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ABSTRACT 

To produce consistent sensory perception, neurons must maintain stable representations of 
sensory input. However, neurons in many regions exhibit progressive drift across days. 
Longitudinal studies have found stable responses to artificial stimuli across sessions in primary 
sensory areas, but it is unclear whether this stability extends to naturalistic stimuli. We 5 
performed chronic 2-photon imaging of mouse V1 populations to directly compare the 
representational stability of artificial versus naturalistic visual stimuli over weeks. Responses to 
gratings were highly stable across sessions. However, neural responses to naturalistic movies 
exhibited progressive representational drift across sessions. Differential drift was present across 
cortical layers, in inhibitory interneurons, and could not be explained by differential response 10 
magnitude or higher order stimulus statistics. However, representational drift was accompanied 
by similar differential changes in local population correlation structure. These results suggest 
representational stability in V1 is stimulus-dependent and related to differences in preexisting 
circuit architecture of co-tuned neurons. 

Keywords: Chronic imaging, Visual processing, Cortical plasticity, Representational drift  15 
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INTRODUCTION 

Ongoing experience-dependent and homeostatic synaptic plasticity suggests that neocortical 
connectivity is in a constant state of flux [1,2]. The potential for ongoing synaptic modification 
enables animals to rapidly adapt to a changing environment. However, in the face of ongoing 
plasticity, the cortex must somehow create stable representations of the external world and 20 
internal behavioral states in order to reliably represent the external environment and produce 
behaviors necessary for an animal’s survival. To investigate how the brain handles the tradeoff 
between flexibility and long-term stability, researchers have sought to perform longitudinal 
measurements of the same neurons over long time periods to measure “representational drift” in 
neuronal response properties [3]. 25 

Many early chronic recording studies used extracellular recordings to track neurons in 
motor cortex and hippocampus (HPC). These regions serve as suitable targets due to their 
relevance in producing stable representations for stereotyped behavior, but the results have not 
been conclusive. Many studies in motor cortices reveal highly stable motor representations [4–
6], but others report unstable individual M1 neuron tuning properties underlying stable 30 
ensemble-level representations of highly stereotyped motor actions [7–10]. It has often been 
difficult to draw strong conclusions from electrophysiology experiments due to low sample sizes, 
electrode drift, ambiguity in neuron identification across sessions, and potential sampling 
biases. In particular, high spike rate neurons are likely oversampled in blind electrophysiology 
recordings and may consequently give a biased impression of stability across the population 35 
[4,11,12]. Two-photon imaging has several advantages for chronic neural measurements. First, 
it has granted us insight into the dynamics of subcellular structures [13], such as the finding that 
sensory experience accelerates dendritic spine instability underlying synaptic turnover in 
sensory cortex [14] (though see [15]). Second, in vivo 2-photon calcium imaging enables the 
functional recording of large, structurally identified populations of neurons [16]. Although multi-40 
photon imaging sacrifices temporal resolution afforded by precise spike measurement, its high 
spatial resolution mitigates sampling biases and reduces ambiguity in neuronal identification 
during chronic measurements, allowing for longitudinal studies of large neuronal populations 
[11,17,18].  

These developments have produced the opportunity to expand the investigation of 45 
cortical stability to other brain areas over longer time periods. Recent studies in posterior 
parietal cortex revealed that stable learned associations can be achieved by neuronal 
populations in the presence of individual neurons whose coding properties continuously drift 
[19,20]. However, studies in sensory cortex have found more stable stimulus representation in 
single neurons [12,16,18,21–25]. While single-neuron representational drift has been theorized 50 
to play a role in learning in areas like motor cortex and HPC [3,8,26–28], it is less clear what 
purpose would be served by instability in early sensory areas, where circuitry is tasked with 
reliably representing external sensory information on a single exposure. Even so, there is 
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substantial trial-to-trial variability in single neurons [29–34], even in early sensory cortex. The 
evidence of stable stimulus representation in the face of this variability has led to the suggestion 55 
that the functional connectivity of sensory cortex may grant it robustness to noise while 
maintaining the ability to undergo experience-dependent plasticity [17].  

Almost all chronic recording studies examining stability in visual cortex have used simple 
parameterized stimuli, such as oriented drifting gratings, as they present straightforward 
measurements for determining the stability of individual neuron response properties. These 60 
studies are largely in consensus, finding a high degree of stability with respect to orientation 
tuning, spatial frequency tuning, and size tuning [18,22,35]. Previous work has characterized the 
existence of small subnetworks of highly stimulus-responsive neurons coexisting against a 
backdrop of relatively unresponsive neurons [36,37], and a recent study reports these highly 
active neurons to be particularly stable amidst contextual modulation factors [38]. Responses to 65 
grating stimuli are also found to be stable following monocular deprivation [25] and even apical 
or basal dendritic ablation [39]. However, gratings are designed to optimally stimulate the 
receptive fields of visual cortical neurons, and have simple visual statistics compared to an 
animal’s natural visual input. In addition, orientation tuning is widely believed to be ‘hardwired’ 
early in development [40–43], and iso-oriented neurons exhibit high connectivity [44,45] likely 70 
serving to stabilize orientation responses through ongoing Hebbian plasticity [45,46]. Ensembles 
of neurons driven by naturalistic stimuli are not necessarily iso-tuned, and almost certainly 
exhibit lower levels of intrinsic connectivity. As a result, there may be considerably more 
representational drift in response to naturalistic stimuli than to gratings, particularly over long 
time periods (weeks to months). A recent analysis of multi-day naturalistic movie responses 75 
from visual cortex found representational drift in several visual cortical areas, which was mainly 
attributed to shifts in ensemble firing rate patterns and, to a lesser extent, changes in ensemble 
stimulus tuning patterns [47]. These results are intriguing and unexpected, and prompt further 
exploration of the stability of naturalistic stimulus representations in visual cortex. 

Here, we perform chronic 2-photon calcium imaging of thousands of neurons in primary 80 
visual cortex (V1) of awake, head-fixed mice viewing both oriented drifting grating stimuli as well 
as repeated presentations of a continuous naturalistic movie. We demonstrate stable orientation 
preference and high stability of grating responses across sessions, consistent with previous 
work. However, responses to repeated presentations of naturalistic movies exhibited 
progressive drift across sessions, involving the gain and loss of individual response peaks over 85 
the course of several weeks. The stimulus-dependent difference in response stability was true 
even for neurons exhibiting selectivity to both grating and natural movie stimuli. This 
representational drift was seen across cortical layers and in both excitatory and inhibitory cell 
types and could not be explained by response magnitude or eye movements. Finally, we found 
that representational drift in response to natural stimuli was accompanied by greater drift in the 90 
correlation structure of the local neuronal population during natural stimuli than for gratings. 
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Taken together, these results demonstrate that neurons can exhibit different levels of stability to 
distinct encoded features and suggests that local network connectivity may influence the 
stability of particular response properties. 

 95 

RESULTS 

Visual cortical neurons exhibit representational drift in response to natural stimuli 

We performed chronic 2-photon imaging to measure single cell visual responses over many 
weeks in the primary visual cortex (V1) of awake, head-fixed transgenic mice expressing the 
calcium indicator GCaMP6s in excitatory neurons (13 fields in 12 mice, [48–50]). The mice 100 
passively viewed the same visual stimuli on every session, starting with a repeated sequence of 
periodic oriented drifting gratings (PDG), followed by repeated presentations of a 30 second 
naturalistic movie (MOV) (Figure 1A-B, Methods), including a single clip with no cuts from 
beginning to end. Recordings were performed at 7 ± 1 day intervals for a total of 5 to 7 weeks. 
To ensure our selected imaging fields solely contained V1 neurons, we used a widefield 105 
microscope to determine visual area boundaries through established retinotopic mapping 
procedures [51–53] (Figure 1B, Methods). Visual landmarks such as blood vessels were used to 
identify and align the 2-photon imaging field on a given recording session, and small differences 
in the alignment of the horizontal plane were corrected in post-processing using nonrigid image 
registration software [9]. Somatic regions of interest (ROIs) were defined based on the average 110 
fluorescence maps and average pixelwise activity maps across sessions (see Methods). To 
mitigate experimental artifacts stemming from misalignments of the field in the z-direction 
(depth) and to ensure unambiguous identification of individual neurons across sessions, we 
manually inspected each defined ROI across all sessions. We assigned each cell a quality 
rating describing the neuron’s structural robustness and a presence indicator on a session-by-115 
session basis (Figures 1C, S1A-E, [19]). ROIs were considered for analysis only if they met a 
sufficient quality threshold (quality index >= 3; 4,143 ROIs out of 5,689) and if the neuron was 
present on all analyzed sessions.  

To characterize a neuron’s responsiveness to a given visual stimulus, we calculated its  
‘reliability’ on every session [54], defined by the Pearson correlation coefficient (CC) of the 120 
session-averaged activity of two random halves of trials, iterated many times and averaged (see 
Methods). Reliability for both stimuli followed a skewed distribution, with a higher number of 
neurons responding reliably to the MOV stimulus (Figure 1D). To determine which neurons were 
visually responsive we tested the actual reliability of the response to each stimulus against a 
null distribution of reliability calculated with circularly shifted data (Methods). We found that 125 
while the majority of neurons (68% of total) were visually responsive to the MOV stimulus and a 
smaller proportion (29% of total) were responsive to PDG, an even smaller subset (20% of total) 
was responsive to both stimuli, which we called ‘dual-responsive’ (Figure 1E). Additionally, a 
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neuron’s response reliability for one of the stimuli was uncorrelated with that of the other 
(Pearson correlation between neurons’ z-scored trial-averaged activity for both stimuli r = 0.01, 130 
p > 0.05). 

