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Abstract  

Smoking is a heritable behavior and nicotine dependency is complex mechanism supported by 

both positive and negative reinforcements. We hypothesized that cerebral white matter (WM)  

may mediate the individual dependency on nicotine integrity because its integrity is altered in 

smokers and shows dose-related response to nicotine administration. Two vertical and one 

horizontal pleiotropy pathways that combined individual genetic variations, measure of WM 

integrity by fractional anisotropy (FA), and nicotine dependence were evaluated in a large 

epidemiological sample (N=12,264 and 4,654 participants that have genetic, FA measure and 

nicotine dependence data available for smoking status and cigarettes per day (CPD), 

respectively) collected UK Biobank. We started by selecting the candidate genetic regions 

including genetic risk factors associated with smoking from genome-wide association study 

(GWAS) for causal pathway analysis. Then we identified pleiotropic loci that influence both 

nicotine dependence and WM integrity from these regions. We tested a horizontal pleiotropy 

pathway: (A) genetic risk factors associated with smoking were independently affecting both 

nicotine dependence and WM integrity. We also evaluated two vertical pleiotropy that assumed 

that individual genetic factors associated with nicotine dependence impacted B) impacted WM 

integrity which in turn led to higher nicotine dependence  vs. C) led to nicotine dependence and 

resulting white matter alterations. There were 10 and 23 candidate pleiotropic variants identified 

for smoking status and CPD traits. All these variants exhibited vertical pleiotropy. For smoking 

status, the genetic effect on smoking status was mediated by FA measures over multiple brain 

regions. The variants were located in a gene SARDH, which catalyzes the oxidative 

demethylation of sarcosine that plays a role in reducing tolerance effect on nicotine. Conversely, 

CPD was a significant mediator in the vertical pleiotropy pathway to FA. The identified variants 

were located in gene IREB2, that was reported as a susceptibility gene for both 

neurodegeneration and smoking-induced diseases.  
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Introduction  

Nicotine dependence is a complex behavior and tobacco smoking is the main modifiable risk 

factor for cancer and aging disorder and a chief co-morbidity for mental illnesses. Population and 

epidemiological studies suggest strong genetic susceptibility to nicotine dependence with 

additive genetic factors explaining up to ~75% of the variance on nicotine-related traits. Genome 

wide association studies (GWAS) localized and replicated multiple genetic variants conferring 

susceptibility to nicotine dependence including these regulating acetylcholine receptors 

(nAChRs) [1-4]. The neuroanatomical mechanism of nicotine dependence remain unknown. 

Neuroimaging studies reported both observational [5-7] and direct associations [8] between 

smoking/nicotine dependence and administration and white matter (WM) integrity, assessed by 

the fractional anisotropy (FA) of water diffusion in diffusion tensor imaging (DTI) [9]. Chronic 

smoking is associated with significantly reduced FA values [10-14]. Conversely, transient 

elevation of FA were observed following nicotine administration in both smokers and controls 

[8] and higher FA values were reported in lightly smoking individuals [15] or adolescent 

smokers [10, 11]. Transient changes in WM integrity following nicotine administration in 

smokers were correlated with improvements in cognitive measures such as attention and 

processing [8], while lower FA values in chronic smokers were associated with lower cognitive 

scores [10-14]. We hypothesize that changes in cerebral WM integrity in smokers may contribute 

to neuroanatomic mechanisms of maintaining the nicotine addiction.  

 

WM integrity maybe directly involved in the genetics of the positive and negative mechanisms 

that sustain the nicotine addiction. The positive (smoking to feel good) reinforcement of nicotine 

addiction is associated with cognitive and mood enhancement effects of nicotine and could be 

driven through, or intimately involved with the transient elevation in WM integrity following 

nicotine administration [8]. The negative reinforcement (smoking not to feel bad) of nicotine 

addiction through cognition and mood may also be caused by reduction in white matter integrity 

due to cardio-and-cerebrovascular risks of chronic smoking [10-14]. We propose to use 

mediation analysis as a tool to evaluate the involvement of cerebral WM in the mechanism of 

addition. On one hand, the basic genetic building blocks of addiction can act by producing a 

pattern of neuroanatomical changes throughout the brain, thus reinforcing addiction behavior 

[16]. On the other hand, the negative health consequences of chronic smoking behavior may in 

turn imprint the deficit patterns on brain structure and function through multiple health hazards 

associated with smoking. 

 

We hypothesized three competing vertical and horizontal pleiotropy pathways to probe the 

relationship between genetics, WM integrity and nicotine dependence. Vertical and horizontal 

pleiotropy are the main causal mechanisms in complex polygenic behavior [17-19]. In horizontal 

pleiotropy, two traits are influenced by the genetic factors independently (Fig 1: Model 0). 

