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Materials and Methods

Strains, plasmids, and growth conditions
Marine-broth (MB) was purchased from Millipore-Sigma (catalogue #76448). The minimal 

media used throughout (MBL) was prepared by mixing 10-2 [M] NH4Cl, 10-3 [M] Na2HPO4, 
10-3 [M] Na2SO4, 0.05 [M] HEPES (pH 8.2), 20 [g/L] NaCl, 3 [g/L] MgCl2*6H2O, 0.15 [g/L] 
CaCl2*2H2O, and 0.5 [g/L] KCl. The following trace metals and vitamin solutions were added 
at a final concentration which is 1/1000 the indicated concentrations. Trace metals: 2100 [mg/L] 
FeSO4*7H2O , 30 [mg/L] H3BO3, 100 [mg/L] MnCl2*4H2O, 190 [mg/L] CoCl2*6H2O, 24 
[mg/L] NiCl2*6H2O, 2 [mg/L] CuCl2*2H2O, 144 [mg/L] ZnSO4*7H2O, 36 [mg/L] 
Na2MoO4*2H2O, 25 [mg/L] NaVO3, 25 [mg/L] NaWO4*2H2O, 6 [mg/L] Na2SeO3*5H2O. 
Vitamins (dissolved in 10 mM MOPS pH 7.2): 100 [mg/L] Riboflavin, 30 [mg/L] D-Biotin, 100 
[mg/L] Thiamine hydrochloride, 100 [mg/L] L-ascorbic acid, 100 [mg/L] Ca-d-pantothenate, 
100 [mg/L] Folate, 100 [mg/L] Nicotinate, 100 [mg/L] 4-aminobenzoic acid, 100 [mg/L] 
pyridoxine HCl, 100 [mg/L] Lipoic acid, 100 [mg/L] NAD, 100 [mg/L] Thiamin pyrophosphate, 
10 [mg/L] Cyanocobalamin.

Strains, their phylogenetic placement, and inferred ecological role are provided in Data S3. 
Plasmid pVSV208 was a kind gift from the Ruby lab (1). It contains an origin of replication from
the plasmid pES213, the R6K origin of replication, an origin of transfer, and encodes 
chloramphenicol resistance and the fluorescent protein DsRed. Plasmid pVSV208 was 
maintained in Escherichia coli strain DH5-alpha lambda pir or PIR1 (Invitrogen). The strain was 
routinely grown in LB with 25 µg/mL chloramphenicol. Plasmid pBTK569 was a kind gift from 
the Barrick lab, and was acquired from Addgene (Addgene plasmid #110614; 
http://n2t.net/addgene:110614; RRID:Addgene_110614). It contains the RSF1010 origin of 
replication, an origin of transfer, and encodes spectinomycin resistance and the fluorescent 
protein mCrimson. Plasmid pBTK569 and its derivative pLL014 were maintained in E. coli 
Top10 (Invitrogen). 50 µg/mL spectinomycin was used to select for pBTK569, and 25 µg/mL 
chloramphenicol was used to select for pLL014. E. coli strain DH5 alpha was used to maintain 
pEVS104 and was grown in LB containing 25 µg/mL kanamycin.

To construct pLL014, a variant of pBTK569 encoding chloramphenicol resistance and 
eGFP, we synthesized a segment of DNA coding for eGFP, and the chloramphenicol-resistance 
gene cat (GeneArt, Invitrogen). We amplified this segment with primers engineered with the 
restriction sites BsrGI and XbaI, which are present at unique sites in pBTK569, using high-
fidelity Q5 polymerase (NEB). We digested pBTK569 and the Cm-eGFP DNA with BsrGI and 
XbaI (NEB) and treated the plasmid digest with Antarctic phosphatase to prevent re-ligation. We
ligated the digested Cm-eGFP and pBTK569 with T4 DNA ligase (NEB), and electroporated the 
products into Top10 E. coli (Invitrogen). The construct was confirmed by Sanger sequencing.

