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 2 

Abstract 24 

Microbes form the base of food webs and drive biogeochemical cycling. Predicting the effects of 25 

microbial evolution on global elemental cycles remains a significant challenge due to the sheer 26 

number of interacting environmental and trait combinations. Here we present an approach for 27 

modeling the interactive effects of de novo biological change and multivariate trait correlation 28 

evolution using principal component axes. We investigated the outcome of thousands of possible 29 

adaptive walks parameterized using empirical evolution data from the alga Chlamydomonas 30 

exposed to high CO2. We found that only a limited number of phenotypes emerged. Applying 31 

adaptive trait correlations to the starting population (historical bias) accelerated adaptation while 32 

highly convergent, nonrandom phenotypic solutions emerged irrespective of bias. These findings 33 

are consistent with a limited set of evolutionary trajectories underlying the vast amount of possible 34 

trait combinations (phenotypes). Critically, we demonstrate that these dynamics emerge in an 35 

empirically defined multidimensional trait space and show that trait correlations, in addition to 36 

trait values, must evolve to explain multi-trait adaptation. Identifying high probability high-fitness 37 

outcomes based on trait correlations is necessary in order to connect microbial evolutionary 38 

responses to biogeochemical cycling, thereby enabling the incorporation of these dynamics into 39 

global ecosystem models.       40 

 41 

Keywords: microbial evolution, trait correlations, trait adaptation, phytoplankton, 42 
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 3 

Introduction 47 

Microbes play a critical role in regulating biogeochemistry and the global climate. In recent 48 

years, there has been a significant increase in global change studies examining the roles of 49 

microbial evolution in shaping future biogeochemical cycles. This work has helped to more 50 

explicitly integrate the fields of evolution and microbial ecology resulting in both long-term 51 

experimental evolution studies with ecologically important microbes and, to a limited extent, the 52 

incorporation of adaptation into ecological and ocean circulation models [1-13]. These studies are 53 

just the first step in tackling the immensely complex challenge of microbial evolution and its 54 

influence on global biogeochemistry. Critically, we still have only a limited understanding of how 55 

microbial communities will respond to multi-stressor and fluctuating environmental change, and 56 

the sheer number of interacting environmental and trait combinations exceeds our experimental 57 

ability to do so [14,15]. Hence, experimental and theoretical methods to reduce dimensionality and 58 

extract broad evolutionary patterns across traits and taxa are critical for creating a predictive 59 

framework that can both help guide experiments and make more accurate future predictions [5].  60 

Here, we aim to understand how different evolutionary starting points derived from 61 

multiple traits and their relationships (historical bias) can constrain overarching evolutionary 62 

trajectories of phenotypes (suites of traits) in microbial populations adapting to environmental 63 

change. We broadly define bias as standing trait correlations  (i.e., relationships) in a population 64 

that are heritable and can impact fitness such that, over time, these correlations can constrain  the 65 

direction of evolution [16]. Since our overall goal is to assess how biogeochemically-important, 66 

microbial traits and their relationships will evolve in response to future environmental change, our 67 

approach is designed to facilitate future integration into global biogeochemical models. 68 

Specifically, our framework can be used to replace an assumption commonly used in 69 
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biogeochemical models that existing interspecific trait relationships will govern future microbial 70 

phenotypes such that fixed tradeoffs determine competitive outcomes across different 71 

environmental conditions. In reality, tradeoffs can evolve [17] and microbial populations can 72 

display different plastic and evolutionary responses [10,18]. Furthermore, growing evidence 73 

demonstrates that intraspecific trait variation can be significant in phytoplankton, and that 74 

constraints on trait relationships will bias evolutionary trajectories of biogeochemically important 75 

microbial populations in the face of environmental change [19-21].  76 

Seminal research modeling the interaction of complex trait relationships, inheritance, 77 

epistasis, and metabolic networks has been conducted on theoretical populations experiencing 78 

environmental change [16-20]. These studies have broadly found that an evolving population may 79 

be able to access only a subset of phenotypes depending on both its initial trait values and trait 80 

correlations. Specifically, these studies (e.g., [16,22,23]) have used quantitative genetics 81 

approaches to study adaptive walks accounting for uncertainty inherent in trait variation, genotypic 82 

variability, inheritance, and environmental variability. They created theoretical frameworks using 83 

multivariate and eigenvector methods to examine evolutionary trade-offs between biological and 84 

environmental dimensions over time through primarily accounting for the standing genetic 85 

variation. Other theoretical approaches emphasized the role of de novo mutation in a fitness 86 

landscape without accounting for standing genetic variation [23,24]. These studies are often 87 

entirely theoretical [24,25], or empirically limited by the need to measure the fitness impacts of 88 

every possible single mutation. Here, we have created a blended approach at the trait level that 89 

models how de novo trait changes map onto standing trait variation, and  parameterized our model 90 

with empirical trait data from a laboratory evolution experiment. 91 
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 5 

 Previous studies in developmental bias have used empirical data to demonstrate that 92 

biological systems will produce certain phenotypic variants more readily than others in response 93 

to a perturbation (mutation or environmental change) due to the inherent structure, composition, 94 

and evolutionary history of a population [26,27].  These findings contrast with the long-held 95 

assumption of isotropic (i.e. equal) variation [28] and have revealed instead that only a limited part 96 

of multivariate phenotypic space (i.e. only certain phenotypes) can be accessed [29]. Critically, 97 

this explains why not all viable trait combinations are explored [28]. In summary, a growing body 98 

of literature has shown that genetic architecture influences how traits and trait correlations are 99 