Consistent with previous work characterizing the stability of visual responses to gratings 
[22,23,25,35,38], the PDG responsive neurons we recorded exhibited highly stable orientation-
tuned responses (Figures 1G-F, S2). Orientation tuning curves were strongly aligned across 
sessions for both single neurons (Figure S2B) and for all tuned neurons across all mice (Figure 135 
1G). Changes in orientation selectivity (OSI) were minimal (4.4 ± 0.3% change from reference 
session on average across all neurons present and tuned across all sessions) and did not 
increase as a function of elapsed time (Figure S2C). In the vast majority of cases (96% of 
neurons tuned on the first session), shifts in orientation preference over 4 - 6 weeks fell within ± 
1 orientation in the sequence of presentations (Figure S2D). Neurons for which orientation 140 
preference shifted outside of this range made up only a small fraction of total cases (4% of 
tuned neurons).  

Responses to the MOV stimulus, however, revealed striking differences when compared 
to the PDG responses (Figures S3, S4). Qualitatively, we found single neuron responses to 
MOV to be volatile across sessions, observing independent emergence and disappearance of 145 
individual response peaks between sessions (Figures 1F, S3). In some cases, this occurred 
suddenly or randomly between sessions, but in many cases such changes occurred gradually 
and continuously. Note that the unstable responses to MOV were not found only in neurons 
responding selectively to the MOV stimulus, but also in the subset of neurons responsive to 
both stimuli, such as the neuron in Figure 1F, in which representational drift in MOV responses 150 
could be directly contrasted with highly stable responses to the PDG stimulus.  

In contrast to measures of reliability occurring across trials within a recording session, 
here we define ‘stability’ as the consistency of the average neuronal responses to the same 
visual stimulus over many sessions. To quantify changes in single-neuron response stability, we 
defined the ‘Representational Drift Index’ (RDI) between two sessions as the difference between 155 
the within-session between-trial correlation coefficient (CCWS) and the between-session 
between-trial correlation coefficient (CCBS), normalized by the sum of the two (Figure 1H). 
Pooling data from all dual-responsive neurons across all mice (824, 808, 793, 830, 761, 698 
neurons for sessions 2-7, from 13 populations in 12 mice), we found that RDI values for MOV 
responses were on average significantly greater than those for PDG on all sessions (paired-160 
sample t-test, p < 0.001 for all sessions), and that the representational drift was not random, but 
progressively increased over sessions for most mice (Figures 1I, Figure S5; PDG vs. MOV 
average RDI curve slopes, p < 0.05, paired-sample t-test). The RDI values were not significantly 
different when including neurons responsive to single stimuli, when compared to only dual-
responsive neurons (comparing single stimulus responsive to dual-responsive, p > 0.05 for all 165 
weeks for both stimuli, Wilcoxon ranksum tests). Additionally, the significant differences 
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between RDI values for each stimulus were also present when considering all neurons, 
regardless of stimulus responsiveness (p < 0.001 for all weeks, paired-sample t-test).  

Despite a robust difference in RDI between PDG and MOV stimuli on average, we 
observed some variability between mice. While most clearly exhibited a difference in stability 170 
between the stimuli, this difference was either small or not significant in a subset of mice (Figure 
S5, mice 5, 11, 12). Additionally, while some mice exhibited a progressive divergence between 
the PDG and MOV RDI curves (mice 1, 3, 4, 6, 8, 9), others exhibited higher baseline RDI levels 
for MOV stimuli (mice 2, 7, 10). The reasons for these differences were unclear given that there 
were no identifiable correlated differences between groups of mice. Furthermore, the exclusion 175 
of neurons via thorough a priori manual inspection (Figure 1A-D) eliminated any artifacts that 
may have resulted from misalignment of neurons across sessions in some mice, and repeating 
our analysis using different ROI quality thresholds yielded robust results (Figure S1F). One 
potential source of variability between mice is that craniotomies for cranial window implants can 
cause inflammation and microglial activation [55], which may in turn result in increased synaptic 180 
turnover in superficial layers [56]. It is possible that exposure of the brain in the cranial window 
preparation may be partially responsible for the differences between mice we observe. Thin-
skull preparations for transcranial 2-photon imaging have been shown to result in a relatively 
low degree of induced synaptic plasticity [15]. To test whether the surgical preparation 
contributed to the drift in MOV responses, we performed the same chronic imaging experiments 185 
in mice (n = 4) with a thin-skull preparation and found a similar level of differential stability 
between the two stimuli (Figure S6).  

 

Responses to natural movies exhibit greater drift independent of magnitude 

One factor that could explain differential stability on the level of single neurons is the wide 190 
diversity of stimulus responsiveness that exists in sensory cortices [36,37]. A recent study in 
mouse V1 found considerable differences in long-term stability between strongly and weakly 
visually responsive neurons [38]. In addition, it is possible that early accounts of stable cortical 
neurons from electrophysiology data may be influenced by biased sampling of particularly active 
neurons. We asked if a similar relationship between visual responsiveness and stability could be 195 
found in our data. On average, the neurons responsive to both stimuli with the strongest 
session-average z-scored responses were more stable than those with the weakest (Figures 
2A, S7A). The difference was modest but statistically significant for both stimuli (0.04 difference 
in median RDI between top and bottom quartiles for PDG, p < 0.01; 0.07 difference for MOV, p 
< 0.001; Wilcoxon rank-sum test). Lack of striking, conclusive results from this analysis led us to 200 
ask if there may be further differences related to responsiveness that are not observable on the 
single-neuron level.  
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The sparse and episodic structure of V1 neuron responses to naturalistic stimuli has 
been well-characterized [57–59] and was qualitatively visible in our response data (Figure S3). 
Most, but not all, neurons responsive to MOV exhibited more than one time-distinct response 205 
‘event’ across the course of the 30 s stimulus (Figures 1F, 2B, S3). We asked if a relationship 
between response magnitude and stability was present at the level of the individual visual 
response events within each neuron. For both stimuli, we used ΔF/F data to define response 
event periods based on the statistical significance of each frame’s single-trial responses 
compared to single-trial average baseline responses, performed separately for each session 210 
(see Methods). PDG and MOV responses in dual-responsive neurons yielded, on average, ~1.9 
and ~2.4 events per neuron, respectively, with a sizable subset of neurons responding to MOV 
with 3 or more events (51.6% of dual-responsive neurons, 57.2% of MOV responsive neurons, 
Figure 2C). The event rate distribution for PDG was skewed further towards 1-2 events per 
neuron, reflecting selectivity towards only 1 or 2 grating orientations and occasional weak 215 
responses to neighboring orientations (Figure 2C). Events were categorized as either growing, 
decaying, or remaining static over time based on a statistical comparison of their single trial z-
score values on the first two sessions versus the last two sessions. We found that on average 
across all imaging fields, PDG responses exhibited a much higher proportion of events that 
remained static between sessions than MOV responses did (~73% vs. ~54% for PDG and MOV 220 
respectively, p < 0.001, paired-sample t-test). Of the remaining 46% of MOV events, ~65% were 
events that decayed and ~35% were those that grew between sessions (Figure 2D). Examining 
the strongest event periods (events surrounding neurons’ peak response times) revealed that 
while a plurality of these events remained static over time, over half were classified as either 
growing or decaying (Figure 2E). 225 

To compare an event’s magnitude and its stability more directly, we defined an event’s 
instability based on the normalized difference between its average ‘late’ z-score and its average 
‘early’ z-score (last two versus first two sessions, respectively, see Methods). This revealed that 
for both stimuli, an event’s stability increased as a function of its overall response magnitude 
(Figure 2F, Figure S7A). This trend occurred to a similar extent for both stimuli, and event 230 
instability was greater on average for MOV events than they were for PDG events regardless of 
event magnitude (Figure 2G). As a result, differences in stability between the two stimuli cannot 
be explained by the presence of higher magnitude events in PDG responses compared to MOV 
responses. Additionally, we wondered if we could link an event’s stability to its redundancy 
across all neurons in its respective population, as previous findings show stability in sparse 235 
population activity [12]. Indeed, event stability seemed to decrease as a function of redundancy 
across all other neurons in the population (Figure S7B, significant only for PDG). In line with 
this, we found that event redundancy decreased significantly as a function of event response 
magnitude for both stimuli (Figure S7C), which contravenes the possibility that stronger events 
may be encoding highly salient visual features and thus may be represented by a greater 240 
fraction of neurons in the population. 
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Differential stability is not explained by behavioral variables 

