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Abstract 

Action selection appears to rely on conjunctive representations that nonlinearly integrate task-

relevant features (Kikumoto & Mayr, 2020). We test here the corollary hypothesis that such 

representations are also intricately involved during attempts to stop an action––a key aspect of 

action regulation. We tracked both conjunctive representations and those of constituent rule, 

stimulus, or response features through trial-by-trial representational similarity analysis of the 

EEG signal in a combined, rule-selection and stop-signal paradigm. Across two experiments 

with student participants (N = 57), we found (a) that the strength of decoded conjunctive 

representations prior to the stop signal uniquely predicted trial-by-trial stopping success (Exp. 

1) and (b) that these representations were selectively suppressed following the onset of the 

stop signal (Exp. 1 and 2). We conclude that conjunctive representations are key to successful 

action execution and therefore need to be suppressed when an intended action is no longer 

appropriate.    
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Statement of Relevance 

Some theorists have posited that as a necessary step during action selection, action-relevant 

features need to be combined within a conjunctive representation that is more than the sum if 

its basic features. Consequently, such representations should also play a critical role when 

trying to stop an intended action—a key aspect of self-regulation. However direct evidence of 

conjunctive representations has been elusive. Using a method for tracking both conjunctive 

and basic-feature representations on a trial-by-trial basis in the EEG signal, we show that the 

stronger the conjunctive representations, the harder it was to stop the intended action. 

Furthermore, the stopping process also selectively reduced the strength of conjunctive 

representations. These results further our knowledge about action regulation by showing that 

conjunctive representations are a necessary precursor for carrying out actions successfully 

and for that reason also need to be the target of self-regulatory stopping attempts. 
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The Role of Conjunctive Representations in Regulating Actions 

 Even simple goal-directed actions, such as kicking a soccer ball to a teammate, rely on 

various sensorimotor features––the location of the ball, the presence of opponent players and 

teammates, as well as on abstract rules (e.g., “kick softly when the grass is wet”). In traditional, 

stage-type information processing models, such different task-relevant features are handled 

independently, and in a serial, feed-forward manner Donders (1969); (Kornblum, Hasbroucq, & 

Osman, 1990; Posner & Mitchell, 1967; Sanders & Sanders, 2013; Sternberg, 1969). 

Alternatively, there are models in which all relevant features are combined within a common 

representational space during selection. Specifically, event-file theory (Hommel, 1998, 2019; 

Hommel, Müsseler, Aschersleben, & Prinz, 2001; Schumacher & Hazeltine, 2016) posits that 

an action becomes executable only once all task-relevant features are integrated within 

conjunctive representations, also referred to as event files. Moreover, recent research in non-

human primates indicates that neurons with nonlinear, mixed selectivity response properties 

integrate various aspects in a conjunctive manner and play a critical role in flexible control of 

task-relevant information (Parthasarathy et al., 2017; Rigotti et al., 2013; Stokes et al., 2013).  

 If conjunctive representations are necessary, and maybe even sufficient precursors of 

goal-directed behavior, it follows that the pathway towards regulating a given action also needs 

to lead through these representations. For example, when in the above soccer scenario, an 

opponent defender suddenly blocks the goal, the intended kicking action has to be quickly 

canceled. The cognitive and neural underpinnings of such response inhibition have been well 

characterized using variants of the stop-signal paradigm (Aron, Robbins, & Poldrack, 2014; 

Logan & Cowan, 1984; Swann et al., 2009; Verbruggen et al., 2019; Wessel, 2019). Yet, it is 

currently an open question how stopping affects the different representations that underlie 

planned actions (e.g., of stimuli, responses, or rules). For example, in theory, the stopping 

process might occur by suppressing solely response representations that directly link to motor 

control pathways (Coxon, Stinear, & Byblow, 2006; Duque, Greenhouse, Labruna, & Ivry, 
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2017; Greenhouse, Sias, Labruna, & Ivry, 2015; Labruna et al., 2014), while leaving other task-

relevant representations intact. However, assuming conjunctions are indeed critical for action 

control, the cancellation of an initiated action should require the suppression of the entire, 

integrated representation. 

 To test this hypothesis, it is necessary to track the various relevant representations of 

task-relevant features concurrently while actions are selected and regulated. Recently, 

Kikumoto and Mayr (2020) applied time-resolved representational similarity analysis (RSA, 

Kriegeskorte, Mur, & Bandettini, 2008) to the EEG signal in order to track both conjunctive and 

constituent feature representations during rule-based action selection in humans. These 

analyses indeed revealed conjunctive representations that integrated action rules to specific 

sensory/motor settings throughout the entire selection period. Moreover, the strength of 

conjunctions was a robust and unique predictor of trial-to-trial variability in RTs––as one would 

expect if conjunctive representations are necessary and sufficient conditions for action 

execution.  

 To directly test the hypothesis that the pathway to canceling an action leads through 

the corresponding conjunctive representation, we combined here a rule-based action selection 

task (Fig. 1ab, Kikumoto & Mayr, 2020; Mayr & Bryck, 2005) with an occasional stop signal. In 

Exp. 1, the stop-signal timing was adjusted via an adaptive tracking procedure, based on 

participants’ trial-to-trial stopping accuracy to achieve around 50% stopping success. Our main 

goal here was to test the prediction that the strength of conjunctions prior to stopping, inversely 

predicts stopping success and we also aimed to provide initial information about which 

representations are targeted by the stopping process. In Exp. 2, the stop signal was presented 

100 ms after the stimulus onset, which is early enough for successfully stopping actions in 

most trials. Here, our main goal was to clearly characterize the consequences of successful 

stopping of actions on task-relevant representations and specifically test the prediction that 

conjunctive representations are selectively suppressed following the stop signal.  
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Materials and Methods 

Participants 

A convenience sample of 64 students of the University of Oregon participated after 

signing an informed consent following a protocol approved by the University of Oregon’s 

Human Subjects Committee in exchange for the compensation of $10 per hour and additional 

performance-based incentives. Participants with excessive amount of EEG artifacts (i.e., more 

than 35% of trials; see EEG recordings and preprocessing for detail) were removed from 

further analysis. As a result, we retained 36 out of 38 participants for Exp. 1, and 24 out of 26 

participants for Exp. 2. In Exp. 1, three participants were further excluded because of failures 

to stop in excess of 75%. Samples sizes for the two experiments were based on our previous 

work (Kikumoto & Mayr, 2020), in which we obtained very robust results with sample sizes 

around 20 participants. For Exp. 1, we increased the target sample size to 36 participants, 

because here we were interested in a differentiation between failed and successful stop trials. 

