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A. Abstract 

The standard approach in neuroscience research infers from the external stimulus 

(outside) to the brain (inside) through stimulus-evoked activity. Recently challenged by 

Buzsáki, he advocates the reverse; an inside-out approach inferring from the brain’s 

activity to the neural effects of the stimulus. If so, stimulus-evoked activity should be a 

hybrid of internal and external components. Providing direct evidence for this hybrid 

nature, we measured human intracranial stereo-electroencephalography (sEEG) to 

investigate how prestimulus variability, i.e., standard deviation, shapes poststimulus 

activity through trial-to-trial variability. We first observed greater poststimulus variability 

quenching in trials exhibiting high prestimulus variability. Next, we found that the relative 

effect of the stimulus was higher in the later (300-600ms) than the earlier (0-300ms) 

poststimulus period. These results were extended by our Deep Learning LSTM network 

models at the single trial level. The accuracy to classify single trials (prestimulus 

low/high) increased greatly when the models were trained and tested with real trials 

compared to trials that exclude the effects of the prestimulus-related ongoing dynamics 

(corrected trials). Lastly, we replicated our findings showing that trials with high 

prestimulus variability in theta and alpha bands exhibits faster reaction times. Together, 

our results support the inside-out approach by demonstrating that stimulus-related 

activity is a hybrid of two factors: 1) the effects of the external stimulus itself, and 2) the 

effects of the ongoing dynamics spilling over from the prestimulus period, with the 

second, i.e., the inside, dwarfing the influence of the first, i.e., the outside. 

B. Significance Statement 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 11, 2020. ; https://doi.org/10.1101/2020.12.09.417774doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.09.417774


The hybrid nature of task-evoked activity 

3 
 

Our findings signify a significant conceptual advance in the relationship between pre- 

and poststimulus dynamics in humans. These findings are important as they show that 

we miss an essential component - the impact of the ongoing dynamics - when restricting 

our analyses to the effects of the external stimulus alone. Consequently, these findings 

may be crucial to fully understand higher cognitive functions and their impairments, as 

can be seen in psychiatric illnesses. In addition, our Deep Learning LSTM models show 

a second conceptual advance: high classification accuracy of a single trial to its 

prestimulus state. Finally, our replicated results in an independent dataset and task 

showed that this relationship between pre- and poststimulus dynamics exists across 

tasks and is behaviorally relevant. 

C. Introduction 

The common approach to task-related activity in neuroscientific research has been to 

investigate the effect of an external stimulus on neural activity and its resulting behavior 

and cognition. Gyӧrgy Buszáki (Buzsáki, 2019) suggests an alternative approach, 

‘inside-out’; unlike the traditional ‘outside-in’, it places intrinsic neural activity as a key 

factor (inside) in modulating activity change related to external stimuli (outside) (see 

also Northoff et al. 2010, Northoff 2014a and b). Consistent with this approach (Buzsáki, 

2019), studies (He, 2013; Baria et al., 2017; Huang et al., 2017; Nieus et al., 2018; 

Galindo-Leon et al., 2019; Hirschmann et al., 2019; Podvalny et al., 2019) have 

demonstrated that poststimulus activity levels depend on the initial state, the level of 

prestimulus activity (Yamagishi et al., 2008; Mathewson et al., 2009; Northoff et al., 

2010; Fellinger et al., 2011; Hanslmayr et al., 2013; He, 2013; Milton and Pleydell-

Pearce, 2016; Benwell et al., 2017; Huang et al., 2017; Hirschmann et al., 2019). These 
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findings demand the question: how and in what way do prestimulus activity levels shape 

stimulus-induced activity beyond the external stimulus? 

Variability of the signal may be a key factor. As neural responses to the same stimulus 

show significant variability over trials (Churchland et al., 2010; He, 2013), the quenching 

of this neural variability occurs after stimulus onset (Churchland et al., 2010; Schurger 

et al., 2015; Arazi et al., 2017a, 2017b; Haar et al., 2017; Huang et al., 2017, 2018; 

Daniel et al., 2019). Though much studied, how this neural variability quenching in the 

poststimulus period - termed trial-to-trial variability (TTV) - is influenced by the 

prestimulus state is unknown. 

TTV describes and indexes (Churchland et al., 2010; He and Zempel, 2013; Ferri et al., 

2015; Schurger et al., 2015; Arazi et al., 2017a, 2017b; Huang et al., 2017) the 

suppression (quenching) of the variability of the spontaneous brain activity by the arrival 

of the stimulus (Churchland et al., 2010, 2011; He, 2013; He and Zempel, 2013; 

Dinstein et al., 2015; Arazi et al., 2017a, 2017b; Wolff et al., 2019b). TTV quenching has 

been observed on multiple levels of neural activity: cellular (Arieli et al., 1996; Monier et 

al., 2003; Finn et al., 2007; Churchland et al., 2010, 2011; Hussar and Pasternak, 2010; 

Scaglione et al., 2011; Chang et al., 2012; White et al., 2012; Goris et al., 2014; 

Mazzucato et al., 2015, 2016; Liu et al., 2016); scalp-level (He and Zempel, 2013; 

Schurger et al., 2015; Arazi et al., 2017b, 2017a); functional magnetic resonance 

imaging (fMRI) (He, 2013; Ferri et al., 2015; Huang et al., 2017) (see also (Dinstein et 

al., 2015) for review of TTV). 

In addition to its varying modulation by different stimuli (Churchland et al., 2010, 2011; 

Hussar and Pasternak, 2010; Arazi et al., 2017b; Wolff et al., 2019b), previous studies 
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suggest that TTV is also dependent on the degree of the brain’s variability at stimulus 

onset. In non-human data, studies examining prestimulus variability in neural activity 

have provided direct evidence of its modulating effect on stimulus-related sensory 

activity (Yamagishi et al., 2008; Romei et al., 2008; Mathewson et al., 2009; Hanslmayr 

et al., 2013; Luczak et al., 2013; Lin et al., 2015; Scholvinck et al., 2015; Benwell et al., 

2017; Gulbinaite et al., 2017; Hennequin et al., 2018; Shimaoka et al., 2019; Huang et 

al., 2019). Moreover, cell-level studies have shown a strong dependence of 

poststimulus TTV and behavior (reaction times) on prestimulus variability (Kisley and 

Gerstein, 1999; Curto et al., 2009; Schurger et al., 2010; Pachitariu et al., 2015). How 

stimulus related TTV is shaped by prestimulus variability in humans, though, is 

unknown. We therefore asked what is the electrophysiological relationship in humans 

between pre- and poststimulus variability as measured with TTV?  Closing the loop 

between these two factors - prestimulus (‘inside’) and external stimulus (‘outside’) - to 

demonstrate the hybrid nature of stimulus-evoked activity is the aim of the present study 

using human intracranial stereo-electroencephalography (sEEG). 
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Figure 1: Standard trial-to-trial 
variability (TTV) calculation and our 
adjusted method. 
A) TTV is usually calculated by 
determining the standard deviation 
(SD) at each timepoint over all trials, 
then normalized by subtracting and 
dividing by the SD at stimulus onset 
(time = 0ms). From this standard 
calculation, our hypothesis and 
method of the study resulted. B) 
Calculation of prestimulus SD and 
sorting of trials into prestimulus low 
and high. Step 1 – A window prior to 
stimulus onset (500ms in the 
broadband) was chosen for each 
frequency band. Step 2 - The 
standard deviation of the signal 
amplitude was calculated in each 
trial. This continuous measure (Huk 
et al., 2018) yielded one value per 
trial. Step 3 – These values were 
then sorted in ascending order. Step 
4 – As there were 180 trials, after 
sorting trials 1 to 90 were 
categorized as prestimulus low SD, 
while trials 91 to 180 were 
categorized as prestimulus high SD 
(median split). Step 5 – In each 
group - prestimulus low, prestimulus 
high - which consists of 90 trials, 
TTV was calculated according to the 
methods of (Wolff et al., 2019b). 
Hereafter, prestimulus low denotes 
the TTV computed on the trials with 
the lower prestimulus SD (trials 1-
90) while prestimulus high denotes 
TTV computed on the trials with the 
higher prestimulus SD (trials 91-
180). TTV is a discontinuous 
measure (Huk et al., 2018) as it is 
calculated over trials.                                          
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Results 

i. Summary of methods and hypotheses 

In this study, we aimed to investigate how prestimulus activity shapes poststimulus 

activity in a hybrid way, being composed of internal and external features whose 

interaction is supposedly mediated by variability. In addressing this question, we 

encountered the methodological challenge of linking the continuous ongoing dynamics 

of the prestimulus period to the measurement of discrete, discontinuous activity time-

locked to a stimulus (see (Huk et al., 2018) Huk et al, 2018). To combine both, we 

therefore tested whether prestimulus temporal SD, as measured in a continuous way 

through standard deviation, influences poststimulus variability, measured in a 

discontinuous way by TTV (Huk et al., 2018) (Figure 1).  

This was done by combining intracranial electroencephalography (sEEG) with Deep 

Learning neural network models. We investigated intracranial electrophysiological 

activity, which measures local field potentials (LFP) (Buzsáki et al., 2012), as acquired 

in a distinct sEEG dataset comprised of 20 human participants. We applied a simple 

paradigm with two different stimuli and no behavioral response – a no-report paradigm 

(Tsuchiya et al., 2015). This allowed us to test the impact of the stimulus alone on 

stimulus-related activity, independent of any behavioral constraints and uncontaminated 

by any response-related neural activity.  

In this sEEG data, we first calculated the standard deviation (SD) (an index of 

variability) of the signal amplitude in the prestimulus period (varying interval lengths, see 

methods) (Figure 1). After a median split, trials were assigned to either the prestimulus 
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low or high SD group (median split). TTV was then calculated in each group in the 

period after stimulus onset, and the area under the curve was measured.  

