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Abstract 

 

Working memory (WM) is the brain’s ability to retain information that is not directly 

available from the sensory systems. WM retention is accompanied by sustained firing rate 

modulation and changes of the large-scale oscillatory profile. Among other changes, beta-band 

activity elevates in task-related regions, presumably stabilizing WM retention. Alpha-band 

activity, in turn, is stronger in task-irrelevant regions, serving to protect WM trace from 

distracting information. Although a large body of experimental evidence links neural oscillations 

to WM functions, theoretical understanding of their interrelations is still incomplete. 

In this study, we used a computational approach to explore a potential role of beta and 

alpha oscillations in control of WM stability. First, we examined a single bistable module that 

served as a discrete object representation and was resonant in the beta-band in the active state. 

We demonstrated that beta-band input produced differentially stronger excitatory effect on the 

module in the active state compared to the background state, while this difference decreased with 

the input frequency. We then considered a system of two competing modules, selective for a 

stimulus and for a distractor, respectively. We simulated a task, in which a stimulus was loaded 

into the first module, then an identical oscillatory input to both modules was turned on, after 

which a distractor was presented to the second module. We showed that beta-band input 

prevented loading of high-amplitude distractors and erasure of the stimulus from WM. On the 

contrary, alpha-band input promoted loading of low-amplitude distractors and the stimulus 

erasure. 

In summary, we demonstrated that stability of WM trace could be controlled by global 

oscillatory input in a frequency-dependent manner via controlling the level of competition 

between stimulus-encoding and distractor-encoding circuits. Such control is possible due to 

difference in the resonant and non-linear properties between the background and the active 

states. 
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Introduction 
 

Working memory (WM) is the process by which brain circuits hold on-line information 

that is necessary for multiple functions but not currently available from the sensory systems 

(Baddeley, 2003). Retention of information in WM is believed to be supported by sustained 

neural activity characterized by dynamic increase of firing rates in neural populations selective 

for this information (e.g. Fuster, Alexander, 1971; Goldman-Rakic, 1995; Constantinidis, 

Goldman-Rakic, 2002; Spaak et al., 2017; Murray et al., 2017). While multiple brain regions 

show WM-related persistent activity, two have been found particularly key: the prefrontal cortex 

(PFC) and the posterior parietal cortex (PPC) (Chafee, Goldman-Rakic, 1998; Qi et al., 2010; 

Salazar et al., 2012). Alongside dynamic increases of firing rates, changes in collective 

oscillatory activity in various frequency bands were also observed during WM tasks (Siegel et 

al., 2009; Haegens et al., 2010; Liebe et al., 2012; Wimmer et al., 2016; Lundqvist et al., 2016; 

Lundqvist et al., 2018; Kornblith et al., 2016). While such oscillatory dynamics have been linked 

to WM performance, their specific role has not been fully clarified.  Delineating which specific 

mechanisms mediate interaction between the WM-related oscillations and the persistent activity 

to control WM functions also remains an open question. 

In this paper, we focus on the beta and alpha oscillations in their potential role to flexibly 

control WM stability in the presence of distractors. Beta oscillations are of special interest in 

WM studies since they are presumably related to keeping neural activity patterns invariant over 

time, which was formulated as the “beta status quo” hypothesis (Engel, Fries, 2010). More 

specifically, in WM tasks, prefrontal beta power drops during stimulus presentation (i.e. when 

the existing pattern should be modified) and increases during the retention period (Siegel et al., 

2009; Lundqvist et al., 2016; Lundqvist et al., 2018; Kornblith et al., 2016; Wimmer et al., 

2016). Importantly, this beta increase is specific to active information maintenance (Wimmer et 

al., 2016) at “informative” sites, containing neurons that carry information about WM content 

(Lundqvist et al., 2016; Lundqvist et al., 2018). Furthermore, beta activity increases with WM 

load at the informative sites and decreases at the non-informative sites (Lundqvist et al., 2016; 

Kornblith et al., 2016). These results suggest that WM-related beta increase does not merely 

reflect recovery from stimulus presentation but likely plays a functional role in WM retention 

and gating.  