Vertical pleiotropy is observed when trait influenced by genetic factors in turn influences another 

trait by acting a mediation. In the first pathway, we hypothesize that genetic factors underwrite 

susceptibility to smoking severity through WM integrity (Fig 1: Model 1). In the second 

pathway, we alternatively hypothesize that genetic factors underwrite nicotine addiction directly, 

and the reduction in WM integrity occurs due to multitude of harmful effects of chronic or heavy 

smoking (Fig 1: Model 2). We then develop rigorous analytical approach to determine and 

validate the best causal model for each variant associated with both WM integrity and nicotine 

addiction behavior. 
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We used two smoking behavior traits smoking status and cigarettes per day (CPD) as measures 

of nicotine dependence to test the proposed causal pathways in a large scale epidemiological data 

from UK Biobank. We first performed GWAS on each trait and selected smoking behavior 

associated genetic regions for causal pathway analysis. We then identified 10 and 20 pleiotropic 

loci that influence both WM integrity and nicotine dependence for smoking status and CPD, 

respectively. Our data showed that WM integrity is not independent of nicotine dependence after 

conditioning on the genetic effect of any variants, so the relationship is not horizontal pleiotropic 

and we no longer proceed with model 0. Model 1 and model 2 with vertical pleiotropic 

relationship are essentially two alternative mediation models, thus we applied mediation analysis 

to select the best model. The genetic effects of the 10 variants on smoking status were mediated 

by FA measures in multiple brain regions. On the contrary, for the 20 variants associated with 

both CPD and FA, CPD acts as a mediator that mediate the genetic effects on FA. The identified 

variants mainly reside in two genes IREB2 and SARDH, both are related to the smoking induced 

mechanism inside the brain and will need to be further examined for their functionality.  

 

 

  
Figure 1. Three competing vertical and horizontal pleiotropy pathways proposed to understand 

the causal relationship between genetics, white matter integrity and nicotine dependence. Model 

0 represents a horizontal pleiotropic relationship, while model 1 and 2 represent vertical 

pleiotropic relationship.   

 

 

Materials and Methods 

 

UK Biobank cohort  

The data used to test our causal pathways are from the UK Biobank, a large prospective study 

that recruited 500,000 participants aged between 40-69 years in 2006-2010 in 22 assessment 

centers throughout the UK. UK Biobank data consists of phenotypic, genotypic, and imaging 

details about its participants collected from questionnaires, physical measures, multimodal 

imaging, genome-wide genotyping, and longitudinal follow-up for health-associated outcomes 
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[20]. We restrict our genome-wide association analysis (GWAS) to include only participants 

with white ethnicity backgrounds (British, Irish, and any other white background) and with both 

genotype and smoking behavior phenotype data available. For causal pathway analysis, we 

further narrow down to participants who have genotype, nicotine dependence phenotype and 

white matter integrity phenotype data available. Number of participants included at each analytic 

step is summarized in the Supplement (Figure S1). 

 

Smoking behavior related phenotype 

We chose to analyze the following two smoking behavior traits due to their relevance to nicotine 

dependence. Table S1 summarizes the number of participants by smoking-related phenotype 

codes in UK Biobank.  

 

(1) Smoking status (binary trait: current vs. never smokers). Current and never smokers were 

defined using phenotype codes 20116 (smoking status) in UK Biobank.  

(2) Cigarettes per day (CPD; average number of cigarettes smoked per day by participants who 

are either current or past smokers), which has been broadly used in previous studies for their 

relevance to nicotine addiction behavior [4-6, 21]. CPD was defined using phenotype codes 2887 

(number of cigarettes previously smoked daily), 3456 (number of cigarettes currently smoked 

daily), and 6183 (number of cigarettes previously smoked daily (current cigar/pipe smokers)) in 

UK Biobank. The CPD values of participants who smoked less than one cigarette per day was 

recoded to 0; and the CPD values of those who smoked more than 60 cigarettes per day were 

recoded to 60. 

 

Genotype data and genome-wide association study  

UK Biobank cohort was genotyped using Axiom Biobank Arrays analyzing up to over 90 million 

single nucleotide variants (SNVs) of 487,409 subjects. We first removed variants with minor 

allele frequency (MAF) below 0.01 and Hardy-Weinberg equilibrium P-value below 0.001, and 

removed individuals with more than 5% missing genotypes. The preprocessing step left us with 

8,521,984 SNVs for 459,228 subjects. We then performed GWAS to find smoking behavior 

associated loci using PLINK 1.9 [22]. Most significantly associated peaks including SNPs 

reported in previous GWAS of smoking behavior and validated in our study were selected to 

carry out the causal pathway analysis. In addition, considering the strong linkage disequilibrium 

(LD) of neighboring SNPs, we also included all SNPs in the genomic regions +/- 250 kb around 

the peak boundaries.  