We performed a number of control experiments to account for external factors that could 
contribute to these results. A previous study reported that despite stable orientation tuning 
across days, pupil size was positively correlated with trial-to-trial variability [35]. We used an 245 
infrared camera to track the pupils of a subset of mice (n = 4) to determine whether the 
differential stability could be related to differences in a mouse’s arousal state across sessions as 
measured by pupil size [60], average pupil movement, or pupil location. We observed that large 
eye movements were rare and mostly consisted of brief deviations from an otherwise stable 
average position that changed minimally between sessions (Figure S8A-B). On average, within-250 
session pupil movement relative to a session’s average pupil centroid location decreased over 
time (Spearman correlation r = -0.37, p < 0.05), and average pupil area decreased over time 
(Spearman correlation r = -0.47, p < 0.01), indicating a general decrease in arousal state over 
sessions (Figure S8C-D). Although we habituated our mice prior to imaging, this finding is 
consistent with further acclimation to the recording environment and the visual stimulus 255 
presentation. Within-session pupil movement was not correlated with RDI (Pearson correlation r 
= -0.16, p > 0.05), but relative pupil size showed a small anticorrelation with RDI (Pearson 
correlation r = -0.38, p < 0.05), suggesting that changes in arousal could be a factor contributing 
to the observed instability in the initial sessions. However, pupil size stabilized after the third 
session, and is unlikely to contribute to progressive drift observed in later sessions. Finally, in all 260 
individual mice, changes in average pupil centroid location between sessions were uncorrelated 
with RDI (Pearson correlation r = -0.06, p > 0.05, Figure S8E). In summary, though there were 
minor changes in pupil area across sessions, there were no changes in eye movements, and 
the minor fluctuations in mouse behavioral state are not sufficient to explain progressive 
increases in RDI, nor the difference in RDI between MOV and PDG stimuli. 265 

Next, we considered the possibility that any subtle shifts in a neuron’s spatial receptive 
field across sessions would manifest only in MOV responses and not PDG responses. While 
changes in a neuron’s receptive field would likely capture different visual information for the 
MOV stimulus, this might not be the case for PDG due to its repeated spatial pattern. To 
account for this, we showed a subset of mice (n = 4) a spatial receptive field mapping stimulus 270 
(presented last on every session) to measure neurons’ preferred altitude and azimuth on a 
given session (Methods). In all tested mice, changes in neurons’ preferred altitude and azimuth 
were minimal and showed no correlation with higher RDI (Figure S9), indicating that receptive 
field shifts did not influence our findings.  

 275 

Representational drift is distributed across cortical layers and cell types 

Because the distinct layers of visual cortex have stereotyped inputs, outputs, and connectivity 
within and between other layers [61], we wondered if they might show differences in their 
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capacities for representational drift. As L4 is the primary recipient of input from the lateral 
geniculate nucleus (LGN), we hypothesized that it would be comprised of neurons with relatively 280 
stable responses to the MOV stimulus compared to neurons in L2/3 and L5, which receive more 
processed input [62]. However, a recent study of natural movie responses in mouse visual 
cortex found higher stability of firing rate and stimulus tuning in L2/3 and L5 neurons compared 
to L4 neurons over multiple days [47]. To investigate differences between layers, we chronically 
implanted a subset of mice (n = 4) with a custom glass microprism that granted optical access 285 
to nearly the full cortical column [63] (Figure 3A-B), and allowed us to separate neurons by 
cortical layer based on ROI density (Figure 3C). Comparing average RDI values within each 
layer revealed that cortical layer did not have a significant effect on the instability of individual 
neurons (Figure 3D-E; two-way ANOVA, stimulus type p = 3.32 x 10-11, layer p = 0.12). This 
homogenous distribution of neurons exhibiting representational drift suggests that the 290 
transformation of presumably stable visual input to unstable neural responses occurs either at 
or before the first stage of information processing in cortex and propagates as the signal 
continues.  

We next investigated if MOV representational drift varied by cell type. Inhibitory 
interneurons exhibit broader and less selective tuning than excitatory cells, believed to be due to 295 
promiscuous sampling from local excitatory populations [64]. This in turn may result in 
comparatively stable visual responses. Inhibitory interneurons neurons in mouse motor cortex 
[65] and zebra finch HVC [66] (but see [67]) have been shown to exhibit considerable long-term 
stability alongside less stable single excitatory neurons in the context of a motor task. To 
investigate this, we repeated our experiments in L2/3 of transgenic mice expressing GCaMP6s 300 
in GAD2+ inhibitory neurons (n = 4, Figure 4A-B). Inhibitory neurons exhibited clear visually-
evoked responses, and as expected most neurons responsive to PDG were either very broadly 
orientation tuned or untuned (Figure 4C). As in our excitatory population results, of all 232 well-
tracked neurons, only a subset (14 ± 5%) were visually responsive to both PDG and MOV 
(Figure 4D). We considered this subset of dual-responsive neurons as we did for the excitatory 305 
populations. Similar to the between-session changes observed in excitatory neurons, we 
observed the appearance and disappearance of individual visual response events within 
neurons across sessions (Figure 4C). As for excitatory neurons, we found that responses to 
MOV exhibited greater representational drift than responses to PDG (Figure 4E-F). Taken 
together, these results indicate that progressive drift of responses to naturalistic stimuli is 310 
present across the entire cortical network. 

 

Representational drift is accompanied by changes in population correlation structure 

To further investigate the underpinnings of the stimulus-dependent instability, we hypothesized 
that the greater representational drift in the MOV responses might be due to the higher order 315 
image statistics of the stimulus. We reasoned that the additional cortical processing required for 
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encoding more complex visual features might lead to more variable representation compared to 
that of oriented gratings. To test this, we performed parametric phase scrambling on the original 
MOV stimulus [68], which randomized the phase structure of the images in the movie while 
maintaining the amplitude spectrum and lower level image properties. To a subset of mice (n = 320 
2), we presented the PDG stimulus in addition to a stimulus consisting of 3 versions of the MOV 
stimulus: 100% phase scrambled, 50% phase scrambled, and 0% phase scrambled (the original 
movie), presented for 20 repeats each in random trial order (Figure 5A). However, we observed 
no major differences between the RDI curves for the three MOV stimuli, indicating that the 
increased representational drift is not due purely to higher order image statistics (Figure 5B).  325 

 Our earlier results indicate that what separates stable and unstable visual responses in 
V1 is the identity of the visual input, and it would be inaccurate to conclude that a neuron itself is 
intrinsically stable or unstable. This raises the possibility that the stability in different conditions 
is a function of the particular functional inputs. We investigated whether or not the observed 
stimulus-dependent representational drift in single neurons could be linked to stimulus-330 
dependent changes in the correlation structure of the local population, as even in primary 
sensory cortex neuronal responses are strongly influenced by local circuit activity [33,69–71]. 
Neurons co-responsive to naturalistic stimulus features may have less pre-existing connectivity 
compared to neurons co-tuned to specific orientations of the PDG stimulus, which have been 
found to exhibit high interconnectivity [45,46,72]. Does the MOV population correlation structure 335 
change across weeks while PDG correlation structure remains consistent? To answer this, on 
every session for both stimuli we calculated pairwise between-neuron signal correlations (SC), 
which capture shared responses to stimulus-driven input, and noise correlations (NC), which 
capture shared trial-to-trial variability (see Methods). Visualizing SC structure on the final 
recording session (Dfinal) versus the reference session (D0) for individual mice showed larger 340 
differences for MOV than for PDG (Figure 6A), and absolute changes in mean SC across 
neurons were greater on average for MOV than for PDG in 12 out of 13 fields (Figure 6B-C). 
Consistent with another study investigating cross-session changes in grating stimulus 
correlation structure [35], both the MOV and PDG SC structures became gradually less similar 
to D0 over time, as measured by the Pearson correlation between each matrix and the D0 matrix 345 
(Figure 6D). However, the MOV correlation structure exhibited greater divergence as a function 
of time since D0 (Figure 6D). Repeating these analyses for noise correlations revealed a weaker 
effect than that of SC, though the trend was in the same direction (Figure S10), possibly due to 
relatively low levels of noise correlations in our data. Previous studies indicate that NC 
measurements can vary significantly and may be affected by a variety of factors, such as spike 350 
rates and behavioral state [69,73]. For this reason, we cannot conclusively determine whether 
drift is present in NCs as well. In summary, the differential stability of responses to PDG and 
MOV stimuli does not appear to be related to higher order statistical features in the MOV 
stimulus, but rather to the decreased stability of the co-tuned neuronal ensembles driven by 
each stimulus. 355 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 11, 2020. ; https://doi.org/10.1101/2020.12.10.420620doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.10.420620
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 
 

DISCUSSION 

Here we investigated the extent to which representational drift exists in populations of individual 
neurons through a comparison of neural responses to artificial (PDG) and naturalistic (MOV) 
visual stimuli in the primary visual cortex of awake mice over many weeks. We found that 
neurons exhibited highly consistent orientation tuned responses to the grating stimulus over all 360 
recording sessions (Figure 1, Figure S2), consistent with previous work [18,22,35,38]. However, 
many of the same neurons displayed less stable representations of the natural movie stimulus 
(Figures 1-2, Figures S3-5). Contrary to our hypothesis that geniculate inputs to L4 may grant it 
more consistent stimulus representation, translaminar imaging revealed that this differential 
stability existed not only in L2/3 and L5, but also in L4 (Figure 3). Repeating our experiments in 365 
populations of inhibitory interneurons yielded a similar difference in stability between the two 
stimuli (Figure 4). Importantly, the observed drift could not be explained by external factors such 
as eye movement, arousal, or surgical preparation (Figures S6,8,9). Additionally, the higher 
order image statistics of natural stimuli were not found to contribute to the differential drift 
between stimuli (Figure 5). Finally, we found that the drift observed in MOV responses was 370 
accompanied by changes in the population correlation structure, potentially due to lack of 
strongly connected iso-tuned subnetworks that respond to grating stimuli (Figure 6).  