Fig. 1. Comparison of adaptive walks between two different phenotypes in a rugged fitness landscape with 
four high-fitness peaks Two example starting phenotypes are represented as circles (magenta and black). The 
x- and y-axis represent dimensions in fitness space (e.g., different traits). The phenotypes start with low fitness 
(z-axis) and through trait and trait-correlation changes move to higher fitness. The adaptive walk is governed by 
historical bias, or different initial trait architecture, that impacts the movement of the population within the 
landscape.  As the adaptive walk proceeds, the population moves to the top of one of the fitness peaks. While 
there are several paths available to each starting phenotype (represented by magenta and black arrows), due to 
historical bias (trait correlation constraints), some paths can be inaccessible (denoted by the grey and purple 
arrows). Note that depending on historical bias (i.e., phenotypic starting location), some high fitness peaks are 
either more difficult to access or completely inaccessible.  
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 6 

impacted by environmental shifts and that these shifts produce nonrandom distributions of 100 

phenotypes [30-32].  101 

While inaccessible trait combinations (i.e. phenotypes) have been well-documented in the 102 

evolutionary literature [23,26,28] [16,22,33], there have been few attempts to investigate the 103 

implications of this phenomenon for the evolution of trait and trait correlations of photosynthetic 104 

microbes [19,20]. Therefore, we lack a fundamental understanding of how evolutionary dynamics 105 

can impact biogeochemical cycling when both trait values and trait correlations evolve. 106 

Specifically, constraints on how trait combinations evolve in phytoplankton have the potential to 107 

impact rates of carbon cycling and shifts in aquatic ecosystem structure that depend on these 108 

microscopic primary producers [34,35].  109 

Fig. 1 shows an illustrative example of a rugged fitness landscape (i.e., multiple high-110 

fitness peaks) where each peak represents high-fitness trait combinations (phenotypes). In this 111 

example landscape, there are 4 equally high-fitness peaks. However, the accessibility of each peak 112 

differs depending on the starting location (ancestral trait values) and the initial trajectory, which is 113 

dictated by a population’s collective trait relationships (Fig. 1, magenta and black circles and 114 

paths). Ultimately, to robustly study microbial trait evolution, we need a framework that allows us 115 

to estimate probable evolutionary trajectories given both starting trait combinations and trait 116 

correlations (historical bias). Below, we introduce such a framework using empirical evolution 117 

data from a eukaryotic alga. The TRAit Correlation Evolution (TRACE) model is a first step 118 

towards investigating how correlated metabolic traits with clear biogeochemical significance may 119 

impact elemental cycling under environmental change (e.g., ocean acidification). Using a trait-120 

based fitness landscape generated using empirical data from an experimental evolution study with 121 

the eukaryotic alga Chlamydomonas reinhardtii, we found that only a handful of phenotypic 122 
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variants were reproducible both with and without historical bias. Overall adaptive rates (defined 123 

as the number of generations to reach maximum fitness) were impacted by the amount and type of 124 

bias (trait correlations) in the model. These results indicate that populations harboring trait 125 

correlations oriented in (i.e. consistent with) the direction of selection may experience accelerated 126 

rates of adaptation. Understanding which trait relationships inform the probability of adaptive 127 

microbial phenotypes will be critical for predicting the short- and long-term contribution of 128 

biogeochemically-important traits to biogeochemical cycling.  129 

 130 

Materials and Methods 131 

PCA 132 

 Ancestral and evolved trait values from low-CO2 and high-CO2 adapted populations across 133 

5 genotypes of Chlamydomonas reinhardtii were obtained from Lindberg et al. (2020) [3] and can 134 

be found in Supplementary File 1. We selected four independent ecologically relevant traits: 135 

growth rate, respiration, cell size, and daughter cell production. All empirical trait values were 136 

standardized for both ancestral and evolved data. Principal component analyses (PCA) were 137 

conducted on ancestral traits resulting in 48% and 37% of the variance explained on axes PC1 and 138 

PC2, respectively, and 54% and 32% for evolved traits (Fig. 2a). For both ancestral and evolved 139 

PCAs, or trait-scapes, there are 6 trait correlations, which can be found in Supplementary File 1. 140 

These PCAs served as the trait-based fitness landscape (trait-scape) for the modeled adaptive walk. 141 

 To select a start and end point for the adaptive walk, ancestral populations were projected 142 

onto the evolved PC axes. A single genotype was selected for the modeling exercise where the 143 

observed ancestral trait values defined the start point of the adaptive walk (tan circle in Fig. 2b; 144 

row 20 in the ancestral trait value matrix in Supplementary File 1) and the corresponding evolved 145 
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population trait values defined the evolutionary endpoint (red circle in Fig. 2b; row 20 in the 146 

evolved trait value matrix in Supplementary File 1).  147 

 148 

TRACE Model 149 

The TRAit Correlation Evolution (TRACE) model framework simulates the adaptive walk 150 

of a microbial population across a trait landscape (trait-scape) towards a high-fitness area. TRACE 151 

was adapted from an individual based Fisher model of adaptation [1,36,37]. Each generation, each 152 

individual in the population experienced either a change in trait values or changes in trait and trait-153 

correlations. Changes in trait values moved these individuals across the trait-scape while trait-154 

correlations constrained the direction of movement. Selection was imposed based on distance to 155 

the evolutionary end-point in the evolved trait-scape (described below), such that the population 156 

evolved towards the high fitness region of the trait-scape. In essence, this framework selected for 157 

individuals with the smallest overall difference across all trait values from the empirically observed 158 

high fitness phenotype. The weighting of the traits was derived from the observed evolved 159 

phenotypes evaluated using PCA, such that traits that were not observed to play an important role 160 

in fitness in the high-CO2 environment had low weight. It is important to note that the model did 161 

not directly select for trait correlations, but that specific correlations emerged in the population if 162 

they provided a fitness advantage in terms of trait dynamics. 163 

 In the default model simulations (referred to as 90/10), 90% of individuals were randomly 164 

chosen to experience a random change in a trait value (while maintaining all existing trait-165 

correlations) while 10% experienced both a trait and trait-correlation change. These changes were 166 

drawn from a Gaussian distribution (mean = 0 and standard deviation = 0.05) such that small 167 

changes were common and large changes were rare. For each individual, the randomly chosen trait 168 
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 9 

change was added to the existing trait value. Following this first trait change, the remaining 3 trait 169 

values were updated using the trait correlations for that individual in that time step. For example, 170 

if trait 1 was initially changed, then traits 2, 3, and 4 would subsequently be updated by multiplying 171 

the new trait 1 value by the three trait correlations (1v2, 1v3, and 1v4). To test if the sequence of 172 

correlational changes influenced adaptive outcomes in our model, we changed the order in which 173 

traits were updated and showed that results remained unchanged as expected (Supplementary Fig. 174 

