that 576 
combining data across multiple checklists from multiple observers (the group collective effort) might 577 
more closely approximate the community characterization than most single contributors did. Further 578 
exploration of similar approaches and sensitivities to checklist characteristics could identify 579 
necessary checklist quality criteria that must be met prior to use in such analyses. In the end, use of 580 
any checklist count data will be influenced strongly by each project’s specific objectives (Isaac and 581 
Pocock, 2015). 582 

We hypothesize that the high variability in species count information on eBird checklists could be 583 
influenced by common aspects of birder behavior. Prior to the advent of eBird, most birders, in North 584 
America at least, focused their efforts on listing species and watching behavior (Eubanks, Jr. et al., 585 
2004). Intentional counting was done by a small percentage of particularly avid observers, while 586 
most others only counted during organized activities such as Christmas Bird Counts (Boxall and 587 
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McFarlane, 1993). A much smaller percentage contributed count data to scientific projects with 588 
structured protocols such as the North American Breeding Bird Survey. eBird has revolutionized the 589 
degree of attention birders pay to numbers of birds around them (Wood et al., 2011). It has pushed 590 
birders to value data beyond the day’s species list. The novelty of this effort to count all birds every 591 
time one goes birding, may contribute to the variability in quality of the count data. Contributors are 592 
largely untrained about best practices for counting, especially when birds are present in large 593 
numbers, flying, or inconspicuous because they are secretive or available only by sound. We 594 
encourage development of additional training opportunities for eBird contributors that improve their 595 
knowledge of the value of accurate count data as well as their counting skills. Training improves data 596 
quality even for professional observers (Kepler and Scott, 1981).  597 

An indication on checklists in the eBird database that such training had been accomplished might 598 
facilitate selection of checklists by researchers who wish to use count data only from trained 599 
observers. Furthermore, the addition of a qualitative categorization of counting accuracy for each 600 
checklist, designated by the observer at time of checklist submission to eBird, might be useful. 601 
Currently, users may code species using presence-absence information instead of counts or select a 602 
checklist protocol (incidental) indicating that not all species detected were included the list. A count 603 
accuracy designation could allow observers to rate their own level of confidence in the accuracy of 604 
their counts or the level of attention they paid to counting accurately, which could serve as additional 605 
criteria by which researchers might choose checklists for their particular scientific question. Given 606 
that many contributors may not necessarily participate to contribute data useful for abundance 607 
analyses but have a variety of other motivations (Boakes et al., 2016), allowing observers to 608 
categorize quickly and easily their personal confidence in their count data would be useful. 609 

Finally, exploration of the sources of variation in count data needs additional attention (Dickinson et 610 
al., 2010). The potential value of the vast quantities of information from citizen science databases is 611 
great. Such data have the potential to be effective at informing conservation and management 612 
decisions (McKinley et al., 2017; Young et al., 2019), but a thorough understanding of sources of 613 
error should be a priority before their use (Lewandowski and Specht, 2015). An additional strategy 614 
that may contribute to refinement of information on count data quality in citizen science databases 615 
could be development of a network of sites with trained counters. These marquis sites could be 616 
chosen to represent major habitat types where citizen science data are often gathered or where 617 
researchers specifically need high-quality information. Creating a network of high-quality benchmark 618 
sites would have the added advantage of leaving a legacy of more reliable abundance data for future 619 
generations, especially if complete metadata are also preserved. 620 
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 747 

Tables. 748 

 749 

Table 1. Twenty species were included in the study. Scientific names, sequence, and short-hand 750 
codes follow American Ornithological Society (http://checklist.aou.org/taxa). See text for definitions 751 
of dabbler versus diver and dispersed versus aggregated foragers. Plumage sexual dichromatism was 752 
scored based on the period of year in which the species is most numerous at the study site: weak or 753 
no dichromatism (0) and moderate to strong dichromatism (1). 754 

 755 

English 
name 

Scientific 
name 

Code Dabbler (0) 
or Diver (1) 

Dispersed (0) or 
aggregated (1) 

Plumage 
dichromatism 

Wood 
Duck 

Aix sponsa wodu 0 0 1 

Cinnamon 
Teal 

Spatula 
cyanoptera 

cite 0 0 0 

Northern 
Shoveler 

Spatula 
clypeata 

nsho 0 1 1 

Gadwall Mareca 
strepera 

gadw 0 0 1 

American 
Wigeon 

Mareca 
americana 

amwi 0 1 1 

Mallard Anas 
platyrhynchos 

mall 0 0 1 

Northern 
Pintail 

Anas acuta nopi 0 0 1 

Green-
winged 
Teal 

Anas crecca gwte 0 1 1 

Canvasbac
k 

Aythya 
valisineria 

canv 1 0 1 
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Ring-
necked 
Duck 

Aythya 
collaris 

rndu 1 1 1 

Lesser 
Scaup 

Aythya affinis lesc 1 0 1 

Surf 
Scoter 

Melanitta 
perspicillata 

susc 1 0 0 

Bufflehead Bucephala 
albeola 

buff 1 0 1 

Hooded 
Merganser 

Lophodytes 
cucullatus 

home 1 0 0 

Ruddy 
Duck 

Oxyura 
jamaicensis 

rudu 1 1 0 

Pied-billed 
Grebe 

Podilymbus 
podiceps 

pbgr 1 0 0 

Eared 
Grebe 

Podiceps 
nigricollis 

eagr 1 0 0 

American 
Coot 

Fulica 
americana 

amco 0 1 0 

Ring-
billed Gull 

Larus 
delawarensis 

rbgu 0 0 0 

California 
Gull 

Larus 
californicus 

cagu 0 0 0 

 756 

 757 

 758 

 759 

 760 

 761 
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 762 

 763 

 764 

Table 2. Model results of variables most influential on percent error. R*2 is the quadratic of the daily 765 
reference (benchmark) count; percent richness is the fraction of the waterbird species present each 766 
day that were included on each eBird checklist; duration was the length (minutes) of eBird checklist 767 
observation period; starttime was time of day each checklist was initiated; dichromatic was whether 768 
each waterbird species exhibited plumage dichromatism or not; date2 was the quadratic of day of 769 
year; and proRichness was the total species detected by WDR on each date. See supplemental 770 
materials for the full model results. 771 