From work that utilizes artificial stimuli such as gratings, compelling evidence suggests 
that basic neuronal response properties such as orientation tuning, spatial frequency tuning, 
and size tuning are remarkably stable over time [18,22,35]. However, another recent study 375 
reports that naturalistic stimulus responses in mouse visual cortex exhibit significant 
representational drift [47]. By performing a direct comparison of artificial and naturalistic visual 
stimulus response in the same animals, our experiments allowed us to reconcile this 
discrepancy by showing that response stability is dependent on stimulus, and not simply an 
intrinsic property of a given neuron.  380 

Further characterization of the representational drift observed in MOV responses 
revealed two important results. First, we showed that differential stability between stimuli existed 
not only at the single-neuron level but also at the scale of individual response events, wherein 
response events during the MOV stimulus were more likely to experience bidirectional 
amplitude changes across sessions than those that occurred during the PDG stimulus (Figure 385 
2D, E). Second, consistent with previous work demonstrating a relationship between response 
magnitude and stability [38], we found such a correlation to be evident on the level of individual 
events (Figure 2F-G, Figure S7A). These results indicate representational drift may operate at 
the level of specific functional inputs, rather than at the level of single neurons. Deitch et al. 
found similar single neuron representational drift that appeared to be dominated by changes in 390 
firing rate rather than changes in stimulus tuning [47]. However, our results indicate that these 
two properties are interconnected in that changes in firing rate can manifest as changes in 
tuning over long time scales. We also noted an inverse relationship between event response 
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magnitude and event redundancy, wherein the strongest events are not only the most stable but 
also the least redundant across other neurons in the recorded population (Figure S7B-C). 395 
Neurons that primarily respond with strong, stable events that are relatively sparsely 
represented across the population may constitute a response class previously characterized as 
“soloists”, and those that primarily respond with weak, redundant events may represent 
“choristers” more strongly coupled to the local population [74,75]. This is consistent with the 
developing characterization of sensory cortices as being dominated by subnetworks of 400 
particularly stable and robustly responding neurons against a background of weakly responsive 
neurons [25,36,37,72]. 

One question still outstanding is the extent to which representational drift is present 
throughout the visual hierarchy. Presumably, repeated visual input is encoded in a consistent 
fashion within the retina and the earliest stages of the visual pathway. Based on the results that 405 
unstable responses arise as early as layer 4 of V1, one hypothesis might be that primary visual 
cortex as a whole represents a relatively intermediate processing stage in which single neurons 
are permitted greater coding flexibility, and that LGN, which receives input directly from the 
retina, exhibits greater stability. However, given recent results showing that retinogeniculate and 
retinocollicular boutons are modulated by arousal [76,77], representational drift might begin 410 
even earlier. Future studies using glass microprisms or GRIN lenses to allow chronic optical 
access to LGN [77] will allow elucidation of these possibilities. Finally, it remains to be seen 
whether stimulus representations stabilize as signals propagate to higher visual areas, or if the 
capacity for drift is preserved across the entire visual pathway. To answer this, another future 
direction would be to perform similar longitudinal imaging in higher visual areas concurrently 415 
with recordings from V1 in the same animals.  

Representational drift appears in varying degrees across different brain structures, and 
most prevalently outside of sensory cortex. In motor and parietal cortices, evidence suggests 
that population-level activity patterns remain intact, even as the underlying neurons representing 
task or motor information experience significant drift [7,8,19,20,66], although see [4,6]. Several 420 
studies have identified strong representational drift in hippocampal place cells that exhibit 
dynamic cognitive maps of the environment [27,28,78,79], though results vary across 
hippocampal subregions [80]. One possible interpretation is that the opportunity for 
representational drift increases with distance from the sensory input, given that studies in 
sensory cortices have largely found relatively stable tuning properties. Additionally, in 425 
association areas, the capability of single neuron representations to drift could play a role in 
providing flexibility for coding learned associations [19]. However, our data show that this 
hypothesis may be overly simplistic, as stability appears to be not only a property of the 
individual neurons or brain region, but also a function of encoded information. As we show in 
V1, the same neuron can simultaneously exhibit stable tuning properties and more malleable 430 
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responses to naturalistic stimuli. It remains to be seen if this holds true for motor and 
association cortex as well. 

How would stable tuning properties be maintained in the presence of representational 
drift? One possibility is that since subnetworks of neurons iso-tuned for orientation exhibit high 
connectivity (likely established early in development) [45,46,72], fundamental tuning properties 435 
would be stabilized throughout the lifetime of the neurons. However, neurons co-responsive to 
particular time points in a natural stimulus would not necessarily exhibit any higher connectivity 
than expected by chance. This could lead to the differential shifts in correlation structure we 
observed between the two stimuli, and the resulting differences in representational drift (working 
model illustrated in Figure 6E). Taken together, we propose that co-tuned subnetworks of 440 
neurons can preserve fundamental tuning properties while allowing for more flexible responses 
to complex naturalistic stimuli. Such a governing principle is potentially applicable to other 
cortical regions, where highly interconnected neuronal subnetworks may preserve stable 
encoding of fundamental input features while maintaining flexibility in their responses to more 
complex inputs.   445 

 

METHODS 

Animals 

For cortex-wide calcium indicator expression, Emx1-IRES-Cre (Jax Stock #005628) x ROSA-

LNL-tTA (Jax Stock #011008) x TITL-GCaMP6s (Jax Stock #024104) triple transgenic mice (n = 450 

10) or Slc17a7-IRES2-Cre (Jax Stock #023527) x TITL2-GC6s-ICL-TTA2 (Jax Stock #031562) 

double transgenic mice (n = 2) were bred to express GCaMP6s in cortical excitatory neurons. 

For interneuron activity measurements, we used GAD2-IRES-Cre (Jax Stock #028867) x TITL2-

GC6s-ICL-TTA2 (Jax Stock #031562) double transgenic mice (n = 4). For imaging experiments, 

12 - 30 week old mice of both sexes (5 males and 7 females for transgenic excitatory 455 

populations, 2 males and 2 females for inhibitory populations) were implanted with a head plate 

and cranial window and imaged starting 2 weeks after recovery from surgical procedures and up 

to 10 months after window implantation. The animals were housed on a 12 hr light/dark cycle in 

cages of up to 5 animals before the implants, and individually after the implants. All animal 

procedures were approved by the Institutional Animal Care and Use Committee at University of 460 

California, Santa Barbara. 

Surgical Procedures  

All surgeries were conducted under isoflurane anesthesia (3.5% induction, 1.5 - 2.5% 

maintenance). Prior to incision, the scalp was infiltrated with lidocaine (5 mg kg-1, 
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subcutaneous) for analgesia and meloxicam (2 mg kg-1, subcutaneous) was administered 465 

preoperatively to reduce inflammation. Once anesthetized, the scalp overlying the dorsal skull 

was sanitized and removed. The periosteum was removed with a scalpel and the skull was 

abraded with a drill burr to improve adhesion of dental acrylic.  

For standard cranial windows, a 4 mm craniotomy was made over the visual cortex 

(centered at 4.0 mm posterior, 2.5 mm lateral to Bregma), leaving the dura intact. A cranial 470 

window was implanted over the craniotomy and sealed first with silicon elastomer (Kwik-Sil, 

World Precision Instruments) then with dental acrylic (C&B-Metabond, Parkell) mixed with black 

ink to reduce light transmission. The cranial windows were made of two rounded pieces of 

coverglass (Warner Instruments) bonded with a UV-cured optical adhesive (Norland, NOA61). 

The bottom coverglass (4 mm) fit tightly inside the craniotomy while the top coverglass (5mm) 475 

was bonded to the skull using dental acrylic.  

 For columnar imaging, we used custom-designed microprisms (Tower Optical) that had 

a 200 µm square base and a 700 µm right angle prism (design available on our institutional lab 

website: https://goard.mcdb.ucsb.edu/resources). The hypotenuse of the right angle prism was 

coated with aluminum for internal reflectance. The microprism was attached to a 5 mm diameter 480 

coverglass (Warner Instruments) with a UV-cured optical adhesive (Norland, NOA61). Prior to 

implantation, a 3-4 mm craniotomy was made over primary visual cortex (centered at 4.0 mm 

posterior, 2.5 mm lateral to Bregma). A 1 mm length medial-to-lateral incision was then made 

through the dura and cortex to a depth of 1 mm with a sterilized diamond micro knife (Fine 

Science Tools, #10100-30) mounted on a manipulator, taking care to avoid blood vessels 485 

(approximately 4.0 mm posterior, 2.5 mm lateral to Bregma). Gelfoam (VWR) soaked in sterile 

saline was used to remove any blood from the incision site. Once the incision site had no 

bleeding, the craniotomy was submerged in cold sterile saline, and the microprism was lowered 

into the cortex using a manipulator, with the imaging face of the prism facing anterior. The 

microprism assembly was completely lowered until the coverglass was flush with the skull, then 490 

the edges of the window were sealed with silicon elastomer (Kwik-Sil, World Precision 

Instruments), then with dental acrylic (C&B-Metabond, Parkell) mixed with black ink. The 

microprism implant enabled imaging from 200 - 900 µm below the coverglass surface, 

corresponding to approximately 100 - 800 µm into the cortex due to approximately 100 µm of 

dimpling near the top corner of the prism. Cortical layers 2-5 were visible in all recordings, with 495 

partial visibility of layer 1 and layer 6. The microprism implantations were stable for up to six 

months following the surgery, similar to previously published results [63]. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 11, 2020. ; https://doi.org/10.1101/2020.12.10.420620doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.10.420620
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 
 

For thinned-skull experiments, a 3 - 4 mm diameter patch of skull over V1 was carefully 

thinned using a drill burr and then a rubber polishing bit until fully translucent, being careful to 

keep the thinned skull wet with sterile saline. After the thinning was complete, the saline was 500 

wicked away, a drop of cyanoacrylate (Loctite 406) was placed on the thinned skull and a 3 mm 

coverglass (Warner) was lowered using a manipulator until flush with the thinned skull. The 

implant was then sealed with dental acrylic (C&B-Metabond, Parkell) mixed with black ink. The 

thinned-skull window implantations were stable for up to six months following the surgery, 

similar to previously published results [81]. 505 

After cranial window implantation, a custom-designed stainless steel head plate 

(eMachineShop.com) was affixed using dental acrylic (C&B-Metabond, Parkell) mixed with 

black ink. After surgery, mice were administered carprofen (5 - 10 mg kg-1, oral) every 24 hr for 

3 days to reduce inflammation. The full specifications and designs for head plate and head 

fixation hardware are available on our institutional lab web site 510 

(https://goard.mcdb.ucsb.edu/resources). 