Stimuli, Tasks and Procedure 

 Participants were randomly cued on a trial-by-trial basis to execute one of the three 

possible actions rules (Fig. 1a, Mayr & Bryck, 2005). Based on the cued rule, participants 

responded to the location of a circle (1.32° in radius) that randomly appeared in the corner of a 

white frame (6.6° in one side) by selecting one of the four response keys that were arranged in 

2 x 2 matrix (4, 5, 1, and 2 on the number pad). For example, the vertical rule mapped the left-

top dot to the bottom-left response as a correct response. Two different cue words (e.g., 

“vertical” or “updown”) were used for each rule (i.e., 66.6 % switch rate).  

 In 33.3% of trials, the stop signal (i.e., a yellow frame; Fig. 1a) indicated to participants 

that the planned action had to be cancelled. Stop-trials were counted as successful when 

participants did not make any responses within 800 ms time-window following the stop-signal 

onset. In Exp. 1, the interval between the stimulus and stop-signal onset (i.e., the stop-signal 
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delay or SSD) was adjusted using an adaptive tracking method based on participants’ trial-to-

trial stopping success. Specifically, individuals’ SSDs varied between 0 ms to 800 ms counting 

from the onset of the stimulus and starting with 100 ms at the beginning of session. 

Correct/incorrect stop trials increased/decreased SSDs by the step size that was randomly 

selected from 11.8 ms, 23.5 ms, or 35.3 ms for each trial. In Exp. 2, the stop signal appeared 

100 ms after the stimulus onset. Go trials lasted until either the response was executed; stop 

trials lasted either until the 800 ms response window expired, or until a response was 

recorded.   

 There were two practice blocks and 200 and 250 experimental blocks for Exp. 1 and 2 

respectively. Each block lasted 15 seconds, within which participants were instructed to 

complete as many trials as possible. Trials that were initiated within the 15 second block 

duration were allowed to complete. The average number of go-trials and stop-trials were 1576 

(SD = 162) and 773 (SD = 75) for Exp. 1, and 1378 (SD = 91) and 685 (SD = 33) for Exp. 2. 

Throughout the experimental session, participants were reminded to respond as accurately 

and fast as possible and refrain from waiting for the stop signal. In Exp. 1, participants were 

instructed that the adaptive tracking procedure would make it easier to stop on some trials and 

more challenging on others. Participants were given a performance-based incentive for trials 

with RTs on go-trials faster than the 75th percentile of correct responses in the preceding 

blocks when 1) the overall accuracy in go-trials was above 90 percent and 2) there were more 

than 5 completed trials in a given block. While performing the task, participants were asked to 

rest the index finger in the center of the four response keys at the start of each trial (i.e., no 

lateralization of response sides). At the end of each trial, feedback (a green fixation cross for 

correct and a red cross for correct trials) was presented based on the accuracy of responses in 

go-trials or on correct stopping in stop-trial. At the end of each block, the number of completed 

trials, the number of correct responses in go/stop-trials, and the amount of earned incentives 

based on the speed of responses in go-trials, were presented as a feedback. All stimuli were 
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created in Matlab (Mathworks) using the Psychophysics Toolbox (Brainard, 1997) and were 

presented on a 17-inch CRT monitor (refresh rate: 60 Hz) at a viewing distance of 100 cm.  

Stop-signal Reaction Time  

 In Exp. 1, we computed individuals’ stop-signal reaction time (SSRT), according to the 

integration method as specified by Verbruggen et al. (2019). First, for each quantile bin of 

SSDs (Fig. 3b), the mean SSDs and the proportion of successful stop trials (p(respond|signal)) 

were calculated. Then, the matching go RTs were defined in each SSD bin by taking the nth 

RT in the rank ordered go-trial RTs (including all go-trials), where n is defined by multiplying 

the number of RTs in the distribution by the probability of responding, p(respond|signal) or 

unsuccessful stopping, for each SSD bin. Within each SSD bin, SSRT was calculated by 

subtracting the corresponding SSD from the matching go RT, then scores from 6 SSD bins 

were averaged within individuals to obtain a single metric of SSRT for each individual. For all 

participants, failed-stop RTs were faster than correct go RTs. 

EEG recordings and preprocessing 

Scalp EEG activities were recorded from 20 tin electrodes on an elastic cap (Electro-

Caps) using the International 10/20 system. The 10/20 sites F3, Fz, F4, T3, C3, CZ, C4, T4, 

P3, PZ, P4, T5, T6, O1, and O2 were used along with five nonstandard sites: OL halfway 

between T5 and O1; OR halfway between T6 and O2; PO3 halfway between P3 and OL; PO4 

halfway between P4 and OR; and POz halfway between PO3 and PO4. Electrodes placed 

~1cm to the left and right of the external canthi of each eye recorded horizontal 

electrooculogram (EOG) to measure horizontal saccades. To detect blinks, vertical EOG was 

recorded from an electrode placed beneath the left eye and reference to the left mastoid. The 

left-mastoid was used as reference for all recording sites, and data were re-referenced off-line 

to the average of all scalp electrodes. The scalp EEG and EOG were amplified with an SA 

Instrumentation amplifier with a bandpass of 0.01–80 Hz, and signals were digitized at 250 Hz 

in LabView 6.1 running on a PC. EEG data was first segmented by 18.5 second intervals to 
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include all trials within a block. After time-frequency decomposition was performed (see next 

section), these epochs were further segmented into trial-to-trial epochs (the time interval of -

600 to 800 ms relative to the onset of the stimulus for both experiments). These trial-to-trial 

epochs including blinks (>80 μv, window size = 200 ms, window step = 50 ms), large eye 

movements (>1°, window size = 200 ms, window step = 10 ms), blocking of signals (range = -

0.01 μv to 0.01 μv, window size = 200 ms) were excluded from subsequent analyses.  

