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Abstract 

Studies of acute myeloid leukemia rely on DNA sequencing and immunophenotyping by flow 

cytometry as primary tools for disease characterization. However, leukemia tumor heterogeneity 

complicates integration of DNA variants and immunophenotypes from separate measurements. 

Here we introduce DAb-seq, a novel technology for simultaneous capture of DNA genotype and 

cell surface phenotype from single cells at high throughput, enabling direct profiling of 

proteogenomic states in tens of thousands of cells. To demonstrate the approach, we analyze the 

disease of three patients with leukemia over multiple treatment timepoints and disease 

recurrences. We observe complex genotype-phenotype dynamics that illustrate the subtlety of the 

disease process and the degree of incongruity between blast cell genotype and phenotype in 

different clinical scenarios. Our results highlight the importance of combined single-cell DNA 

and protein measurements to fully characterize the heterogeneity of leukemia. 

 

Introduction 

Cellular heterogeneity is an intrinsic aspect of cancer that drives disease progression and relapse. 

Because cancer cells are heterogeneous in genotype and phenotype, it is difficult to directly link 

genotypes to immunophenotypes beyond circumstantial evidence from epidemiologic studies1,2. 

In acute myeloid leukemia (AML), an aggressive hematologic malignancy, this heterogeneity 

manifests as polyclonal cancer cells with distinctive genotypes but diverse immunophenotypes3,4. 

While leukemic blasts often exhibit immunophenotypes distinct from normal cells, with some 

surface markers even serving as therapeutic targets5, immunotypes are only weakly prognostic. 

Genotypes, in contrast, are more informative on the disease course, which suggests a weak 

correspondence between these domains1,2. 
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Single-cell analysis provides a powerful tool for characterizing this complexity and thereby 

advancing our understanding of different cancers. The value of multiomic single-cell analysis is 

its ability to correlate co-occurrence of different features in individual cells, with high-

throughput technologies permitting analysis of thousands of cells to generate rich and intricate 

feature maps. For example, single-cell genotyping of AML-relevant loci has revealed co-

occurrence of mutations and mapping of the clonal relationships between blasts6–9. These studies, 

however, have yet to map DNA variants and surface phenotypes in the same cells, precluding 

direct linkage of phenotypes to the genetic mutations that drive them. 

 

To obtain simultaneous genotype and immunophenotype information, single cells can be sorted 

based on multi-parametric antibody analysis, and sequenced. While limited in throughput, these 

studies have uncovered important insights into the genetics of AML, identifying relevant 

aberrations such as single nucleotide polymorphisms (SNPs) and gene fusions10. Single-cell 

RNA sequencing (scRNA-seq) has emerged as a potentially valuable approach for genotype-

phenotype linkage because it is cost effective and scalable7,11–13. The mRNA sequences provide 

genotype information13,14 while the abundance of these sequences yields phenotypic 

information15–19. Moreover, modern approaches are high throughput, allowing characterization of 

thousands of cells. Nevertheless, genotyping from mRNA remains a challenging and error-prone 

procedure that, even in the best case, provides incomplete information. For example, stochastic 

gene expression, biological biases20, and limited coverage of essential genes combine to make 

assigning a genotype more difficult than can be achieved by direct analysis of DNA. Moreover, 

since RNA methods analyze only the expressed portion of the genome, mutations in intronic and 

other non-transcribed elements, like transcription factor binding sites, are omitted21,22. Thus, 
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while several technologies have highlighted the importance of high-throughput single cell 

genotype-phenotype measurements, none provide the scalability and precision for 

comprehensive and accurate mapping of these biomarkers.  

 

Here, we describe DAb-seq, the first tool for joint profiling of DNA and surface proteins in 

single cells at high throughput. While existing methods attempt to obtain this information from 

the transcriptome alone, our approach directly sequences DNA for genotype and surface proteins 

for phenotype – both gold standards in blood cancer studies. DAb-seq is thus distinct from RNA 

and antibody sequencing methods, which capture phenotypic features of cells but do not yield 

genotypes directly from DNA. To illustrate the power of DAb-seq, we investigate the 

immunophenotypic and genotypic diversity underpinning AML in three patients at multiple 

timepoints. We leverage the method’s throughput to analyze 49 DNA targets and 23 

hematopoietic markers in a total of 54,717 cells. This analysis allows tracking of proteogenomic 

dynamics over multiple treatments and recurrences. We identify cases of genotype-phenotype 

decoupling, observing immunophenotypic heterogeneity among cells with a shared pathogenic 

mutation and genotypically diverse cells with a convergent malignant immunophenotype. These 

findings indicate variability of blast fate upon treatment in AML. Furthermore, our results 

underscore that independent phenotype or genotype measurements do not adequately capture 

proteogenomic heterogeneity. More broadly, our work demonstrates how single-cell 

technologies can elucidate the complex interplay between DNA mutations and their effects on 

protein expression in cancer. 

 

Results 
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To achieve combined DNA sequencing and antibody profiling in single cells, we developed a 

novel workflow leveraging a commercial microfluidic platform. The Mission Bio Tapestri 

instrument is designed for targeted sequencing of thousands of single cells and has been applied 

to DNA genotyping and lineage mapping in cancers8. We modified its protocol to support Abseq, 

a separate method we developed23 that allows characterization of single-cell surface proteins by 

sequencing. As in Abseq, DAb-seq begins with immunostaining of a cell suspension using a 

mixture of antibody-oligo conjugates (Figure 1A). Each antibody is associated with a known 

oligo tag; thus, when cells are stained with a pool of tagged antibodies, each cell is bound with a 

combination of antibodies and their tags based on surface protein profile. 