 

White matter integrity phenotype data  

The UK Biobank consists of multi-modal braining imaging data covering structural, functional 

and diffusion imaging. In this study, we concentrate on the white matter fractional anisotropy 

(FA) measure derived from diffusion MRI data, a common measure of white matter integrity 

whose association with smoking addiction behavior has been reported in previous studies [23]. 

UK Biobank database provides FA measures from multiple brain regions (Table S2), including 

ICP, GCC, BCC, SCC, FX, CST (mean/right/left), ALIC (right/left), PLIC (right/left), RLIC 

(right/left), ACR (right/left), SCR (right), SCR (left), PCR (right/left), PRT (right/left), SS 

(right/left), EX (right/left), CGC (right/left), CHG (right/left), FXST (right/left), SLF (right/left), 

SFO (right/left), UN (right/left), and TAP (right/left).  
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The three pleiotropic pathways 

Denote by G the genotype, M the FA measures, Y the smoking behavior and Z the potential 

confounding covariates. Given the directed graph structures in Figure 1, we can represent the 

three competing models by factorizing their joint distributions:  

 

Model 0: Pr(M,Y|G,Z)= Pr(M|(G,Z))Pr(Y|(G,Z)) 

Model 1: Pr(M,Y|G,Z)=Pr(M|(G,Z))Pr(Y|(M,G,Z)) 

Model 2: Pr(M,Y|G,Z)=Pr(Y|(G,Z))Pr(M|(Y,G,Z)) 

 

Model 0 assumes genetics to be a common cause of both FA and nicotine dependence behavior 

independently (“SNP->Smoking”, “SNP-> FA” and FA⊥Smoking given SNP and confounders) 

and represents a horizontal pleiotropic relationship. Model 1 and model 2 are two alternative 

mediation models and represent vertical pleiotropic relationship. In model 1 (“SNP-> FA 

->Smoking”), FA measures are regarded as the mediators that mediate the effect of SNPs on the 

nicotine dependence behavior. In contrast, model 2 (“SNP->Smoking->FA”) considers the long-

term effect of chronic smoking on the brain structure and regards nicotine dependence behavior 

as the mediator that mediates the effect of SNPs on FA.  

 

Our analytical procedures start by identifying the potentially pleiotropic variants of both FA and 

smoking traits. We then evaluate the association between FA and smoking traits given the SNP 

effects to distinguish horizontal pleiotropy from vertical pleiotropy. For variants with vertical 

pleiotropic relationship, we further conduct causal mediation analysis to choose the best 

mediation model that explains the relationship between SNP, FA and smoking. Below, we 

describe the analytical approaches in details.  

 

Step 1. Identification of pleiotropic variants 

 

Suppose we start with a set of 𝑔0 SNPs from GWAS results for n subjects, let Gij denote the 

genotype of ith subject in jth SNP (1 ≤ 𝑖 ≤ 𝑛, 𝑗 ∈ 𝑔0), Mi denote the continuous FA measure, Yi 

denote the smoking phenotype (either continuous or binary) and Zi denote the covariates of ith 

subject. We assume an additive genetic model and let Gij=0, 1, or 2 represent the number of 

copies of minor alleles. In the first step, we look for SNPs that are associated with both FA 

measures and smoking traits, i.e. potentially pleiotropic variants. Note that this step is also a 

necessary condition to establish mediation for both model 1 and model 2, where the mediator and 

the outcome are simply switched in the two models [24-26]. We fit linear or logistic regression 

model for FA measure and smoking trait respectively on each SNP adjusting for the potential 

confounding covariates such as gender and age:  

1a. Regress M on G and Z: 

𝑀𝑖 = 𝛼1 + 𝛽1𝑗𝐺𝑖𝑗 + 𝛾1Zi + 𝜀1𝑖 ,   𝜀1𝑖 ~𝑁(0, 𝜎1
2), 1 ≤ 𝑖 ≤ 𝑛,    𝑗 ∈ 𝑔0  

      1b. Regress Y on G and Z: 

Y is continuous: 𝑌𝑖 = 𝛼2 + 𝛽2𝑗𝐺𝑖𝑗 + 𝛾2Zi + 𝜀2𝑖 ,    𝜀2𝑖 ~𝑁(0, 𝜎2
2), 1 ≤ 𝑖 ≤ 𝑛,    𝑗 ∈ 𝑔0   

Y is binary: 𝑙𝑜𝑔𝑖𝑡(𝑃(𝑌𝑖 = 1)) = 𝛼2 + 𝛽2𝑗𝐺𝑖𝑗 + 𝛾2Zi, 1 ≤ 𝑖 ≤ 𝑛,    𝑗 ∈ 𝑔0  

where 𝛼1 and 𝛼2 are the intercepts, 𝛾1 and 𝛾2 are the effects of covariates, 𝛽1𝑗 and 𝛽2𝑗 

correspond to the genetic effect of 𝑗th SNP on M and Y. The cutoff for statistical significance is 

chosen to control for the overall false discovery rate (FDR) in identifying the potentially 

pleiotropic variants in the shared subset that meet both SNP-FA and SNP-smoking association 
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criteria (see Supplement). In case of small or unbalanced sample size, looser cutoff based on p-

values for each association can also be applied.   