1; Supplementary text).  175 

The remaining 10% of the population experienced both a trait and a trait correlation change. 176 

For each individual, one of the six trait correlations was randomly selected to change. Similar to 177 

the trait change, a random value was drawn from a Gaussian distribution with a mean of 0 and 178 

standard deviation of 0.05 and added to the existing correlation value. Next, one of the two traits 179 

associated with that correlation was randomly chosen and a trait change was selected in the same 180 

manner as above. Next, we updated the second trait tied to the correlation using the new correlation 181 

and trait value (the other 2 trait values were not updated in this generation). 182 

Selection was imposed using distance to the high fitness area  (evolutionary end coordinate) 183 

as a measure of fitness. Following changes to the respective traits and correlations, all individuals 184 

in the population were projected back onto the evolved trait-scape (i.e., evolved PCA) using the 185 

evolved factor loadings. The Euclidian distances (z) were calculated for each individual relative to 186 

the evolutionary endpoint. Next, fitness was calculated as [1,36]: 187 

w(z) = e(-z^2)/2 Eq. 1 188 

Finally, individuals were randomly sampled with replacement weighted by fitness to persist to the 189 

next generation. This selective approach through probabilistic weighting of fitness was adapted 190 

from our previous studies [1,36] inspired by Fisher’s model of adaptation [37].  191 
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 192 

Model simulations: 193 

The model was initialized with a population of 1000 individuals with the same trait values 194 

corresponding to the ancestral trait values. The evolved trait-scape (i.e. evolved PCA), the 195 

population starting location (tan circle in Fig. 2b), and the high fitness area (red circle in Fig. 2b) 196 

in the evolved trait-scape were defined based on empirical data from the Chlamydomonas long-197 

term evolution study [3]. Three different modes of the model were run with varying amounts of 198 

starting bias using different starting trait correlations: mixed, ancestral, and evolution (described 199 

below). Each model run was conducted for 2000 generations with 100 replicates each. All model 200 

parameters are given in Supplementary Table 1. Previous work by us and others have demonstrated 201 

that adaptive outcomes using this framework are robust across a wide range of population sizes 202 

(Supplementary text) [1,36]. Several sensitivity studies were conducted to test model dynamics. 203 

Briefly, we ran the model with a different starting location, varied the order in which traits were 204 

updated, removed the influence of trait correlations on evolutionary outcomes, and varied the ratio 205 

of trait to trait correlation changes. Detailed explanations and figures can be found in the 206 

Supplementary Information.  207 

 208 

Mixed mode (no bias) simulations: To first test all possible routes available to travel from the 209 

ancestral start point to the evolutionary end point in the evolved trait-scape (Fig. 2b), random 210 

correlation values from a standard uniform distribution over the interval (-1,1) were generated and 211 

randomly assigned to all individuals within the population. Hence, every individual started with 212 

the same 4 trait values but completely random correlation values. 213 

 214 
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Ancestral mode simulations: To test the effects of systematically adding ancestral bias, four 215 

ancestral sub-modes were conducted: A1, A2, A3, and A4. For simplicity, we chose to sequentially 216 

add back in ancestral correlations based on the empirically calculated significant trait-correlations 217 

from most significant to least significant (R2 = -0.89 to 0.54; see Fig. 2C). For sub-mode A1, 218 

random correlation values were generated as above for 5 of the 6 trait correlations, and one 219 

empirical ancestral correlation was added back to all individuals. This resulted in a starting 220 

population in which each individual contained the same 4 trait values, one ancestral trait 221 

correlation value shared across all individuals, and random correlation values for 5 of the 6 trait 222 

correlations. The rest of the model steps proceeded as above where all traits and correlations were 223 

allowed to change. For A2, all steps were the same except that two empirical ancestral correlations 224 

were added.  Finally, three and four ancestral correlations were added back for A3 and A4, 225 

respectively.  226 

 227 

Evolved mode simulations: The same procedure was conducted for the evolved mode but instead 228 

empirical evolved correlations were systematically added (modes E1 – E4).  229 

 230 

Hierarchical Clustering 231 

Hierarchical clustering with multiscale bootstrap resampling (1,000 replicates) on mean trait 232 

correlation values was conducted using R package pvclust [38] using Euclidean distance and the 233 

average (UPGMA) method. Principal component analysis using mean correlation values was 234 

conducted with package R package vegan [39], and pvclust clusters with approximately unbiased 235 

(AU) p-values > 75% were projected onto the PC coordinate plane as convex hulls.  236 

 237 
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Results  238 

Collapsed multivariate trait-scape 239 

The complexity of multi-dimensional trait evolution requires a tractable framework to 240 

understand how trait adaptation might proceed. Previous work has shown that complex trait 241 

adaptation and fitness variations can be represented in a reduced dimensional space, specifically 242 

using Principle Component axes [20,40]. Building on this work, we created a trait-based landscape 243 

or ‘trait-scape’ for the green alga Chlamydomonas reinhardtii adaptation to high-CO2 using four 244 

ecologically relevant traits (growth rate, respiration, cell size, and daughter cell production). 245 