 772 

 df Log 
likelihood 

BIC delta weight 

R*2_Percent Richness 7 -9751.3 19565.0 0 0.696 

R*2_Percent 
Richness_duration 

8 -9749.0 19569.4 4.44 0.075 

R*2_Percent 
Richness_starttime 

8 -9749.2 19570.1 4.72 0.066 

R*2_Percent 
Richness_dichromatic 

8 -9749.4 19570.4 5.19 0.052 

R*2_Percent 
Richness_date2 

9 -9745.0 19572.7 5.41 0.047 

R*2_Percent 
Richness_proRichness 

8 -9750.7 19573.0 7.79 0.014 

 773 
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 775 

Supplemental Table 1. Species-specific measurements of central tendency and variation in percent 776 
counting errors. A) excluding species non-detections from checklists; B) including species non-777 
detections (zero counts) in checklists. 778 

 779 

 780 

Supplemental Table 2. Species-specific BIC model results. Full model results are presented for each 781 
species alphabetically. 782 

 783 

Supplemental Table 3. Full mixed-effects model results supplementing the abbreviated results 784 
presented in Table 2. 785 
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 787 

Figures. 788 

 789 

A 790 
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 799 

B 800 

 801 

 802 

 803 

 804 

Figure 1. Percent error (A) and count differences (B) in counts of 20 waterbird species reported on 805 
eBird checklists at the Philomath Ponds, Oregon USA, 2010-2019. Medians, quantile plots and 806 
outliers are indicated, as well as number of checklists reporting counts of each species. Only 807 
checklists reporting counts greater than zero were included. For checklists including counts of zero 808 
on dates when R* counts were non-zero, see Supplemental Figure 2. 809 
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A 813 

 814 

 815 

B 816 

 817 

 818 

Figure 2. BIC-model predicted percent error in eBird waterbird counts as a function of A) reference 819 
(benchmark) counts (R*), and B) percent richness of waterbird species detected at Philomath ponds. 820 
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Figure 3. Variation in reference (benchmark) counts (R*) as a function of date (lower panel) and 825 
counts reported in eBird (gold triangles in upper panel) alongside second-visit counts (Ref2; blue 826 
circles) at Philomath ponds, Oregon USA, 2010-2019. Counts in the upper panels are indicated with 827 
respect to the R* count (zero line) each day. Loess regression lines with 95% confidence intervals are 828 
included. A) American Coot; B) Mallard; C) Lesser Scaup; D) Northern Shoveler. 829 
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 837 

Figure 4. A) Observers reporting a greater percentage of waterbird species present at Philomath 838 
ponds, Oregon USA, tended to have lower percent counting errors in their eBird checklists (linear 839 
regression and 95% confidence intervals; y=-110 + 0.68x). B) Observers submitting more total 840 
checklists tended to have lower counting errors (y=-60 + 0.17x). Note that these are means of all 841 
applicable checklists for each observer, so each point represents a unique observer. 842 
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 850 

Figure 5. Comparison of percent count errors in eBird checklists contributed by the 10 observers with 851 
the most checklists (top row of numbers) and waterbird observations (second row of numbers; each 852 
checklist includes multiple species). The zero line is R*. Ref2 is the second-visit data from WDR. 853 
Quantile plots show the median, 25th percentiles as boxes and whiskers, plus outliers. Species-854 
specific plots are available from the authors upon request. 855 
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B 868 

869 
Figure 6. Ordinations using NMDS of eBird checklists characterization of the waterbird community 870 
during A) January and B) October at Philomath ponds, Oregon USA, 2010-2019. The most 871 
influential vectors included Observer Richness (percent of known richness reported on each 872 
checklist), Checklist Number (total number of checklists per observer), observation start time each 873 
day, and the duration of each observation period. Relative positions of species in species space are 874 
noted by species English names. Benchmark counts are noted by R*. Individual observers are noted 875 
by lower case letters; those nearest to R* produced characterizations of the waterbird community 876 
most like R*. 𝐵 is the collective average of eBird checklists, showing that from the perspective of 877 
generally characterizing the community, averaging across checklists contributed by many observers 878 
aligns more closely with R* than do checklists from most individual observers, although observer a 879 
occupies nearly the same location in species space. 880 
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Supplemental Figures 881 

 882 

 883 

 884 

Supplemental Figure 1. Number of eBird checklists contributed for the study site at Philomath Ponds, 885 
Oregon USA, 2010-2019, as a function of day of year. 886 
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 890 

Supplemental Figure 2. Counts of waterbirds in eBird checklists included in our analyses as a 891 
function of their percent error.  892 

 893 

 894 

 895 

Supplemental Figure 3. Relationship between mean percent error on eBird checklists (blue line) and 896 
mean waterbird abundance (green line) as a function of day of year at Philomath ponds, Oregon 897 
USA, 2010-2019. Waterbird abundance is the mean of all the counts (R*) of all of the possible 20 898 
study species present each day across the 10 years. 899 
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