Alpha oscillations are believed to reflect cortical inhibition (Klimesch, 2012). Alpha 

activity is usually increased in posterior regions during WM retention in a load-dependent 

manner (Lieberg et al., 2006; Jensen et al., 2002), supposedly protecting WM content from 

sensory inputs. However, alpha activity is weaker in the regions that are related to WM content 

retention, compared to irrelevant regions (Sauseng et al., 2009; Rösner et al., 2020). This 

suggests that activation of WM-retaining populations is accompanied by alpha decrease in these 

populations. 

From the theoretical point of view, active retention of WM content is classically 

described in terms of bistable attractor networks (e.g. Amit, Brunel, 1997). Spiking versions of 

the classical WM models did not address the impact of oscillations on WM dynamics, since they 

required the dynamics of spiking to be asynchronous (Gutkin et al 2001), although Tegner et al. 

(2002) showed that oscillations could be tolerated given slow NMDA-dependent excitation. At 

the same time, in that work and later accounts (as in Roxin, Compte, 2016; Lundqvist et al., 

2010; Lundqvist et al., 2011), oscillations did not appear to play a causal mechanistic role in 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 15, 2020. ; https://doi.org/10.1101/2020.12.13.422600doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.13.422600
http://creativecommons.org/licenses/by-nc-nd/4.0/


WM retention and gating. In fact, despite its prominence in the experimental data, the functional 

role of oscillatory activity has received only limited attention in the theoretical literature. Kopell 

et al. (2011) presented a data-driven model, in which high beta (beta 2) and gamma oscillations 

in PPC concatenate to produce low beta (beta 1) oscillations that support the memory trace. This 

mechanism does not appear to apply in the PFC, where gamma and beta2 are shown to compete, 

rather than concatenate during WM retention (Lundqvist et al., 2016; Lundqvist et al., 2018; 

Bastos et al., 2018). This suggests that there could be a complementary PFC-based mechanism of 

WM retention involving beta2 oscillations. 

In a complementary approach, Dipoppa and Gutkin (2013) explored how external input 

oscillations could control WM gating and retention in a bistable non-oscillatory network of 

excitatory neurons. It was shown that alpha-band input terminated WM retention and prevented 

new stimuli from being memorized, while theta-band input also prevented memorization, but 

spared WM retention. Schmidt et al. (2018) explored a similar low-dimensional model, 

containing either a single excitatory population or several competing populations. It was 

demonstrated that (1) slow oscillations promoted object memorization and spontaneous 

switching between objects in WM, (2) beta- / low gamma-band input erased WM content, (3) 

high gamma-band input promoted memorization and stabilized a metastable WM trace. These 

results suggest that difference in responses to an oscillatory input between background and active 

populations could play a major role in oscillatory WM control. However, a potential role of such 

differential responses in the control of competition between the retained and newly received 

information (and, thus, in control of neural pattern robustness) was not thoroughly studied yet.  

In the present study, we propose a novel mechanism for oscillatory control of WM 

retention stability based on oscillation-induced changes in the level of competition between the 

active neural populations (selective to retained information) and the background populations 

(selective to irrelevant information). We consider a system of two bistable excitatory-inhibitory 

modules with mutual inhibition; each module has a beta-band resonance in the active state, but 

not in the background state. We simulate an experiment, in which a discrete stimulus is loaded 

into the first (S) module (switching it to the active state), and then a distractor is presented to the 

second (D) module, while both modules receive an identical sinusoidal input. We demonstrate 

that beta-band input selectively entrains the active S-module and increases its mean firing rate 

due to the non-linearity of the neural gain functions, which leads to increased inhibition of the D-

module and a better ability of the system to ignore the distractor. Oscillations of lower 

frequencies (including alpha) exert an additional inhibitory effect in the active state and an 

excitatory effect in the background state due to the induced periodic wandering between the 

basins of attraction of these states. As a result, alpha-band input in our model did not increase the 

mean firing rate of the S-module, but provided additional excitation to the D-module during the 

distractor presentation, promoting the distractor loading to WM accompanied by erasure of the 

stimulus. In summary, we demonstrate WM-trace stabilization in the presence of a distractor by 

a beta-band input and its destabilization by an alpha-band input. 