Specifically, using the output from an experimental evolution study [3] with replicate populations 246 

of 5 genotypes of C. reinhardtii, we demonstrated that both trait values and the correlations 247 

between traits changed as the population adapted from a low-CO2 environment (ancestral 248 

environment) to a high-CO2 environment (evolved environment; Fig. 2). Specifically, all four traits 249 

changed to varying degrees depending on the genotype [3], and correlations between traits changed 250 

upon high-CO2 adaptation with some traits becoming correlated (e.g., 1v2) while others becoming 251 

uncorrelated (e.g., 2v4; Fig 2c). This resulted in distinct differences between the PCAs (trait-252 

scapes) for the ancestral and evolved populations (Fig. 2). As the specific traits themselves are not 253 

relevant for this study, we will hereafter refer to them as traits 1-4. We refer the reader to [3] for 254 

an in-depth discussion of the evolution experiment. 255 

To understand how C. reinhardtii genotypes adapted to high CO2, we compared the 256 

ancestral genotypes (projection of the ancestral trait values onto the evolved trait-scape) to the 257 

evolved genotypes (evolved trait values in evolved trait-scape; Fig. 2b). Fig. 2b shows where 258 

replicate populations of ancestral genotypes (empty circles) are located in the evolved trait-scape 259 

relative to their corresponding evolved genotypes (filled circles). This analysis demonstrates that 260 
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PC axes can provide a reduced dimensional space (trait-scape) for understanding how multiple 261 

traits simultaneously respond to environmental perturbation, similar to what has been shown in 262 

previous studies [20,28,40]. To understand how trait movement within this collapsed multi-263 

dimensional trait-scape can be constrained by historical bias (previous correlations between traits), 264 

we developed a statistical model of multi-trait adaptation and investigated probabilities of different 265 

emergent evolutionary outcomes.  266 

 267 

Simulating TRAit Correlation Evolution 268 

Using the TRACE model, we explored the impact of historical bias (i.e., correlations 269 

between traits) on an adaptive walk where the trait-based fitness landscape and start and 270 

evolutionary end-points were defined by empirical data.  We began with a ‘null hypothesis’ model 271 

in which there was no historical bias (mixed mode simulation) and then systematically added in 272 

Fig. 2 Principal Component Analysis (PCA) of ancestral and evolved trait values, respectively, and their 
trait correlations. a) Ancestral PCA calculated from the values of 4 ancestral traits across 5 genotypes where 
each point represents an independent biological population (i.e. culture) colored by genotype. Percentages 
along PC1 and PC2 denote the amount of variance explained by each PC axis, respectively. b) Evolved PCA 
plot calculated from the evolved values of the same 4 traits as in a) across 5 genotypes. Filled circles represent 
the independent populations of the evolved genotypes. Open circles represent the corresponding populations of 
the ancestral genotypes in a) projected onto the evolved PC axes. The tan and red filled circles denote the start 
and end coordinate of the model, respectively. c) Table of all 6 possible trait combinations and their values in 
their ancestral and evolved genotypes. An ‘X’ indicates a non-statistically significant trait correlation (p > 
0.05). 
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bias to determine the impact on population level adaptation. An example of model dynamics from 273 

a single run in mixed mode is shown in Fig. 3a where a representative population consisting of a 274 

thousand individuals moved over time from the ancestral starting phenotype to the evolved high 275 

fitness area (Fig. 3a). This resulted in an overall increase in fitness of the population over time (Fig 276 

3b). The underlying dynamics of the model (changes in trait values and trait correlation changes) 277 

for 3 representative traits are shown in Fig. 3c.  278 

 Consistent with prior studies examining evolution under relatively strong selective pressure 279 

[1,36], fitness effects produced from changes at the beginning of the walk were significantly 280 

greater than at the end of the walk [41-44] (Fig. 3). As the model ran forward in time, individuals 281 

within the population explored the collapsed trait-scape through changes to both traits and their 282 

Fig. 3 Representative adaptive walk in evolved PC space of a population of 1000 individuals. a) Density 
plots of an adaptive walk of a single population for a single run (n = 1000 individuals) starting at the tan dot and 
ending at the red dot. Each plot represents a different point in time (i.e. generation) in the adaptive walk with the 
color representing the density of individuals in a given area. b) Fitness plot of the population across the entire 
adaptive walk with the colored line and grey region representing the mean and standard deviation, respectively. 
Both the y-axis and color indicate fitness. c) Trait vs. trait plots representing the same adaptive walk where 
lower fitness denotes the start of the walk and high fitness denotes the end. As in b), each point represents the 
mean standardized trait value of all individuals at a specific generation, or step.    
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correlations (Fig. 3). Although some individuals reached a maximum possible fitness of 1 (i.e., the 283 

evolutionary end coordinate), the mean population fitness consistently remained below 1 (Fig. 3b). 284 

This is due to the fact that the model is simultaneously optimizing multiple traits and their 285 

correlations, which inherently introduces small but significant amounts of persistent phenotypic 286 

variation. In addition, while average movement of the population was fairly linearly in PC space 287 

(Fig. 3a), the trajectory of trait changes was not linear (Fig. 3c). 288 

Fig. 4 Four distinct, emergent phenotypes from model runs seeded with no bias. Each row displays one of 
the six possible trait correlations (2v4, 1v3, 1v4, 2v3, 1v2, and 3v4) with the distribution of the emergent trait 
correlation values for all individuals in all replicate runs (N=100,000) shown in grey. Highlighted in color in 
each subplot are the trait correlation values for the individuals belonging to each of the emergent phenotypes, or 
populations (columns). Each phenotype has a clearly defined set of trait correlation values. For example, the 2v4 
mean correlation for Pop-MA was 0.66 +/- 0.22 while the 2v4 mean correlation for pop-MD was -0.28 +/- 0.07. 
Pop-Ma and Pop-MD were the most accessible phenotypes and so the trait-correlation values associated with 
these phenotypes had the largest frequency (y-axis, note scale of 104).   
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 At the final generation (2000th generation), we examined the distribution of each trait 289 

correlation (1v2, 1v3, 1v4, 2v3, 2v4, and 3v4) across all individuals in all replicate runs (1000 290 

individuals x 100 replicate runs = 100,000 individuals total). Four distinct phenotypes (i.e., traits 291 