Time-Frequency Analysis 

 Rather than raw EEG, we used the time-frequency decomposed EEG signal for 

decoding of representations (e.g., Foster, Sutterer, Serences, Vogel, & Awh, 2017; Kikumoto & 

Mayr, 2018). Temporal-spectral profiles of single-trial EEG data were obtained via complex 

wavelet analysis (Cohen, 2014) by applying time-frequency analysis to preprocessed EEG 

data epoched for each block (>18 seconds to exclude the edge artifacts). The power spectrum 

was convolved with a series of complex Morlet wavelets 𝑒"#$%𝑒&%"/("∗*+)), where t is time, f is 

frequency increased from 1 to 35 Hz in 35 logarithmically spaced steps, and σ defines the 

width of each frequency band, set according to 𝑛/2𝜋𝑓, where n increased from 3 to 10. The 

logarithmic scaling was used to keep the width across frequency band approximately equal, 

and the incremental number of wavelet cycles was used to balance temporal and frequency 

precision as a function of frequency of the wavelet. After convolution was performed in the 

frequency-domain, we took an inverse of the Fourier transform, resulting in complex signals in 

the time-domain. A frequency band-specific estimate at each time point was defined as the 

squared magnitude of the convolved signal 𝑍(𝑟𝑒𝑎𝑙[𝑧(𝑡)]" + 	𝑖𝑚𝑎𝑔[𝑧(𝑡)]")	for instantaneous 

power.  

Representational Similarity Analysis  

 The decoding analysis in the current study follows closely our previously established 

methods (Kikumoto & Mayr, 2020). In order to assess the strength of each action feature and 
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conjunction on the level of individual trials and time points, we used a two-step procedure. An 

initial, linear decoding step yielded similarity information that could be analyzed through the 

second, representational similarity analysis step. For the initial step, we used a penalized 

linear discriminant analysis using the caret package in R (Kuhn, 2008) to discriminate between 

all 12 possible action constellations. At every time sample point, the instantaneous power of 

rhythmic EEG activity was averaged within the predefined ranges of frequency values (1-3 Hz 

for the delta-band, 4-7 Hz for the theta-band, 8-12 Hz for the alpha-band, 13-30 Hz for the 

beta-band, 31-35 Hz for the gamma-band), generating 100 features (5 frequency-bands X 20 

electrodes) to train decoders. Within individuals, these data points were z-transformed across 

electrodes at every time sample to remove the effects that uniformly influenced all electrodes. 

We used a k-fold repeated, cross-validation procedure to evaluate the decoding results 

(Mosteller & Tukey, 1968), by randomly partitioning single-trial EEG data into four independent 

folds. All trials except incorrect go-trials were used as the training sets in both experiments. 

The number of observations of each action constellation was kept equal within and across 

folds by dropping excess trials randomly. Three folds served as a training set and the 

remaining fold was used as a test set; this step was repeated until each fold had served as a 

test set. Each cross-validation cycle was repeated eight times, in which each step generated a 

new set of randomized folds. Resulting classification probabilities (i.e., evidence estimated for 

each case of S-R mapping) were averaged across all cross-validated results with the best-

tuned hyperparameter to regularize the coefficients for the linear discriminant analysis. This 

decoding step yielded for each time point and trial a “confusion-vector” of classification 

probabilities for both the correct and all possible incorrect classifications (Fig. 1c).  

As the second step, we applied time-resolved RSAs to each confusion profile in order 

to determine the underlying similarity structure. Specifically, we regressed the confusion vector 

onto model vectors as predictors, which were derived from a set of representational similarity 

model matrices (Fig. 1c). Each model matrix uniquely represents a potential, underlying 
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representation (e.g., rules, stimuli, responses and conjunctions). For example, the rule model 

predicts that the decoder would only discriminate instances of different rules, but fail to 

discriminate instances of the same rule. To estimate the unique variance explained by 

competing models, we regressed all model vectors simultaneously, resulting in coefficients for 

each of the four model vectors. These coefficients (i.e., their corresponding t-values) allowed 

us to relate the dynamics of action representations to trial-to-trial variability in behavior during 

go- and stop-trials (see Multilevel Modeling section for details). For all RSAs, we logit-

transformed classification probabilities and further included subject-specific vectors that 

contained z-scored, average RTs and stopping accuracy as nuisance predictors to reduce 

potential biases in decoding due to idiosyncratic differences in performance among action 

constellations (see also Fig. S2 and S3 in the Supplemental Material).  

We excluded t-values that exceeded 5 SDs from means for each sample point, which 

excluded less than 1% of the entire samples in both experiments. Resulting t-values were 

averaged within 20 ms non-overlapping time samples. For decoding analyses and subsequent 

RSAs, incorrect go-trials were excluded.  

 In both experiments, decoders were trained with the stimulus-aligned EEG signal. In 

Exp. 1, we further computed RSA scores that were re-epoched in reference to the onset of the 

stop signal (the right column of Fig. 3 and 4). Matching go-trial results were calculated with the 

SSDs that would have been used if the stop signal appeared in those trials.  