 

The stained cells are processed through a series of microfluidic devices on the Tapestri 

instrument to amplify and barcode genomic targets and surface-bound antibody tags. The 

workflow follows a two-step protocol to lyse cells and digest chromatin, making the genome 

accessible to amplification; the droplets are then subjected to a multiplex PCR to simultaneously 

amplify the genomic targets and capture antibody tags, labeling both with a barcode fragment 

relating sequences from the same cell (Figure 1B). For genotype, we target recurrently mutated 

genomic DNA loci in AML with primers containing a unique cell barcode against 49 amplicons 

spanning 19 genes (Supplementary Table 1). The primers and PCR conditions are tuned to 

enable uniform and quantitative amplification of all genomic DNA targets (Supplementary 

Figure 1). These primers also capture antibody tags from a 23-plex immunophenotyping panel 

based on those used in clinical minimal residual disease studies24,25 (Figure 1C, Supplementary 

Table 2). Sequencing yields a multiomic data set where each cell is represented by a genotype 

and immunophenotype vector. This data can be visualized as a low-dimensional embedding and 
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subjected to unsupervised clustering to identify cell populations with a similar 

immunophenotype (Figure 1D). 

 

Peripheral blood mononuclear cells (PBMCs) comprise a diverse cell population and provide a 

sample with which to assess the effectiveness of DAb-seq for mapping hematopoietic 

immunophenotypes. When applied to PBMCs from a healthy donor, we obtain expected cell 

subsets across blood compartments, identifying both rare and abundant cells in peripheral blood 

(Figures 2A, 2B, Supplementary Figure 2), with gated populations matching those obtained by 

flow cytometry performed in parallel (Supplementary Figure 3). Because healthy PBMCs should 

harbor no pathogenic mutations, they serve as a negative control for DNA genotyping purposes, 

and we find no pathogenic variants across the targets analyzed (Supplementary Table 3). To 

further validate the genotyping capability of DAb-seq, we use a mixture of three cell lines 

derived from distinct hematopoietic lineages (Jurkat, Raji, K562) with documented mutations in 

the targeted genomic regions covered by our single-cell DNA sequencing panel26. For all genetic 

variants, we assign genotype calls to each individual cell: homozygous wildtype, heterozygous 

alternate, or homozygous alternate. We observe the expected concordance between single-cell 

genotypes and phenotypes, as cells of the same genotype segregate within a common 

immunophenotypic cluster (Figures 2C, 2D, Supplementary Table 8). We use the adjusted Rand 

index (ARI) as a measure of concordance between phenotype clusters and genetic variants, 

yielding an ARI of 0.74 for the mapping between combined genotype calls and phenotype 

cluster. Notably, we find that DAb-seq’s genotyping is sufficiently sensitive to differentiate the 

cells based on zygosity of a given mutation (Figure 2D) (e.g. 0.73 ARI between KIT 

2484+78T>C zygosity and phenotypic cluster). These results show that DAb-seq can 
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simultaneously profile cell genotype from targeted amplification of genomic DNA and 

immunophenotype from barcoded antibodies. 

 

 

NPM1-mutated cells persist across therapy timepoints with a static immunophenotype 

AML therapies targeted to cell surface proteins require homogeneous expression of the target 

marker across all malignant cells. We therefore hypothesized that mutated cells should robustly 

associate with a common targeted phenotype in patients responsive to such therapy. To 

investigate this, we performed DAb-seq on 21,952 total cells from bone marrow aspirates of a 

patient with AML receiving gemtuzumab, a CD33-targeted therapy, across four treatment 

timepoints (Figure 3A). This patient received multiple rounds of chemotherapy, including a stem 

cell transplantation, prior to the first timepoint sampled in this study (Supplementary Table 4). 

From single-cell DNA genotyping data, we identify a persistent frameshift mutation in the NPM1 

gene (NPM1mut) across relapse, salvage therapy, and progression timepoints. In addition, the 

NPM1 mutation is found to co-occur with a mutation at the DNMT3A locus (Figure 3A) (ARI 

between NPM1 and DNMT3A clones: 0.61). Gemtuzumab targets CD33+ cells, which are 

extinguished at the remission timepoint27. To examine the immunophenotypic profile of the 

NPM1mut cell population, we plot single-cell CD33 and CD34 values with NPM1 mutation status 

across timepoints (Figure 3B). The proportion of NPM1mut cells in the CD34- and CD34+ 

compartments does not vary extensively across treatments, while CD33+ myeloid cells targeted 

by the drug are absent at remission, consistent with treatment response. 
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In all timepoints for this patient, our analysis suggests a correspondence between the blast 

genotype and corresponding phenotype (ARI: 0.68; uncertainty coefficient for malignant 

phenotype given genotype for NPM1 and DNMT3A clones: 0.87). To further explore this 

relationship between genotype and phenotype, we visualize the high-dimensional single-cell 

immunophenotype as a Uniform Manifold Approximation and Projection28 (UMAP) embedding 

of the antibody data (Figure 3C, Supplementary Figures 4 and 5). Cells within single 

immunophenotypic clusters originate from different timepoints, highlighting the stability of 

normal and malignant immunophenotypes over time. When we overlay NPM1 genotype onto 

immunophenotypic UMAP space, we find a clear association between a single malignant 

immunophenotype composed of CD33+ cells with NPM1 mutation status, with variable 

expression of CD34, CD38, and CD117 in this population (Figure 3D). Indeed, this is in 

agreement with previous observations in flow cytometric studies where blast cells have been 

found to uniformly express CD33 and variably express CD34, CD38, and CD11729. Among the 