 

Results 

The basic unit of our models is a neural representation of a discrete object, implemented 

as a bistable network containing an excitatory and an inhibitory neuronal population. Further in 

the text, we refer to such network as a “module”. A module has two steady states: the 

background state with low firing rates, and the active state with high firing rates. When a module 
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is in the active state; the corresponding object is retained in WM. In this paper, we considered a 

single-module system (for the initial analysis), as well as a system of two modules with mutual 

inhibition. We used the latter system to model the competition between a stimulus being retained 

in WM and a distractor. Most of the results in this study were obtained using low-dimensional 

(firing rate) models. The main findings were then confirmed by simulations of the corresponding 

spiking networks. 

Since our aim is to explore the effects of oscillatory input on stability of WM retention, 

the modules did not generate oscillations by themselves. Rather, they were endowed with beta-

band resonance in the active state, but not in the background state – i.e. demonstrated state-

dependent resonance. Oscillations were delivered to a module as an external sinusoidal signal. In 

the two-module system, each module received oscillations of the same amplitude and phase. 

First, we considered the single-module system and explored how the oscillation-induced mean 

firing rate shift differed between the background and the active state (as a result of the state-

dependent resonance). Then we considered the two-module system and explored how the 

aforementioned difference leads to oscillation-induced increase or decrease of competition 

between the modules. 

  

State-dependent resonance and mean firing rate shift in a single-module system 

We first explore the persistent activity dynamics and its modulation by oscillatory inputs 

in a single bistable module with state-dependent resonance. The system is schematically presented 

in Figure 1(a). The two steady states of the model are depicted together with the corresponding 

gain functions in Figures 1(c,d), respectively. One can see that both steady states are located in the 

concave parts of the gain functions, which is crucial for the effects of oscillation-induced firing 

rate shift that we describe further in the paper. 
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Figure 1. (a) Scheme of the single-module system. (b) Characteristic curves of the single-module 

system at the ( ),e ir r  phase plane. For any point on these curves, the derivatives of all the 

variables except of ,e ir r  are equal to zero. (c,d) Gain functions (firing rate versus mean input 

current) for a neuron in the background and the active state, respectively. Values of AMPA- and 

NMDA-input variances calculated at the corresponding steady-states are used both 

in (c) and (d). 

In order to illustrate the state-dependent resonance of the model, we simulate it under 

oscillatory inputs in the background state and when the model is switched by a transient input to 

the active state (see Figure 2). Each simulation started from the background state; in Figures 

2(b,d,f,h), a stimulus was presented, switching the system to the active state. In Figures 2(c – h), 

sinusoidal input oscillations were delivered to the system. Visually inspecting the two cases, (the 

background state in Figures 2(a,c,e,g)) and the stimulus-evoked active state (Figures 2(b,d,f,h), 

one can see that the oscillatory entrainment was much stronger when the system was in the active 

state. Notably, for the chosen set of parameters, the strongest entrainment was observed for the 

beta-band input (Figure 2(f)). Importantly, the beta-band input in the active state also provided the 

largest shift of the mean (time-averaged) firing rate ( 7.4 Hzer = ). The shifts observed in the 

active state for the other frequency bands (Figures 2(d,h)) and in the background state (for any 

frequency band) (Figures 2(c,e,g)) were considerably smaller ( 0.5 2.4 Hzer = − ). 
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Figure 2. Results of the low-dimensional single-module system simulations. (a,b) – no 

oscillatory input; (c,d) – alpha-band input; (e,f) – beta-band input; (g,h) – gamma-band input. 