+ trait correlations for the final population) emerged all with statistically analogous end mean 292 

fitness. Figure 4 displays the emergent trait correlations for the four phenotypes (Pop-MA, Pop-293 

MB, Pop-MC, and Pop-MD). As these four phenotypes occurred in the same region of the trait-294 

scape but have distinct trait correlations and, to some extent distinct trait values, we term them 295 

‘cryptic phenotypes’. In other words, these cryptic phenotypes represent four distinct evolutionary 296 

outcomes of different trait correlations + trait values that all converged on the single evolutionary 297 

end coordinate in the evolved trait-scape. For some correlations such as trait 1 vs trait 2 (1v2), 298 

little to no overlap was observed across each of the 4 phenotypes (Fig. 4, row 5), while for others, 299 

several phenotypes shared the same trait correlations. For example, individuals in Pop-MA and 300 

Pop-MD shared the same 1v3 correlation (Fig. 4, row 2, columns 1 and 4). In contrast, Pop-MA 301 

and Pop-MD have a completely different relationship for 1v4 (Fig. 4, row 3, columns 1 and 4). An 302 

example pairwise trait-trait plot is shown in Fig. 5a where the 4 phenotypes can be identified in 303 

terms of their trait values. While the four phenotypes distinctly separated in terms of trait 2 and 304 

trait 4, there was significant overlap for other traits such as trait 2 vs trait 3 (Supplementary Fig. 305 

2). Thus, the cryptic phenotypes shared some trait correlations but diverged in others. These 306 

findings are consistent with experimental evolution studies that observed convergent phenotypes 307 

derived from a mix of parallel and divergent mutational and transcriptional changes across 308 

replicate populations evolving to the same  environment [7,45-48]. The emergence of multiple 309 

high-fitness phenotypes (e.g., Fig. 5a) occupying a single high fitness area in multivariate space 310 
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demonstrates that our model captures a rugged trait-based fitness landscape with multiple high-311 

fitness peaks (e.g., Fig. 1).  312 

 The accessibility of the four phenotypes that emerged from the population without any bias 313 

was considerably different. Here we define accessibility as the fraction of replicates that converged 314 

on an emergent phenotype. Pop-MA was the most accessible with 55% of replicates converging 315 

on this phenotype while Pop-MD was the second most accessible with 33% (Fig. 5b). Pop-MA 316 

also exhibited the most variance in trait values within the population  (i.e., broadest peak when 317 

plotted in more traditional pairwise trait space; e.g., Fig. 1 and Fig. 5a), indicating a relatively 318 

larger range of trait values conferring high-fitness with associated Pop-MA’s trait correlations. 319 

The most accessible phenotype, Pop-MA, also had the fastest rate of fitness gain (Fig. 5b, c), 320 

potentially indicating that this phenotype is the most accessible from our experimentally derived 321 

Fig. 5 Representative trait, population, and fitness dynamics for a mixed-mode model run with default 
model dynamics (90/10) a) Trait vs. trait plot denoting the 4 distinct populations (i.e. phenotypes) that 
emerged from 100 replicate model runs in mixed mode (i.e., no bias). Each hollow point represents the final 
trait values of a given individual in the last generation (2000th generation) colored by fitness defined by the 
trait-scape. Colored lines represent the average trait values at each generation for each population with the 
black point denoting the final generation. b) Population dynamics of the 4 emergent populations showing the 
number of replicates (out of 100) that chose specific populations (size of circle) along with each 
population’s rate of adaptation (color of circles). c) The left plot displays the fitness of each population over 
time while the right displays boxplots representing the distribution of the final fitness values across all 
individuals of all replicate runs (n = 100,000). Black lines in the boxplots denote the median with the edges 
denoting the 25th and 75th percentiles, respectively.  
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starting location.  Although Pop-MA and Pop-MB exhibited similar rates of adaptation (Fig. 5c, 322 

left plot), Pop-MB was not nearly as accessible with only 6% of the replicates converging on this 323 

phenotype (Fig. 5b). Instead, Pop-MD with a slower adaptive rate was the second most accessible 324 

phenotype (Fig. 5b, c). Pop-MA and Pop-MD trait correlations were more similar overall than 325 

those of Pop-MB.  326 

To examine the impact of ancestral starting point on the emergent phenotypes, we ran the 327 

mixed-mode model using a second starting location (i.e., trait values) in the trait-scape that was 328 

equidistant to the high fitness area. These model runs converged on 3 of the 4 phenotypes observed 329 

with the empirical starting location (Pop-MA, Pop-MB, and Pop-MD). However, shifting the 330 

starting  location resulted in Pop-MB becoming the most accessible phenotype with the former 331 

two most populous phenotypes, Pop-MA and Pop-MD, represented by only 24% and 9% of 332 

replicates, respectively (Supplementary Fig. 3). No replicate found Pop-MC and no new 333 

phenotypes emerged. These runs indicate that high-fitness areas of the trait-scape were conserved, 334 

and that starting an adaptive walk from another location influenced the accessibility of certain 335 

phenotypes thereby biasing evolutionary outcomes. The fact that no new populations emerged 336 

further supports the ability of this framework to capture the known phenomenon that there are a 337 

limited number of accessible phenotypes [28].  338 

 We then tested the influence of trait correlational constraints on evolutionary trajectories 339 

by randomly changing traits independently of trait correlations (i.e., ignoring trait relationships). 340 