NPM1wt cells, we identify classical blood cell markers including CD3 and CD5 (lymphocyte), 

CD15 (monocyte), and CD56 (natural killer). Taken together, in this patient, DAb-seq confirms 

elimination of CD33+ cells by gemtuzumab treatment and reveals a strong correspondence 

between genotype and phenotype across timepoints. 

 

Genotypic subclones form overlapping subsets across an immunophenotypic continuum 

To investigate whether such tight genotype-phenotype association is a universal feature of AML, 

we applied DAb-seq to a pediatric patient who underwent induction and consolidation 

chemotherapy, but ultimately relapsed (Supplementary Table 4). We identify two mutually 

exclusive KRAS and FLT3-mutated clones at diagnosis and relapse (KRASmut, FLT3mut) (ARI 
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between KRAS and FLT3 clones: 0.07). The FLT3mut population, although the minor subclone at 

diagnosis comprising just 43 of 4,563 cells (0.94%) compared to 1,539 cells (33.7%) for the 

KRASmut variant, dominates at relapse (6,800 of 7,516 cells, 90.5%) (Figure 4A). 

Immunophenotypically, we also identify a third subset comprising KRASWT/FLT3WT cells 

expressing a blast-like CD33+CD38+ immunophenotype with no identifiable DNA mutations in 

the targeted loci. When we group cells from all timepoints by genotype, pathogenic blasts 

display variable immunophenotypes, with no clear mapping between the two (Figure 4B) 

(uncertainty coefficient for FLT3 or KRAS genotype given phenotype cluster: 0.16; 0.41 for 

malignant phenotype given FLT3 and KRAS genotype).  

 

In the absence of an obvious genotype-phenotype mapping for this sample, we sought to 

investigate the underlying relationship between these domains. Using UMAP, we project the 

antibody data into two dimensions, coloring the points according to genotype (Figure 4C, 

Supplementary Figures 6 and 7). We observe a single immunophenotypic compartment with 

incomplete separation between genotypes. To estimate antibody profile expression within the 

blast compartment continuum, we identify the dominant gradients in the phenotypic space, and 

order all cells along the gradients. We then calculate the local average antibody and genotypic 

composition for neighboring cells (Figure 4C, D, Supplementary Figure 8) (Methods). As 

expected, some markers are anticorrelated (CD11b, CD33, CD56) or correlated (CD15) with the 

principal immunophenotypic gradient (Pearson correlation: -0.78, -0.70, -0.60 and 0.83, 

respectively; all p<10-10). Genotypic composition varies significantly along the gradient, with 

KRASmut clone frequencies anticorrelated and FLT3mut correlated (Figure 4D, Supplementary 

Figure 9) (Kendall rank correlation: -0.36 and 0.35, respectively, both p<10-10). Nevertheless, 
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genotype composition does not fully delineate individual clonal populations, making it 

impossible to define distinct genotype-phenotype clusters; consequently, such gradients between 

the two modalities cannot be defined with conventional tools profiling a single measurement, 

such as flow cytometry or bulk DNA sequencing. 

 

FLT3 inhibitor therapy induces erythroid differentiation in a case of AML 

Our first two cases feature either a strong genotype-phenotype correlation (Patient 1) or mixed 

genotype comprising a static immunophenotype (Patient 2). Thus, for our final case, we analyzed 

a patient treated with gilteritinib, a FLT3 inhibitor therapy reported to promote in vivo 

differentiation of myeloid blasts. This treatment is thought to disperse distinct genotypes into 

multiple immunophenotypes, although the terminal lineage of the cells remains poorly 

understood30–32. Accordingly, we hypothesized DAb-seq permits tracking of immunophenotypic 

dispersal and confirmation of their terminal hematopoietic lineage. We analyzed 18,287 cells 

across four timepoints, beginning at diagnosis, discovering a subclone with co-mutated DNMT3A 

and NPM1 (Figure 5A, Supplementary Table 4). Following cytarabine/daunorubicin induction 

therapy, a fraction of DNMT3Amut cells remained at remission. At relapse and after treatment 

with the FLT3 inhibitor gilteritinib (“FLT3 Inhibitor”), most cells contained a 24-bp FLT3 

internal tandem duplication (ITD), in addition to the initial DNMT3A and NPM1 mutations. The 

genotypic structure inferred from the single-cell data indicates a linear, branching hierarchy of 

sequentially acquired mutations in response to therapy. To explore the immunophenotypic 

features of this patient’s disease, we integrate cells from all timepoints and construct a UMAP 

representation using the antibody data (Figure 5B, Supplementary Figures 10 and 11). We cluster 

this data using the Leiden method for cluster detection33,34, and manually annotate with 
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phenotypic labels corresponding to hematopoietic lineage from the antibody data (Figure 5C). 