Visual Stimuli 

All visual stimuli were generated with a Windows PC using MATLAB and the Psychophysics 

toolbox [82]. Stimuli used for widefield visual stimulation during retinotopic mapping were 

presented on an LCD monitor (43 x 24cm, 1600 x 900 pixels, 60Hz refresh rate) positioned 10 515 

cm from the eye at a 30 degree angle to the right of the midline, spanning 130° (azimuth) by 

100° (elevation) of visual space. For chronic two-photon imaging experiments, visual stimuli 

were presented on an LCD monitor (17.5 x 13 cm, 800 x 600 pixels, 60Hz refresh rate) 

positioned 6 cm from the eye at a 30 degree angle right of the midline, spanning 120° (azimuth) 

by 100° (elevation) of visual space. Physical bars affixed to the table and reference point 520 

distance measurements were used to ensure that the stimulus monitor was fixed in the exact 

same location for each experiment. 

Retinotopic mapping stimuli consisted of a drifting bar with contrast reversing 

checkboard (0.05 cycles degree-1 spatial frequency; 2 Hz temporal frequency) that was 

spherically corrected to account for visual field distortions due to the proximity of the monitor to 525 

the mouse’s eye. The stimulus was swept in the four cardinal directions, repeated 20-60 times.  

For passive drifting grating (PDG) stimulation, 12 full-contrast sine wave gratings (spatial 

frequency: 0.05 cycles/deg; temporal frequency: 2 Hz) were presented full-field, ranging from 0° 

to 330° from vertical in 30° increments. We presented 8 repeats of the drifting grating stimulus; 
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a single repeat of stimulus consisted of all 12 grating directions presented in order for 2 sec with 530 

a 4 sec inter-stimulus interval (gray screen) to allow calcium responses to return to baseline 

between presentations.  

For natural movie visual stimulation, we displayed a grayscale 30 sec clip from Touch of 

Evil (Orson Wells, Universal Pictures, 1958) containing a continuous visual scene with no cuts 

(https://observatory.brain-map.org/visualcoding/stimulus/natural_movies). The clip was contrast-535 

normalized and presented at 30 frames per second. We presented 30 repeats of the natural 

movie stimulus; each repeat started with 5 sec of gray screen, followed by the 30 sec of movie.  

For phase scrambled natural movie visual stimulation, the original 30 sec natural movie 

clip from Touch of Evil (Orson Wells, Universal Pictures, 1958) was separated into phase and 

amplitude spectra using 2-D fast Fourier transform, and its phase structure was randomly 540 

scrambled before being reconstructed with the original amplitude data to form the new movie. 

For the 50% phase scrambled movie, only a random half of the image’s phase elements were 

scrambled. We presented 20 repeats each of the original natural movie stimulus, the 50% 

phase scrambled movie, and the 100% phase scrambled movie in a random order on every 

session; each repeat started with 5 sec of gray screen, followed by 30 sec of one of the movies. 545 

Each version was contrast-normalized and presented at 30 frames per second. 

The receptive field mapping stimuli consisted of full screen length vertical (azimuth) or 

horizontal (altitude) bars (20° width) with contrast reversing checkerboards (0.04 cycles degree-1 

spatial frequency; 5 Hz temporal frequency). These bars were presented for 1 sec at a number 

of locations spanning the height (altitude) and width (azimuth) of the screen in random order on 550 

every repeat (30 locations for altitude, 40 locations for azimuth) for a total of 10 repeats for each 

direction, with a 2 sec gray screen between repeats.  

Eye Tracking  

To confirm that representational drift was not due to eye movements, we performed eye tracking 

experiments on 4 mice. These mice were head-fixed identically to imaging experiments, but an 555 

IR camera (Thorlabs DCC1645C with IR filter removed; Computar T10Z0513CS 5-50mm f/1.3 

lens) was placed such that the image sensor was located immediately lateral to the stimulus 

monitor. Video was acquired at 15 fps and images were analyzed offline in MATLAB 

(Mathworks). 

 The pupil was identified for each frame using an automated procedure. In brief, raw 560 

images were binarized based on pixel brightness, and the resulting images were 
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morphologically cleaned by removing isolated pixels. For the initial frame, the pupil was 

manually chosen. For subsequent frames, the pupil was chosen from potential low intensity 

regions based on a linear combination of size, location, and eccentricity of the pupil in the 

previous frame.  565 

Widefield Imaging 

After >2 weeks of recovery from surgery, GCaMP6s fluorescence was imaged using a custom 

widefield epifluorescence microscope [51]. In brief, broad spectrum (400-700 nm) LED 

illumination (Thorlabs, MNWHL4) was band-passed at 469nm (Thorlabs, MF469-35), and 

reflected through a dichroic (Thorlabs, MD498) to the microscope objective (Olympus, 570 

MVPLAPO 2XC). Green fluorescence from the imaging window passed through the dichroic and 

a bandpass filter (Thorlabs, MF525-39) to a scientific CMOS (PCO-Tech, pco.edge 4.2). Images 

were acquired at 400 x 400 pixels with a field of view of 4.0 x 4.0 mm, leading to a pixel size of 

0.01 mm pixel-1. A custom light blocker affixed to the head plate was used to prevent light from 

the visual stimulus monitor from entering the imaging path.  575 

Widefield Post-processing 

Images were acquired with pco.edge camera control software and saved into multi-page TIF 

files. All subsequent image processing was performed in MATLAB (Mathworks). Visual field sign 

maps were derived and segmented as previously described [51]. After processing, borders were 

drawn around each patch, and resulting patches were compared against published sign maps 580 

for both size and sign to label each patch as a visual area. Visual areas V1, LM, AL, PM, LI, RL, 

and AM were present in all mice. Area V1 was targeted for all further recordings. 

2-Photon imaging  

After >2 weeks’ recovery from surgery, GCaMP6s fluorescence was imaged using a Prairie 

Investigator 2-photon microscopy system with a resonant galvo scanning module (Bruker). For 585 

fluorescence excitation, we used a Ti:Sapphire laser (Mai-Tai eHP, Newport) with dispersion 

compensation (Deep See, Newport) tuned to l = 920 nm. Laser power ranged from 40 - 75 mW 

at the sample depending on GCaMP6s expression levels. Photobleaching was minimal (<1% 

min-1) for all laser powers used. For collection, we used GaAsP photomultiplier tubes 

(Hamamatsu). A custom stainless-steel light blocker (eMachineShop.com) was mounted to the 590 

head plate and interlocked with a tube around the objective to prevent light from the visual 

stimulus monitor from reaching the photomultiplier tubes. For imaging, we used a 16x/0.8 NA 

microscope objective (Nikon) at 1.2 (690 x 690 µm) to 2x (425 x 425 µm) magnification. During 
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imaging experiments, the polypropylene tube supporting the mouse was suspended from the 

behavior platform with high tension springs (Small Parts) to reduce movement artifacts.  595 

For imaging across multiple weeks, imaging fields on a given recording session were 

manually aligned based on visual inspection of the average map from the reference session 

recording, guided by stable structural landmarks such as blood vessels and neurons with high 

baseline fluorescence. Physical controls were used to ensure precise placement of the head 

plate and the visual stimulus screen relative to the animal, and data acquisition settings were 600 

kept consistent across sessions. Recordings were taken once every 7 ± 1 days for 5 - 7 weeks. 

To acclimate to head fixation and visual stimulus presentation, mice were head-fixed and 

presented the full series of visual stimuli for 1 to 2 full sessions prior to the start of their 

experimental run. 

2-Photon Post-processing  605 

Images were acquired using PrairieView acquisition software and converted into TIF files. All 

subsequent analyses were performed in MATLAB (Mathworks) using custom code 

(https://goard.mcdb.ucsb.edu/resources). First, images were corrected for X-Y movement within 

each session by registration to a reference image (the pixel-wise mean of all frames) using 2-

dimensional cross correlation. Next, to align recordings to the reference session, we used semi-610 

automated rigid registration, similar to prior work [9,83]. First, anchor points were automatically 

generated from matching image features between average projections detected by the 

‘Speeded-Up Robust Features’ (SURF) algorithm (Computer Vision Toolbox, Mathworks). The 

anchor points were manually corrected through visual inspection, and additional anchor points 

were added when necessary. These anchor points defined a predicted displacement vector field 615 

that would be used to map coordinates from one session to the other. For each coordinate, the 

predicted vector was defined by the average (weighted inversely by distance) of the vectors for 

all defined anchor points. This vector field was then applied to every frame of the recording to 

warp the coordinates of each image to the reference coordinate plane.   