 

Step 2: Distinguish horizontal from vertical pleiotropy 

 

Model 0 assumes horizontal pleiotropic relationship while model 1 and 2 assume vertical 

pleiotropic relationship. Main feature of horizontal pleiotropy is that the two traits are 

independent given the SNP effect. In this step, we conduct association analysis between FA and 

smoking traits conditioning on the SNP. If the conditional independence holds, the variants 

demonstrate horizontal pleiotropy; otherwise, they demonstrate vertical pleiotropy. 

 

Step 3: Selection of the best mediation model for vertical pleiotropy 

 

Model 1 and model 2 are two alternative mediation models under the vertical pleiotropy 

assumption. Mediation analysis investigates how a third variable affects the relation between two 

other variables and is a useful tool in discovering the hidden mechanism in many biological 

fields. We conduct exploratory mediation analysis and select the best mediation model for each 

pleiotropic SNP using Bayes Factor criteria. We then validate the selected model by checking the 

major causality assumptions and test and categorize the mediation effects.   

𝑀𝑖 = 𝛼1 + 𝛽1𝑗𝐺𝑖𝑗 + 𝛾1Zi + 𝜀1𝑖 ,   𝜀1𝑖 ~𝑁(0, 𝜎1
2), 1 ≤ 𝑖 ≤ 𝑛,    𝑗 ∈ 𝑔0  

Suppose the set of SNPs that meet the criteria of vertical pleiotropy from step 1 and 2 is 𝑔1, to 

determine the best mediation model from the two candidates, we regress the outcome on both 

exposure variable and mediator for model 1 (outcome=smoking) and model 2 (outcome=FA) 

respectively adjusting for covariates:  

2a. Regress Y on G, M and Z: 

Y is continuous: 𝑌𝑖 = 𝛼3 + 𝛽31𝑗𝐺𝑖𝑗 + 𝛽32𝑀𝑖 + 𝛾3Zi + 𝜀3𝑖 ,    𝜀3𝑖 ~𝑁(0, 𝜎3
2), 1 ≤ 𝑖 ≤ 𝑛, 𝑗 ∈ 𝑔1     

Y is binary: 𝑙𝑜𝑔𝑖𝑡(𝑃(𝑌𝑖 = 1)) = 𝛼3 + 𝛽31𝑗𝐺𝑖𝑗 + 𝛽32𝑀𝑖 + 𝛾3Zi, 1 ≤ 𝑖 ≤ 𝑛, 𝑗 ∈ 𝑔1     

2b. Regress M on G, Y and Z: 

𝑀𝑖 = 𝛼4 + 𝛽41𝑗𝐺𝑖𝑗 + 𝛽42𝑌𝑖 + 𝛾4Zi + 𝜀4𝑖 ,   𝜀4𝑖 ~𝑁(0, 𝜎4
2), 1 ≤ 𝑖 ≤ 𝑛, 𝑗 ∈ 𝑔1  

where 𝛼3 and 𝛼4 are the intercepts, 𝛾3 and 𝛾4 are the effects of covariates, 𝛽31𝑗 and 𝛽41𝑗 

represent the direct effects of SNPs on outcomes Y and M in model 1 and 2, respectively, 𝛽1𝑗𝛽32 

and 𝛽2𝑗𝛽42 represent the indirect effects of SNPs on outcome via the mediators M and Y in 

model 1 and 2, respectively.  

To select the mediation model that best explains the causal relationship for each SNP j, we 

propose to use the penalized likelihood BIC score as a model selection criteria [27, 28]. By 

definition, 𝐵𝐼𝐶 = −2log (𝐿̂) + 𝑝𝑙𝑜𝑔(𝑛), where 𝐿̂ is the maximized value of the likelihood, 𝑝 is 

the number of parameters and 𝑛 the sample size. Since the two mediation models have exactly 

the same number of parameters, we are essentially comparing the maximum likelihoods of the 

two models. The maximum likelihoods of model 1 and model 2 can be derived from their joint 

distribution combining step 1 and step 2 (Model 1: 1a+2a; Model 2: 1b+2b), with the parameters 

evaluated at MLE:  