We identify three blast populations expressing high levels of CD33 and CD38, a monocytic 

population expressing CD15 and CD16, and erythroid and lymphoid clusters with elevated CD71 

and CD3. As expected, samples across treatment timepoints comprise a mixture of 

immunophenotypically normal and blast-like cells (ARI for immunophenotype clusters and 

genotypes: 0.31). 

 

Hypothesizing that different therapies should yield different genotype-phenotype coupling 

patterns, we sought to characterize how mutated and normal cells distribute across 

immunophenotypic clusters. For each timepoint, we thus label cells in UMAP space according to 

DNA genotype and generate density distributions of CD33 signal, a pan-myeloid marker (Figure 

5D). We also evaluate counts of phenotype cluster membership in each timepoint, subdivided by 

DNA genotype. At diagnosis, cells mutated at both the DNMT3A and NPM1 locus reside 

primarily in the Blast 1 cluster (81.8% of DNMT3Amut/NPM1mut cells) and express high levels of 

CD33. A secondary clone mutated exclusively at the DNMT3A locus exhibits comparable CD33 

expression and resides mainly in the Blast 1 and monocytic clusters (62.5% and 27.7% of 

DNMT3Amut cells, respectively). At remission, the same DNMT3Amut clone is identified but with 

decreased CD33 expression and a primarily monocytic immunophenotype (92.7% of 

DNMT3Amut cells), consistent with clonal hematopoiesis of a pre-leukemic clone35,36. A newly 

acquired FLT3-ITD clone emerges in high numbers at relapse (99.8% of genotyped cells), 

coinciding with a phenotypic shift of cells to the CD33+ Blast 2 cluster. Following FLT3 

inhibitor treatment, the same FLT3-ITD clone persists but exhibits a transformed 

immunophenotype, as evidenced by membership of the FLT3 clone in multiple 
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immunophenotypic clusters. The new FLT3-ITD immunophenotype is primarily CD71+ 

erythroid (82.2% of FLT3-ITD cells), with minor fractions in the Blast 3 and monocytic 

compartments (11.1% and 4.84% of FLT3-ITD cells, respectively). Furthermore, the FLT3-ITD 

clone lacks uniform CD33 expression at relapse, indicating the presence of this mutation in cells 

outside of the myeloid compartment. The expression of CD71 is consistent with an erythroid 

differentiation of blasts in a case of leukemia treated with gilteritinib, which is in agreement with 

a recent study32, and contrasts with a prior report of gilteritinib-induced terminal differentiation 

towards a myeloid fate31. However, a larger patient cohort will be necessary to fully characterize 

the extent of erythroid differentiation in gilteritinib treatment response. DAb-seq elucidates the 

rich dynamics of this process and illustrates how distinct DNA genotypes can fractionate into 

multiple phenotypes in response to treatment. 

 

Discussion 

Through its ability to jointly profile DNA and immunophenotype in single cells, DAb-seq 

captures the complexity of proteogenomic states underlying AML. Analysis of multiple samples 

over timepoints and treatments demonstrates potential modes of tumor evolution across different 

patients. In the first case, we found a robust relationship between mutant cells and a malignant 

phenotype. By contrast, in the second case of pediatric AML, we observed that genetically 

distinct populations shared an overlapping immunophenotype, demonstrating that this domain 

alone is insufficient for characterizing how cells are genetically programmed. In the final case, 

we observed the opposite scenario, in which treatment by a FLT3 inhibitor induced mutationally 

similar cells to disperse into different myeloid compartments, highlighting the challenge of 
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targeting these malignant cells for eradication. Our results thus demonstrate that genotype or 

immunophenotype alone is insufficient to predict the evolution of proteogenomic states in AML. 

 

DAb-seq employs targeted primers to amplify specific genomic regions and panels of antibodies. 

While both readouts enable massive multiplexing of queried targets, practical and economic 

constraints necessitate a priori knowledge of which loci and epitopes to profile. As such, DAb-

seq cannot exclude the possibility that disease-relevant mutations occur beyond the sequenced 

loci or in immunophenotypic markers not included in the panels. In the case of pediatric AML, it 

is therefore impossible for us to conclude if the FLT3wt/KRASwt blast population is driven by 

epigenetic changes or unmapped genomic aberrations. Similarly, the discovery of a FLT3-ITD 

genotype after gilteritinib treatment may suggest the presence of an undetected co-occurring 

mutation that conveys treatment resistance. Although our genomic panel covers many common 

mutations at the FLT3 and RAS loci, additional amplicon targets will need to be included to 

capture a broader range of mutations. 

 

In future studies, DAb-seq may be used to investigate leukemogenesis and clonal evolution with 

unprecedented specificity. With the rise of anti-leukemic agents that target either cell surface 

markers or genetic aberrations, DAb-seq can offer information about which clones may respond 

to immunotherapy, small molecule therapy, or a combination. Paired with genome editing 

techniques such as CRISPR, DAb-seq can be used to screen mutations in vitro at high throughput 

to study the phenotypic outcomes of engineered genetic variation37. The strength of DAb-seq is 

not unbiased feature discovery, as with scRNA-seq, but rather sensitive analysis across known 

mutational hotspots. Future studies leveraging both DNA and RNA-based single-cell multiomic 
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tools could be designed to combine the strengths of both approaches. By performing DAb-seq 

and CITE-seq on the same sample, for example, it should be possible to link DNA genotyping 

calls and transcript counts to a common antibody space, enabling computational integration of 

the two modalities. The resulting dataset would comprise high quality targeted genotyping 

information with antigen profiles and linked transcript expression, through which additional 

variants in the exome may be discovered. 