We then sought to examine the effect of the stimulus, including the timing of its effects, 

on the ongoing pre-poststimulus variability. This was done by comparing the TTV in real 

trials to that in pseudotrials. Pseudotrials describe time periods between stimulus 

presentation when a stimulus is absent (Dinstein et al., 2015), and have also been 

referred to as surrogate trials (He, 2013). Used to model the ongoing dynamics of the 

spontaneous activity, pseudotrials serve as a baseline for the recorded activity when a 

stimulus was presented (Huang et al., 2017). When the activity during these 

pseudotrials was subtracted from the activity of the real trials, the difference shows the 

stimulus-related activity itself, independent of the impact of the ongoing dynamics 

(Huang et al., 2017). This allowed us to parcel out and distinguish the effects of the 

external stimulus itself, and those of the prestimulus dynamics, on stimulus-related 

activity as measured with TTV. 

As TTV is calculated over trials, one curve encompassed data from 90 trials. The need 

for computing over numerous trials in TTV makes it impossible to account for measuring 

the impact of the ongoing dynamics on the single trial level. We sought to overcome this 

by analyzing, and independently validating, the results at the single trial level by 

applying Deep Learning methods using LSTM neural network models (Alhagry et al., 

2017). Specifically, we used our data from the poststimulus activity in individual trials to 

classify single trials as being either prestimulus low or high (based on a median split) 

and measuring the accuracy of the classification. This was done first in the trials 

corrected for prestimulus SD, then in the real trials.  
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Finally, we replicated our findings in a separate EEG dataset with a report task (Wolff et 

al., 2019b, 2019a). As the task in this dataset required that participants respond 

behaviorally, we tested whether the shaping of TTV by prestimulus SD is relevant for 

behavior. 

ii. Prestimulus SD is the same in real and pseudotrials 

After preprocessing of the sEEG data (Daitch and Parvizi, 2018; Helfrich et al., 2018), 

the event-related potentials (ERP’s) (0.1-70Hz) of the real and pseudotrials were 

visualized (Figure 2A). This was done to confirm the presence of evoked activity in the 

real trials and its absence in the pseudotrials. Next, TTV was calculated in the same 

frequency range in real and pseudotrials to again confirm a response (in real trials) and 

a lack of response to stimulus (in pseudotrials) (Figure 2B).  

TTV was defined as the variability changes relative to variability at stimulus onset (see 

(He and Zempel, 2013; Arazi et al., 2017a, 2017b; Wolff et al., 2019b) for related 

methods). We calculated the percent change with respect to the value at stimulus onset 

(He, 2013; Arazi et al., 2017a, 2017b), 

𝑇𝑇𝑉(𝑡) =
𝜎𝑜𝑡(𝑡)−𝜎𝑜𝑡(0)

𝜎𝑜𝑡(0)
 𝑥 100     (1) 

where 𝜎𝑜𝑡(𝑡) is the SD of the sEEG signal over trials as function of time t and 𝜎𝑜𝑡(0) is 

the SD over trials at stimulus onset, or 0ms (no difference between SD at stimulus onset 

between real and pseudotrials with p=.065). 

As expected, a response to the stimulus was evident in both the ERP and TTV of the 

real trials (Figure 2A, B). No stimulus-related activity was seen in the pseudotrials. The 
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presence of TTV quenching suggests the potential impact of prestimulus SD and 

therefore confirmed our use of pseudotrials in the subsequent analyses. TTV quenching 

thus signified the possible impact of ongoing pre-poststimulus variability on stimulus-

related activity in addition to the impact of the external stimulus. 

We next grouped the trials according to prestimulus variability. The SD of the 

prestimulus amplitude was calculated (Figure 1, step 1, 2): 

𝜎𝑡(𝑖) =  √
∑ |𝑥𝑡− 𝜇|2

𝑁
       (2) 

where 𝜎𝑡(𝑖) is the SD of the prestimulus interval in trial 𝑖, 𝑥𝑡 is the amplitude at timepoint 

t in the prestimulus interval, 𝜇 is the mean of the interval and 𝑁 is the number of 

timepoints in the prestimulus interval. The time interval for this calculation varied 

according to frequency band (see Methods). Once this was calculated, the SD values 

were sorted in ascending order and the median value was calculated (Figure 1, step 3). 

Trials below the median were assigned to the low prestimulus group and those above 

the median to the high prestimulus group; there were 90 trials in each group.  

As the prestimulus median split was based on the SD of signal amplitude in the 

prestimulus period, we needed to establish if this was the same in real and pseudotrials. 

In the broadband (0.1-70Hz), a 2 (prestimulus high, prestimulus low) x 2 (real trials, 

pseudotrials) repeated measures ANOVA found no significant difference between real 

and pseudotrials (Table 1, Figure 2C). 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 11, 2020. ; https://doi.org/10.1101/2020.12.09.417774doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.09.417774


The hybrid nature of task-evoked activity 

11 
 

 

Table 1: Prestimulus SD 2x2 repeated measures ANOVA results in broadband 

Factor Levels df F - value p - value ηp
2 

Prestimulus Low, High N/A‡ N/A‡ N/A‡ .691 

Trials Real, Pseudo 1.432 x10-6, 9.714x10-5 .015 <.905 .001 

df = degrees of freedom 
ηp

2 = partial eta squared 
‡ = low and high was based on prestimulus SD 

Figure 2: Event-related potentials (ERP), trial-to-trial variability (TTV) and prestimulus SD in real and pseudotrials in all bands. 
A) Event-related potentials (ERPs) for all stimuli in real trials (green) and pseudotrials (black). The ERPs were calculated in the 
broadband, from 0.1Hz to 70Hz. Shaded areas are standard error. B) Trial-to-trial variability (TTV) for all stimuli in real trials 
(green) and pseudotrials (black) calculated in broadband as the ERPs. Shaded areas are standard error. C) Broadband (0.1-
70Hz), theta (4-8Hz) and alpha (8-13Hz) prestimulus SD. Prestimulus low (blue) and prestimulus high (red) is shown for real 
trials (left column) and pseudotrials (right column). The window for calculating the prestimulus SD was 500ms for the broadband, 
1000ms for theta, and 400ms for alpha. D) For the beta (13-30Hz), low gamma (30-70Hz) and high gamma (70-150Hz) bands, 
the window of prestimulus SD calculations were 200ms, 100ms, and 50ms respectively. In the broadband, a 2 (prestimulus low, 
prestimulus high) x 2 (real trials, pseudotrials) repeated measures ANOVA found no effect of stimulus (real, pseudo) (p=.905) 
(prestimulus effect size = .691). In the frequency bands, a 2 (prestimulus low, prestimulus high) x 2 (real trials, pseudotrials) x 5 
(bands) repeated measures ANOVA found no effect of stimulus (p=.068) and an effect of frequency band (p<.001) (prestimulus 
effect size = .776). Grey shading – time interval of prestimulus SD calculation. Bar and line plots show the mean of all 
participants. Error bars show standard error. 
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The repeated measures ANOVA was then done in the different frequency bands, with 

the bands (theta, alpha, beta, low gamma, high gamma) as an added factor. Again, no 

significant difference between real and pseudotrials was found (Table 2).  

To control for the impact of prestimulus mean amplitude, we then did the same median 

split of the trials and subsequent TTV analysis using the prestimulus mean activity 

(rather than the prestimulus SD as shown above). We expected that the effect of 

prestimulus mean (low, high) on poststimulus TTV would no longer be significant. In the 

TTV AUC for the same 100ms time interval, we found no significant effect of 

prestimulus mean (p=.244) as anticipated. We did find an effect of both stimulus (real 

trials, pseudotrials) (p<.001) and frequency bands (theta, alpha, beta, low gamma, high 

gamma) (p<.001), as we did with the median split according to the SD. Therefore, the 

difference between real and pseudotrials, and between the frequency bands, was still 

present when we split the trials according to prestimulus mean, but importantly the 

difference between prestimulus low and high mean was not significant. 

Finally, to control for the different prestimulus time intervals in the different bands in our 

analysis, we calculated the prestimulus SD again using the same time interval (500ms) 

for all bands (Supplementary Figures 1 and 2). In both the broadband (prestimulus 

p<.001, stimulus p<.001) and the different frequency bands (prestimulus p<.001, 

stimulus p<.001, bands p<.001), the TTV AUC results were consistent with those found 

when the prestimulus time interval differed in each band, as we expected. Together, 

these results show that our poststimulus differences in TTV are related to the variability 

rather than the mean in the prestimulus interval. 
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Table 2: Prestimulus SD 2x2x5 repeated measures ANOVA results in frequency bands 

Factor Levels df F - value p – value ηp
2 

Prestimulus Low, High N/A‡ N/A‡ N/A‡ .776 

Trials Real, Pseudo 1,19 3.739 .068 .164 

Bands 

theta, alpha, 
beta, low 

gamma, high 
gamma 

1.208, 
22.961 

82.858 <.001* .813 

* = Greenhouse-Geisser corrected 
df = degrees of freedom 
ηp

2 = partial eta squared 
‡ = low and high was based on prestimulus SD 

In sum, we established that there was a response to the stimulus in real trials and none 

in pseudotrials, which verifies our use of the latter. Also, the impact of prestimulus SD 

showed no significant difference between real and pseudotrials and was higher in the 

slower bands (than in the faster bands).  

iii. TTV area under the curve showed differences between prestimulus low and high 

and real and pseudotrials 

Once this SD median split had been done, TTV was calculated, as above, over the 90 

trials of each group (Figure 1 step 4). To determine if there was a difference in the 

poststimulus activity in the groups split by prestimulus SD, the area under the curve 

(AUC) between 450 and 550ms was tested (approximate maximum TTV quenching 

according to Figure 3A).  

Again in the broadband, a 2 (prestimulus high, prestimulus low) x 2 (real trials, 

pseudotrials) repeated measures ANOVA found a significant difference in TTV AUC 

between low and high prestimulus (F(1,19) = 58.692, p < .001 ηp
2 = .755) and between 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 11, 2020. ; https://doi.org/10.1101/2020.12.09.417774doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.09.417774


The hybrid nature of task-evoked activity 

14 
 

real and pseudotrials (F(1,19) = 30.294, p < .001, ηp
2 = .615) (Figure 3). There was a 

large effect size for both factors. 