Plasmids pLL014 and pVSV208 were introduced into strains of interest by conjugation. The
helper plasmid pEVS104 (2), which carries in-trans copies of the conjugative transfer genes, was
used to mobilize the oriT containing plasmids. Equal parts of overnight cultures of E. coli strains 
carrying pVSV208 or pLL014 (donor), pEVS104, or the recipient strain were washed, 
resuspended in antibiotic free MB, combined, and pelleted. The pellet was resuspended in a 
small amount of MB, and plated on MB 1.5% agar. After overnight incubation at 25 °C, the 
conjugation mixture was plated onto MB-agar containing 12.5 µg/mL chloramphenicol. Colonies
were plated on two rounds of 12.5 µg/mL MB agar to isolate plasmid-carrying recipient strains 
from any residual E. coli. The transconjugates were confirmed by sequencing the 16s rRNA gene
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using universal primers 8F (5-AGAGTTTGATCCTGGCTCAG-3) and 1522R (5-
AAGGAGGTGATCCANCCRCA-3).

For isolate phenotyping (Figure 2B), strains were streaked from glycerol frozen stocks onto 
MB-agar plates and allowed to grow for 48 hours at 25˚C. Single colonies were inoculated into 
14 [ml] Polypropylene growth tubes (VWR #60818) containing 1 [ml] MBL media 
supplemented with either 20 [mM] GlcNac or 20 [mM] glucose and grown for a maximal 
duration of 48 hours at 25˚C with shaking. Whenever possible, cultures grown for 24 hours in 
MBL + 20 [mM] pyruvate were used. If a strain did not show visible growth, as measured by 
optical density, after 24H in MBL + 20 [mM] pyruvate, the MBL + 20 [mM] glucose was 
assayed for optical density. If the glucose culture also showed no visible growth, this strain’s 
culture was allowed to grow for an additional 24H, and the cultures were checked in the same 
order again. After pre-growth, cells were washed three times in artificial seawater (Millipore-
Sigma #S9883) by centrifugation at 5000 rpm, and diluted 1/20 into the final growth media. 
Assays were performed in (biological) triplicate in deep 96-well plates containing 1 ml of MBL 
media supplemented with either 20 [mM] GlcNAc or 2 [g/l] colloidal chitin.

For co-culture experiments (Figure 2C) a predicted exploiter candidate, alteroA3R04 
labeled with a plasmid-encoded eGFP (plasmid pLL014), and a chitin degrader, vibrio1A01 
labeled with a plasmid-encoded DsRed (plasmid pVSV208), were co-cultured with a chitin sheet
as a sole carbon source. The transparent chitin film was generated at the bottom of the well of a 
96-well plate by adding 32 µl of 10 mg/ml chitin solution (dissolved in HFIP) and allowing the 
solvent to dry. The cells of the two strains were pre-cultured in MBL + 20 [mM] GlcNAc at 
25°C, and diluted using MBL salts to an OD600 of 0.0625. The two strains were then mixed at 
the ratio of 1:9, 5:5, or 9:1. 150 µl of the mixed cells were inoculated onto the wells of the chitin 
sheet coated 96-well plate, and incubated at 25°C for more than 80 h. The growth profiles of the 
exploiter and the degrader were evaluated by measuring fluorescence intensity and OD600 at 30-
minute intervals with a plate reader (Tecan Spark).

Genome databases and functional annotation
Genome bundles were downloaded from the NCBI Refseq FTP website on July 13, 2019 

(3). Only the latest versions of complete genomes were downloaded, resulting in 13,737 
genomes. We then removed redundant genomes from our dataset by clustering genomes that had 
>99.9% ANI over 90% of their genome (4), keeping the longest genome from each cluster, 
resulting in 8753 non-redundant genomes (5, 6). The phylogenetic tree, as well as the 
classification of each genome, was obtained using GTDB-tk (7). For all downstream analyses, a 
concatenated file was created where only CDSs and their corresponding translated proteins were 
retained, with pseudogenes (as annotated by NCBI) discarded. 