(a,c,e,g) – background state; (b,d,f,h) – active state. Blue curves – excitatory firing rates, red 

curves – inhibitory firing rates. Intervals of the stimulus and the oscillatory input presentation are 

marked by horizontal black lines. er  – time-averaged firing rate shift relative to the case 

without oscillatory input. 
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Figure 3. Frequency response of the low-dimensional single-module system. All graphs are 

functions of the input frequency. (a,d) – Firing rate amplitudes; (b,e) – total input current 

amplitudes; (c,f) – time-averaged firing rates. (a-c) – active state; (d-f) – background state. Blue 

curves in (a – f) – excitatory population, red curves – inhibitory population. Horizontal dashed 

lines in (c,f) represent the firing rates observed in the absence of oscillatory input. (g) – time-

averaged excitatory firing rates for both states, visualized at the same plot; (h) – oscillation-

induced shifts of the time-averaged firing rates (relative to the case of no input oscillations); 

green curves – background state, purple cures – active state. All simulations were performed for 

1500 mssimT = , and the presented quantities were calculated in the interval 750 – 1500 ms. 

 

State-dependent resonance of the system can be quantified by frequency response curves 

(Figure 3) – amplitudes of the forced oscillations, as well as oscillation-induced shifts of the mean 

firing rate, vs. input frequency.  
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Beta 

Forced amplitudes demonstrate a beta-band resonant peak in the active state (Figure 

3(a,b)), but not in the background state (Figure 3(d,e)). Due to the gain functions’ non-linearity 

(Figure 1(d)), the resonance of the amplitude leads to a resonance of the time-averaged firing rate 

(Figure 3(c)). Importantly, the time-averaged firing rate shift induced by the oscillatory input at 

the resonant frequency (~23 Hz) was much stronger for the active state than for the background 

state (8.1 Hz vs. 0.9 Hz; Figures 3(c,f)). The range of frequencies, in which an active population 

receives stronger mean excitation than a background population, could be seen in Figure 3(h) as 

the interval, in which the purple curve goes above the green curve. Oscillations in this range are 

expected to stabilize a WM trace in a multi-population system with competition by increasing the 

mean firing rate difference between the active and the background populations. 

We can provide a heuristic explanation for the state-dependent difference in the 

entrainment and the mean firing rate shifts induced by the beta-band oscillatory inputs. The 

difference in the entrainment amplitudes between the background and the active state is related to 

concavity of the gain functions (Figs. 1(c,d)). Due to their concavity, higher firing rates (observed 

in the active state) correspond to larger derivatives of the gain functions, i.e. to stronger coupling 

between firing rates and synaptic currents. This, in turn, leads to stronger effective connectivity 

between neurons. The stronger connectivity makes a module more resonant (due to increased 

interaction between the excitatory and the inhibitory population), i.e. more prone to oscillatory 

entrainment (Ledoux, Brunel, 2011). We should note that the gain function concavity, which is 

crucial for the described mechanism, is a general property of neural networks operating in a 

subthreshold regime, typical for the neocortex (Renart et al., 2003). 

 The positive shift of the mean excitatory firing rate induced by the beta-band input is also 

related to the concavity of the gain functions. When a neuron with a concave gain function receives 

oscillations, its mean firing rate increases (Voronenko, Lindner, 2017). Since the oscillatory input 

entrains both the excitatory and the inhibitory populations of a module, both populations receive 

an additional mean excitatory drive (due to the non-linearity of the corresponding gain functions). 

We delivered the external oscillations predominantly to the excitatory populations, so the entrained 

amplitudes were also higher for the excitatory than for the inhibitory populations (this effect could 

be seen by comparing red and blue curves in Figs. 3(a,b,d,e)). The predominant entrainment of the 

excitatory population resulted in positive mean firing rate shifts for both the excitatory and the 

inhibitory populations (Figs. 3(c,f)).  

Alpha 

For the lower frequencies (including the alpha band), the situation is markedly different. 