Model 1: 𝐿̂(𝑀1) = 𝐿(𝛼1̂, 𝛽1𝑗̂,  𝛾1̂, 𝜎1
2̂|𝑀, 𝐺𝑗 , 𝑍)𝐿(𝛼3̂, 𝛽31𝑗

̂ , 𝛽31𝑗
̂ ,  𝛾3̂ , 𝜎3

2̂|𝑌,  𝐺𝑗 , 𝑀, 𝑍)) 

Model 2: 𝐿̂(𝑀2) = 𝐿(𝛼2̂, 𝛽2𝑗̂,  𝛾2̂, 𝜎2
2̂|𝑌, 𝐺𝑗 , 𝑍)𝐿(𝛼4̂, 𝛽4𝑗̂,  𝛾4̂, 𝜎4

2̂|𝑀,  𝐺𝑗 , 𝑌, 𝑍)     

BIC can be shown to approximate the distribution of the data P(D|M) by integrating out the 

parameters using Laplace's method (see derivation in the Supplement), thus we can directly 
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compute the Bayes Factor (BF), a likelihood ratio of the marginal likelihood of two competing 

models defined as:  

𝐵𝐹 =
𝑃(𝐷|𝑀1)

𝑃(𝐷|𝑀2)
≈

𝐿̂(𝑀1)

𝐿̂(𝑀2)
 

When BF>1, model 1 is preferred, otherwise model 2 is preferred. We followed from Kass and 

Raftery [29] to interpret BF for its strength of evidence.  

 

The BF based model selection performs exploratory mediation analysis to determine the favored 

mediation model for each potentially causal variant. We will need to validate the mediation 

model selected by carefully checking the causal mediation assumptions (see Supplement). Once 

the model assumptions are checked, the causal mediation has been established. We will then test 

for the mediation effect in the causal path by using nonparametric bootstrap procedure [30, 31]. 

For model 1, 𝛽31𝑗 represents the direct effect, 𝛽1𝑗𝛽32 represent the indirect/mediation effect and 

𝛽2𝑗 represent the total effect. For model 2, 𝛽41𝑗 represents the direct effect, 𝛽2𝑗𝛽42 represent the 

indirect/mediation effect and 𝛽1𝑗 represent the total effect. The estimated proportion of 

mediation effects can be computed as 
𝛽𝑖𝑗̂𝛽32̂

𝛽2𝑗̂
 and 

𝛽2𝑗̂𝛽42̂

𝛽1𝑗̂
 for model 1 and model 2, respectively. 

Zhao et al. (2010) [32] classified mediation into three types according to significance and 

direction of direct effect when mediation effect is significant: when the direct effect is also 

significant and has the same sign, the mediation is called a complementary mediation; if they 

point to the opposite directions, the mediation is called a competitive mediation; lastly, if the 

direct effect is not significant, the mediation is indirect-only mediation. We will follow this 

classification to interpret the final mediation results for each variant.  

All statistical analyses were conducted using R program [33]. For model checking and testing of 

direct and indirect effect in mediation analysis, we use the R package “mediation” [34]. 

 

 

Results  

 

GWAS and selection of smoking associated loci 

 

GWAS were conducted separately for smoking status (N=294,735) and CPD traits (N=142,752). 

Numerous important smoking behavior associated loci previously reported were reproduced in 

our study [4, 35-40] as highlighted in the circular Manhattan plots (Figure 2). Notably, the 

significant loci identified for each of the two traits have little overlap, implying the different 

genetic basis of the two traits of smoking behavior. The loci associated with smoking status are 

mainly located in regions on chromosome 9, 10 and 11 marked by the genes FAM163B, 

SARDH, CNNM2, NCAM1 and non-coding RNA LOC101928847, while loci associated with 

CPD are located in regions on chromosome 8, 15 and 19 marked by the genes CHRNB3, 

CHRNA3, IREB2 and RAB4B (Table 1). The results validated the gene findings of smoking 

behaviors in previous GWAS studies [4, 41, 42]. We will perform causal pathway analysis 

separately on the highly significant and reproducible loci associated with smoking status and 

CPD. Considering the strong linkage disequilibrium (LD) among nearby loci, we also included 

loci in the extended genomic regions by 250kb both up and down-stream (Supplementary Figure 

S3-S8). Table 1 shows the genomic regions selected including a total of 4224 SNPs for smoking 

status and 5828 SNPs for CPD, respectively. Next, we focus on participants who have genotype, 
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FA measures and smoking behavior phenotype data available (N=12,264 for smoking status and 

N=4,654 for CPD) and perform causal pathway analysis on the potentially pleiotropic variants. 