Here, every individual experienced a random trait change, but no other traits were updated based 341 

on trait correlations resulting in unconstrained movement across the trait-scape. We found that 342 

only one phenotype emerged, as expected, but in contrast to the simulations where trait correlations 343 

were included (Supplementary Fig. 4; Supplementary text). Here, individuals were unconstrained 344 
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by bias and so were able to quickly move directly to the high-fitness area. This demonstrates that 345 

trait correlational constraints can produce different evolutionary strategies (i.e., emergent, cryptic 346 

phenotypes), and if constraints are not present, individuals are able to more freely explore 347 

phenotypic space and arrive at the high-fitness phenotype more rapidly.  348 

We also tested the sensitivity of the model dynamics to the underlying model assumptions 349 

of the frequency of trait and trait correlation changes (default Mode 90/10, 90% of individuals 350 

experience a trait change only and 10% experience both a trait + trait correlation change). 351 

Specifically, the model was run in two other modes: for every generation, 1) 50% of individuals 352 

experienced a trait change and 50% experienced both a trait and correlation change (Mode 50/50) 353 

and 2) 10% of individuals experienced a trait change and 90% of individuals experienced both a 354 

trait and correlation change (Mode 10/90). All other parameters stayed the same. Mode 50/50 355 

found the same 4 phenotypes as the default Mode 90/10 while Mode 10/90 found the two most 356 

accessible phenotypes, Pop-MA and Pop-MD (Supplementary Fig. 5). No new populations 357 

emerged. The fact that some combination of the same phenotypes emerged from each of the three 358 

independently run modes provides further evidence for a robust, conserved trait-scape with limited 359 

high-fitness phenotypes derived from a population with no historical bias.   360 

Adding Historical Bias  361 

The mixed-mode model runs presented above represent a null hypothesis where organisms 362 

start with no constraint (e.g., bias) on trait-trait relationships. Next, we assessed the impact of 363 

adding trait-correlation bias through the systematic addition of empirical ancestral (sub-modes A1 364 

- A4) and evolved (sub-modes E1 – E4) correlations. For both ancestral and evolved modes, 365 

systematically adding more bias (i.e., going from A1 – A4 and E1 – E4, respectively,) changed the 366 

accessibility of the high-fitness phenotypes across replicate runs (Fig. 6). In other words, adding 367 
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different types of bias influenced 368 

adaptive walks across the trait-369 

scape by introducing constraints in 370 

the form of trait relationships (e.g., 371 

different paths depicted in Fig. 1). 372 

However, the type of bias (e.g., 373 

ancestral vs evolved correlations) 374 

had a different impact on 375 

phenotype accessibility. Bias from 376 

the ancestral correlations was 377 

typically maladaptive and resulted 378 

in fewer accessible phenotypes 379 

and slower adaptive rates (Fig. 380 

6a). However, bias from the 381 

evolved trait relationships (i.e., consistent with the trait-scape) generally resulted in faster adaptive 382 

rates and greater overall accessibility to adaptive phenotypes (Fig. 6b). These results are consistent 383 

with prior observations where bias (e.g., trait correlations) accelerated adaptive evolution if 384 

existing biological orientation aligned with the direction of selection but constrained adaptation if 385 

it limited variability in the direction of selection [16,17,28]. Here we show these same modeled 386 

dynamics occur when using a collapsed multi-variate trait-space and including trait correlations as 387 

a constraint on an adaptive walk. Specifically,  depending on a starting population’s bias, different 388 

phenotypes are more probable than others with some being generally inaccessible as found in other 389 

studies [28,29].  390 

Fig. 6 Dynamics of emergent populations in simulations with 
different historical bias. a) Bubble plot showing emergent 
populations as a function of adding empirical ancestral correlations 
(ancestral bias). Bubble size denotes the number of replicates (out of 
100) within a specific population while bubble color represents each 
population’s rate of adaptation (color of circles). b) Same plot as in a) 
except with adding empirical evolved correlations (evolved bias).  
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 391 

Meta-analysis of phenotypes across different modeled modes  392 

 We analyzed results from the mixed (n=1), ancestral (n=4), and evolutionary (n=4) modes 393 

to compare emergent phenotypes with different historical biases across independent runs. We 394 

assessed the similarity of the high-fitness phenotypes across all model runs (9 runs with 100 395 

replicates each) using hierarchical clustering with multiscale bootstrap resampling (1,000 396 

replicates) on mean trait correlation values at the 2000th generation (Methods). We also included 397 

the empirical data from the ancestral and evolved populations in this analysis.  Hierarchical 398 

clustering revealed 5 high-confidence clusters (I – V) harboring 93% of the phenotypes (n=26 of 399 

28) with approximately unbiased (AU) p-values > 75 (Fig. 7a). Two phenotypes, Pop-MB and 400 

Pop-EB-E1, clustered with II and IV, respectively, albeit with less confidence relative to the high-401 

confidence clusters. The empirical ancestral phenotype did not fall within any of the high-402 

confidence clusters, which is expected as the ancestral phenotype was not well-adapted in the 403 

Fig. 7 Hierarchical clustering and Principal Component Analysis of mean trait correlation values 
calculated across all phenotypes from mixed, ancestral, and evolved mode model simulations a) 
Hierarchical clustering with multiscale bootstrap resampling (1,000 replicates) on trait correlation values from 
the emergent phenotypes (Fig. 4) across all model runs (mixed mode, A1-A4, and E1-E4) along with empirical 
ancestral and evolved correlation values.  Approximately Unbiased (AU) p-values > 75 are labeled at the nodes. 
We identified five overarching clusters with high-confidence AU p-values (colors), which contained even higher 
confidence sub-clusters. b) Principal component analyses with trait correlation values as in a) with the 5 clusters 
projected onto the coordinate plane as convex hulls. Percentages on x and y axes denote the percent of explained 
variance along each axis. Vectors C1-C6 denote correlations 1-6 as defined in Fig. 2C.   
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evolved trait-scape. In contrast, the empirical evolved population clustered with high-confidence 404 

in cluster V, a cluster found by 20% of the replicates including phenotypes from sub-modes E1, 405 