As the input frequency decreases, the time-averaged firing rate of the system in the active state 

decreases and eventually becomes even smaller than the firing rate of the unforced system (Figure 

3(c)). On the contrary, the time-averaged firing rate of the system in the background state increases 

with decreasing input frequency; also, it is always higher than the firing rate of the unforced system 

(Figure 3(c)). At extremely low input frequencies, there is only one regime in the system (see the 

leftmost point in Figure 3(g)); thus, the system cannot serve as a WM model in this case – an effect 

equivalent to “WM clearance” in (Dipoppa, Gutkin, 2013; Schmidt et al., 2018). For slightly higher 

frequencies, the time-averaged firing rates characterizing the active and the background regime 

differ, but they are close to each other (left part of Figure 3(g)). In Figure 3(h), one can see the 

frequency range for which the oscillatory input excites a background population stronger than the 

active population, or even inhibits the latter: in this range, the green line goes above the purple 

line. Oscillations in this range are expected to destabilize a WM trace in a multi-population 

competitive system and to promote updating of WM content. 
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We can propose a two-factor explanation for why the low-frequency oscillations have a decreased 

excitatory or even an inhibitory effect on a single-module system in the active state. (1) First, 

oscillations with a sufficiently large amplitude would force the system to wander periodically 

between the basins of attraction of the two steady states (background and active). During the 

downward phase of the entrained oscillations, the system tends towards the background state but 

then returns to the vicinity of the active state at the subsequent upward phase. As the frequency of 

the oscillations decreases, the system spends more time in the basin of attraction of the background 

state on each cycle of the oscillations. Consequently, the mean firing rate decreases as compared 

to the case of higher frequencies. (2) Second, the ratio between the oscillation amplitudes of the 

excitatory and the inhibitory populations gets smaller at lower frequencies (compare red and blue 

curves in Fig. 3(a)). Consequently, the ratio between the oscillation-induced mean excitatory drive 

to the excitatory and the inhibitory populations also decreases. As a result, the oscillation-induced 

mean firing rate shift of the excitatory population gets smaller at lower frequencies. 

 Oscillatory input controls WM stability in a two-module system 

In the previous section, we demonstrated that beta-band oscillations produced a stronger 

excitatory effect on the populations being in the active state compared to the background 

populations. On the contrary, oscillations of lower frequencies (including the alpha band) produced 

a prominent excitatory effect on the background populations, while their effect on the active 

populations was less excitatory or even inhibitory. These two observations served as a basis for 

developing a system with two active states (corresponding to retention of a stimulus and of a 

distractor in WM, respectively), such that switching between these states could be made harder by 

a beta-band input or easier by an alpha-band input.  

The system contained two bistable modules with mutual inhibition between them. A 

schematic depiction of the system is presented in Figure 4. One module (denoted as S) served as a 

neural representation of a (to-be-memorized) stimulus, and the other one (denoted as D) – as a 

representation of a (to-be-ignored) distractor. When the stimulus or the distractor is held in WM, 

the S or the D module, respectively, is in the active state. Each module had the same parameters 

as in the single-module system described in the previous section (except of slightly increased 

background excitation aimed to compensate for inter-module inhibition). Inhibition between the 

modules was implemented by connections from the excitatory population of one module to the 

inhibitory population of another module. The inter-module competition was implemented using 

slow NMDA-based connections from the excitatory population of each module to the inhibitory 

population of the other module, which lead to almost tonic, non-oscillatory interaction between 

the modules. It was done because we were interested in the differential effect of input oscillations 

on both modules, and not in the oscillatory interaction between them. The strength of the mutual 

inhibition between the modules was set high enough, so only one of them could be in the active 

state at the same moment of time (i.e. the WM span was limited to one object in this model). 
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Figure 4. Schematic representation of the two-module system. E – excitatory populations, I – 

inhibitory populations. 

The simulated experiment was organized as follows. First, a stimulus was presented to the 

S-module, switching it to the active state. Then an identical oscillatory input was presented to both 

modules. During the oscillatory input, the distractor was presented to the D-module. The final state 

of the system was assessed after the termination of the oscillatory input. 