Chitinases (EC.3.2.1.14) were identified using a slightly modified dbCAN annotation 
workflow (8). The modified workflow consisted of identifying proteins that significantly aligned 
to the dbCAN HMMs (e-value < 10-10), and contained conserved k-mers, as identified by the 
dbCAN hotpep program (with hits-cutoff set to 1, and freq cutoff set to 0.2. These parameters 
were found to be the best performing on bacterial genomes (8)). Finally, hits were filtered to only
contain GH18 and GH19, as these are the most prevalent and specific chitinase domains found in
the CAZy database.

eggnog-mapper v2 was used to functionally annotate proteins, with parameters --
go_evidence non-electronic  --target_orthologs all --seed_ortholog_evalue 0.001 --
seed_ortholog_score 60 (9). For KEGG annotation of co-evolving genes, unknown function 
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genes were genes that either had no KEGG orthology hit and no description or were not found in 
the eggnog output file (had no hits to seed orthologues). Mobile genes were genes that had one of
the following terms in their description: phage, tail, capsid, transposon, transposase, conjugation,
or insertion element. Other functions were extracted from the KEGG pathway annotations of 
genes. The final distribution of functions of co-evolving genes was calculated as follows: the 
probability of finding an annotation in a given gene was calculated, and then the sum of each 
annotation across all genes is the final number reported in table S1.

Co-evolution and genome proximity 
All 49,638,395 genes from the 13,373 complete genomes were clustered into gene families 

based on homology of their protein products using mmseqs2, with command-line options --cov-
mode 0 --min-seq-id 0.5 -c 0.8 -s 7 --max-seqs 300 --cluster-mode 1 (10). This means that in 
order to be clustered genes must be at least 50% identical over 80% of the length of the longer 
protein product. After clustering, which resulted in gene 3,237,392 families, we determined the 
copy number of each gene family in each genome. To determine gain / loss events, we used the 
Castor R package to reconstruct the ancestral copy-numbers of each gene family using a 
maximum-likelihood approach, given the extent genome’s copy number, and the GTDB-tk 
generated species tree, by using the function asr_squared_change_parsimony (11). Changes were
then calculated for each edge in the tree and every gene family as the difference between the 
ancestral copy number and the descending node’s copy number, and rounding to the nearest 
integer.

Co-evolution was defined as similarities in gene gain/loss events (12, 13). Similarities in 
evolutionary gain/loss events (after correcting for changes in total genome sizes, as done in (12)) 
were computed using the cosine similarity metric. As high similarity could be due to random 
chance if the observed number of changes is too small, we only considered correlations between 
chitinase and genes that had at least 3 changes on the phylogeny, and were found in at least 5 
genomes (13). This reduced the number of genes analyzed to 270,461 (1,889,229 gene families 
were only found in a single genome). We utilized a randomization test to assess the significance 
of the observed similarities with chitinase. For each gene, we identified the subtree in which it 
exists, and verified that chitinase also has >2 changes in that subtree. We then generated 104 
random vectors from the entries of the change matrix (edge x gene) in that specific subtree, by 
randomly permuting the entries of each edge across different genes, while only sampling from 
genes that had >2 changes in that subtree. This process was performed independently for each 
edge in the subtree. The p-value of the correlation was the fraction of random similarities that 
showed a higher similarity than the one observed for the chitinase-gene pair. In cases where the 
distribution of a gene was not monophyletic, the common ancestor of all genomes carrying the 
gene was used to define the subtree in which it exists.