Next, to measure the same factors in the individual frequency bands, a 2 (prestimulus 

low, prestimulus high) x 2 (real trials, pseudotrials) x 5 (theta, alpha, beta, low gamma, 

high gamma) repeated measures ANOVA was done. As in the broadband, there was a 

significant effect in TTV AUC of prestimulus (F(1,19) = 39.288, p < .001, ηp
2 = .674), 

trials (F(1,19) = 14.400, p = .001, ηp
2 = .431) and frequency bands (F(2.495, 47.402) = 

16.132, Greenhouse-Geisser corrected p < .001, ηp
2 = .459), with a large effect size in 

all three factors. 

Figure 3: Trial-to-trial variability in real and pseudotrials for all frequency bands. A) Trial-to-trial variability (TTV) in real trials for 
prestimulus low and high. Area under the curve (AUC) from 450 to 550ms was calculated and compared (bar plots). B) TTV in 
pseudotrials with AUC for the same time interval compared. In the broadband, a 2 (prestimulus low, prestimulus high) x 2 (real 
trials, pseudotrials) repeated measures ANOVA on the AUC found an effect of prestimulus (p<.001) and stimulus (p<.001). In 
all bands, a 2 (prestimulus low, prestimulus high) x 2 (real trials, pseudotrials) x 5 (bands) repeated measures ANOVA found 
effects of prestimulus (p<.001), stimulus (p=.001), and bands (p<.001). Gray shaded areas are interval of calculation of AUC 
which is shown in the bar plots. Error bars show standard error. Each curve/bar is the mean of all participants. 
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After these results, the impact of the interval of the prestimulus SD was examined. To 

determine if the time interval of measurement for each band had a significant effect on 

the TTV AUC after stimulus onset, two additional time intervals – one 20% shorter, one 

20% longer – were measured (Supplementary Table 1). As the period of each band 

differs according to their frequency, various prestimulus time intervals were used to 

measure the prestimulus SD in each frequency band (shorter intervals for higher 

frequency bands, longer intervals for lower ones). 91% (SD = 1.5%) of the trials in the 

original and the shorter window were the same, while 91% (SD = 0.8%) of the trials in 

the original and the longer window were the same. The TTV AUC in the same 100ms 

interval as above was calculated. 

Table 3: Prestimulus window 2x3 repeated measures ANOVA in broadband 

Factor Levels Df F - value p – value ηp
2 

Prestimulus Low, High 

1, 19 

N/A‡ N/A‡ .758 

Window 
Original, 
Shorter, 
Longer 

1.423 .254 .070 

df = degrees of freedom 
ηp

2 = partial eta squared 
‡ = low and high was based on prestimulus SD 

A 2 (prestimulus low, prestimulus high) x 3 (original, shorter, longer window) repeated 

measures ANOVA found a large effect size of prestimulus in broadband but no 

significant effect of window on poststim TTV AUC, and a small effect size (Table 3).  

Across bands, the same repeated measures ANOVA, with frequency bands as a factor 

added, again found a large effect size of prestimulus, no effect of prestimulus window, 

and a significant effect of frequency bands (Table 4). From these results we can 
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conclude that our TTV AUC findings were not determined by our prestimulus interval of 

measurement. 

Together our results show that the level of prestimulus SD exerts a strong impact on 

poststimulus variability in both real and pseudotrials. More generally, our controlled 

findings show the strong degree to which intrinsic prestimulus SD shapes poststimulus 

activity, in addition to the effect of the external stimulus.  

Table 4: Prestimulus Window 2x3x5 repeated measures ANOVA in frequency bands 

Factor Levels Df F - value p – value ηp
2 

Prestimulus Low, High N/A‡ N/A‡ N/A‡ .720 

Window 
Original, 
Shorter, 
Longer 

1.364, 
25.910 

3.414 .064* .152 

Bands 

theta, alpha, 
beta, low 

gamma, high 
gamma 

2.705, 
51.391 

26.876 <.001* .586 

* = Greenhouse-Geisser corrected 
df = degrees of freedom 
ηp

2 = partial eta squared 
‡ = low and high was based on prestimulus SD 

iv. TTV area under the curve disambiguates the effect of the stimulus from the 

ongoing spontaneous activity 

Since our results above showed a similar difference between prestimulus low and high 

in pseudotrials as in real trials, we wanted to investigate the effect of the stimulus itself 

on poststimulus TTV. 
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Measured neural activity after stimulus onset, Α𝑚, is a sum of multiple activities, plus 

their interaction (He, 2013; Huang et al., 2017): 

Α𝑚(𝑡) =  Α𝑜(𝑡) +  Α𝑠(𝑡) +  𝐼𝑜,𝑠(𝑡)     (3) 

where Α𝑜 is the ongoing spontaneous activity at timepoint t, Α𝑠 is the stimulus-related 

activity, and 𝐼𝑜,𝑠 is the interaction between the ongoing spontaneous activity and the 

stimulus-related activity. As it is not possible to measure the interaction between Α𝑜 and 

Α𝑠 (𝐼𝑜,𝑠) directly - Α𝑜 continues to change after stimulus onset (He, 2013) – neural 

activity was replaced with variability over trials (TTV) in order to isolate stimulus-related 

activity (Α𝑠). TTV encompasses the interaction of the ongoing spontaneous activity with 

the stimulus-related activity within it; it is measured relative to SD at stimulus onset and 

measures the variability over trials. Therefore, to account for this interaction, the neural 

activity was replaced by the variability over trials, or TTV: 

TTV𝑟(𝑡) =  TTV𝑝(𝑡) +  TTV𝑠(𝑡)     (4) 

where TTV𝑟 is the TTV measured in the real trials at timepoint t, TTV𝑝 is the TTV of the 

ongoing spontaneous activity as measured in the pseudotrials, and TTV𝑠 is the TTV of 

the stimulus-related activity (correlations are neglected). 

To isolate the effect of the stimulus, the broadband TTV in real and pseudotrials were 

compared separately for prestimulus low and high (Figure 4A). For each timepoint from 

stim onset (0ms) to 600ms, two repeated measures t-tests were calculated with the 

respective TTV for all participants. The two tests were a) prestimulus low in real trials 

compared to prestimulus low in pseudotrials, and b) prestimulus high in real trials 
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compared to prestimulus high in pseudotrials. Therefore, the TTV at timepoint one for all 

participants (20 patients) in real trials was tested against the TTV at the same timepoint 

for all participants in pseudotrials. As this was done at each timepoint, it produced a 

timeseries of p-values, as was done previously (He and Zempel, 2013).  

This p-value timeseries was then corrected for multiple comparisons (Benjamini and 

Hochberg, 1995) and plotted (Figure 4B). The time interval when the corrected p-value 

timeseries was less than .05 was considered the interval during which the stimulus had 

an impact. We considered it so as there was a significant difference between the TTV 

when a stimulus was presented and the TTV when no stimulus was presented; we 

considered the stimulus to have an impact when there was a difference between the 

real trials and the pseudotrials. In prestimulus low, this timepoint was found to be at 

226ms, while the significance level was passed at 254ms in prestimulus high (Figure 

4B). 

After visualizing the resulting p-value timeseries’ (Figure 4B), the timeseries’ crossed 

the significance level at slightly before the 300ms mark, or the halfway point of our 

poststimulus window. As a result, we divided the poststimulus window into two equal 

intervals (300 timepoints), an earlier one and a later one (henceforth termed ‘early’ and 

‘late’). 

To determine the effect of prestimulus variability and trials (real, pseudotrials) in these 

two intervals (early: 0-300ms and late: 300-600ms), the AUC during the two intervals for 

each of the four TTV curves were compared (Figure 4C). In the early time interval, a 2 

(prestimulus low, prestimulus high) x 2 (real trials, pseudotrials) repeated measures 
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ANOVA found a significant effect of prestimulus (F(1,19) = 56.291, p < .001, ηp
2 = .748) 

but not of stimulus (F(1,19) = .896, p = .356, ηp
2 = .045). In contrast, the late time 

interval found a significant effect of both prestimulus (F(1,19) = 60.795, p < .001, ηp
2 = 

.762) and stimulus (F(1,19) = 39.402, p < .001, ηp
2 = .675). 

Next, to isolate the stimulus-related variability quenching (TTV reduction), equation 4 

must be rearranged: 

TTV𝑠(𝑡) =  TTV𝑟(𝑡) −  TTV𝑝(𝑡)     (5) 

We did this by subtracting the TTV curves at each timepoint t in the pseudotrials (TTV𝑝) 

from that in the real trials (TTV𝑟) in the two time intervals (Figure 4D). The AUC of the 

resulting curves was calculated, and the absolute value was taken (only the magnitude 

was of interest, not whether the TTV curve increased or decreased in variability). This 

allowed us to isolate the change in variability due to the stimulus; it is hypothesized that 

subtracting the pseudotrials effectively removes the variability related to the ongoing 

activity (He, 2013; Huang et al., 2017). A 2 (prestimulus low, prestimulus high) x 2 

(early, late) repeated measures ANOVA found no significant effect of prestimulus SD 

(F(1,19) = .289, p = .597, ηp
2 = .015) and a significant effect of time interval (F(1,19) = 

19.305, p < .001, ηp
2 = .504). 