 

 
Figure 2. A concentric circular Manhattan plots of the GWAS results for smoking status and 

CPD for chromosomes 1-22. Each dot represents an SNV, X and Y axes refer to genomic 

locations and -log10(p-value).  
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Table 1. The selected genomic regions for causal pathway analysis marked by representative 

genes 

CHR 
Regions selected Numbers 

of SNPs 
selected 

Numbers of 
SNPs with 

GWAS p<1e-8 

Representative 
marker genes 

References 
Start bp End bp 

CPD 

8 42302562 42842209 1250 18 CHRNB3 

Erzurumluoglu et 
al.[4] 
Thorgeirsson  et 
al. [39] 

15 78635394 79163637 1450 86 CHRNA3, IREB2 

Erzurumluoglu 
[4] et al. 
Keskitalo [38] et 
al. 

19 41033670 41552849 1524 43 RAB4B, CYP2A6 

Erzurumluoglu et 
al. [4] 
Thorgeirsson  et 
al. [39] 
Bloom et al. [40] 

Smoking status 

9 136192141 136724472 1889 29 
FAM163B, 

SARDH 

Xu et al. [35] 
Furberg  et al. 
[43] 

10 104428075 105088344 1547 200 CNNM2 
Xu et al. [35] 
Erzurumluoglu et 
al. [4] 

11 112580002 113399158 2392 267 
LOC101928847, 

NCAM1 

Xu et al. [35] 
Bidwell  et al. 
[36] 
Gelernter et al. 
[37] 

 

 

Causal pathway analysis for smoking status 

 

Univariate association analysis found 28 FA measures from various brain regions that show 

significantly higher FA among never smokers than current smokers (p<0.05; Table S3), 

supporting the findings in previous literature [5, 44, 45]. We focus on these 28 FA measures for 

our causal pathway analysis for smoking status. There are 10 potentially pleiotropic SNPs 

identified that have significant effects on both smoking status and 16 FA measures (p<0.05 for 

both associations; Table S4). These include tracts in corpus callosum (GCC, BCC and SCC), 

corona radiata (ACR, SCR and PCR), sagittal stratum (SS) and posterior thalamic regions (PTR). 

The significant association between these FA measures and smoking status held given the 

genetic effects of any of the SNPs implying a vertical pleiotropic relationship (Table S5), so we 

no longer proceed with model 0. In comparing the two mediation models of vertical pleiotropy, 

model 1 where FA mediates the genetic effect on smoking status is favored (BF>>100 indicating 

decisive evidence [29]). Both direct and indirect effects are significant while pointing to the 

same directions, classified as complementary mediation effects. These variants show strong LD 

correlation and are located in SARDH gene, a gene that catalyzes the oxidative demethylation of 
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sarcosine and has been found related to smoking behavior in large GWAS meta-analysis (Table 

2; Figure 3(A)) [43].  

 

Figure 4 shows example of one variant, rs129891, to demonstrate how genetics impact smoking 

status via FA measure of WM. Participants with more copies of minor allele “A” are more likely 

to be current smokers (p=0.045). In the same time, FA measure in the three corpus callosum 

regions are significantly lower among individuals carrying more copies of “A” (BCC: 

p=4.97*10-2; GCC: p=1.75*10-2; SCC: p=3.15*10-2). This allele is a risk allele for both reducing 

white matter integrity and increasing the tendency to nicotine addiction. In the final selected 

mediation model, GCC, BCC and SCC act as complementary mediators with significant indirect 

effects (p=0.012, 0.038 and 0.018, respectively) the same direction as direct effects of SNP on 

smoking status (mediation proportions=3.8%, 4.5% and 6.1%, respectively), implying the 

consistent effect of variant on brain structure and smoking status related to neurodegeneration 

and smoking-induced diseases [44-47]. The causal pathways of the genetic variants involve 

multiple mediators of FA measures in the three corpus callosum regions highly correlated with 

each other (𝜌=0.82, 0.57 and 0.51, respectively), whether they sit in parallel pathways or carry 

out effects in sequential order need to be further validated in future studies [19, 48, 49].  

 

 

Causal pathway analysis for CPD 

 

Univariate association found 21 FA measures that show significant negative association with 

CPD (p<0.05; Table S3). We focus on these 21 FA measures for our causal pathway analysis for 

smoking status. A total of 20 pleiotropic SNPs were identified with significant effects on both 

CPD and 7 FA measure (overall FDR<0.15; Table S4). These include tracts in corpus callosum 

(GCC and BCC), corona radiata (SCR and PCR) and internal capsule (RLIC). The significant 

association between these FA measures and smoking status held given the genetic effects of any 

of the SNPs implying a vertical pleiotropic relationship (Table S5), so we no longer proceed with 

model 0. In comparing the two mediation models for vertical pleiotropy, interestingly, all the 20 

variants favor model 2, where CPD mediates the genetic effect on FA (BF>>100 indicating 

decisive evidence [29]). Both direct and indirect effects are significant but pointing to the 

opposite directions, classified as competitive mediation effects. All these variants show strong 

LD with each other and are located within the iron-responsive element binding protein 2 (IREB2) 

gene (Table 2; Figure 3(B)).  IREB2 binds to iron-responsive elements to regulate iron 

mechanism in human and has been reported to be a susceptibility gene for both.  