Estimating Timing of Stop-induced Suppression 

 In Exp. 2, we used nonparametric permutation tests with a single-threshold method to 

identify the earliest time sample at which statistically significant differences between go-trials 

and stop-trials emerged. Specifically, for each action feature, we computed permutation 

distributions of the maximum statistic for every sample point from the stop-signal onset (fixed 

at 100 ms after the stimulus onset) to the end of 800 ms of the hold period. First, we obtained 

RSA results by decoding data with randomly shuffled condition labels (i.e., of action 
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constellations). We then performed a series of t-tests, testing the differences in RSA scores 

between go- and stop-trials, for every sample against the null level (i.e., 0 for t-values). Out of 

the series of t-test results, we retained the maximum t-value. We repeated this process 10000 

times by randomly drawing samples from all possible permutations of labels, thereby 

generating the permutation distributions of the maximum statistics. This approach allowed us 

to identify statistically significant, individual time points by comparing scores from the correct 

labels to the critical threshold, which was defined as the 95th (i.e., alpha =.05) of the largest 

member of maximum statistics in the permutation distribution of the corresponding variable.  

Multilevel Modeling  

 In Exp. 1, to analyze predictors of trial-by-trial variability in stopping success, we used 

multilevel logistic regression models. Specifically, we estimated for stop trials a model 

predicting stopping success on a given trial using the RSA-derived t-values for basic action 

features (i.e., rule, stimulus, and response) and the conjunction as predictors. In addition, we 

also included each trial’s log-transformed SSD as a covariate to account for the possibility that 

SSDs affect both action representations and stopping success as a third-variable. For 

statistical tests, we used EEG data averaged over a-priori selected, symmetric time intervals, 

namely a pre-stop-signal (-200 to 0 ms) and a post-stop-signal period (0 ms to 200 ms), 

relative to the onset of the stop signal in each trial. Both time intervals clearly precede the 

average SSRT across individuals (M = 272 ms). We also performed additional control 

analyses, where we excluded trials with early responses (i.e., responses occurred after the 

stimulus onset and before the stop signal in unsuccessful-stop trials) and where we included 

decoded representations from both pre- and post-stop-signal phases simultaneously (Table 3). 

In addition, to visualize changes in predictability of stopping success, we separately performed 

a series of logistic regression analyses by fitting models at each sample point in reference to 

the onset of the stimulus and the stop signal (Fig. 5). In order to replicate the results by 

(Kikumoto & Mayr, 2020) about how action representations contributed to action selection in 
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go-trials, we also report for both experiments results from multilevel models to assess which 

action representations predict trial-to-trial RTs on go trials (Table 2). Here, RTs were log-

transformed and trials with response errors were excluded.  

Open Practice Statement 

Neither of the experiments reported in this article was formally preregistered. All data 

and analysis scripts will be posted on OSF for the final manuscript. 

Results 

Experiment 1  

Behavior 

 Behavioral performance is summarized in Table 1. Most participants (33 out of 36 

participants) exhibited p(stop|signal) in the range of .40-.65; individuals with the stopping 

accuracy higher than 75% were excluded from further analyses. The average RTs in go-trials 

were longer than the RT in failed stop-trials for all participants. This pattern is consistent with 

the race model as a basis for estimating individuals’ stop-signal reaction time (SSRT, Fig. 2a). 

Also, the probability of stopping errors covaried with the increase of SSDs, indicating the 

overall efficacy of the SSD staircase algorithm (Fig. 2b).  

Action Representations in Go-trials, Failed Stop-trials, and Successful Stop-trials 

Fig. 3 shows the time-course of RSA scores estimated on the level of single trials for 

each of the basic features (i.e., rules, stimuli, and responses) and the conjunction all trial 

types. For go-trials, the flow of activated representations was highly consistent with our 

previous results. Rule information appeared in the pre-stimulus period, stimulus information 

peaked shortly after the stimulus appeared, followed by the emergence of response 

information (Hubbard, Kikumoto, & Mayr, 2019; Kikumoto & Mayr, 2020). Importantly, 

conjunctive information was present throughout the entire response-selection period. We also 

replicated the previous finding that trial-to-trial variability in conjunctive representations robustly 

predicted go-trial RTs (Table 2), over and above other representations of constituent features. 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 14, 2020. ; https://doi.org/10.1101/2020.04.30.070227doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.30.070227
http://creativecommons.org/licenses/by-nc/4.0/


 14 

Note, that in the Supplemental Material, we include an additional analysis that probes the 

robustness of the decoding/RSA analyses. 

The strength of conjunctive representations and late response representations were 

selectively reduced in successful stop-trials relative to go-trials and failed stop-trials. In 

contrast, there were no clear effects on rule and stimulus representations. For the conjunctive 

representations, the divergence between failed and successful stop trials occurred even before 

the onset of the stop signal (see individuals’ average SSDs in Fig. 3 left column), suggesting 

stopping was particularly impaired when the conjunctive representations were strong in the 

early response selection phase. Indeed, when we replotted RSA scores relative to trial-to-trial 

SSDs (see Fig. 3, right column), differences in successful and failed stop-trials emerged clearly 

before the average SSRT (M = 272 ms) and even before the stop signal. No other action 

features showed similar differences in the pre-stop-signal period (t < .13), and post-stop-signal 

effects on the response representation were apparent only when the conjunction model was 

excluded, b = -.010, SE = .004, t(33) = 2.34.  