Finally, in the same early and late time intervals, the TTV AUC for all real and 

pseudotrials (prestimulus low and high together) was measured (Figure 4E). A 2 (real 

trials, pseudotrials) x 2 (early, late) repeated measures ANOVA found a significant 

effect of both stimulus and time interval, and a significant interaction between the two 

factors (Table 5). 
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Table 5: TTV AUC 2x2 repeated measures ANOVA in broadband for all trials 

Factor Levels df F - value p - value ηp
2 

Trials Real, Pseudo 

1, 19 

9.649 .006 .337 

Interval Early, Late 16.601 .001 .466 

Interaction 6.402 .020 .252 

df = degrees of freedom 
ηp

2 = partial eta squared 

These findings indicate that the early period of poststimulus activity – 0-300ms - is 

shaped by both the state-dependent variability of prestimulus SD and the external 

Figure 4: Effect of stimulus on trial-to-trial variability. A) Broadband trial-to-trial variability (TTV) in real and pseudotrials. 
Each curve is the mean of all participants. B) To determine the effect of the stimulus, repeated measures t-tests were done 
for all data points between the broadband TTV of real and pseudotrials shown in A. The p-values – Benjamini-Hochberg 
corrected for multiple comparisons – were then plotted for all timepoints. The p-values fell below the significance level (.05) 
just before 300ms. C) After the findings in B, the poststimulus period was divided into two equal intervals, 0-300ms and 
300-600ms. The area under the curve (AUC) was then calculated for all TTV curves in A for both intervals. 2x2 repeated 
measures ANOVAs in each interval found an effect of prestimulus only in the early intervals, and of prestimulus and 
stimulus in the late interval. D) Continuing on from the findings in C, for each timepoint the TTV curve for the pseudotrial 
was subtracted from that of the real trial. The AUC was then calculated and a 2x2 repeated measures ANOVA was done to 
determine the effect of prestimulus and time interval. No effect of prestimulus was found, though an effect of time interval 
was. E) Finally, in the same intervals from C and D, the AUC for TTV in all trials – not divided by prestimulus low and high – 
and pseudotrials was compared. An effect of time interval was found, as was stimulus (real and pseudo). Each bar is the 
mean of all participants. 
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stimulus. In the later period – 300-600ms - the external stimulus exerts a relatively 

stronger impact on poststimulus activity than the ongoing spontaneous variability.   

v. Corrected TTV (cTTV) shows greater quenching than TTV (uncorrected) 

We next hypothesized that if the TTV curves were corrected for prestimulus SD, the 

poststimulus differences between prestimulus low and high would decrease, and the 

magnitude of the TTV quenching would increase. This was tested by calculating TTV 

corrected using pseudotrials (cTTV), 

𝑐TTV(𝑡) =  TTV𝑟(𝑡) −  TTV𝑝(𝑡)     (5) 

with TTVr being the curve of the real trials, TTVp being the curve of the pseudotrials, 

and t being the data point in the timeseries (0 ≤ t ≤ 600). We confirmed our hypothesis 

by measuring the TTV quenching.  

The maximum quenching between stimulus onset and 600ms was measured for three 

groups of trials: 1) all real trials together (180 trials per curve); 2) real trials divided into 

prestimulus low and prestimulus high (90 trials per curve); 3) corrected TTV (cTTV) – 

real trials TTV minus pseudotrials TTV - divided by prestimulus low and prestimulus 

high (90 trials per curve) (Figure 5B). A repeated measures t-test (participants provided 

data to both levels) found a significant difference in the maximum quenching in TTV, but 

not cTTV (Supplementary Table 2). The difference in quenching between prestimulus 

low and high disappeared when TTV was corrected for prestimulus SD. 

Lastly, to compare quenching in TTV to cTTV when all trials were combined (180 trials), 

the maximum quenching in these two curves was measured. A repeated measures t-
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test found a significant difference between TTV and cTTV maximum quenching 

(Supplementary Table 3), with greater quenching in the cTTV. 

In sum, these findings show that correction for prestimulus SD and its ongoing variability 

yields larger TTV quenching when compared to TTV measured in the standard way, 

with no correction. 

 

Figure 5: Corrected trial-to-trial variability (cTTV) and its maximum quenching. A) Corrected trial-to-trial variability (cTTV) – 
TTV of real trials minus TTV of pseudotrials – for prestimulus low and high. In these curves the quenching in the latter part of 
the poststim period reaches approximately 20% for both prestimulus low and high, which contrasts with that of Figure 3A. B) 
TTV maximum quenching (0-600ms) for TTV and cTTV. In all real trials (green bar), max quenching is less than 20%. When 
the trials are divided into prestimulus low and high (see Figures 1C and 3A), the maximum quenching differs between them. 
When cTTV is calculated, therefore corrected for prestimulus effects by subtracting pseudotrials, maximum quenching no 
longer differs between prestimulus low and high, though does differ from that of TTV in all real trials (green bar). Each 
curve/bar is the mean of all participants. 
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vi. Single trial analysis - Deep Learning with Long Short-Term Memory (LSTM) 

neural network showed increased classification accuracy with the real trials 

TTV is the SD of activity over trials. Its drawback, therefore, is that it must be calculated 

over trials and cannot be analyzed at the single-trial level. To overcome this, we used 

the data from single trials in a Deep Learning neural network. In addition, as our 

previous analysis had been to look at prestimulus activity’s effect on poststimulus 

activity, we used the Deep Learning classification to have poststimulus activity 

predicting prestimulus (low, high) activity. 

After considering the results stated above, we asked the following question: Could the 

trials corrected for prestimulus variability be separated into two groups, prestimulus low 

and prestimulus high (seen in Figure 5A)? If yes, what would be the accuracy of such a 

classification? Furthermore, how would the accuracy improve – we hypothesized that it 

should improve due to the curves we saw in Figure 3A broadband - if the real trials were 

used to determine the groups (Figure 3A broadband), not the trials corrected for 

prestimulus variability (Figure 5A)? The maximum quenching values showed no 

significant difference between these two groups in the corrected trials, but this was not 

the case in the real trials (Figure 5B). 

To measure this, we trained a Deep Learning Long Short-Term Memory (LSTM) 

recurrent neural network (Alhagry et al., 2017) (Figure 6A) to classify trials as being 

either prestimulus low or high (Alhagry et al., 2017). This allowed us to independently 

test our previous analyses, whether ongoing variability affected poststimulus activity. 
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Also, data at the single trial level were used to increase the number of examples (284 

sEEG contacts x 180 trials = 51,120 examples) for the Deep Learning model and to see 

if the correction at a single trial level yielded similar results to the cTTV results above. 

Identical to the cTTV correction in equation 5, the corrected trial, cT, was calculated as 

follows: 

𝑐T𝑖(𝑡) = 𝑟T𝑖(𝑡) −  𝑝T𝑖(𝑡)     (6) 

with rT being the real trial timeseries, pT being the pseudotrial timeseries, i denoting the 

trial number after all trials had been sorted in ascending order according to the 

calculated prestimulus SD (1 ≤ i ≤ 180), and t being the timepoint in the timeseries (1 ≤ t 

≤ 600). Prestimulus variability, on which the trials were assigned to prestimulus low or 

high groups, was calculated in the broadband from 500ms before the stimulus was 

presented to stimulus onset (0ms). The timepoints included as inputs to the Deep 

Learning LSTM models were timepoints 1-600ms. There was, therefore, no overlap in 

data between the prestimulus calculation and the poststimulus period. 

The structure of the LSTM neural network was reproduced from a study which similarly 

used EEG timeseries data for binary classification (Alhagry et al., 2017). Following the 

same structure as used there, the timeseries data (sampling rate of 1kHz) were fed into 

the LSTM neural network via a sequence input layer of 1x600 dimensions (600 data 

points per trial) (Figure 6A). The sEEG data were not downsampled, nor were it z-

scored; the preprocessed data used in all previous analyses were input to the model.  

From the sequence input layer, the neural network model was arranged as follows 

(Alhagry et al., 2017): LSTM layer with 64 neurons; Dropout layer with a 0.2 probability 
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(20% of the neurons were randomly set to zero for every iteration as this decreases 

overfitting); LSTM layer with 32 neurons; Dense layer; classification output layer with a 

binary cross entropy loss function (measures the performance of the classification, 

giving a probability of accurate classification) (Figure 6A).  

The model was trained on 75% (38,340 examples) of the data while 20% (10,224 

examples) was used for validation and the remaining 5% (2,556 examples) was used to 

test the accuracy. The data split was done randomly using the MATLAB function 

dividerand, and all training, validation and testing was done in MATLAB v2018b using 

Figure 6: Long short-term memory (LSTM) Deep Learning neural network, training and validation loss and accuracy functions. 

A) LSTM neural network structure according to the methods of Alhagry et al. The dark nodes in the dropout layer signify the 

randomly assigned 20% dropout per iteration (20% of the nodes were randomly set equal to zero).  B) Loss and accuracy 

functions from training of networks for ten repetitions. Vertical dotted lines were the iterations in which the learning rate 

decreased by 90% as the loss functions increased just before this point in the corrected trials. C) Loss and accuracy functions 

from validation of networks for ten repetitions. Validation occurred every 50 iterations. Vertical dotted lines were the iterations in 

which the learning rate decreased by 90%. 
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the Deep Learning Toolbox. Finally, ten models with the same structures were trained 

with each input dataset to ensure consistency of the models and to partially alleviate the 

modest number of examples. This was measured by the accuracy of classification on 

the test data. 

As shown in Figure 6B and 6C, the first set of Deep Learning models was trained on the 

corrected trial data (see Figure 6B and 6C for loss and accuracy functions for training 

and validation for all repetitions). After training ten times, the median binary 

classification accuracy of the corrected trials was 66% (Mean = 65 ± 2%) (see 

Supplementary Table 4 and Supplementary Figure 3 for complementary measures) 

(Figure 6D). Next, to compare this to the uncorrected trials, a model with the same 

structure was trained ten times on the real trial data – uncorrected for prestimulus 

variability – and the median accuracy of the classification was found to be 96% (mean = 

96 ± 1%). To test for statistical significance, a repeated measures t-test found a 

significant difference between the classification accuracy rates of these two sets of 

models: t(9) = 30.67, p < .001. 

A final set of models was trained on the pseudotrial data only, again with the identical 

LSTM structure as done on the previous two sets. After training ten times, the median 

accuracy of the binary classification was found to be 92% (mean = 93 ± 2%). One final 

repeated measures t-test was done to compare the accuracy of this set to those of the 

real trials uncorrected for prestimulus variability. This statistical test found a significant 

difference in the accuracy between these two sets of models: t(9) = 3.71, p = .005. 
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Therefore, this classification with LSTM neural networks validated our previous results. 