To identify responsive neural somata, a pixel-wise activity map was calculated using a 620 

modified kurtosis measure. Neuron cell bodies were identified using local adaptive threshold 

and iterative segmentation, using average activity maps across sessions. Automatically defined 

regions of interest (ROIs) were then manually checked for proper segmentation in a graphical 

user interface.  

To ensure that the response of individual neurons was not due to local neuropil 625 
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contamination of somatic signals, a corrected fluorescence measure was estimated according 

to:  

𝐹!"##$!%$&(𝑛) = 	𝐹'"()(𝑛) − 	𝛼 ∗ 𝐹*$+#",-.(𝑛) 

where Fneuropil was defined as the fluorescence in the region <30 µm from the ROI border 

(excluding other ROIs) for frame n and a was chosen from [0 1] to minimize the Pearson’s 630 

correlation coefficient between Fcorrected and Fneuropil. The DF/F for each neuron was then 

calculated as:  

∆𝐹 𝐹⁄ = 	
𝐹* −	𝐹/
𝐹/

 

Where Fn	is the corrected fluorescence (Fcorrected) for frame n and F0 is defined as the first mode 

of the corrected fluorescence density distribution across the entire time series.  635 

Analysis of 2-Photon Imaging Data 

To minimize potential artifacts introduced by misalignments of the imaging fields across 

sessions, we manually inspected the average projection and pixel-wise activity maps underlying 

every defined ROI across all sessions. We assigned each ROI a quality rating based on its 

appearance and included only ROIs of sufficient quality in our analyses (threshold quality of 3 640 

unless indicated otherwise). Briefly, we defined ROI quality as follows: ROIs rated a quality of 4 

or 5 were cells that were clearly present across sessions, and the cell structure could be clearly 

resolved in both the average projection and activity map. ROIs rated a quality of 3 were also 

cells unambiguously tracked across sessions but had average maps that were often noisier than 

cells rated 4 or 5 (for example, they may be identifiable solely by their appearance on the 645 

activity map). ROIs rated a quality of 2 were either cells that were not well-tracked or were not 

unequivocally neuronal somata. ROIs rated a quality of 1 were cells that were not present on 

the reference session. Each ROI was also marked as either present or not present on each 

session.  

Reliability on a given session was calculated as the Pearson correlation coefficient (CC) 650 

between trial-averaged activity taken from two random halves of trials. For MOV, the 30 trials 

were randomly subsampled to 8 to match PDG, a CC value was found using this subsampled 

data, and then this was repeated 10 times and averaged for a final reliability value.  

A neuron’s responsiveness to a stimulus was determined based on a collective measure 

of the reliability of the neurons in a given field using time-shuffled data. First, a neuron’s activity 655 
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on each trial was circularly shuffled by a random amount. Next, a reliability value was calculated 

using this shuffled data. This was repeated 1,000 times to yield a distribution of reliability values, 

and the 99th percentile of this distribution was stored. This 99th percentile threshold was found 

for every neuron. If a neuron’s actual average reliability across sessions was statistically greater 

than the average of these 99th percentile values (one-sample t-test), it was classified as 660 

responsive to the stimulus. For PDG, a neuron’s orientation selectivity index (OSI) on a given 

session was calculated as: 

𝑂𝑆𝐼 = 	
𝑅,#$0 − 𝑅"#%1
𝑅,#$0 + 𝑅"#%1

 

Where 𝑅,#$0 is the neuron’s average response to its preferred orientation, and 𝑅"#%1 is 

the average response to the orthogonal orientations. To map preferred orientation for Figure 665 

S2D, a neuron’s average orientation response vector was wrapped (averaged between opposite 

orientations), linearly interpolated onto a 180-degree scale, and then fit with a gaussian curve to 

determine peak response. 

The Representational Drift Index (RDI) with respect to a given session and the reference 

session was calculated as: 670 

𝑅𝐷𝐼 = 	
𝐶𝐶2' −	𝐶𝐶3'
𝐶𝐶2' +	𝐶𝐶3'

 

Where 𝐶𝐶2' is the Pearson correlation of the trial-averaged activity of two random halves of 

trials within a session, and 𝐶𝐶3' is the Pearson correlation of the trial-averaged activity of two 

random halves of trials across the compared sessions. For these calculations, negative CC 

values were rectified to zero. Control RDI values were calculated by treating half of the trials on 675 

the first session as the ‘test session’ and the other half as the ‘reference session’.  

 Visual response events were identified using DF/F data and refined using inferred spike 

rate data. For each neuron, each frame spanning the length of a stimulus was evaluated for 

visual response significance by comparing the distribution of its activity values across trials with 

the distribution of frame-averaged gray-screen period baseline fluorescence values across trials 680 

(Wilcoxon sign rank test, right-tailed). Frames were evaluated on a session-by-session basis: if 

a frame was determined to be significantly responsive in this way on at least two sessions, it 

was considered to be an event period frame. After each frame was evaluated, the resulting 

events (periods of contiguous significant frames) were cleaned up by discarding any events 

consisting of fewer than 5 frames (500 ms) and combining any events 2 or fewer frames (200 685 
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ms) apart. Next, a second set of event periods were defined independently using deconvolved 

spike rate data. A peristimulus time histogram was calculated using spike rate data from all trials 

across sessions, and frames above a threshold of 2 spikes/sec were treated as event periods. 

To avoid merging distinct response events due to fluorescence tails, the original event periods 

determined using DF/F data were further refined using these spike rate event periods such that 690 

detected DF/F events lasted no longer than 10 frames (1 s) past the end of the leading spike 

rate event period.  

 Event types were determined by z-scoring an event’s responses on every trial against 

baseline activity and comparing the distributions of these z-score values between the first two 

sessions (60 trials) and the last two sessions (60 trials) (two-sided Wilcoxon rank-sum test). 695 

Event instability, or normalized delta z-score, was calculated as: 

𝑁𝑜𝑟𝑚. |∆	𝑧𝑆𝑐𝑜𝑟𝑒| = 	
|𝑍.)%$ − 𝑍$)#.4|
𝑍.)%$ + 𝑍$)#.4

 

Where 𝑍$)#.4 represents the average z-score of an event’s trial-averaged activity on the first two 

sessions, and 𝑍.)%$ represents the average z-score of an event’s trial-averaged activity on the 

last two sessions. For boxplot comparisons in event analyses, the first quartile of data was 700 

compared against the last quartile (Wilcoxon rank-sum test).  

 To draw boundaries between cortical layers, layer 4 was identified by finding peak ROI 

density along a user-defined translaminar axis of the window. A 140 µm window centered at this 

point was defined as the L2/3 / L4 boundary and the L4 / L5 boundary, and 150 µm deeper than 

the L4 / L5 boundary was defined as the L5 / L6 boundary [84].  705 

 Pairwise signal correlations were calculated as the Pearson correlation coefficient 

between two neurons’ trial-averaged activity on a given session. For pairwise noise correlations, 

a neuron’s trial-average activity was first subtracted from its activity on every trial. All frames 

were then concatenated into a continuous signal, and the Pearson correlation coefficient was 

found between these full traces (for MOV, only the first 5760 frames were used to match the 710 

length of the PDG recording). Calculation of noise correlations using the average correlation of 

response vectors across stimulus presentations produced similar results [35]. 

Statistical Information  
To test statistical significance of single groups compared to a group of zero mean, one-

sample t-tests (normally distributed data) or Wilcoxon signed-rank (non-parametric) tests were 715 
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performed. For comparing experimental groups, two-sample paired t-tests were performed for 

paired groups and either unpaired t-tests (normally distributed data) or Wilcoxon ranksum (non-

parametric) tests were performed for unpaired groups. One-way and two-way ANOVA were 

performed for comparing more than two groups and testing the effects of multiple factors, 

respectively. All tests were performed two-tailed unless indicated otherwise.  720 
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FIGURES 