Before accepting the conclusion that the state of conjunctive representations prior to 

the onset of the stop signal determined the success of stopping, we need to consider the fact 

that trial-to-trial variability in SSDs is likely to covary with both the strength of conjunctions and 

the probability of successful stopping. Therefore, to rule out SSDs as a potential third-variable 

explanation, we performed multilevel logistic regressions to predict single-trial stopping failures 

using decoded action features and SSDs as simultaneous predictors. Fig. 4, shows time-point 

by time-point results of these analyses, which clearly indicate that pre-stop-signal conjunctions 

are a unique predictor of stopping success. Statistical tests of these relationships confirmed 

that the average state of conjunctions prior to the onset of the stop signal strongly predicted 

stopping failures over and above the state of the other feature representations (Table 3, top 

panel). To ensure that these results are not due to very fast responses that occurred prior to 

the stop signal, we confirmed that these results were robust when eliminating premature 
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responses (Table 3, middle panel). In addition, when entering pre-stop-signal (-200 ms – 0 ms) 

and post-stop-signal predictors (0 ms – 200 ms) simultaneously, we found that during each 

phase, conjunctions uniquely predicted stopping success (Table 3, bottom panel).   

Arguably, a pre-stop-signal effect of the conjunctive representations may be driven by 

participants who used occasionally used a strategy of waiting for the stop signal in order to 

initiate the go process. We used a median split to separate subjects by the proportion of 

stopping failures. Both pre- and post-stop-signal states of conjunctions predicted stopping 

failures even in the below-median group, who should be least likely to use a waiting strategy 

(Table S1). This indicates that the observed results cannot be attributed to a subset of 

particularly cautious participants.  

The stop-signal-aligned pattern shown in Fig. 3 (right column) is also suggestive of 

conjunctions as a representational target of the stopping process. Specifically, in failed-stop 

trials, conjunctive representations were particularly strong at the time the stop signal arrived, 

but immediately following the stop signal showed a rapid reduction. Such a pattern is 

consistent with a stop-signal-induced suppression, but that came too late to influence behavior. 

When analyzing the 320 ms period following the stop signal (using eight 40 ms bins), the linear 

trend was indeed stronger for failed-stop compared to successful-stop or go trials combined, b 

= .008, SE = .0038, t = 2.04. However, this pattern is also somewhat inconclusive as the 

reduction following the peak at the time of the stop signal might also be interpreted as a 

regression towards the mean level of conjunction strength. In Exp. 2, we will seek more 

definitive evidence regarding the representational targets of the stopping process.  

Experiment 2 

 Exp. 1 clearly demonstrated that the strength of conjunctive representations is strongly 

predictive of trial-to-trial stopping success and also presented initial evidence that conjunctive 

representations are predominantly affected by the stopping process.  However, while the 

adaptive calibration of the stopping success rate around 50%, was useful for determining the 
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relationship between conjunctive representations and behavioral performance, it made it more 

difficult to distinguish between the representational precursors and consequences of stopping 

success. In order to clearly establish the effects of stopping on different representations, we 

used a consistent, early stop signal in Exp. 2, which ensured high, overall stopping success.  

Behavior 

 Behavioral performance in go/stop-trials are summarized in Table 1. The probability of 

stopping failures—incorrectly executing responses in the presence of the stop signal (i.e., 

p(respond|signal))—was low because of the early presentation of stop signal at the fixed timing 

(100 ms after the stimulus onset). This allowed us to estimate the time-course of suppression 

of action representations from a fixed starting point. Note, that the substantially lower RTs for 

go trials in Exp. 2 compared to Exp. 1, are likely due to the reduced uncertainty about the 

timing of the stop signal in Exp. 2.  

Action Representations in Go-trials and Stop-trials 

 As shown in Fig. 5, the pattern of activated representations was highly consistent with 

our previous results. Also again, conjunctive representations robustly predicted go-trial RTs 

(Table 2), over and above representations of constituent features.   

 Our main goal in Exp. 2 was to test the prediction that conjunctive representations are 

suppressed on stop-trials relative to go-trials. Indeed, we found stopping of actions markedly 

reduced the strength of conjunctive representations right after the onset of the stop signal (Fig. 

5). Not surprisingly, the response representation was also suppressed, whereas we found no 

effect on the rule representation and only a late, and small effect for the stimulus 

representation. Yet, when only the basic constituent features (i.e., rules, stimuli and 

responses) were used in the RSA model, the suppression effect was substantially increased 

for the rule representation, highlighting the importance of including the conjunction model (see 

also, Kikumoto & Mayr, 2020). Suppression of the conjunction occurred at the same time, or 

even slightly before suppression of the response representation. This suggests that the 
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reduction of conjunctive information is not just an aftereffect of response suppression. Rather, 

it supports the notion that the conjunctive representation is a direct target of the stopping 

activity.  

Discussion 

 Even simple, goal-directed actions rely on various aspects of the task environment. 

Both psychological and neural-level theories of action propose that all relevant action features 

need to be integrated within conjunctive representations for successful action selection 

(Hommel et al., 2001; Rigotti et al., 2013). Using a convenience sample of student participants, 

we tested here the hypothesis that because such representations are critical for action 

selection, they should also be intricately involved when a planned or initiated action needs to 

be stopped. Consistent with this hypothesis we found that the strength of conjunctive 

representations at the time the stopping process is initiated, inversely predicts stopping 

success (Fig. 3 and 4) and that conjunctive representations are a main target of the stopping 

process (Fig. 3 and 5).  

In principle, stopping of actions might require suppression of all task-relevant 

representations. Alternatively, only those representations directly involved with motor control 

might be targeted. Instead, our results are most consistent with the hypothesis that the 

conjunctive representation is the primary target of suppression, followed by the response 

representation (Fig. 3, 4, and 5). It is an open question whether conjunctive and response 

representations are separately targeted, or whether the deactivation of response 

representations is a consequence of the suppressed conjunctive representations. 