It showed much larger differences between poststimulus activity in prestimulus low and 

high when the data were not corrected for ongoing variability. Furthermore, the 

accuracy difference between uncorrected real trials and pseudotrials was relatively 

small but significant. This suggests that the effect of the stimulus is important, though 

dwarfed by the effect of the ongoing spontaneous activity. 

vii. Replication in EEG: significant effect of prestimulus and trials on TTV area under 

the curve 

To replicate our sEEG findings, analysis was done in a separate EEG dataset with a 

moral judgement task (see Methods for details) (Wolff et al., 2019b). This task was a 

report paradigm, in contrast to the no report paradigm of the sEEG, as we needed the 

response data to examine the behavioral relevance of the prestimulus variability. 

After the response of the stimulus on ERP and TTV was determined (Supplementary 

Figure 4), the area under the curve between 450ms and 550ms was calculated, as was 

done in the sEEG data (again there was no difference between SD at stimulus onset 

between real and pseudotrials with p=.250). Similarly, in the broadband (0.5-70Hz) a 

significant effect of both prestimulus (low, high) and trials (real, pseudo) were found in a 

repeated measures ANOVA (Table 6, Figure 7). 
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Table 6: Broadband EEG TTV AUC 2x2 repeated measures ANOVA results 

Factor Levels Df F - value p - value ηp
2 

Prestimulus Low, High 

1, 19 

N/A‡ N/A‡ .785 

Trials Real, Pseudo 10.392 .004 .331 

df = degrees of freedom 
ηp

2 = partial eta squared 
‡ = low and high was based on prestimulus SD 

The same was done in the frequency bands, with bands added as a factor (no high 

gamma in EEG). Again, significant effects of prestimulus (low, high), trials (real, pseudo) 

and bands (theta, alpha, beta, low gamma) were found in a repeated measures ANOVA 

(Table 9). 

Next, to replicate the cTTV analysis and maximum quenching comparison, the cTTV 

curves were measured (Supplementary Figure 5A) and the maximum quenching was 

Figure 7: Replication of trial-to-trial variability in real and pseudotrials for all frequency bands in separate EEG dataset. A) Trial-
to-trial variability (TTV) in real trials for prestimulus low and high. Area under the curve (AUC) from 450 to 550ms was calculated 
and compared (bar plots). B) TTV in pseudotrials with AUC for the same time interval compared. In the broadband, a 2 
(prestimulus low, prestimulus high) x 2 (real trials, pseudotrials) repeated measures ANOVA on the AUC found an effect of 
prestimulus (p<.001) and stimulus (p=.004). In all bands, a 2 (prestimulus low, prestimulus high) x 2 (real trials, pseudotrials) x 4 
(bands) repeated measures ANOVA found effects of prestimulus (p<.001), stimulus (p<.001), and bands (p<.001). Gray shaded 
areas are the interval of calculation of AUC which is shown in the bar plots. Error bars show standard error. Each curve/bar is the 
mean of all participants. 
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calculated as above (Supplementary Figure 5B). As in the sEEG results, a repeated 

measures t-test found a significant difference in the maximum quenching in TTV, but not 

in cTTV (Supplementary Table 5). 

Table 7: EEG TTV AUC 2x2x4 repeated measures ANOVA results in frequency bands 

Factor Levels Df F - value p - value ηp
2 

Prestimulus Low, High 

1, 19 

216.39 <.001 .912 

Trials Real, Pseudo 27.42 <.001 .566 

Bands 
theta, alpha, 

beta, low 
gamma 

13.65 <.001* .394 

* = Greenhouse-Geisser corrected 
df = degrees of freedom 
ηp

2 = partial eta squared 

Finally, to compare the TTV to cTTV on this measure, the maximum quenching for all 

trials together was measured. A repeated measures t-test found a significant difference 

on the maximum quenching between TTV and cTTV (Supplementary Table 6).  

Together, these findings indicate an analogous relationship of prestimulus SD and 

poststimulus activity in EEG data recorded on the scalp as in the sEEG data recorded 

with intracranial depth electrodes. Given that the two datasets had different paradigms, 

the analogous findings suggest that the shaping of poststimulus activity remains largely 

independent of cognitive specifics such as stimuli and task. Hence, the observed pre-

poststimulus variability shaping may introduce a strong dynamic component into 

stimulus-related activity.   

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 11, 2020. ; https://doi.org/10.1101/2020.12.09.417774doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.09.417774


The hybrid nature of task-evoked activity 

30 
 

viii. Behavioral relevance of prestimulus SD 

With the EEG data used for replication, the mean reaction time from the trials with the 

lowest and highest third (bottom and top 60 trials) of prestimulus variability was 

calculated for the broadband and each frequency band (Figure 8A). 

Repeated measures t-tests found a significant difference in the mean reaction times in 

the theta (t(19) = 2.31, p = .032) and alpha (t(19) = 2.59, p = .032) bands. There was no 

significant difference in the broadband, beta, and low gamma bands (p = .528, .554, 

.494 respectively). 

Next, to correlate the standard TTV AUC measured in these two significant frequency 

bands (theta, alpha) with the mean reaction times, two-tailed Spearman correlations 

were done. None of the correlations were significant (theta: plow = .191 and phigh = .191; 

alpha: plow = .264 and phigh = .273). 

However, when the same correlations were done between the AUC from the cTTV and 

the reaction times, the correlation was significant in the alpha band and the prestimulus 

low group (r = -.597, p=.013, linear fit R-squared = .2514, linear fit sum of squares due 

to error = 7.278 x105) (Figure 8B). This was not significant in the prestimulus high group 

(r = -.597, p=.013, linear fit R-squared = .0082, linear fit sum of squares due to error = 

6.745 x105) or either of the theta correlations (plow = .581 and phigh =.130). 

Finally, to test whether 1) the correlation between cTTV AUC and reaction time were 

significantly different in prestimulus low and high, and 2) whether these correlations 

were different between cTTV AUC and regular TTV AUC, Fisher’s r-to-z transformation 
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was done (He et al., 2008). This found that there was a difference between prestimulus 

low and prestimulus high in the correlation with reaction time and cTTV AUC (p = .246), 

and a difference in the correlations between reaction time of cTTV and TTV (plow = .344, 

phigh = .936). 

In sum, we show that prestimulus SD not only shapes poststimulus activity, but also 

associated behavior in a complex cognitive task, especially in the alpha band. 

 

Figure 8: Behavioral relevance of prestimulus SD shown in EEG dataset. A) Real trials in each frequency band were 
split into thirds based on the prestimulus SD and the reaction times for the top and bottom third were extracted. The 
mean was calculated. A repeated measures t-test was done to compare the mean reaction times of prestimulus low 
and high. There was a significant effect of prestimulus SD in the theta and alpha bands (p= .032, .032, Benjamini-
Hochberg FDR corrected). Each bar is the mean of all participants. B) In these two bands only, the TTV AUC (450-
550ms) was Pearson correlated with mean reaction times. In the alpha band, the TTV AUC of prestimulus low had a 
significant correlation with mean reaction time (p=.013), but the prestimulus high did not (p=.226). 
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D. Discussion 

We investigated the impact of the ongoing dynamics, e.g. prestimulus SD, on 

poststimulus activity as measured with TTV in both intracranial electrophysiological 

recordings (sEEG) and scalp-recorded EEG to investigate how prestimulus activity 

shapes poststimulus activity in a hybrid way. First, we observed that prestimulus SD 

impacts poststimulus activity in real trials; we observed differences in the latter between 

prestimulus high and low trials. This served as a basis for our second main finding: the 

late poststimulus period (300-600ms) showed a greater impact of the external stimulus 

(relative to the ongoing dynamics) than the early poststimulus period (0-300ms) (where 

the impact of the ongoing dynamics dominated). Therefore, though both the early and 

late poststimulus periods where hybrid in their nature, the balance between the internal 

and external components differed between them. Next, we found that when corrected 

for prestimulus SD – subtracted the TTV of the pseudotrials from the TTV of the real 

trials - the maximum quenching of poststimulus variability was the same in trials with 

low or high prestimulus variability (reflecting the impact of the external stimulus itself), 

but not when this correction was not done. This indicates the relevance of accounting 

for prestimulus SD in the analyses of stimulus-related activity when averaging over 

trials.  

To validate and extend our finding of the pre-poststimulus interaction variability on the 

single trial level, LSTM neural networks were trained – input to models were single trials 

of poststimulus activity to predict prestimulus group, e.g. high or low prestimulus SD. A 

significantly higher classification accuracy for prestimulus variability was found when 

trials of stimulus-related activity were not corrected for prestimulus SD. This shows the 
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importance of accounting for the ongoing dynamics, as indexed by the prestimulus SD, 

on the single trial level when analyzing stimulus-related activity. We also found that the 

stimulus itself had a significant effect on the classification accuracy for groups based on 

prestimulus SD. This shows that, in addition to the ongoing dynamics, the external 

stimulus itself exerts an important impact, thus demonstrating the hybrid nature of 

stimulus-related activity. Finally, we replicated all findings in a separate EEG dataset 

(Wolff et al., 2019b) with a report paradigm (Tsuchiya et al., 2015) that allowed us to 

show the behavioral relevance of pre-poststimulus variability by shaping reaction time.  

Together, the main result is that stimulus-related activity appears to be a hybrid of two 

components: 1) activity evoked by the stimulus (external source); 2) the ongoing 

variability carrying over from the prestimulus period to the poststimulus period. This 

carries major implications for our understanding of stimulus-related activity as we show 

that the influence of the ongoing variability dwarfs the influence of the stimulus itself. 

i. Poststimulus trial-to-trial variability is dependent on prestimulus variability 

Our finding of a difference in TTV between trials with prestimulus low and high variability 

is consistent with previous studies (He, 2013; Huang et al., 2017) which found that 

activity at stimulus onset has a differential impact on poststimulus activity. We extend 

these findings by showing that this difference was found in both the real trials and 

pseudotrials. The finding is strong evidence of the effect of the ongoing variability on 

poststimulus activity. 