E3, and E4 where evolved bias was added. The clustering observed through the hierarchical 406 

analysis also emerged through a PC analysis of the population trait correlations. Specifically, we 407 

observed 3 general regions of convergence in PC space among the phenotypes, as clusters II, III, 408 

and IV collapsed into a small region of the lower left quadrant in the PCA plot (Fig. 7b). 409 

Importantly, these convergent regions emerged from thousands of possible trait and correlation 410 

values across varying degrees of bias. They provide valuable insight into probable combinations 411 

of high-CO2 adaptive trait correlations along a reduced set of biological axes.  412 

 413 

Discussion  414 

Here, we combined empirical trait evolution data from a model freshwater alga with a 415 

framework that uses eigenvector based methods (principal components) to model multivariate 416 

adaptive walks with evolving traits and trait correlations. By leveraging empirical ancestral trait 417 

correlations and the observed changes in these correlations as a result of adaptation to high CO2, 418 

we were able to simulate adaptive walks with endpoints anchored in real evolutionary outcomes. 419 

The true utility of TRACE lies in its ability to provide insight into multi-trait evolution using trait 420 

data from empirical, organismal experiments. Specifically, our model provides a framework for 421 

studying the evolution of multiple traits and their potential trade-offs in response to environmental 422 

change. This approach generally contrasts with the vast majority of past adaptive walk models that 423 

study evolution using hypothetical traits and fitness. Critically, our model captures the same 424 

evolutionary phenomena as past models but with a trait-scape characterized by easy-to-quantify 425 

and ecologically important traits from globally relevant microbes. From here, we can build on our 426 
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understanding of key sets of multivariate trait relationships under environmental change. This will 427 

be critical for determining how evolving microbial processes will influence global 428 

biogeochemistry and carbon cycling in the face of global change. For example, TRACE can 429 

provide hypotheses as to the degree of evolvability of certain traits and trait correlations under 430 

selective gradients (e.g., CO2) in a multi-trait landscape and suggest potential multivariate trait 431 

tradeoffs.  432 

We believe that a framework such as TRACE is essential for more robustly predicting 433 

biogeochemical shifts as our framework can capture the contrasting responses of microbes in the 434 

short- and long-term. Specifically, TRACE allows for the emergence of trade-offs through 435 

evolutionary change. For example, experimental evolution study results suggest that microbes 436 

might be able to adapt by increasing their carbon use efficiency and/or increasing cell size at 437 

warmer temperatures, contrary to their plastic responses [10,18]. However, this adaptive capacity 438 

might not be available when considering other stressors, such as nutrient limitation [49]. Therefore, 439 

by combining TRACE with experimental evidence on the co-evolution of traits, we can better 440 

constrain the adaptive capacity of microbes. These hypotheses can then be tested with targeted 441 

laboratory and field experiments and ultimately integrated into larger biogeochemical models to 442 

constrain microbial phenotypes and thus trait distributions under different global change scenarios.  443 

Applying TRACE to Chlamydomonas evolution under high CO2, we found that a limited 444 

set of integrated phenotypes underlie thousands of possible trait correlational scenarios. Upon 445 

systematically adding different types (ancestral or evolved) of bias, only certain phenotypes 446 

emerged for some trait combinations (e.g., A2 – A4 & E2) while others found all possible 447 

phenotypes for a specific mode. These results help elucidate evolutionary trajectories based on 448 

trait correlation constraints for ecological and biogeochemical traits of interest. Importantly, they 449 
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can also help inform future experimental designs aimed at testing the probability of adaptive 450 

outcomes across multivariate environments through the analysis of a select set of traits. The 451 

combination of both experimental evolution and eigenvector methods like PCA can be a powerful 452 

approach to help predict both short- and long-term biological responses to global change. 453 

Particularly, this framework can be used to estimate a rugged trait-scape harboring a limited set of 454 

phenotypes and identify high-fitness trait-correlation combinations under selective gradients. Due 455 

to the seemingly infinite amount of possible interacting biological and environmental variables to 456 

test, these evolutionary and mathematical tools that allow us to efficiently combine experiments 457 

with modeling will be critical to help predict microbial population responses to future global 458 

change scenarios through the lens of evolutionary phenomena.     459 
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Supplementary Material 24 

Adaptation and population size 25 

 Adaptation dynamics in our model framework follow those from our previous work [1,2] 26 

where populations initially start far from the optimum and are subjected to predominantly non-27 

neutral changes to traits and/or correlations. We do not explicitly represent drift in the model, 28 

which can also impact the adaptive process as each change (e.g., mutation) occurs with an initial 29 

frequency of 1/N and can be lost by chance. However, the relative supply of changes (population 30 

size x number of changes per generation) used in our model runs is sufficient for selection to 31 

overwhelm drift resulting in robust evolutionary results. Accordingly, in prior studies using an 32 

analogous adaptive process, we varied population size and/or selection strength over multiple 33 

orders of magnitude and demonstrated adaptive outcomes to be robust over the same selection 34 

period [1,2].  35 

 36 

Sensitivity tests 37 

 We conducted several sensitivity tests to examine model dynamics. First, we tested if the 38 

the sequence of correlational changes influenced adaptive outcomes in our model. To do this, we 39 

conducted model runs where we changed the order in which traits were updated and showed that 40 

phenotypic results remained unchanged as expected (Supplementary Fig. 1). 41 

 We also examined the impact of trait correlational constraints on evolutionary trajectories 42 