To detect genes that co-localize frequently with chitinases, we first created a list of all 
protein sequences that are proximal to chitinases. In any genome that contained a chitinase, we 
extracted the genes that were ≤ 5 genes away from a chitinase. If a genome contained more than 
1 chitinase, this procedure was performed for each chitinase in the genome. Each one of these 
proteins belonged to a gene-family, as described above. This allowed us to determine all gene-
families that appear next to chitinases at least once. For each gene family, we calculated the 
probability, P, of being proximal to a chitinase as the number of genomes in which it is proximal 
to a chitinase, divided by the total number of genomes it is found in. Following (14), we set a 
relaxed threshold of P ≤ 0.1 to consider a gene as co-localized with chitinases.
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The conditional probability histograms shown in figure 1D were computed as follows: For 
each of the 3576 accessory genes, we found the most recent common ancestor (MRCA) of all 
genomes containing that gene. The MRCA was used to extract a subtree descending from that 
MRCA node, over which the analysis for each gene was carried out. The probability of losing 
chitinases while retaining the accessory gene was the ratio between 1) the sum of edges over 
which chitinase copy number went from some positive number to zero, while the copy number of
the accessory gene remained positive (e.g, parent node had 1 chitinase and 1 copy of the 
coevolving gene, while child node had 0 chitinases and 1 copy of the coevolving gene), and 2) 
the sum of edges over which the copy number of the accessory gene remained positive. The 
second conditional histogram was computed similarly, with the categories switched.

To detect clusters of co-evolving genes, we used weighted minhash (15) to quickly find 
groups of similar vectors among all genes that co-evolve with chitinase, using a low threshold 
(0.3) for similarity. Due to the low threshold and probabilistic nature of the minhash clustering 
algorithm, we then broke up clusters identified using the weighted minhash, as these clusters 
may contain illegitimately combined vectors. This was done as described above while skipping 
the significance testing step. This resulted in a network of similarities between genes, where 
nodes in the network are genes, and edges are similarities. To detect communities in the graph, 
we used the Louvain clustering method as implemented in the igraph R package.

Determination of Echi and isolate ecological role classification
An elastic-net linear model was trained on all non-redundant publicly available complete 

genomes, with chitin-associated gene content clusters as features, and actual chitinase counts as 
the response. The chitin-associated gene content of each genome was determined based on the 
protein clustering performed in the previous segment. Each genome was represented by a binary 
vector, where each entry represented a cluster of co-evolving genes. Entries were 1 if the genome
contained more than 30% of genes belonging to that cluster, and 0 otherwise. These vectors, 
together with a vector of associated chitinase copy numbers in each genome were fed to an 
elastic-net regression, as implemented in the cv.glmnet function from the glmnet R package. The
parameters used were nfold = 5, alpha = 0.2, nlambda = 1e3. The model was trained on each 
phylum separately (except for proteobacteria, which were split into alpha-, and gamma-
proteobacteria), and on the entire combined dataset. The statistics of each model in terms of 
mean-square-error and cross-validated R2 are found in supplementary table S4. Genomes were 
classified according to the following scheme: genomes with Ochi > 0 & Echi ≥ 1 were classified as 
exploiters. We reasoned that organisms that have chitinases but are not retaining their chitinase-
associated genes were not ecological primary degraders of chitin, and so genomes with Ochi > 0 
& Echi < 1 were classified as scavengers. Additionally, genomes with Ochi = 0 and Echi < 0.5 were 
classified as scavengers. Finally, genomes with Ochi = 0 and Echi ≥ 0.5 were classified as 
exploiters. Based on the relative rate of chitinase loss and chitinase-associated gene retention, 
compared to the opposite scenario, we postulate that such genomes evolved from chitinase 
containing ancestors, that lost their chitinases but retained many of their chitinase associated 
genes. The switch from a threshold of 1 to 0.5 is in an attempt to try and accommodate moderate 
chitinase-associated gene loss in such genomes.