The Deep Learning LSTM neural network models validate – inversely through 

poststimulus activity predicting prestimulus group - and extends these findings as the 
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models were trained on single trials rather than in our data using TTV (computed over 

trials). Removal of the prestimulus ongoing variability, as in the corrected trials, showed 

low accuracy in the classification (66%), though above chance. When the ongoing 

variability remained – in the real trial poststimulus activity - the classification accuracy 

increased greatly (96%). The ability of the models to better differentiate between 

prestimulus low and high when the ongoing variability remains indicates that the 

prestimulus SD contains a dynamic pattern that shapes stimulus-related activity even on 

the single trial level; there is a pattern in the data that is easier to detect when trials 

have not been corrected for prestimulus activity and thus contain this information.  

We also observed the impact of the external stimulus itself. The stimulus alone 

produces a pattern in the data which we also see in the classification accuracy of the 

corrected trials (above 60%, higher than chance). The important point here, however, is 

that the impact of the ongoing variability eclipses the impact of the stimulus; the 

accuracy difference between corrected and real trials is much larger (30%) than the 

difference between real and pseudotrials (4%). Combined, our empirical findings, and 

their extension by Deep Learning, show that the ongoing variability, in conjunction with 

the external stimulus, strongly shape poststimulus activity, even on the single trial level.   

ii. Stimulus has increased effect in later period and prestimulus SD has behavioral 

relevance 

The earlier period (0-300ms) in stimulus-related activity saw a greater influence of the 

ongoing prestimulus variability than the external stimulus – as seen Figure 4B and 4C. 

The difference in TTV between low and high prestimulus was significant while the 
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difference between real and pseudo was not. This changed in the later time interval 

(Figure 4C).  

Again, as done above, when the real trials were corrected for prestimulus SD using 

pseudotrials in this context, the early interval difference between low and high 

prestimulus disappeared, as it also did in the later interval. This last finding again 

supports our hypothesis of the substantial impact of the prestimulus SD on poststimulus 

activity. While the findings in Figure 4E show the different temporal course of both 

prestimulus SD and external stimulus in shaping stimulus-related activity, the later 

poststimulus period (300-600ms) shows a larger impact of the stimulus on TTV 

compared to the earlier period. 

Together, we demonstrate that the two components identified as shaping poststimulus-

induced activity - ongoing variability and the external stimuli - differ in their temporal 

course. The ongoing variability exerts stronger effects in the early period while the 

impact of the external stimulus is stronger in the later time period. It remains to be seen 

whether the time course of the external stimulus is modulated by diverse stimuli or 

cognitive requirements related to the said stimulus; this should be a focus of future 

study. 

iii. Neurophysiological substrate of prestimulus and its ongoing variability 

SEEG recordings acquire the activity of local field potentials (LFPs), which measure 

membrane-potential derived fluctuations in the extracellular space (Buzsáki et al., 

2012). Changes in brain LFP’s have been shown to be mediated by synchronization 
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after action potential burst hyperpolarization which can be large and contribute to the 

extracellular field (Pachitariu et al., 2015). 

A relevant study of LFPs in gerbils (Pachitariu et al., 2015) found that in desynchronized 

cortical states, low frequency fluctuations are suppressed. This allows individual 

neurons to spike independently with measured activity being more reliable and 

consistent over trials, and responses to stimuli being faster. In contrast, in a 

synchronized cortical state the extracellular space shows strong low frequency LFPs 

fluctuations with high variability in activity over trials and slower responses to stimuli. 

These population-level results are consistent with ours on a more macroscale. What 

they described as the desynchronized state corresponds to our high prestimulus 

variability; it is associated with stronger poststimulus TTV quenching over trials and 

faster reaction times in the theta and alpha bands. Similarly, their synchronized state 

finds its equivalent in our prestimulus low variability which had less TTV quenching and 

slower reactions times. Due to such correspondence, we infer that, on a cellular level, 

our high prestimulus variability possibly reflects a desynchronized state that exhibits a 

higher degree of independent firing of individual neurons, in comparison to the low 

prestimulus synchronized state. This inference remains tentative, however, and requires 

a combined investigation of population firing rates and LFPs in humans.   

iv. Limitations 

Firstly, though sEEG electrodes are placed in different locations and regions of the brain 

as they are dependent upon the pathology of the individual patient (epileptic focus), we 

here did not explicitly analyse the spatial and regional differences. We could observe 
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regional differences in TTV which were largely in accordance with previous data (He 

2013, Huang et al. 2017). 

Secondly, it should be mentioned that Arazi et al (Arazi et al., 2017a) observed the TTV 

peak to be slightly earlier (200-400ms) than the TTV peak in the current dataset (500-

800ms). Though it cannot be verified here, it may be related to differences in stimulus 

type and length; short visual stimuli for roughly 100ms compared to verbal stimuli lasting 

approximately 700ms and long (2s) complex visual stimuli with responses. 

Thirdly, the prestimulus SD impact on poststimulus activity may have a more cognitive 

rather than dynamic interpretation. For instance, one may assume that prestimulus SD 

reflects the prediction of the upcoming stimulus, consistent with predictive coding 

(Friston, 2010) and recent results on prestimulus alpha (Cao et al., 2017). However, our 

sEEG no-report paradigm did not include any self-generation of the stimuli and 

presented stimuli jittered randomly. This makes any prediction (predictive coding) in the 

prestimulus period unlikely. Therefore, we assume that the prestimulus SD and its 

impact on poststimulus TTV are more dynamic than cognitive in nature.  

E. Conclusion 

To address how prestimulus SD shapes poststimulus activity, as measured with TTV, in 

a hybrid way, we analyzed an intracranial sEEG data set during a no-report paradigm 

and combined that with Deep Learning models to extend our data to the single trial 

level. Our pre-poststimulus variability analyses found three main findings: 1) greater 

poststimulus variability reduction, e.g. TTV quenching, in trials which had high 

prestimulus variability; 2) the effect of the stimulus is higher in the later poststimulus 
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period (300-600ms) than the earlier (0-300ms) where the prestimulus dynamics 

influence dominates; 3) the accuracy of the LSTM Deep Learning models to classify 

single trials as either prestimulus low or high increased greatly when trained and tested 

with real trials (that include the prestimulus dynamic effects) compared to trials 

corrected for prestimulus SD. These results were replicated in a separate EEG dataset 

and task, which also found that trials with high prestimulus variability in the theta and 

alpha bands had faster reaction times.  

Our findings show that stimulus-related activity is a hybrid, being composed of a) the 

effects of the external stimulus (outside), and b) the effects of the internal ongoing 

spontaneous variability (inside), with the second dwarfing the influence of the first. This 

strongly supports the novel inside-out approach introduced by Buzsáki (Buzsáki, 2019).  

F. Methods 

i.sEEG data and analyses: 

a) Subjects  

Twenty patients (25.13 ± 5.57 years; mean ± SD; 8 female) with drug-resistant epilepsy 

who underwent sEEG exploration in the department of Neurosurgery of Huashan 

Hospital (Shanghai, China) from September 2016 to May 2017 were included in this 

study. SEEG is a long-established invasive evaluation method for patients with drug-

resistant epilepsies (Parvizi and Kastner, 2018). All patients had comprehensive 

presurgical evaluations, including a detailed medical history, scalp EEG, magnetic 

resonance imaging (MRI), and positron emission tomography (PET) scans prior to 
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sEEG exploration. The choice of the anatomical location of electrodes was based on 

results from the presurgical evaluation and was made by a team of clinicians 

independent of the present study.  

The study was approved by the research ethics committee of Huashan Hospital, at 

Fudan University, and all aspects of the study were performed according to their 

relevant guidelines and regulations. Written informed consent was obtained from the 

patients, or their guardians, for participation in this study. 

b) Experimental paradigm 

The experimental paradigm presented to the patients was comprised of two auditory 

stimuli: the subjects’ own name and a paired unknown person’s name (in their native 

language, Chinese) are spoken by the same familiar voice (Qin et al., 2012; Lipsman et 

al., 2014; Huang et al., 2018). The duration of each name was less than 800ms. The 

average Root Mean Square (RMS) decibel level was less than -20dB, with the 

maximum RMS difference between the two names less than 1dB. During this no-report 

paradigm, participants were presented with 180 trials in total, 90 with their own name 

and the same number of another name. The intertrial interval (ITI) between trials was 3-

3.75s, randomly jittered by 0.25s – this allowed us to minimize anticipation or prediction 

effects in our analysis of stimulus-related activity as to focus on its dynamic rather than 

cognitive components. 
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c) sEEG recording 

The surgical plans were made by stereotactic neuronavigational software (iPlan Cranial 

2.0, Brainlab AG) and the procedures were carried out as previously documented 

(Gonzalez-Martinez, 2016). Double dosage enhanced T1 images were obtained to 

identify the blood vessels first then the Leksell stereotactic frame (Elekta) was applied to 

localize the coordinates of the electrodes. Intracerebral multiple contacts electrodes 

(HKHS, Beijing, China), with a diameter of 0.8mm and 8–16 contacts, were applied 

during the surgery which was performed under local anesthesia. The length of each 

contact was 2mm with 1.5mm between contacts. Post-implantation CT scans were 

performed the day after implantation surgery to 1) exclude intracranial hematoma, and 

2) localize the location of each contact.  

The sEEG signals were recorded on a Nihon Kohden 256-channel EEG system (EEG-

1200C) with a sampling rate of either 1 or 2kHz, and hardware filtered between 0.01Hz 

and 600Hz. The signals during recording were referenced to white matter in the brain 

which was defined by the clinicians.  

SEEG is minimally contaminated by artifacts such as swallowing, eye movement, 

muscle movement, etc., compared to scalp EEG, so it is not prone to artifacts related to 

gaze position, electrode offset variability, and movement (Parvizi and Kastner, 2018) 

(see for instance Arazi et al. 2017a and b for excellent control of those factors in EEG). 