Representations of the rule or the stimulus remained intact, or showed very minor suppression, 

and only after the completion of the stopping process (Fig. 3 and 5). A potential functional 

benefit of selective suppression in real-world situations is that by preserving the rule 

information, actions can be easily re-implemented, once the reason for stopping has been 

removed.  
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 Conjunctive representations that integrate stimulus, response, and rule information are 

by definition situated on a more central level than representations that directly control motor 

output. The fact that conjunctive representations were targeted by the stopping process, is 

consistent with results indicating that inhibition of actions and inhibition of thoughts or 

memories are handled by a shared process (Anderson, 2004; Guo, Schmitz, Mur, Ferreira, & 

Anderson, 2018). For example, using the Think/No-think paradigm, studies found that the 

same right lateral prefrontal area that is typically involved in stopping of motor responses, was 

also critical in suppressing thoughts, leading to longer-term negative effects on their 

accessibility. One might speculate that conjunctive representations as a target of inhibition may 

mitigate such longer-term effects of suppression (Anderson & Green, 2001). Specifically, by 

adding contextual specificity to abstract feature codes, conjunctive representations should help 

constrain inhibition to the currently relevant context.   

 Our results showed that the pre-stop-signal state of the conjunctive representation 

uniquely predicts the success of subsequent stopping, over and above the potential effects of 

a reactive inhibition process that is initiated after the stop signal (Table 3). Thus, the strength 

of conjunctive representations is a key driver of the efficiency and success of an action––and 

therefore also of the ability to stop that action. However, our results by themselves do not 

identify the underlying mechanisms that modulate the state of the conjunctive representation 

prior to the stop signal. One possibility is that conjunction strength depends on endogenous 

fluctuations of attention towards the go-action across trials. A strong emphasis on initiating 

action may induce strong conjunctions and thereby cause the failures to trigger the stop 

process altogether (Matzke, Hughes, Badcock, Michie, & Heathcote, 2017; Matzke, Love, & 

Heathcote, 2017). The fact that conjunctive representations in failed-stop trials, prior to the 

arrival of stop signal, were even stronger than on go-trials, is consistent with such an 

attentional fluctuation account. As another, not necessary mutually exclusive possibility, there 

is evidence that variations in strategic, proactive inhibition (Aron, 2011) that may affect the 
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state of conjunctions. On trials in which subjects anticipate stopping, proactive inhibition may 

keep conjunctive representations from fully developing. Such proactive control processes 

could be directly tested, by cuing the stop probability on a trial-by-trial basis (Chikazoe et al., 

2009; Vink, Kaldewaij, Zandbelt, Pas, & du Plessis, 2015; Zandbelt, Bloemendaal, Neggers, 

Kahn, & Vink, 2013). In any case, our results clearly confirm that the pre-stop-signal state of 

action representations must be taken into account to fully understand subsequent reactive 

inhibition and stopping. 

One potential caveat is that for the task space used in Exp. 1 and 2, the RSA analyses 

allow us to say with certainty that at least two different task-relevant features were integrated 

within conjunctions, but do not allow disambiguating between conjunctions that include binary 

combinations of rules, stimuli, or responses, or the combination between all three aspects. 

However, previous work had also used an expanded task space that allowed disambiguating 

between different types of conjunctions (Exp.2 in Kikumoto & Mayr, 2020). In terms of 

functional characteristics, the rule-independent (i.e., stimulus-response) conjunctions from the 

limited task space, and the rule-specific conjunctions from the extended task space, had 

behaved in a highly similar manner. In addition, our current results showed that when the 

conjunction predictor was dropped from the RSA analyses, the coefficients for the rule 

predictor absorbed much of the conjunction effect—indicating a contribution of rule information 

to the decoded conjunctions (Fig. 5). Therefore, the observed conjunctions likely reflect an 

integration between both the rule, and stimulus/response features.  

 Our EEG-based decoding results provide no precise information about the neural-

anatomical location of conjunctive representations (for related exploratory analyses, see 

supplementary information to Kikumoto & Mayr, 2020). However, recently there has been 

increasing evidence from research with non-human primates about the high prevalence of 

neurons in parietal/frontal areas that show very similar properties as the conjunctive 

representations we report on (Fusi, Miller, & Rigotti, 2016; Parthasarathy et al., 2017; Rigotti et 
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al., 2013). Specifically, these so-called mixed-selectivity neurons integrate various task-

features in a nonlinear and diverse manner and, just as the EEG-decoded conjunctive 

representations, are uniquely predictive of successful action selection. It would be important to 

establish to what degree the conjunctive representations examined here, reflect mixed-

selectivity, neuronal activity. One way to test this hypothesis is to look for equivalent functional 

and computational properties of both conjunctive and mixed-selectivity representations in both 

human and animal models (Badre, Bhandari, Keglovits, & Kikumoto, 2020; Bernardi et al., 

2020).    

 In conclusion, the results we report here build on our previous work suggesting that 

conjunctive, event-file type representations can be tracked and related to behavior with high 

temporal resolution through EEG-decoding techniques. Specifically, our results are consistent 

with the hypothesis that such conjunctive representations are a prime target of action 