 

We use a SNP example, rs13180 (minor allele: T), to illustrate how genetics influence FA 

measures indirectly via CPD in mediation model 2 (Figure 5). The mean values of both CPD (p= 

8.77*10-5) and FA measure (p=5.99*10-5) are significantly higher among individuals with more 

copies of minor allele “T”. This allele plays a protective role with inherently higher white matter 

integrity while in the same time being a risk allele increasing the tendency to nicotine addiction. 

CPD is acting as a competitive mediator with indirect effect (p=0.012) of an opposite direction 

from the direct effect of SNP on FA, implying the adverse of effect CPD on brain structure 

related to neurodegeneration and smoking-induced diseases [46, 47].  
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Table 2. Gene annotation and minor allele information of the 10 pleiotropic SNPs associated 

with both smoking status and FA measures and the 23 (change to 20??) pleiotropic SNPs 

associated with CPD and FA measures. 

 

Nicotine 
dependence 

CHR Gene Name SNP 
Minor Allele  

(1000 
Genome/UKBiobank) 

Smoking status 

9 SARDH rs129891 A 

9 SARDH rs129895 G 

9 SARDH rs2797830 T 

9 SARDH rs129893 C 

9 SARDH rs129899 T 

9 SARDH rs129894 G 

9 SARDH rs129939 A 

9 SARDH rs129898 T 

9 SARDH rs129892 C 

9 SARDH rs129948 G 

Cigarette per day 

15 IREB2 rs1964678 G 

15 IREB2 rs4887057 G 

15 IREB2 rs12593229 G 

15 IREB2 rs4299116 A 

15 IREB2 rs1504549 T 

15 IREB2 rs12910910 T 

15 IREB2 rs8043227 G 

15 IREB2 rs12916801 G 

15 IREB2 rs8042238 T 

15 IREB2 rs8042260 G 

15 IREB2 rs12903295 G 

15 IREB2 rs12904234 T 

15 IREB2 rs36146269 A 

15 IREB2 rs4887059 T 

15 IREB2 rs965604 A 

15 IREB2 rs13180 T 

15 IREB2 rs12899351 C 

15 IREB2 rs1062980 C 

15 HYKK, IREB2 rs12594711 T 

15 HYKK, IREB2 rs4362358 T 

15 IREB2 rs11637656 T 

15 IREB2 rs12592111 A 

15 IREB2 rs12903285 G 
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 Cigarette per day 

Nicotine 
dependence 

CHR Gene Name SNP 
Minor Allele  

(1000 Genome/UKBiobank) 

Smoking status 

9 SARDH rs129891 A 

9 SARDH rs129895 G 

9 SARDH rs2797830 T 

9 SARDH rs129893 C 

9 SARDH rs129899 T 

9 SARDH rs129894 G 

9 SARDH rs129939 A 

9 SARDH rs129898 T 

9 SARDH rs129892 C 

9 SARDH rs129948 G 

Cigarette per day 

15 IREB2 rs1964678 G 

15 IREB2 rs4887057 G 

15 IREB2 rs12593229 G 

15 IREB2 rs4299116 A 

15 IREB2 rs1504549 T 

15 IREB2 rs12910910 T 

15 IREB2 rs8043227 G 

15 IREB2 rs12916801 G 

15 IREB2 rs8042238 T 

15 IREB2 rs8042260 G 

15 IREB2 rs12903295 G 

15 IREB2 rs12904234 T 

15 IREB2 rs36146269 A 

15 IREB2 rs4887059 T 

15 IREB2 rs965604 A 

15 IREB2 rs13180 T 

15 IREB2 rs12899351 C 

15 IREB2 rs1062980 C 

15 HYKK, IREB2 rs12594711 T 

15 HYKK, IREB2 rs4362358 T 

15 IREB2 rs11637656 T 

15 IREB2 rs12592111 A 

15 IREB2 rs12903285 G 
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Figure 3. Linkage disequilibrium (LD) plot for (A) 10 SNPs associated with both smoking status 

and FA measures; (B) 23 (change to 20??) SNPs associated with CPD and FA measures. The 

values in boxes are pair-wise SNP correlations (D’), bright red boxes without numbers indicate 

complete LD (D’=1).  