 

Methods 

A detailed step-by-step protocol for DAb-seq has been submitted to the protocols.io platform 

(https://dx.doi.org/10.17504/protocols.io.bn4ymgxw). The cost analysis for a DAb-seq 

experiment is provided in Supplementary Table 7.  

 

Conjugation of antibodies to oligonucleotide barcodes 

Monoclonal antibodies were conjugated to azide-modified oligonucleotides using a copper-free 

click chemistry reaction as described previously38. Monoclonal antibodies were resuspended to 

100 μg in 100 μL PBS. See Supplementary Table 2 for a complete list of antibodies and 

oligonucleotide barcode sequences. Antibodies were incubated with DBCO-PEG5-NHS Ester 

linker (Click Chemistry Tools, cat. no. A102P) at a 4:1 molar ratio linker:antibody for 2 h at 

room temperature. Following incubation, the antibody-linker solution was washed once in a 50 

kDa cellulose spin filter (Millipore Sigma, cat. no. UFC505024). DNA oligonucleotides with a 

5’ azide modification (Integrated DNA Technologies) were reconstituted in water and added to 

the washed antibodies at a 2.5:1 molar ratio oligonucleotide:antibody. Following a 16 h 

incubation, the conjugated antibodies were washed three times in a 50 kDa filter to remove 
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unreacted oligonucleotides. All antibody conjugates were run on a Bioanalyzer Protein 230 

electrophoresis chip (Agilent Technologies, cat. no. 5067-1517) to verify successful conjugation. 

 

Cell culture and PBMC processing for control experiments 

The following three cell lines were used in the initial control experiment: Raji (ATCC, CCL-86), 

Jurkat (ATCC, TIB-152), K562 (ATCC, CCL-243). Cells were cultured under the supplier’s 

recommended conditions. PBMCs from a single healthy donor were sourced commercially 

(iXCells Biotechnologies, cat. no. 10HU-003) and stored at -80°C until use. Prior to staining, the 

cultured cell lines and PBMCs were washed once in PBS with 5% fetal bovine serum (FBS) 

(Thermo Fisher, cat. no. 10082147). For the control experiment, the three cell lines were 

combined at an equal ratio. 

 

Collection of patient samples 

Patients included in this study were treated at the University of California, San Francisco 

(UCSF), and peripheral blood or bone marrow was stored in the UCSF tumor bank. Samples 

were processed immediately after collection to isolate mononuclear cells. Sample collection was 

in accordance with the Declaration of Helsinki under institutional review board-approved tissue 

banking protocols. Written informed consent was obtained from all patients. A summary of 

clinical flow reports for each patient and timepoint analyzed by DAb-seq is available in 

Supplementary Table 5. 

 

Thawing patient samples 
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A protocol was optimized to maximize recovery of viable cells from patient samples. Cryovials 

containing patient tissue (peripheral blood or bone marrow aspirate) were warmed by hand and 

carefully transferred dropwise to a 50 mL tube containing 40 mL of cold DMEM media (Thermo 

Fisher, cat. no. 11995040) with 20% FBS and 2 mM EDTA. The tube was centrifuged at 700 

rpm at 4°C for 7 min with no brake. The supernatant was discarded, and the cells were 

resuspended in 10 mL of warmed RPMI-1640 media (Thermo Fisher, cat. no. A1049101) with 

10% FBS. The solution was strained through a 70 μm cell strainer (Corning, cat. no. 431751) to 

remove any large cell aggregates and the tube was centrifuged a second time at 700 rpm at 4°C 

for 5 min with low brake. The supernatant was discarded, and the cells were resuspended in PBS 

with 5% FBS for staining. 

 

Cell staining using oligonucleotide-conjugated antibodies 

For each sample, 2 million cells were added to a 5 mL DNA LoBind tube (Eppendorf, cat. no. 

0030108310), centrifuged at 400 x g for 4 min, and resuspended in 180 μL PBS with 5% FBS. 

Cells were blocked for 10 min on ice following addition of 10 μL Fc blocking solution 

(BioLegend, cat. no. 422301), 4 μL of a 1% dextran sulfate solution (Research Products 

International, cat. no. D20020), and 4 μL of 10 mg/mL salmon sperm DNA (Invitrogen, cat. no. 