(Supplementary Fig. 4) by randomly changing traits independently of trait correlations (i.e. 43 

ignoring trait relationships). For these runs, each individual experienced a random trait change, 44 

but no other traits were updated. Hence, individuals were unconstrained by bias and so were able 45 

to quickly move directly to the high-fitness area. We found that only one phenotype emerged, as 46 
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expected (Supplementary Fig. 4). This demonstrates that trait correlational constraints are critical 47 

for producing different evolutionary strategies (i.e. emergent, cryptic phenotypes), and if 48 

constraints are not present, individuals are able to more freely explore phenotypic space and arrive 49 

at the high-fitness phenotype more rapidly.  50 

Finally, we tested the sensitivity of the model dynamics by varying the ratios of trait and 51 

trait correlation changes (Supplementary Fig 5). In addition to the default Mode 90/10 (90% of 52 

individuals experience a trait change only and 10% experience both a trait + trait correlation 53 

change) two other modes were run: Mode 50/50 and Mode 10/90. For each generation in Mode 54 

50/50, 50% of individuals experienced a trait change and 50% experienced both a trait and 55 

correlation change. For Mode 10/90, 10% of individuals experienced a trait change and 90% of 56 

individuals experienced both a trait and correlation change. All other parameters stayed the same. 57 

Mode 50/50 found the same 4 phenotypes as the default Mode 90/10 while Mode 10/90 found the 58 

two most accessible phenotypes, Pop-MA and Pop-MD (Supplementary Fig. 5). No new 59 

populations emerged. The fact that some combination of the same phenotypes emerged from each 60 

of the three independently run modes provides further evidence for a robust, conserved trait-scape 61 

with limited high-fitness phenotypes derived from a population with no historical bias.   62 

 63 

 64 

 65 

 66 

 67 

 68 

 69 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 11, 2020. ; https://doi.org/10.1101/2020.08.04.237230doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.04.237230
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4 

 70 

Parameter Description Value 

N  Size of population 1000 

t  Number of generations 2000 

tgrad Standard deviation of trait change 0.05 

cgrad Standard deviation of correlation change 0.05 

Ntrait Number of trait changes [900, 500, 100] 

Ncorr Number of correlation changes [900, 500, 100] 

Nruns Number of replicate runs 100 

 71 

 72 
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 77 
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 79 

 80 
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 82 

 83 

 84 

Supplementary Table 1 Parameter values used for main text model simulations. 
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 85 

Supplementary Fig. 1 Four distinct, emergent phenotypes (i.e. populations) from model runs seeded 
with no bias These model runs were identical to “Mixed mode” in the main text (Fig. 4) except the order of 
updating traits and correlations was reversed. Each row displays one of the six possible trait correlations 
(2v4, 1v3, 1v4, 2v3, 1v2, and 3v4) with the distribution of the emergent trait correlation values for all 
individuals in all replicate runs (N=100,000) shown in grey (y-axis, note scale of 104). Highlighted in color 
in each subplot are the trait correlation values for the individuals belonging to each of the emergent 
phenotypes, or populations (columns). Each phenotype has a clearly defined set of trait correlation values. 
Here, the 4 same populations emerged as in Fig. 4 of the main text.  
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 86 

Supplementary Fig. 2 Trait vs. trait plots for mixed mode simulations a) Trait vs. trait plots denoting the 4 
distinct populations (i.e. phenotypes) that emerged from 100 replicate model runs in mixed mode (i.e., no bias). 
Each hollow point represents the final trait values of a given individual in the last generation (2000th) colored by 
fitness. Colored lines represent the average trait values at each generation for each population with the black 
point denoting the final generation.  
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 98 

Supplementary Fig. 3 Impact of starting location on emergent phenotypes (i.e. populations) in mixed-
mode model simulations. a) Shown are emergent populations resulting from mixed-mode model simulations as 
in the main text except starting from a different, equidistant ancestral phenotype in PCA space. Each row 
displays one of the six possible trait correlations (2v4, 1v3, 1v4, 2v3, 1v2, and 3v4) with the distribution of the 
emergent trait correlation values for all individuals in all replicate runs (N=100,000) shown in grey. Highlighted 
in color in each subplot are the trait correlation values for the individuals belonging to each of the emergent 
phenotypes, or populations (columns). Each phenotype has a clearly defined set of trait correlation values. b) 
Shown is a bar plot denoting the number of replicates within each population (out of 100 model runs). When 
starting from a different ancestral start point, Pop-MC did not emerge in any replicates. 
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 121 

Supplementary Fig. 4 Trait correlational distributions from model runs that 
changed traits independently of trait correlations. a) Shown are trait 
correlational distributions per correlation. At each generation, 1 trait per 
individual was randomly changed but no other traits were updated using the trait 
correlations resulting in one phenotypic solution. b) Shown is the mean fitness of 
all individuals over time across all replicate runs (1000 individuals x 100 
replicate runs). The red line indicates the mean while the light blue area denotes 
the smoothed standard deviation. 
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 144 

Supplementary Fig. 5 Population dynamics of emergent populations across different ratios of 
trait and trait correlation changes. The bubble plot shows emergent populations as a function of 
varying the ratio of trait and trait correlation changes for mixed-mode simulations. 90/10 denotes 
90% of individuals in a population experiencing a trait change and 10% both a trait and correlation 
change per generation. Similarly, 50/50 denotes 50% experiencing a trait change and 50% both a trait 
and correlation change. Finally, 10/90 denotes 10% experiencing a trait change and 90% both a trait 
and correlation change. Bubble size denotes the number of replicates (out of 100) within a specific 
population  while bubble color represents each population’s rate of adaptation (color of circles), or 
time to reach 90% of its maximum fitness. 
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