 

 
Figure 4. Effect of the rs129891 polymorphism on smoking status, white matter FA measures 

(one of the FA measures, genu of corpus callosum (GCC) as an example), and mediation model 

1, respectively, in 12,264 white ethnic background participants. Panel A shows the proportion of 

currents smokers according to rs129891 genotype. Panel B shows mean of GCC values 

according to rs129891 genotype. Sample sizes for each genotype group are shown in parentheses 

under the horizontal axis. Panel C shows the mediation effects (𝛽̂1𝛽̂32) of rs129891 is 
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17.59,12.59 and 10.75 in mediation model separately with GCC, BCC and SCC as mediators 

and smoking status as an outcome.  

 

 

 
Figure 5. Effect of the rs13180 polymorphism on CPD, white matter FA measures (one of the 

FA measures, left of Retrolenticular part of internal capsule (RLIC.L) as an example), and 

mediation model 2, respectively, in 4654 white ethnic background participants. Panel A shows 

mean of CPD values according to rs13180 genotype. Panel B shows mean of RLIC.L values 

according to rs13180 genotype. Sample sizes for each genotype group are shown in parentheses 

under the horizontal axis. Panel C shows the mediation effects (𝛽̂2𝛽̂42) of rs13180 is -9.75 in 

mediation model with CPD as a mediator and RLIC.L as an outcome.  

 

 

 

Discussion 

 

Enduring smoking has been found to be highly heritable, but the mechanism of nicotine 

addiction remain unknown. In light of the associations between nicotine dependence and white 

matter integrity previously reported, in this study, we performed imaging-genetic analysis for 

smoking status and CPD and tested three competing causal models to explain the complex causal 

relationship among genetics, WM integrity and nicotine dependence. Our GWAS analysis 

validated many reliable and reproducible loci previously reported associated with smoking 

related traits. We then performed causal pathway analysis on these loci and found 10 potentially 

pleiotropic SNPs associated with 16 FA measures in varying brain regions and smoking status, 

and 20 SNPs associated with 7 FA measure in RLIC (L) and CPD. The 10 SNPs for smoking 

status demonstrate vertical pleiotropy and favor mediation model 1 where FA mediates the 
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genetic effect on smoking status. They are located in SARDH, a gene that catalyzes the oxidative 

demethylation of sarcosine to reduce tolerance effect on nicotine. On the other hand, the 20 

vertical pleiotropic SNPs for CPD favor mediation model 2 where CPD mediates the genetic 

effect of these SNPs on FA measure in GCC, BCC, SCR, PCR and RLIC regions and located in 

IREB2, which regulates iron mechanism in the cell and is a susceptibility gene for both 

neurodegeneration and smoking-induced diseases. The basic genetic components of addiction 

might have produced a pattern change in WM among smokers, reinforcing the addiction 

behavior. Chronic severe smoking (reflected in e.g. CPD) will have negative impact to overall 

health which in turn reduce the WM integrity. These results enlighten the nicotine addiction 

study and improve our understanding of the mechanism of nicotine dependence. Further 

validation in a large independent cohort is needed to confirm these causal analysis results and for 

a more comprehensive understanding of addiction behavior.  

 

In this study, we have used an imaging-genetics approach to study nicotine addition mechanism. 

Traditional imaging genetics treat neuroimaging traits in the brain as intermediate phenotype 

sitting along a mechanistic pathway through which genetic variation affects clinical or behavioral 

phenotypes. Such unidirectional model has gradually become a convention in imaging genetics 

mediation studies, though the justification is largely based on theory without model checking or 

evidence support from the data [50]. As the new technology develops and data and knowledge 

continue to grow, new models are in need to explain the complex interplay among genetics, brain 

and behavior. In this article, we have first proposed competing horizontal pleiotropic and two 

alternative vertical pleiotropic models assuming that the long-term behavior phenotype can 

mediate the genetic effect on imaging and developed a rigorous mediation analytical approach to 

guide users select the best model. For vertical pleiotropic model selection, we essentially 

perform exploratory mediation analysis to select the favored mediation model with larger BF and 

then confirm the selected model by checking the necessary assumptions.  

 

Classical mediation pathway analysis has focused on analyzing univariate exposure and 

univariate mediator. Entering the big data era as we witness more data generated by high-

throughput technology, models with multiple high-dimensional exposures and mediators have 

drawn more attention in the field in recent years [51-53]. Our analytical approach shows an 

example of performing mediation analysis when there are thousands of candidate exposure 

variables available in imaging genetics study. A thoughtful scheme is needed to select the 

relevant causal variants in the pathway while in the same time controlling for the false discovery 

rate in multiple comparisons. The FA measures we used in this study are summary measures 

over brain regions of interest using the ENIGMA work flow. For the full resolution analysis of 

neuroimaging trait and genotype in the causal pathway, we will consider voxel-wise 

neuroimaging features in future studies. More sophisticated procedures are needed for variable 

and model selection in such mediation analysis with potentially high-dimensional exposures, 

mediators and outcomes.  
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