15632011). Cells were stained for 30 min on ice with 0.5 μg of each conjugated antibody. After 

incubation, five rounds of washing were performed to remove excess antibody. For each wash, 5 

mL PBS with 5% FBS was added to the tube and centrifuged at 400 x g for 4 min. Stained cells 

were resuspended in Mission Bio cell buffer at a final concentration of 3 M/mL prior to 

microfluidic encapsulation. 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 14, 2020. ; https://doi.org/10.1101/2020.02.26.967133doi: bioRxiv preprint 

https://doi.org/10.1101/2020.02.26.967133


16 
 

Microfluidic single-cell DNA genotyping and antibody capture  

A commercial single-cell DNA genotyping platform (Mission Bio, Tapestri) was used to perform 

microfluidic encapsulation, lysis, and barcoding according to the manufacturer’s protocol for the 

acute myeloid leukemia V1 panel. Where noted, modifications were made to enable co-capture 

of oligonucleotide-labeled antibodies. Stained cells were loaded into a microfluidic cartridge and 

co-encapsulated into droplets with a lysis buffer containing protease and mild detergent. Droplets 

were incubated in a thermal cycler for 1 h at 50°C to digest all cellular proteins, followed by 10 

min at 80°C to heat-inactivate the protease.  To enable antibody capture during the barcoding 

stage, the antibody tags were designed with 3’ complementarity to one of the RUNX1 gene 

forward primers and the corresponding reverse primer was omitted from the reverse primer pool. 

Supplementary Table 1 lists the sequences of the forward and reverse primers in the DNA panel. 

Lysed cells in droplets were transferred to the barcoding module of the microfluidic cartridge in 

addition to polymerase mix, the modified reverse primer pool, barcoded hydrogel beads, and oil 

for droplet generation. The droplets were placed under a UV lamp (Analytik Jena, Blak-Ray 

XX15L) for 8 min to cleave the single-stranded PCR primers containing unique cell barcodes 

from the hydrogel beads. To amplify DNA targets and capture antibody tags, droplets were 

thermal cycled using the following program: 95°C for 10 m; 20 cycles of (95°C for 30 s, 72°C 

for 10 s, 61°C for 4 min, 72°C for 30 s); 72°C for 2 min; 4°C hold. 

 

Single-cell DNA amplicon and antibody tag sequencing library preparation 

Recovery and cleanup of single-cell libraries proceeded according to the Mission Bio V1 

protocol with additional modifications for antibody library preparation. The 8 PCR tubes 

containing barcoded droplets were pooled as pairs and treated with Mission Bio Extraction 
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Agent. Water was added to each tube and the aqueous fraction transferred to a new 1.5 mL DNA 

LoBind tube. Ampure XP beads (Beckman Coulter, cat. no. A63881) were added at a 0.75X 

volume ratio beads:PCR product for size selection. The supernatant from the size selection step, 

containing library fragments shorter than ~200 bp, was retained and used for antibody library 

preparation, while the remaining beads with bound DNA panel library fragments were washed 

twice with 80% EtOH and eluted in 30 μL water. A biotinylated capture oligonucleotide 

(/5Biosg/GGCTTGTTGTGATTCGACGA/3C6/, Integrated DNA Technologies) complementary 

to the 5’ end of the antibody tags was added to the retained supernatant to a final concentration 

of 0.6 μM. The supernatant-probe solution was heated to 95°C for 5 min to denature the PCR 

product, then snap-cooled on ice for probe hybridization. 10 μL of streptavidin beads (Thermo 

Fisher, cat. no. 65001) were washed according to the manufacturer’s protocol and added to each 

tube of PCR product. Following a 15 min incubation at room temperature, the beads were 

isolated by magnetic separation, washed two times in PBS, and resuspended in 30 μL water. 

PCR was performed on the purified DNA panel and antibody tags to produce sequencing 

libraries. For each tube of purified DNA panel, 50 μL reactions were prepared containing 4 ng of 

barcoded product in 15 μL water, 25 μL Mission Bio Library Mix, and 5 μL each of custom P5 

and Nextera P7 primers (N7XX), both at 4 μM stock concentration. The reactions were thermal 

cycled using the following program: 95°C for 3 min; 10 cycles of (98°C for 20 s, 62°C for 20 s, 

72°C for 45 s); 72°C for 2 min; 4°C hold. For each tube of purified antibody tags, identical 

reactions were prepared, instead using 15 μL bead-bound template, 5 μL antibody tag-specific P7 

primer at 4 μM, and 20 cycles of amplification. See Supplementary Table 6 for a complete listing 

of custom library preparation primers. Following amplification, both the DNA panel and 

antibody tag libraries were cleaned with 0.7X Ampure XP beads and eluted in 12 μL water. 
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Next-generation sequencing 

All DNA panel and antibody tag libraries were run on a Bioanalyzer High Sensitivity DNA 

electrophoresis chip (Agilent Technologies, cat. no. 5067-4626) to verify complete removal of 

primer-dimer products. Libraries were quantified by fluorometer (Qubit 3.0, Invitrogen) and 

sequenced on Illumina next-generation sequencing platforms with a 20% spike-in of PhiX 

control DNA (Illumina, cat. no. FC-110-3001). All sequencing runs used a dual-index 

configuration and a custom Read 1 primer (5’ 

GCCTGTCCGCGGAAGCAGTGGTATCAACGCAGAGTAG 3’, Integrated DNA 

Technologies). The 3-cell control sample was sequenced on an Illumina MiSeq using a v2 300-

cycle kit in 2x150 bp paired-end mode (Illumina, cat. no. MS-102-2002). For the patient 

samples, DNA panel and antibody tag libraries were sequenced separately to maximize cost-

effectiveness. DNA panels were sequenced with an Illumina NovaSeq 6000 SP 300-cycle Kit 

(Illumina, cat. no. 20027465) in 2 x 150 bp paired-end mode. Antibody tag libraries were 

sequenced with an Illumina NextSeq 550 75-cycle High Output Kit (Illumina, cat. no. 20024906) 

in paired-end mode, using 38 cycles for Read 1 and 39 cycles for Read 2.  