inhibition, exactly because they are a key driver of successful action implementation. 
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Fig. 1. Task design and analytic procedure.  
(A) Sequence of trial events in the combined rule-selection/stop-signal task for both Exp. 1 and 
2. (B) Spatial translation rules mapping specific stimuli to responses. Two different cue words 
were used for each rule to disambiguate between cue and rule-level representations. (C) 
Schematic steps of the representational similarity analysis. The raw EEG signal was 
decomposed into activity in specific frequency-bands via time-frequency analysis (see EEG 
recordings and preprocessing and Time-Frequency Analysis). For each sample time (t), a 
scalp-distributed pattern of EEG power was used to decode the specific rule/stimulus/response 
configuration of a given trial, producing a set of classification probabilities for each of the 
possible configurations. The profile of classification probabilities reflects the similarity structure 
of the underlying representations, where similar action constellations are more likely to be 
confused. The figure shows as an example classification probabilities for a case where both a 
unique conjunction and rule information are expressed (peak at the correct S-R mappingi plus 
confusion to other instances with the same rule). For each trial and timepoint, the profile of 
classification probabilities was regressed onto model vectors as predictors that reflect the 
different, possible representations. In each matrix of model vectors, the x-axis corresponds to 
the correct constellation for the decoder to pick, and the y-axis shows all possible constellation. 
The shading of squares indicates the theoretically predicted classification probabilities (darker 
shading means higher probabilities). The coefficients associated with each predictor (i.e., t-
values) reflect the unique variance explained by each of the constituent features and their 
conjunction. 
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Fig. 2. Behavioral results in Exp. 1. 
(A) Vincentized mean response times (RTs) for go-trials and failed stop-trials. (B) Average 
rates of stopping failures as a function of stop-signal delays. Error bars specify 95% within-
subject confidence intervals. 
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Fig 3. Effects of stopping on representations in successful- and failed-stopping trials 
compared to go-trials. 
Average, single-trial t-values associated with each of the basic features (rule, stimulus, and 
response) and their conjunction derived from the RSA, separately for go-trials (black), 
successful stop-trials (red), and failed stop-trials (blue). The left panels show the results 
aligned with the stimulus onset, the right panels aligned with the stop-signal onset. Shaded 
regions specify the 95% within-subject confidence intervals. Tick marks on the x-axis of the 
stimulus-aligned panels mark individuals’ average stop-signal delays. 
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Fig. 4. Predicting stopping success from strength of representations. 
Time-course of z values from multilevel, logistic regression models predicting the variability in 
trial-to-trial stopping failures in the stop-trials (the “impact” of representations on stopping 
success), using RSA scores of all features and trial-to-trial SSDs as simultaneous predictors. 
Negative z-value indicates more stopping failures as the strength of decoded representations 
increase. The left panel shows results aligned to the stimulus onset; in the right panel data are 
aligned to the stop-signal onset. Tick marks on the x-axis of the stimulus-aligned panels mark 
individuals’ average stop-signal delays. 
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Fig 5. Effects of stopping on representations in the fixed-stop delay. 
Average, single-trial t-values derived from the RSA (see Fig. 1C) for each of the basic features 
(rule, stimulus, and response) and the conjunction, separately for go-trials (black) and stop-
trials (red). Shaded regions specify the 95% within-subject confidence intervals. The vertical, 
red dashed line marks the onset of the stop signal at 100 ms after the stimulus onset. Gray 
squares below lines denote the time points with significant differences between go- and stop-
trials, correcting for multiple comparison using a non-parametric permutation test. The inserts 
for the rule, stimulus, and response features show the same results when the RSA contains 
only these basic features, but excludes the conjunction as model predictor. 
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Tables 
 

Table 1. Behavioral performance in go- and stop-trials. 
 

 Exp.1 Exp.2 
Go RT (ms) 675 (139) 503 (62.5) 
Go Error (%) 3.55 (3.64) 3.24 (1.77) 
p(respond|signal) 44.1 (4.84) 11.6 (8.85) 
Failed Stop RT (ms) 552 (91) 405 (32.2) 
Stop Error (%) 2.83 (2.28) 2.36 (2.66) 
SSD (ms) 327 (103)  
SSRT (ms) 272 (54.8)  

     
Note. SSD=stop signal delay, SSRT=stop signal RT computed by using the entire RT 
distributions within each participant.  
 
  

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 14, 2020. ; https://doi.org/10.1101/2020.04.30.070227doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.30.070227
http://creativecommons.org/licenses/by-nc/4.0/


 31 

Table 2. Predicting trial-by-trial RTs in go-trials using the average strength of representations 
decoded through the RSA analyses during 0-300 ms post-stimulus intervals for each trial. 
 

 Exp.1 Exp.2 
Variable b (se) t-value b (se) t-value 
Rule -.013 (.006) -2.08 -.025 (.012) -2.15 
Stimulus  -.038 (.009) -4.12 -.015 (.009) -1.59 
Response -.032 (.009) -3.55 -.016 (.009) -1.85 
Conjunction -.057 (.010) -5.69 -.042 (.012) -3.61 

 
Note. Coefficients for all decoded variables were included as predictors simultaneously. 
Negative coefficient imply that stronger representations predict faster RTs. 
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Table 3. Predicting trial-by-trial stopping accuracy using the strength of decoded 
representations in Exp. 1. 
 

  Pre-Stop-Signal Post-Stop-Signal 
Model Variable b (se) t-value b (se) t-value 

SSD control 
 
Rule -.077 (.033) -2.38 -.012 (.024) -0.49 

 Stimulus  -.083 (.033) -2.50 -.060 (.020) -3.11 

 Response -.081 (.034) -2.41 -.062 (.020) -3.11 

 Conjunction -.193 (.041) -4.70 -.151 (.029) -5.23 
Exclude early 
responses Rule -.050 (.020) -2.43 -.019 (.025) -0.76 

 Stimulus  -.036 (.017) -2.19 -.057 (.020) -2.89 

 Response -.039 (.021) -1.86 -.054 (.020) -2.70 

 Conjunction -.136 (.029) -4.78 -.155 (.029) -5.31 
Pre/post stop signal 
simultaneous Rule -.084 (.036) -2.31  .016 (.044)   0.36 

 Stimulus  -.035 (.036) -0.93 -.104 (.041) -2.53 

 Response -.038 (.040) -0.97 -.093 (.041) -2.30 

 Conjunction -.126 (.049) -2.60 -.194 (.049) -3.93 
 
Note. The “SSD control” model included trial-to-trial stop signal delays as the fixed and random 
effect as covariate. In the “exclude early responses” model, all premature responses that 
occurred prior to the onset of the stop signal were removed. Whereas these models were fitted 
separately for pre-stop-signal and post-stop-signal predictors, in the “pre/post stop signal 
simultaneous” model, both pre-stop-signal and post-stop-signal predictors were included 
simultaneously. Pre-stop-signal interval: -200–0 ms; post-stop-signal interval: 0-200 ms. 
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SUPPLEMENTAL MATERIAL 

Event-related potential (ERP) to the stop signal in Exp. 1 
 A number of previous studies have analyzed ERPs in the context of versions of the stop-

signal paradigm. Typically, a frontocentral N2/P3 complex has been found to be affected in 

response to the stop signal (Greenhouse & Wessel, 2013; Kok, Ramautar, De Ruiter, Band, & 

Ridderinkhof, 2004; Wessel & Aron, 2015). There is some debate about the cognitive processes 

reflected by these different ERP measurements. Nevertheless, we wanted to confirm that we 

can replicate the standard ERP pattern in our paradigm, which is considerably more complex 

than standard stop-signal tasks. Consistent with Wessel and Aron (2015), we observed a 

pattern of ERPs, where the onset latency of the frontocentral P3 was shorter in successful stop-

trials compared to failed stop-trials (Fig. S1).  