Genome-scale metabolic model construction was performed with CarveMe (16). Genes 
were predicted using prodigal (17), and functional annotation was performed in CarveMe with 
gap-filling on MBL media with pyruvate as the sole carbon source, as most isolates grew in that 
condition. Flux-balance analysis was performed using CobraPy with default parameters (18). 
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Growth on GlcNAc was defined as a non-zero simulated biomass yield on MBL + 20 [mM] 
GlcNAc. Degraders were defined as genomes predicted to grow on GlcNAc and that possess a 
chitinase, exploiters were predicted to grow on GlcNAc but have no chitinases, and scavengers 
were genomes predicted to not grow on GlcNAc.

Metagenomic 16S rRNA dynamics and early colonization rate calculation
The 16S rRNA sequence of each genome was determined by first amplifying it using the 

27F (5-AGAGTTTGATCMTGGCTCAG-3) + 1492R (5-GGTTACCTTGTTACGACTT-3) 
universal bacterial primers(19, 20), followed by sanger sequencing. Our strain collection was 
isolated from two experiments previously performed in the lab, which studied community 
succession on model particulate matter using natural sea-water communities (19, 20). We 
mapped the 16S sequences of our isolates back to the metagenomic 16S trajectories 
(PRJNA319196, PRJNA478695) using blast, only keeping perfect matches (21). Each sequence 
was only mapped to the experiment from which it was isolated. The read counts were 
transformed into relative frequencies and only entries with a relative abundance > 10-3 were 
retained for downstream analysis. Each experiment was originally performed in triplicate, and 
we filtered the data for each isolate by only considering repeats that were coherent with each 
other, with a threshold of a Pearson correlation of 0.3 between repeats. The early colonization 
window was defined as the time window between 0 - 60 [h] (19). The early colonization rate was
defined as the average rate of increase in relative frequency between the lowest and highest 
points in the early colonization window. This rate was calculated for each repeat, and the average
rate was returned for each isolate.

Synthetic community experiment
All isolates were pregrown in individual wells of a 96-well plate containing MB media for 

48 hours. The individual pre-cultures were then combined in equal volumes, washed in MBL 
salts, and inoculated into deep-well 96-well plates containing MBL with 40 mg colloidal chitin 
as the sole carbon source. In each dilution cycle, communities were allowed to grow for 84 
hours, and then diluted into fresh media with the appropriate dilution factor (1/10,1/100, or 
1/1000). To determine community dynamics through time, DNA was extracted using the 
beckman-coulter DNAdvance kit, and sequenced using the EMP 16S amplicon protocol (using 
515F (parada)-806R(apprill) primers) at the Environmental Sample Preparation and Sequencing 
Facility (ESPSF) which is located in Argonne National Labs. 
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Fig. S1.

Distribution of kegg annotations in chitinase linked genes. Annotations were inferred using 
eggnog-mapper. Annotations are weighted in each gene, so that the total number of annotations 
in each gene is 1. The total number of annotations reported here is the sum of all weighted 
annotations across all genes. Mobile genes are genes that had one of the following terms in their 
description: phage, tail, capsid, transposon, transposase, conjugation, or insertion element. 
Unknown function genes either had no match to an eggnog-mapper entry, had no kegg pathway 
annotation, or contained the term “unknown function” in the description field. 
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Fig. S2.

Density of conditional gene loss probabilities, given that the other gene category is retained. The 
probability was calculated for each gene family across all edges of the relevant subtree over 
which the gene family exists. Unlike Fig. 1D, here the density is plotted with a logarithmic y axis
and linear x axis, allowing the comparison of the densities at 0 conditional probability (0 x-axis 
values).
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Fig. S3.

Chitinase linked genes are better than random sets of genes at predicting genomic chitinase copy 
number. For each phylum/class the ability of our elastic-net linear regression to predict chitinase 
copy number, in terms of the R2

  of the regression, was compared to 1000 models trained with 
the same parameters on an equal number of randomly selected genes. The distribution of R2 
values of these random gene-based elastic-net linear models is plotted for each phylum/class, 
where the indicated p-value is the proportion of cases that a random gene elastic-net model had a
higher R2 than the chitinase linked genes-based elastic-net linear model. In cases where the p-
values were insignificant, the successful random sets of genes either contained a large amount of 
co-evolving genes or contained many genes that were negatively linked to chitinases (data not 
shown). These negatively linked genes also contain valuable information about chitinase copy-
number, but their functional significance in the context of chitin degradation is unclear. 
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Fig. S4.