 

Bioinformatic pipeline for single-cell DNA genotyping and antibody tag counting 

Sequencing data was processed using a custom pipeline available on GitHub (see Code 

Availability). For all reads, combinatorial cell barcodes were parsed from Read 1 using cutadapt 

(v2.4) and matched to a barcode whitelist. Barcode sequences within a Hamming distance of 1 

from a whitelist barcode were corrected. 
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For the DNA genotyping libraries, reads with valid barcodes were trimmed with cutadapt to 

remove 5’ and 3’ adapter sequences and demultiplexed into single-cell FASTQ files using the 

script “demuxbyname” from the BBMap package (v.38.57). Valid cell barcodes were selected 

using the inflection point of the cell rank plot in addition to the requirement that 60% of DNA 

intervals were covered by a minimum of 8 reads. FASTQ files for valid cells were aligned to the 

hg19 build of the human genome reference using bowtie2 (v2.3.4.1). The single-cell alignments 

in BAM format were filtered (properly mapped, mapping quality > 2, primary alignment), sorted, 

and indexed with samtools (v1.8). GVCF files were produced for all cells using HaplotypeCaller 

from the GATK suite (v.4.1.3.0). Joint genotyping was performed on all genomic intervals in 

parallel (excluding primer regions) using GATK GenotypeGVCFs. For longitudinal patient 

samples, cells from all timepoints were joint genotyped as a multi-sample cohort. Genotyped 

intervals from all cells were combined into a single variant call format (VCF) file, and 

multiallelic records were split and left-aligned using bcftools (v1.9). Variants were annotated 

with ClinVar metadata (v.20190805) and SnpEff functional impact predictions (v4.3t). Variant 

records for all cells were exported to HDF5 format using a condensed representation of the 

genotyping calls (0: wildtype; 1: heterozygous alternate; 2: homozygous alternate; 3: no call). 

 

The antibody tag libraries were processed identically for cell barcode demultiplexing. For reads 

with valid cell barcodes, 8 bp antibody barcodes and 10 bp unique molecular identifiers (UMIs) 

were extracted from Read 2 using cutadapt with the requirement that all UMI bases had a 

minimum quality score of 20. Antibody barcode sequences within a Hamming distance of 1 from 

known antibody barcodes were corrected. UMI sequences were grouped by cell and antibody and 
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counted using the UMI-tools package39 (v.0.5.3, “adjacency” method). UMI counts of antibodies 

for each cell barcode were exported in tabular format for further analysis. 

 

Cell and genotype filtering 

Cell barcodes were additionally filtered according to antibody counts. Valid barcode groups were 

required to have a minimum of 100 antibody UMIs by the adjacency counting method and a 

maximum IgG1 count no greater than five times the median IgG1 count of the associated DAb-

seq experiment. For each valid cell barcode, all variants were filtered according to the quality 

and sequence depth reported by GATK. Genotyping calls were required to have a minimum 

quality of 30 and total depth of 10; variant entries below these thresholds were marked as “no 

call” and excluded from analyses. 

 

Antibody-based embedding and clustering 

To correct for technical effects in the raw antibody counts and batch variability between 

experiments from the same patient but different time points, a linear regression over all cells 

from the same patient was performed. Specifically, to all entries cij of the UMI corrected 

antibody count matrix c, where i is the cell index and j the antibody index, one pseudocount was 

added and the matrix was log-transformed. A matrix of quality metrics q with cells as rows and 

four columns (total antibody reads, total antibody counts after UMI correction, IgG1 count and 

total amplicon reads) was log-transformed, column-wise normalized, and mean-centered. A 

singular value decomposition was performed on the transformed matrix q and the left-singular 

vectors retained as design matrix. Each column vector cj was then regressed with either the first 

three, two, or one left-singular vectors, for patient samples, PMBC or cell lines respectively as 
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regressors. The vector of residuals uj is then the corrected antibody signal of antibody j 

(Supplementary Figures 12 and 13). 

 

A UMAP embedding in two dimensions of the corrected antibody signal was done in Python 2.7 

using the umap-learn28 (v0.3.10) and scanpy40 (v.1.4.4.post1) packages, with the minimum 

distance parameter set to 0.1 for the pediatric patient and 0.2 for all other samples and default 

parameters otherwise. To construct the underlying nearest neighbor graph from the corrected 

antibody count matrix, 15 or 16 nearest neighbors based on the first 16 to all principal 

components were used. The scanpy implementation of the Leiden algorithm33 with resolution set 

to 0.1 for the three cell line experiment and 1 otherwise was used to assign cells to phenotypic 

compartments. 

 

For the gradient analysis of the pediatric Patient with AML (Figure 4), only cells belonging to 

Leiden communities with blast phenotype were retained and the singular value decomposition of 

the remaining rows of u was calculated. Cells were then ordered by their value of the second left-

singular vector. Antibody counts and genotype fractions along the gradient were averaged with a 

moving window of 200 cells. Similarly, the average position of the cells in the two-dimensional 

UMAP embedding was estimated by smoothing x and y coordinates with a moving window of 

the same length. A 3rd-order spline was placed through the smoothed cell position to indicate the 

orientation of the gradient in the UMAP embedding. 