 
Fig.S1.  Grand averaged ERPs for successful and failed stop trials, time-locked to the onset of 
trial-to-trial stop signal. 
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Predicting single-trial stopping failures  

We observed that both pre- and post-stop-signal states of conjunctive representations 

predict stopping failures at the level of single trials. Yet, one potential concern is that at least 

some participants may have engaged in a waiting strategy and that this group of subjects in 

particular is responsible for the predictive relationship between pre-stop-signal conjunction 

strength and decoding accuracy. Therefore, we repeated our main multi-level logistic regression 

analyses after separating participants into a low stopping failure group (i.e., potentially using a 

waiting strategy) and high stopping error group. Importantly, both groups showed the predictive 

relationship linking conjunctions to stopping success.  
 
Table S1. Predicting trial-by-trial stopping accuracy using the strength of decoded 
representations in Exp. 1. 
 

  Pre-Stop-Signal Post-Stop-Signal 
Model Variable b (se) t-value b (se) t-value 
Low stopping error (n=17) Rule -.041 (.027) -1.53 -.043 (.028) -1.58 

 Stimulus  -.046 (.028) -2.07 -.044 (.026) -1.7 

 Response -.052 (.033) -1.85 -.078 (.028) -2.78 

 Conjunction -1.10 (.065) -4.39 -.177 (.035) -5.09 
High stopping error (n=17) Rule -.048 (.032) -1.48  .024 (.042) 0.58 

 Stimulus  -.045 (.028) -1.63 -.075 (.028) -2.7 

 Response -.037 (.033) -1.12 -.050 (.028) -1.81 

 Conjunction -.112 (.047) -2.37 -.118 (.058) -2.72 
 
Note. Both models included trial-to-trial stop-signal delays as the fixed and random effect as 
covariate. 
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Individual variability in stopping performance 
 Fig.S2 and S3 show the average and individual-specific variability in RT and stopping 

errors across all rule-stimulus-response configurations for both Exp. 1 and 2.  These individual-

specific profiles of two behavioral measures were added as additional predictors into the RSA 

analyses in order to control for difficulty effects specific to each constellation. RSA results 

without these control predictors were similar to the ones reported in the main text. 

 

 
Fig.S2.  Mean RTs and stopping errors of individual subjects for all action constellations in three 
different rules. Using a adaptive tracking method, stopping errors converged to .5 on average. 
To control potential differences covarying with average RTs and stopping errors, vectors of 
subject-specific RTs and stopping errors were included as nuisance predictors during RSA 
fitting. 
 

 
Fig.S3.  Mean RTs and stopping errors of individual subjects for all action constellations in three 
different rules. With a fixed stop-signal delay (100ms after the onset of stimulus), stooping errors 
are reduced on average. To control potential differences covarying with average RTs and 
stopping errors, vectors of subject-specific RTs and stopping errors were included as nuisance 
predictors during RSA fitting. 
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Evaluating the potential bias in single-trial RSA of conjunction 

 Our approach to decode the conjunctive representation via single-trial RSA assumes 

that the decoding results reflect the similarity among action contexts in an unbiased manner. 

Because decoders are optimized to discriminate each of the possible action constellations from 

each other, it is possible that superfluous factors affecting discriminability might inflate 

coefficients of the conjunction regressor (e.g., overfitting of noise). Our theoretically critical 

results rely on comparisons between conditions (e.g., between stop and go trials), not on the 

absolute level of coefficients. Nevertheless, we present here a control analysis to examine the 

potential role of biases introduced during the decoding step. 

One way to eliminate or reduce potential bias is to train decoders to classify feature 

constellations within an “expanded” task space that includes as a subset the conjunctions 

defined by the combination of rules and stimuli/responses. Specifically, we trained decoders to 

discriminate 24 instances of action constellations that were defined by the combination of 3 

rules, 4 S-R links, and even/odd experimental blocks.  Here the decoder would be optimized 

towards discriminating the 24 different rule/S-R/odd-even conjunctions, and not between the 

theoretically critical rule/S-R conjunctions. If a decoding bias has a major effect on results, we 

would expect that the coefficients for the rule/S-R conjunctions are reduced compared to the 

analysis using the original task space with 12 rule/S-R constellations (see Fig. 4 and 5). 

However, we found that single-trial RSAs in the expanded space produced almost identical 

results in both Exp. 1 and Exp. 2 (Fig. S4) to the ones reported in the main text (Fig. 4 and 5). 

Thus, it is unlikely that the original evidence regarding conjunctive representations is affected by 

a bias introduced during the decoding step. 
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Fig.S4.  (A) Using the expanded space method, the average, single-trial t-values of the 
conjunction in Exp.1 separately for go-trials (black), successful stop-trials (red), and failed stop-
trials (blue). The left panels show the results aligned with the stimulus onset, the right panels 
aligned with the stop-signal onset. (B) The conjunctive representation in Exp. 2. We present 
here only the results for conjunction representations; results for the remaining features are also 
virtually indistinguishable from the results presented in the main paper. 
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