 
Figure 1: Chronic 2-photon imaging reveals differential stability of visual responses in single cells. 
(A) Visual stimuli: top screen depicts a drifting grating of one orientation as presented in the passive drifting 
grating (PDG) stimulus, bottom screen depicts a single frame from the natural movie (MOV) stimulus. PDG 
is presented first as 8 repeats of a 12 orientation sequence, followed by 30 repeats of MOV.  
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(B) Location of one example recording field in primary visual cortex (V1). Left: widefield fluorescence image 
of a 4 mm cortical window for one example Emx1-cre x ROSA-tTA x TITL-GCaMP6s mouse, with overlay 
(light blue) of visual area boundaries determined by retinotopic mapping (see methods); red box indicates 
the approximate location of 2-photon recordings in V1; scale bar = 1mm. Right: example average projection 
of a 2-photon imaging field; scale bar = 100μm. Bottom: schematic of head-fixed mouse watching the PDG 
stimulus.  
(C)  Example images of registered cells (see methods) from imaging field in (B) on all recording days. Top 
row, green: average projection of GCaMP fluorescence channel. Bottom row, red: pixel-wise activity map 
(see Methods). Scale bar = 15μm.  
(D) Top left: single cell reliability distributions for PDG and MOV stimuli on the first recording session for 
one example mouse. Reliability is defined as the Pearson correlation coefficient (CC) of trial-averaged 
activity from two halves of the trials. Middle left: PDG reliability distribution; subset of PDG responsive 
neurons is colored. Bottom left: MOV reliability distribution; subset of MOV responsive neurons is colored. 
Right: each neuron’s between-trial CC for PDG vs. MOV, for neurons present on the reference session 
across all mice (4,142 neurons). Dots are colored by significant responsiveness to stimuli, as in (E).  
(E) Average percentage of neurons significantly responsive to each stimulus (MOV only: 47.7 ± 2.1% 
s.e.m., PDG only: 9.1 ± 0.9%, both: 20.4 ± 2.3%, none: 22.7 ± 2.2%).  
(F) Fluorescence traces (ΔF/F) for one example neuron. Trials are concatenated across sessions. Left: 
responses to the PDG stimulus; overlay: orientation tuning curves for each recording day. Right: responses 
to the MOV stimulus. White horizontal lines in each heatmap indicate divisions between recording sessions 
(8 trials per session for PDG, 30 trials per session for MOV). Heatmaps for each stimulus are co-normalized. 
Below each heatmap are trial-averaged responses colored by session.  
(G) Orientation tuning curves colored by session, averaged across all orientation-tuned neurons in all 
imaging fields and aligned to 0 degrees based on preferred orientation. Neurons are only included if they 
are present on a given session and orientation tuned (740, 710, 694, 670, 701, 659, 596 neurons per 
session).  
(H) Top: Representational Drift Index (RDI) curves for each stimulus for example neuron shown in (F); 
values closer to 0 indicates a more stable response (similar to the first recording session), and closer to 1 
indicates greater response drift (see methods); inset: RDI formula: CCWS = within-session correlation 
coefficient, CCBS = between-session correlation coefficient; dotted line indicates control RDI for this cell, 
determined using half the trials of the session 1 as the reference and the other half as a test data set (see 
methods).  
(I) Average RDI curves from all neurons across all imaging fields. Values are calculated using neurons that 
are present on any given session and visually responsive to both stimuli (‘dual-responsive’; n = 824, 808, 
793, 830, 761, 698 neurons for sessions 2-7, respectively); dotted line indicates control RDI, as in (H); error 
bars are ± s.e.m. Significance marker indicates the comparison of average RDI distributions within each 
session (***p < 0.001, paired-sample t-test).  
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Figure 2: Characterization of dynamic response events underlying single cell responses. 
(A) Single neuron RDI as a function of responsiveness (session-average z-score of ΔF/F activity). Each 
colored dot is one neuron; black dots are 10th percentile binned means; black line is a linear fit of the binned 
data; shaded area indicates 95th percent confidence interval. Neurons are z-scored using the entire 
recording on a given session. Data shown for all neurons responsive to both PDG and MOV (n = 736). 
(B) Response events from one example neuron. Top: ΔF/F responses, all trials across all recording 
sessions. Bottom: Trial-averaged response. Shaded areas indicate identified events. Insets: z-score 
trajectories (smoothed using 30-point moving average) across all trials for the three events in the example 
neuron. 
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(C) Number of response events per neuron. Left: all PDG responsive neurons shown in grey, dual-
responsive neurons shown in color. Right: all MOV responsive neurons shown in grey, dual-responsive 
neurons shown in color. 
(D) Proportions of event types (growing, decaying, and static) in responses to both stimuli. Event type is 
determined by z-scoring an event waveform’s single trial responses and comparing the distributions of 
these values between the first two sessions (60 trials) and the last two sessions (60 trials; Wilcoxon rank-
sum test). Data shown are mean proportions across all imaging fields ± s.e.m. (n = 13 imaging fields in 12 
mice). Proportion comparisons made with independent-samples t-test (growing events: t = 1.6, p = 0.12; 
decaying events: t = 4.8, p = 6.88 x 10-5; static events: t = 5.4, p = 1.61 x 10-5; n = 13 fields). 
(E) Visualization of MOV response event magnitude changes. Left: bands indicate event periods for each 
neuron, colored by event type. Neurons are ordered by time of maximum trial-averaged response. Right: 
proportions of event types for neurons’ peak responses (diagonal of left plot). Data shown for all dual-
responsive neurons. 
(F) Event instability (normalized delta z-score) as a function of event magnitude (session-average event z-
score). Each colored dot is one event; black dots are 10th percentile binned means ± 95th percent 
confidence interval. Box plots are first quartile of data tested against 4th quartile (***p < 0.001, Wilcoxon 
ranksum test, n = 282 events per quartile for PDG, 402 events per quartile for MOV). Data shown for all 
dual-responsive neurons. 
(G) MOV events are less stable than PDG events independent of event magnitude. Binned means (10th 
percentiles) using data from (F) for both stimuli shown together. Data from all events across both stimuli 
were pooled to determine bin edges, events from each stimulus were then binned separately. Error bars 
represent 95th percent confidence interval, grey lines are linear fits of the data. Significance markers 
indicate comparison of PDG and MOV values in each bin (**p < 0.01 for first bin, ***p < 0.001 for all other 
bins; Wilcoxon ranksum test). 
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Figure 3: Translaminar imaging shows equal RDI distributions across layers. 
(A) Schematic of glass microprism placement in V1. Red dotted line depicts the translaminar imaging plane, 
which is rotated 90 degrees from the original horizontal plane and spans ~700 μm of the cortical column, 
capturing neurons in L2-5 for a typical recording.  
(B) Example average fluorescence image from a chronic imaging session of a prism field. Colored boxes 
are zoomed-in example cells (red: L2/3 pyramidal neuron, green: L4 stellate neuron, blue: L5 pyramidal 
neuron). Scale bar = 100μm.  
(C) Delineation of cortical layers. Left: ROI density of binned pixel windows perpendicular to the cortical 
column axis (corresponds to right subfigure); layers are determined by finding peak density and assigning 
a 140 μm window around it as L4, and then a further 150 μm from the L4 deep boundary as L5. Right: 
example field shown in (B) with overlay of all ROIs colored by layer; dotted line is the translaminar axis.  
(D) Example field shown in (B, C) with overlay of ROIs of all well-tracked neurons responsive to MOV, 
colored according to MOV RDI. Dotted lines are layer boundaries.  
(E) Session-averaged RDI distributions by stimulus and layer, using all dual-responsive neurons recorded 
in prism fields (n = 4 mice, 64 L2/3 neurons, 111 L4 neurons, 121 L5 neurons). No significant difference 
found between layers, significant difference found between stimuli (layer F = 2.06, p = 0.12; stimulus F = 
45.7, p = 3.32 x 10-11; two-way ANOVA). Dotted lines indicate control RDI (as in Figure 1H, I) using all dual-
responsive neurons. 
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Figure 4: Inhibitory neuron populations also exhibit representational drift to MOV stimuli. 
(A) Average fluorescence image from an example field of inhibitory neurons in L2/3 of V1 of GAD2-Cre x 
TITL2-G6s mice. Scale bar = 100 μm.  
(B) Example images of well-tracked neurons (see Methods) from the field in (A) on all recording days, green 
and red colors are the same as in Figure 1C. Scale bar = 15 μm.  
(C) Fluorescence traces (ΔF/F) for one example neuron. Trials are concatenated across sessions. Left: 
responses to PDG. Right: responses to MOV. White horizontal lines indicate divisions between recording 
sessions. Heatmaps for each stimulus are co-normalized. Below each heatmap are trial-averaged 
responses colored by session.  
(D) Average percentage of neurons responsive to each stimulus (MOV only: 59.4 ± 1.9% s.e.m., PDG only: 
0.6 ± 0.6%, both: 14.4 ± 5.7%, none: 25.6 ± 6.3%).  
(E) RDI curves for the example neuron shown in (C); dotted line indicates control RDI for this cell (see 
methods).  
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(F) Average RDI curves from neurons across all imaging fields; error bars are ± s.e.m.; data shown for dual-
responsive neurons present on any given session (neurons per session: 33, 34, 34, 33, 33, 31); significance 
markers indicate the comparison of each session’s PDG RDI values and MOV RDI values (*p < 0.05, **p < 
0.01, ***p < 0.001, paired-sample t-test); dotted lines indicate control RDI as in previous figures. 
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Figure 5: Stability is not dependent on the higher order statistics of the visual stimulus. 
(A) Visual stimuli, where the original 30 repeats of MOV is replaced with 20 repeats each of 0%, 50% and 
100% phase-scrambled versions of the original movie, randomly interleaved. Bottom screens depict the 
same freeze-frame from each of the movie versions.  
(B) Average RDI curves from all neurons; error bars are ± s.e.m.; values are calculated using only neurons 
that are present on any given session (120, 118, 118, 119, 113, 111 neurons per session after first session). 
Average PDG RDI is significantly different from average MOV RDI for all three movie versions (***p < 0.001, 
paired-sample t-tests); dotted lines indicate control RDI, as in previous figures. 
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Figure 6: Between-neuron signal correlation stability is stimulus-dependent 
(A) Pairwise signal correlations on session 1 (left), final session (middle), and their difference (right) for one 
example field. Neurons are sorted by time of peak response on D0 for each stimulus. Data shown for all 
neurons responsive to both stimuli.  
(B) Distributions of single-neuron average change in signal correlations between first and final sessions for 
example field in A. Dotted lines are means for each stimulus (*p < 0.05, Wilcoxon rank-sum test).  
(C) Field-average changes in signal correlation between first and final sessions. Data shown for all fields. 
(**p < 0.01, paired-sample t-test, n = 13 fields). 
(D) Average instability of signal correlation matrices with respect to the first session over time (1 – CCbs, 
where CCbs is the 2D cross correlation between signal correlation matrices). Data shown for all fields. Error 
bars are ± s.e.m.; significance markers indicate comparison of PDG and MOV values on given session (*p 
< 0.05, **p < 0.01, ***p < 0.001, paired-sample t-test, n = 13 fields). 
(E) Schematic depicting the relationship between stimulus tuning stability and shifts in functional 
connectivity over time.  
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SUPPLEMENTAL INFORMATION 