 

Clustering statistics calculations 

To calculate the adjusted Rand index (corrected for matches by chance), the implementation in 

the Python package scikit-learn library v.0.21.3 was used. Genotypic clusters were defined as the 
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combined variant call for the relevant loci within a sample. For example, using two relevant loci 

with four variant calls (wildtype, heterozygous, homozygous alternate, and no call) as in Figure 

3, 16 genotype assignments may exist. For the patient samples, heterozygous and homozygous 

alternate calls were classified together to reduce noise stemming from allele dropout. Phenotypic 

clusters correspond to the Leiden community assignment as shown in the figures. The same 

clusters were used in comparisons based on the uncertainty coefficient, defined as: U(X|Y) = 

I(X;Y) / H(X) where I(X;Y) is the mutual information of the distributions X and Y and H(X) the 

entropy in X. The uncertainty coefficient is a measure of what fraction of information in X is 

predictable given Y. 

 

Code Availability 

The DAb-seq bioinformatic pipeline will be available on GitHub at 

https://github.com/AbateLab/DAb-seq upon final publication.  

 

Data Availability 

All sequencing data generated in this study will be available on the Sequence Read Archive 

under BioProject number PRJNA602320 upon final publication. 
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Figure 2: DAb-seq enables simultaneous discrimination of single cells by their immunophenotype and genotype.
a, DAb-seq workflow performed on PBMCs from a healthy donor using a panel of 23 antibodies. Leiden clustering and 
two-dimensional UMAP embedding of the antibody tag data reveals expected blood cell populations. Cell clusters are 
manually annotated based on detected marker expression. b, Heatmap of the corrected log-transformed antibody counts 
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antibodies. Cells cluster by antibody signal as shown in the UMAP embedding. d, Detected single nucleotide 
polymorphisms in these cells map to the phenotypic cell clusters as shown in the UMAP embedding and a heatmap, 
where rows correspond to single cells. The first column of the heatmap indicates assigned phenotype cluster, and the 
remaining columns indicate the genotyping call at the labeled loci.
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Figure 3: AML blasts exhibit a stable genotype and phenotype through treatment.
a, DAb-seq performed on four bone marrow aspirates of a patient with AML during disease progression as indicated in 
the fishplot (black lines). The patient received multiple rounds of chemotherapy prior to the experiment 
(Supplementary Table 4). The fraction of blast cells with NPM1 W288Cfs*12 (NPM1mut) mutation for each sampled 
time point detected by DAb-seq are shown in red. b, Scatter plots with kernel densities show CD33 and CD34 signal 
for all cells (grey) and NPM1mut cells (red) for each of the sampled time points. The percentage of normal and mutant 
cells within each gate are listed. Virtually gating cells highlights a persisting CD33+ blast population which is 
eradicated with gemtuzumab, a CD33-targeted therapy. c, UMAP embedding based on the log-transformed and 
corrected antibody counts from all cells labeled by timepoint indicates that the high-dimensional immunophenotype of 
the blasts is stable over the sampled timepoints. d, The genotype of each cell at the NPM1 locus is plotted as a kernel 
density estimate using the UMAP coordinates from c. Antibody signals enriched among malignant and normal 
populations are plotted as kernel densities using all cells and labeled by genotype.
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Figure 4: Distinct genetic subclones form an overlapping immunophenotypic continuum in a case of pediatric AML.
a, Three timepoints sampled with DAb-seq during treatment comprise a mixture of independent clones (KRAS G13D heterozygous blasts, yellow; FLT3 
D835Y blasts, red). The wildtype compartment contains additional cells with a blast-like immunophenotype lacking detectable mutations. b, Heatmap of 
log-transformed corrected antibody counts and genotyping calls for the KRAS and FLT3 loci for each cell across all timepoints. The heatmap is grouped by 
genotype. Cells with wildtype genotype but blast-like immunophenotype are labeled separately. c, UMAP embedding of all cells from all time points based 
on log-transformed corrected antibody counts. Color indicates mutation status as in a. The blast compartment is overlaid with a spline approximating the 
gradient of the 2nd principal component of the antibody count matrix (shown in inlet figure) and indicates a gradual change in immunophenotype. d, Moving 
average expression of antibodies and fraction of mutated cells sorted by the 2nd principal component of the antibody count matrix. The overlapping 
phenotypic continuum between the genetically distinct blast clones is apparent.
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Figure 5: Decoupling of blast phenotype and genotype in response to FLT3 inhibitor therapy.
a, Fishplot showing observed fraction of cells with distinct genetic mutations for each sampled time point. The co-
occurrence of the three mutations in the single-cell data is consistent with a linear model of mutation accumulation. b, 
UMAP embedding of all cells based on measured antibody signal. The cells segregate into six distinct phenotypic 
clusters with multiple blast compartments. c, Average expression of each cell cluster for a selection of markers. d, Top 
row: Same UMAP embedding as in b given as grey outline. For each sampled time point, observed cells are plotted 
and colored according to the detected genotype. Blasts distribute among multiple phenotypic compartments in the final 
time point following FLT3 inhibitor treatment. Middle row: Kernel density plot of the CD33 antibody signal resolved 
by time point and genotype. Cells from genotypic compartments with less than 10 cells per time point are not plotted. 
Bottom row: Bar chart depicting genotypic composition of each phenotypic cluster in b resolved by time point.
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