This makes sEEG an ideal tool to record and measure specific variability measures 

such as TTV.  
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d) Electrodes localization 

Electrodes were auto segmented from post-implanted computed tomography (CT) 

images (Qin et al., 2017). The post-implantation CT was aligned to preoperative MRI 

images and contacts were calculated and reconstructed. The locations of these 

contacts were checked manually with neuronavigational software. Finally, the contacts 

were labeled based on Freesurfer’s parcellation of the MRI.  

e) sEEG preprocessing 

Before any data analysis was performed, the timeseries of each contact was examined 

by an epileptologist who classified contacts as either seizure or non-seizure. To start, as 

the data for some of the participants was recorded at a sampling rate of 2kHz while 

others were recorded at 1kHz, all the former were resampled to 1kHz using MATLAB’s 

resample function which includes an anti-aliasing filter. The events for the task were 

then imported, superfluous channels (ECG, EMG, etc) were removed, and the contacts 

previously determined to be seizure contacts by the epileptologist were also removed.  

To follow the preprocessing steps of the literature closely, the same methods of two 

recent sEEG publications (Daitch and Parvizi, 2018; Helfrich et al., 2018), were followed 

exactly. In MATLAB (The MathWorks, v2012) and according to the methods of Daitch 

(Daitch and Parvizi, 2018), we calculated the power spectrum for each contact as well 

as the mean power over all contacts. If the mean power of a given contact was ≥ ±5 

SDs of the mean power across all contacts for a given participant, that contact was 

removed from the data (median = 2 ± 1.2, range = 0-5).  
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Next, the remaining contacts were two-way zero-phase FIR notch filtered at 50Hz and 

harmonics (100Hz, 150Hz), and rereferenced to the mean of all remaining contacts. The 

signal was then bandpass filtered using a two-way, zero-phase FIR non-aliasing filter in 

the following bands: 0.1-1Hz, 1-4Hz, 4-8Hz, 8-13Hz, 13-30Hz, 30-70Hz, 70-80Hz, 80-

90Hz, 90-100Hz, 100-110Hz, 110-120Hz, 120-130Hz, 130-140Hz, 140-150Hz, 150-

160Hz, 160-170Hz, and 170-180Hz.  

The instantaneous amplitude for each band was then computed by applying the Hilbert 

transform (MATLAB function hilbert) and taking its modulus. Each datapoint for each 

contact was then normalized by the mean activity of each contact to partially correct for 

the 1/f nature of electrophysiological signals. The signal for each band was then 

recombined into one signal by taking the mean of all bands per timepoint per contact. 

f) Stimulus-responsive contact classification: 

From the preprocessed data, a high-pass two-way zero-phase FIR filter was applied at 

70Hz. This left the signal with high frequency band (HFB) gamma between 70-180Hz. 

The data was then epoched from -2000ms to 2000ms, with a baseline of -200 to 0ms 

applied to ERP analysis (Helfrich et al., 2018).  

We determined which contacts were stimulus responsive according to the methods of 

Helfrich (Helfrich et al., 2018). Briefly, a contact was excluded from all subsequent 

analyses when the average HFB response to the stimulus was below a z-score of ±1.5 

for 10% (50 samples) of consecutive timepoints between stimulus onset (0ms) and 

500ms (median = 125 ± 37, range = 45-182 contacts removed per participant). 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 11, 2020. ; https://doi.org/10.1101/2020.12.09.417774doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.09.417774


The hybrid nature of task-evoked activity 

43 
 

g) Event-related potentials (ERPs) 

Event-related potentials (ERPs) were calculated to confirm a response to the stimuli (or 

its absence in pseudotrials) and for control analysis (see below). As for all other 

analyses, the data was epoched from -2000ms to 2000ms and was baseline corrected 

from -200 to 0ms. The mean of all trials (180) over all contacts was calculated for each 

participant. 

h) Prestimulus SD 

To address the question of the effect of prestimulus variability on poststimulus activity, 

both continuous and discontinuous measures (Huk et al., 2018) were used. The SD of 

the prestimulus amplitude – a continuous measure - was first calculated. The SD was 

calculated according to equation 2, then SD values were sorted in ascending order – 

the first trial had the lowest prestimulus SD, the last trial had the highest - and the 

median value was calculated (Figure 1 step 3). Trials below the median were assigned 

to the low prestimulus group and those above the median to the high prestimulus group, 

with 90 trials in each.  

The time interval for the prestimulus variability calculation varied according to frequency 

band due to the various period lengths of each band.  They were: broadband = -500 to 

0ms; theta = -1000 to 0ms; alpha = -400 to 0ms; beta = -200 to 0ms; low gamma = -100 

to 0ms; high gamma = -50 to 0ms. To ensure that this window did not affect the results 

in the TTV AUC, two alternate windows were also calculated and the TTV AUC 

computed and statistically tested (Table 1). 
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i) TTV in Different Frequency Bands 

The frequencies of the sEEG between 0.1 and 70Hz was selected as the broadband for 

TTV calculation. Moreover, the continuous signal was decomposed into the following 

frequency bands using a two-way zero-phase FIR filter: theta = 4-8Hz, alpha = 8-13Hz, 

beta = 13-30Hz, low gamma = 30-70Hz, and high gamma = 70-180Hz. Afterwards, the 

filtered signals were epoched. The prestimulus SD, including the median split and 

high/low grouping, and TTV was computed (as explained above) for each band 

according to the findings of previous studies (Arazi et al., 2017b; Wolff et al., 2019b). 

Thus, the filtering of the data was done prior to epoching, and the determination of 

prestimulus high/low SD groups was done separately for each band. 

j) Real and pseudotrial TTV 

The TTV as calculated above includes both a) the effect of the stimulus on the ongoing 

variability, and b) the ongoing variability that transfers from the prestimulus interval to 

the poststimulus period (see equation 3 below). To disentangle stimulus-related effects 

within TTV from those of the ongoing variability, we calculated ‘pseudotrials’ (Huang et 

al., 2017; Wolff et al., 2019b). Based on fluctuations of the spontaneous activity, the 

pseudotrials were selected from the ITI preceding each stimulus; specifically, we 

marked -1500ms (1500ms before onset of the real stimulus) as the virtual stimulus 

onset and investigated the subsequent 800ms (same duration as the real trials) period 

as the pseudotrial. In contrast, the real trials were defined as 0 to 800ms of the 

stimulus-related epoch.  
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Both real and pseudotrial TTV were calculated in the same way as described above 

(Results, Equation 1). To determine if the prestimulus variability had a significant effect 

on the poststim TTV, the AUC between 450-550ms was calculated using the MATLAB 

function trapz which employs the trapezoidal method of integration. 

k) Deep Learning with Long Short-Term Memory (LSTM) neural network 

The Deep Learning approach consisted of a long short-term memory (LSTM) recurrent 

neural network, and the construction, training, validation and testing were done in 

MATLAB (v2018b) using the Deep Learning Toolbox. A type of recurrent neural network 

(RNN), the LSTM has been used for inputs of sequences (Alhagry et al., 2017), 

especially applied to EEG timeseries data (Alexander et al., 2018; Roy et al., 2019), 

which is why it was chosen here. 

From the 1x600-dimension sequence input layer, an LSTM layer with 64 neurons and a 

Relu activation function followed. Next was a Dropout layer with a 0.2 probability – 20% 

of the neurons were randomly set to zero as this decrease’s overfitting in the model – 

followed by a second LSTM layer with 32 neurons and a sigmoid activation function. 

Finally, there was a Dense layer with a sigmoid activation function followed by a 

classification output layer with a binary cross entropy loss function which measures the 

performance of the classification, giving a probability of accurate classification.  

Further parameters of the LSTM network model were 500 iterations, and an initial 

learning rate of 0.001 with a drop factor of 0.1 every 195 epochs. The learning rate was 

decreased as the first several attempts to train the model resulted in the divergence of 

the training and validation losses beginning at epoch 200; the learning rate was 
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therefore decreased to 10% of the previous level (initial learn rate 0.001 multiplied by 

drop factor 0.1) just before epoch 200, at epoch 195. The frequency of the validation of 

the network occurred every 50 epochs (10 validation data points). 

The model was trained on 75% of the data, validated on 20% and tested on 5%. 

Despite our ten repetitions of the training, validation and testing of the models, the data 

split may have influenced the accuracy of the classification. To address this, we trained, 

validated and tested the model again with the three groups of data, however the split 

amounts differed. We trained on 75%, validated on 15% and tested on 10% and found 

consistent results: classification accuracy rate of 65% in the corrected trials, 92% in the 

real trials and 90% in the pseudotrials. 

The model with the specified data input was trained and tested ten times to ensure 

consistency of the results.  

ii.EEG data and preprocessing for replication 

a) EEG paradigm 

To replicate the findings in the sEEG data, the same analyses were done in a separate 

dataset with a moral judgement task (Wolff et al., 2019a) (20 participants, 11 females, 

mean age = 29.9 ± 11.3 years, range of 19-55 years) in scalp EEG. The data was 

recorded on Neuroscan’s 64 channel Quik-Cap with parameters detailed previously 

(Wolff et al., 2019a). Written informed consent was obtained from all participants prior to 

participation (REB# 2009018, University of Ottawa Institute of Mental Health Research). 
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The task employed here was the externally-guided decision-making control task 

explained in detail elsewhere (Wolff et al., 2019b, 2019a). Briefly, participants were 

presented with a black screen divided vertically by a white line.  On either side of the 

center line, two-dimensional stick people were presented, with the numbers on either 

side varying. Each stimulus contained a total of twelve people, however the ratio 

between the left and right sides differed and was presented for two seconds. The ITI’s 

were jittered at 5s, 5.5s and 6s and randomized. The participants’ task was to judge 

whether there were more people on the left side of the screen than the right side. Each 

participant was presented with four stimuli repeated 45 times each, therefore 180 trials 

in total, the same number as in the sEEG task. 

Participants responded by a button press (the YES button was counterbalanced across 

participants) with the mean reaction time being 761 ± 198ms and a range of 391 to 

1111ms. 

b) EEG preprocessing and pseudotrial insertion 

The preprocessing for the EEG data was done in MATLAB (The MathWorks, v2018b) 

with the Optimization, Statistics and Signal Processing Toolboxes using EEGLAB 

(Delorme and Makeig, 2004) version 14. 