Predicted ecological classes of 63 marine isolates. For each bacterial order in our collection (as 
determined by GTDB-tk), we predicted the expected number of chitinases (Echi) based on the 
chitinase linked gene content of the isolate’s genome, and compared it to the observed number of
chitinases. All ecological roles were found in multiple orders and families, and for some orders 
contained multiple ecological roles, suggesting that ecological roles evolve faster than, and are 
unlinked from phylogeny at the order level.
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Fig. S5.

Accurate quantification of bacterial cell counts on chitin using sybr-gold. (A) fluorescence of 
individual strains as a function of cell density (CFU/ml). Cells were grown in marine broth 2216 
to saturation and were then serially diluted and stained with sybr-gold for 15 minutes, after 
which their fluorescence was determined. (B) P-values of the interaction term between strain 
identity and cell concentration for the regression lines of the data presented in panel A. No 
interaction term is significant (all p-values > 0.1), indicating that cell concentration influences 
fluorescence in a similar way across all tested strains. (C) Strain vibrio1A01 was stained with 
sybr-gold in the presence of various concentrations of colloidal chitin. Particle dilutions are 
relative to the standard concentration used for assaying growth, which is 2 [g/l]. Cell 
concentrations are indicated as the dilution factor relative to the saturation cell density, which is 
~109 [cells/ml]. The shaded region indicates the dilution factor where particle fluorescence 
overwhelmed cellular DNA fluorescence.
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Fig. S6.

Genome-scale metabolic models perform worse in understudied taxa, compared to the annotation
free linked gene model. The total number of isolates in each order are shown in black, and the 
number of isolates from that order corretly predicted by each type of model is indicated by the 
colored bars. A correct prediction is defined as in the main text, and the correct predictions of all 
ecological classes are amalgamated for the quantification in this figure. 
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Fig. S7.

Plasmid encoded fluorescence correlates with OD. (A,C) Fluorescenc / Optical density 
(600nm, OD) as a function of time for strain vibrio1A01-DsRed (A) and strain alteroA3R04-
eGFP (C). Red represents DsRed fluorescence, green represents eGFP fluorescence, and black 
represents OD. Experiments were conducted in triplicate, and the lines present the mean, with 
the shaded region representing the standard deviation. The DsRed reporter has a higher signal-to-
noise compared with the eGFP reporter, resulting in higher background subtracted values, as 
well as the ability to detect an increase in fluorescence before an increase in OD. 1A01-DsRed 
measurements were performed with the chitin sheet as a sole carbon source, as in Fig. 2. 
alteroA3R04 is unable to grow in monoculture on the chitin sheet, so measurements were 
performed using the same protocol, but with 20 [mM] N-Acetylglucosamine added, resulting in 
faster dynamics. (B,D) correlation between fluorescence and optical density for vibrio1A01-
DsRed (B) and alteroA3R04 (D). Values are taken from A and D respectively.
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Fig. S8.