 
 
Supplementary Figure 1: Example neuron images and ROI quality distribution. 
(A) - (D) Example ROIs from each quality rating. See methods for descriptions of each rating. Top row, 
green: average projection of GCaMP6s fluorescence channel. Bottom row, red: activity map of active pixels 
(see Methods). Scale bar = 15μm.  
(E) Distribution of quality ratings. Data shown for all ROIs across all mice. For all analyses, ROIs of quality 
2 or below are discarded.  
(F) Average RDI curves for both stimuli as shown in Figure 1I, for different ROI quality rating inclusion 
thresholds.  
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Supplementary Figure 2: Orientation tuning and selectivity are highly stable. 
(A) Example PDG recording pseudocolored by pixel-wise preferred orientation on the first recording week 
and the seventh recording week. Arrowheads indicate a subset of example neurons that were well tracked 
across recordings.  
(B) Tuning curves of example orientation-tuned neurons from one mouse across all recording sessions. 
(C) Average change in orientation selectivity index (OSI) as a function of time between recordings. Data 
shown for all mice, neurons must be present on both sessions and orientation tuned on the first recording 
session to be included. Blue dots are individual pairwise comparisons between recordings, black dots 
indicate mean ± s.e.m. of each distribution. No weeks are significantly different from average mean |ΔOSI| 
(p > 0.05, one-sample t-test, n = 66, 53, 43, 31, 18, 8).  
(D) Preferred orientation on the first recording session vs. final recording session (see Methods). Data 
shown for all mice using neurons present on all sessions and orientation tuned on the first session (n = 603 
neurons). Each dot is one neuron, colored by its OSI on week 1. Shaded areas indicate ± 30° change 
between recordings (± 1 orientation step, 96% of all neurons tuned on the first session).  
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Supplementary Figure 3: Example natural movie responses. 
Additional examples of single neuron responses to the MOV stimulus. White borders indicate the separation 
of recording sessions. Each neuron’s MOV RDI curve is shown on the top right of each heatmap. Data is 
normalized across sessions.  
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Supplementary Figure 4: Population responses to MOV stimulus. 
(A) Pixels of an example MOV recording pseudo-colored by response timing on the first recording week 
and the seventh recording week. Arrowheads indicate a subset of example neurons that were well tracked 
across recordings.  
(B) Example RDI curves and trial-averaged ΔF/F traces across sessions for neurons shown in (A).  
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Supplementary Figure 5: Individual mice exhibit variability in amount of representational drift. 
(A) Line plots: Average RDI curves for every imaged mouse. Values are calculated using only neurons that 
are present on any given session and responsive to both stimuli. Error bars are ± s.e.m.; dotted line 
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indicates control RDI, as in previous figures. Scatter plots: pairwise comparison of RDI curve slopes for 
single neurons, each linked pair is one neuron (*p < 0.05, **p < 0.01, ***p < 0.001, paired-sample t-test).  
(B) Comparison of average RDI curve slopes for each stimulus across all mice. Each linked pair is one 
mouse (t = 2.60, p = 0.02, paired-sample t-test). 
(C) Comparison of average RDI curve y-intercepts for each stimulus across all mice. Each linked pair is 
one mouse (t = 0.44, p = 0.67, paired-sample t-test). 
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Supplementary Figure 6: Method of surgical preparation does not influence RDI curves 
(A) Average fluorescence image from example transcranial imaging field. Scale bar = 100 μm. 
(B) Average RDI curves for 4 mice (81, 84, 84, 79, 75, 50 dual-responsive neurons per session 
shown) imaged through a thin skull preparation instead of a cranial window. Error bars are ± s.e.m. 
Significance markers indicate the comparison of each session’s PDG RDI values and MOV RDI values (*p 
< 0.05, **p < 0.01, **p < 0.001, paired-sample t-test); dotted line indicates control RDI, as in previous figures. 
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Supplementary Figure 7: Characterization of individual response event stability. 
(A) Comparison of first and last quartiles of data from Figure 2A. Highly active neurons are more stable on 
average than weakly active neurons. (**p < 0.01, ***p < 0.001, Wilcoxon rank-sum test). 
(B) Event instability as a function of event redundancy. Redundancy is defined as the fraction of total 
neurons with at least one event that overlaps by at least 75% of a given event’s duration. Each colored dot 
is one event; black dots are 10th percentile binned means ± 95th percent confidence interval. Boxplots 
compare first and last quartiles of data (Wilcoxon rank-sum test, ***p < 0.001). Data shown for all dual-
responsive neurons. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 11, 2020. ; https://doi.org/10.1101/2020.12.10.420620doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.10.420620
http://creativecommons.org/licenses/by-nc-nd/4.0/


48 
 

(C) Event redundancy as a function of session-average event z-score. Each colored dot is one event; black 
dots are 10th percentile binned means ± 95th percent confidence interval. Boxplots compare first and last 
quartiles of data (Wilcoxon rank-sum test, ***p < 0.001). Data shown for all dual-responsive neurons.  
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Supplementary Figure 8: Pupil size, but not eye movement, correlates with response stability. 
(A) Top: Average frames from each of the example recording session’s eye tracking videos. Bottom: 
Density heatmaps of the pupil centroid location on each recording session. Red ellipse depicts the average 
size, orientation and eccentricity of the pupil, centered on the average centroid location.  
(B) Session-average pupil centroid density map for example recording in (A). Red ellipse depicts the size, 
orientation and eccentricity of the pupil on week 1. Small red circles depict average pupil centroid location 
on each recording session.  
(C) Relationship between pupil area and RDI. Left: percent change of pupil area as a function of weeks 
between pairs of recording sessions, where the reference session is always the earlier of the two. Pupil 
area tends to decrease over the first few sessions (Spearman r = -0.47, p < 0.01). Right: percent change 
of pupil area between two sessions versus their pairwise RDI. Each dot is one pair of recording sessions. 
RDI is anticorrelated with pupil area (Pearson r = -0.38, p < 0.05). Data shown for all eye-tracked mice.  
(D) Relationship between within-session pupil movement and RDI. Left: percent change of average 
distance from mean pupil centroid location within each session as a function of weeks between pairs of 
sessions. Average amount of movement within each session tends to decrease over time (Spearman r = -
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0.37, p < 0.05). Right: percent change of within-session pupil movement between sessions versus pairwise 
RDI. Each dot is one pair of recording sessions. There is no association between relative degree of within-
session movement and RDI (Pearson r = -0.16, p > 0.05). Data shown for all eye-tracked mice.  
(E) Relationship between between-session pupil movement and RDI, for one example mouse. Left: 
Distance between mean pupil centroid location as a function of weeks between recording sessions. 
Average pupil location does not drift over time (Spearman r = -0.16, p > 0.05). Right: between-session pupil 
movement versus pairwise RDI. Each dot is one pair of sessions. Change in pupil centroid location is not 
correlated with RDI (Pearson r = -0.06, p > 0.05). 
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Supplementary Figure 9: RDI is not associated with changes in spatial receptive field location. 
(A) Average change in preferred altitude (blue) and azimuth (red) across weeks. Error bars are ± s.e.m. 
The visual stimulus screen spans 100° in the altitude direction and 130° in the azimuth direction. 
(B) Effect of a neuron’s change in spatial receptive field on its MOV RDI value. Each blue dot is one neuron, 
depicting its session-average absolute change in preferred altitude versus its session-average MOV RDI; 
horizontal error bars are ± s.e.m. Each grey dot is a neuron’s absolute change in preferred altitude on a 
given session versus its MOV RDI value on that session (there are multiple grey dots for every blue dot). 
Pearson correlation displayed on each plot uses colored data points. Data shown for all well-tracked 
neurons spatially tuned to altitude and visually responsive to MOV. 
(C) Same as in (B), but for preferred azimuth. Data shown for all well-tracked neurons spatially tuned to 
azimuth and visually responsive to MOV.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 11, 2020. ; https://doi.org/10.1101/2020.12.10.420620doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.10.420620
http://creativecommons.org/licenses/by-nc-nd/4.0/


52 
 

 
Supplementary Figure 10: Population noise correlation stability is not clearly stimulus-dependent 
(A) Pairwise noise correlations on session 1 (left), final session (middle), and their difference (right) for one 
example field. Neurons are sorted by time of peak response on D0 for each stimulus. Data shown for all 
neurons responsive to both stimuli.  
(B) Distributions of single-neuron average change in noise correlations between first and final sessions for 
example field in A. Dotted lines are means for each stimulus (*p < 0.05, Wilcoxon rank-sum test).  
(C) Field-average changes in noise correlation between first and final sessions. Data shown for all fields. 
(p > 0.05, paired-sample t-test, n = 13 fields). Although the example field showed a differential noise 
correlation stability between stimuli, there is no consistent difference across fields. 
(D) Average instability of noise correlation matrices with respect to the first session over time (1 – CCbs, 
where CCbs is the 2D cross correlation between noise correlation matrices). Data shown for all fields. Error 
bars are ± s.e.m.; significance markers indicate comparison of PDG and MOV values on given session (*p 
> 0.05, paired-sample t-test, n = 13 fields). 
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