To begin, data was resampled to 500Hz using EEGLAB’s resample anti-aliasing 

function. The data was then low- and high-pass filtered using a two-way zero-phase FIR 

filter at 0.5Hz and 70Hz respectively (High Gamma was excluded). Data were then 

visually inspected. Channels flat longer than 5s, those that had less than 0.8 correlation 

with neighboring channels or line noise ±4SD compared to other channels were 
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removed (mode = 2, range 0 to 3). The data was then referenced to the average of all 

channels, as was done in the sEEG preprocessing. To remove 60Hz electrical noise 

activity, EEGLAB function CleanLine, which uses a multi-taper sliding window approach 

to remove electrical line noise, was used.  

Data was epoched similarly to the sEEG data (described above) and independent 

component analysis (ICA) reduced stationary artifacts with the Multiple Artifact 

Rejection Algorithm (Winkler et al., 2011, 2014). 

Identical to methods previously stated (Wolff et al., 2019b), pseudotrials were inserted 

into the EEG blocks. This was done in the ITI preceding the real stimulus, specifically 

the onset of the pseudotrial was set 3.5s prior to the onset of the actual stimulus. This 

allowed for a minimum of 1s between the pseudo and real trial. 

c) Reaction time data and behavioral relevance 

To determine if there was a significant difference in reaction time between trials with 

prestimulus high or low variability, the prestimulus SD of trials were split into three 

groups (triple-split). The corresponding reaction times from the top and bottom third 

(ascending SD values 1-60 and 121-180) for each frequency band were then extracted 

and the mean of each group was computed. A repeated measures t-test was done for 

each frequency band to compare the mean reaction times between the low and high 

prestim. 

To correlate the TTV AUC in the difference curves described above (TTV real trials 

minus TTV pseudotrials), the reaction times for the median split based on the 
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prestimulus SD were extracted and the mean was computed. A two-tailed Spearman’s 

correlation (some of the distributions were non-normal) between these mean reaction 

times and the TTV AUC was done for both the prestimulus high and low. To support this 

correlation, a linear polynomial curve was fit to the data using MATLAB v2018b’s fit 

function (fitType = ‘poly1’). Finally, to contrast these results with those from the TTV 

curves that were not corrected for prestimulus variability, the same analysis was done 

with the TTV AUC from the real trials. 

iii.Correlation and Statistics 

All statistics were computed either in SPSS v24 or MATLAB v2018b using the Statistics 

Toolbox, and the significance level for all tests was .05. To control for multiple 

comparisons, the False Discovery Rate by Benjamini-Hochberg (Benjamini and 

Hochberg, 1995) was applied to the p-values of all statistical tests (See the result 

sections for more detailed statistics).  

Repeated measures t-tests and ANOVA’s were used as all participants contributed to 

both/all levels (real trials/corrected trials/pseudotrials, prestimulus low/prestimulus high, 

etc). All assumptions of ANOVA’s were met prior to calculating the statistical test. 
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Supplementary Figures: 

Supplementary Figure 1: Prestimulus SD calculated during the same 500ms time 
window in real and pseudotrials in all bands. A) Broadband (0.1-70Hz), theta (4-8Hz) 
and alpha (8-13Hz) prestimulus SD. Prestimulus low (blue) and prestimulus high (red) 
SD is shown for real trials (left column) and pseudotrials (right column). The window for 
calculating the prestimulus SD was 500ms for all bands. D) For the beta (13-30Hz), low 
gamma (30-70Hz) and high gamma (70-150Hz) bands, the window of prestimulus SD 
calculations were 500ms similarly. In the broadband, a 2 (prestimulus low, prestimulus 
high) x 2 (real trials, pseudotrials) repeated measures ANOVA found an effect size for 
prestimulus of .691 and no effect of stimulus (real, pseudo) (p=.905). In the frequency 
bands, a 2 (prestimulus low, prestimulus high) x 2 (real trials, pseudotrials) x 5 (bands) 
repeated measures ANOVA found an effect size for prestimulus of .766, no effect of 
stimulus (p=.087), and an effect of frequency band (p<.001). Grey shading – time 
interval of prestimulus SD calculation. Bar and line plots show the mean of all (20) 
participants. Error bars show standard error. 
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Supplementary Figure 2: Trial-to-trial variability in real and pseudotrials for all 
frequency bands when the prestimulus SD was measured in a 500ms window for all 
bands. A) Trial-to-trial variability (TTV) in real trials for prestimulus low and high. Area 
under the curve (AUC) from 450 to 550ms was calculated and compared (bar plots). B) 
TTV in pseudotrials with AUC for the same time interval compared. In the broadband, a 
2 (prestimulus low, prestimulus high) x 2 (real trials, pseudotrials) repeated measures 
ANOVA on the AUC found an effect of prestimulus (p<.001) and stimulus (p<.001). In all 
bands, a 2 (prestimulus low, prestimulus high) x 2 (real trials, pseudotrials) x 5 (bands) 
repeated measures ANOVA found effects of prestimulus (p<.001), stimulus (p=.001), 
and bands (p<.001). Gray shaded areas are interval of calculation of AUC which is 
shown in the bar plots. Error bars show standard error. The curves shown are the mean 
of all (20) participants. 
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Supplementary Figure 3: Long short-term memory (LSTM) Deep Learning neural 
network testing results. The bars represent the median percentages for the three groups 
of models for each measure, with the error bar denoting the standard deviation over the 
ten repetitions of the training and testing. For each measure (for equations and values 
see Table 9), the median of the corrected trials was the lowest, the real trials the 
highest, and the pseudotrials between them but closer to the real trials. ACC = 
Accuracy; PREC = Precision; SENS = Sensitivity; SPEC = Specificity; ROC AUC = 
Receiver operating characteristic curve area under the curve. 
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Supplementary Figure 4: Replication of event-related potentials (ERP) and trial-to-trial 
variability (TTV) in separate EEG dataset. Top row: Event-related potentials (ERPs) for 
all stimuli in real trials (green) and pseudotrials (black). The ERPs were calculated in the 
broadband, from 0.5Hz to 70Hz. Shaded areas are standard error. Bottom row: TTV for 
all stimuli in real trials (green) and pseudotrials (black) calculated in broadband as the 
ERPs. Shaded areas are standard error. 
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Supplementary Figure 5: Replication of corrected trial-to-trial variability (cTTV) and its 
maximum quenching in separate EEG dataset. A) Corrected trial-to-trial variability 
(cTTV) – TTV of real trials minus TTV of pseudotrials – for prestimulus low and high. In 
these curves the quenching in the latter part of the poststim period reaches 
approximately 15% for both prestimulus low and high, which contrasts with that of 
Figure 6A. B) TTV maximum quenching (0-600ms) for TTV and cTTV. In all real trials 
(green bar), max quenching is less than 20%. When the trials are divided into 
prestimulus low and high (see Figures 1C and 6A), the maximum quenching differs 
between them. When cTTV is calculated, therefore corrected for prestimulus effects by 
subtracting pseudotrials, maximum quenching no longer differs between prestimulus 
low and high, though does differ from that of TTV in all real trials (green bar). C) 
Topographical maps of maximum quenching during the time interval of 0-600ms. 
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Supplementary Table 1: Prestimulus windows of measurement for each frequency band 

Frequency Band 
Prestimulus window start prior to stim onset 

Original (ms) Shorter (ms) Longer (ms) 

broadband 500 400 600 

Theta 1000 800 1200 

Alpha 400 320 480 

Beta 200 160 240 

low gamma 100 80 120 

high gamma 50 40 60 

 

Supplementary Table 2: sEEG Maximum quenching in TTV and cTTV repeated 
measures t-test results 

Curve Prestimulus Mean t-value p-value 

TTV 

Low -3.69±4.39 

6.79* 1.430x10-7† 

High -25.35±13.20 

cTTV 

Low -37.94±24.59 

-0.77* .449† 

High -31.92±23.84 

* = Degrees of freedom are 38 
† = False Discovery Rate corrected 

 

Supplementary Table 3: Maximum quenching between TTV and cTTV in all trials 
repeated measures t-test results 

Curve for all trials Mean t-value p-value 

TTV -18.96±11.38 

3.23* .004† 

cTTV -34.93±18.94 

* = Degrees of freedom are 38 
† = False Discovery Rate corrected 
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Supplementary Table 4: LSTM Deep Learning Classification performance measures 

Measure Equation 

Trials 

Corrected (%*) Real (%*) Pseudo (%*) 

Accuracy ACC = 
(TP+TN)

(TP+FP+TN+FN)
 66 ± 3 96 ± 1 92 ± 1 

Sensitivity SENS = 
TP

(TP+FN)
 68 ± 3 98 ± 1 93 ± 1 

Specificity SPEC = 
TN

(TN+FP)
 63 ± 3 94 ± 2 90 ± 1 

Precision PREC = 
TP

(TP+FP)
 65 ± 3 95 ± 1 91 ± 1 

F-score F = 2 (
(PREC x SENS)

(PREC+ SENS)
) 67 ± 3 96 ± 1 92 ± 1 

Geometric 
Mean 

G = √(SENS x SPEC) 66 ± 3 96 ± 1 92 ± 1 

ROC AUC N/A 66 ± 3 96 ± 1 92 ± 1 

*Median rounded to the nearest percent ± standard deviation 

TP = true positive; TN = true negative; FP = false positive; FN = false negative. 
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Supplementary Table 5: EEG maximum quenching in TTV and cTTV repeated 
measures t-test results 

Curve Prestimulus Mean t-value p-value 

TTV 

Low -9.71±7.69 

5.59* 6.193x10-6† 

High -23.91±8.36 

cTTV 

Low -27.43±18.07 

.09* .930† 

High -27.87±13.08 

* = Degrees of freedom are 38 
† = False Discovery Rate corrected 

 

Supplementary Table 6: EEG maximum quenching between TTV and cTTV in all trials 
repeated measures t-test results 

Curve for all trials Mean t-value p-value 

TTV -16.21±7.64 

2.31* .040† 

cTTV -23.72±12.40 

* = Degrees of freedom are 38 
† = False Discovery Rate corrected 
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