Using plasmid-based fluorescence to measure co-culture dynamics on chitin sheets. (A,C) GFP 
and YFP fluorescence as a function of time for vibrio1A01-DsRed (A), and alteroA3R04-eGFO 
(C). Data is reproduced from experiments presented in Fig. S7, with the measurements of the 
additional fluorescent channel presented. Red lines represent DsRed fluorescence, Green lines 
represent eGFP fluorescence, and shaded regions represent standard deviations around the mean, 
taken from at least 2 indipendent replicates. (B,D) Correlation between DsRed and eGFP 
fluorescence for vibrio1A01-DsRed (B), and alteroA3R04-eGFP (D). The fit in B was used to 
correct eGFP values in co-cultures presented in panels E-G and in Fig. 2 in the main text. (E-G) 
co-culture dynamics of vibrio1A01-DsRed and alteroA3R04-eGFP when grown with a flat chitin
sheet as the sole carbon source. To show the effect of the initial ratio of the two strains on the 
outcome of the co-culture, values were normalized such that the minimal DsRed/eGFP 
fluorescence value across all experiments was set to 0 and the maximal value across all 
experiments was set to 1. The data in F is used in Fig. 2 in the main text. 
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Fig. S9.

Dynamics of strains belonging to different ecological classes in a highly complex natural 
seawater community. (A) dynamics of individual strains. Raw relative abundances were 
calculated as in the main text (methods). Tiles are colored according to the relative abundance, 
divided by the maximal relative abundance of any isolate at any time point in the given 
ecological class. Grey tiles are below detection limit (relative frequency of 10-4). (B) Average 
relative abundance (not normalized as in A) of each ecological class, as a function of time.
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Phylum or class # of genomes number in figure 1A
Gammaproteobacteria 3550 1

Firmicutes 2194 4
Actinobacteriota 928 6

Alphaproteobacteria 711 2
other 492 none (grey edges)

Bacteroidota 467 7
Campylobacterota 295 3

Cyanobacteria 115 5

Table S1.

Number of genomes analyzed in each phylum or class, and the index by which the phylum is 
indicated in Fig. 1A.
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Phylum or class
# of

genomes # of input features # variables used Mean square error R2

all 8752 1905 875 0.27 0.91
Gammaproteobacteria 3550 887 460 0.3 0.89
Firmicutes 2194 569 234 0.18 0.92
Actinobacteriota 928 518 206 0.28 0.97
Alphaproteobacteria 711 202 37 0.06 0.6
other 492 265 149 0.09 0.97
Bacteroidota 467 140 55 0.47 0.61
Campylobacterota 295 21 0 0.03 0
Cyanobacteria 115 39 0 0.26 0

Table S2.

Elastic-net regression summary statistics. For each phylum, the number of genomes analyzed, 
number of input features (clusters of chitinase linked genes that are found in at least one genome 
in that phylum or class), number of variables used by the elastic-net regression model, mean-
square error of the model, and 5-fold cross-validated R2. Values were obtained from the output of
the cv.glmnet function in the glmnet R package.
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Data S1. (separate file)

Description of the 8752 genomes used in the analysis, including: accession #, bioproject, 
biosample, wgs_master, refseq_category, taxid, species_taxid, organism_name, 
infraspecific_name, isolate, version_status, assembly_level, release_type, genome_rep, 
seq_rel_date, asm_name, submitter, gbrs_paired_asm, paired_asm_comp, ftp_path, 
excluded_from_refseq, relation_to_type_material.
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Data S2. (separate file)

GTDB-tk summary table and accompanying phylogenetic tree.  
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Data S3. (separate file)

KEGG pathway annotation of chitinase linked gene families. For each gene family, the different 
eggnog nogs that members of this protein family map to are reported, with the percent of 
members that map to that nog given in parenthesis. The different KEGG pathways that members 
of the given protein family map to is given in the same format.  
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Data S4. (separate file)

Weighted KEGG pathway annotations of chitinase associated genes. Annotations are summed 
across all chitinase linked gene families, weighted by their relative abundance in the given gene 
family.
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Data S5. (separate file)

Isolate collection GTDB-tk based taxonomy, fluorescence on GlcNAc, fluorescence on chitin, 
phenotype, phenotype predicted according to chitinase linked genes, and phenotype predicted 
according to genome-scale metabolic model.
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Data S6. (separate file)

Taxonomy, and phenotypic classification of 44 isolates used in the synthetic community 
experiment presented in Fig. 4.
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