To understand how the stability of the WM trace is modulated by the oscillatory input, we 

analyze two versions of the numerical experiments that differ only by the distractor amplitude. In 

the first version, the distractor had the same amplitude as the stimulus (“strong distractor”), and 

its presentation to the D-module without the input oscillations was enough to switch the S-module 

from the active to the background state (i.e. to replace the stimulus by the distractor in WM). In 

the second version of the experiment, we decreased the distractor amplitude (“weak distractor”), 

so its presentation did not change the state of the oscillation-free system. We demonstrate that (1) 

beta-band input could protect the retained stimulus from being replaced by the strong distractor, 

and (2) that alpha-band input could promote memorization of the weak distractor with erasure of 

the previously retained stimulus. 

 

Beta-band oscillatory input protects WM from strong distractors 

Simulations of the two-module system with strong distractor are presented in Figure 5. In 

the absence of input oscillations, the distractor replaced the stimulus in WM (Figure 5(a)). Beta-

band input delivered to both modules protected the retained stimulus from the distractor 

presentation (Figure 5(c)). Alpha-band or gamma-band input of the same amplitude did not 

produce such stabilizing effect (Figures 5(b,d)). 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 15, 2020. ; https://doi.org/10.1101/2020.12.13.422600doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.13.422600
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Figure 5. Simulation results for the low-dimensional two-module system with strong distractor. 

(a) No oscillatory input, (b) alpha-band input, (c) beta-band input, (d) gamma-band input. Top 

subpanels – stimulus-selective module (S), bottom subpanels – distractor-selective module (D). 

Blue curves – excitatory firing rates, red curves – inhibitory firing rates. Intervals of stimulus / 

distractor presentation and of the oscillatory input are represented by horizontal black lines. 

 

We can again explain the results by the state-dependent resonance of the system. As we 

saw above, each of the system’s modules demonstrated stronger beta-band oscillatory entrainment 

in the active state as compared to the background state. The mean excitatory firing rate shift 

induced by the beta-band input was also stronger in the active state. For the two-module system 

(4), such state-dependent resonance provided an oscillation-induced increase of competition 

between the modules. More specifically, a large oscillation-induced positive shift of the mean 

excitatory firing rate of the active (S) module produced strong inhibition of the background (D) 

module (via the inter-module connection), which overcame a small positive firing rate shift that 

beta input induces in a single background module (Fig. 5(c)). As a result, the identical beta-band 

input to both modules suppressed the excitatory population of the D- module, making it harder for 

the strong distractor to replace the stimulus in WM. 

To explore in more detail how the ability of oscillations to protect WM trace from the strong 

distractor depends on their frequency oscf  and amplitude oscA , we performed simulations for 

various combinations ( ),osc oscf A . The result is presented in Figure 6. In the region 1, the distractor 

was loaded into WM, erasing the stimulus. In the region 3, the oscillatory input protected the 

stimulus retention and blocked memorization of the distractor. The region 2 corresponds to the 

intermediate situation, in which the distractor was not memorized by itself, but caused erasure of 

the stimulus from WM. In the region 4, the background regime became unstable: even without 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 15, 2020. ; https://doi.org/10.1101/2020.12.13.422600doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.13.422600
http://creativecommons.org/licenses/by-nc-nd/4.0/


stimulus presentation, oscillations amplified any initial asymmetry in the system and switched one 

of the modules to the active state (this effect is similar to the spontaneous oscillation-induced 

switching in a noisy multi-population system demonstrated in (Schmidt et al., 2018)). In the region 

5, oscillations erased WM content and prevented stimulus memorization – the effect similar to the 

one described in (Dipoppa, Gutkin, 2013; Schmidt et al., 2018). 

In summary, there is a range of the input oscillation amplitudes (about 0.25 – 0.5 µA/cm2), 

for which the stabilization occurred only in the frequency range limited to the beta-band. For 

smaller amplitudes, the oscillations were too weak to provide stabilization. For larger amplitudes, 

the stabilization occurred in a wider range of frequencies, including the gamma-band. Oscillations 

of very high amplitudes made the background regime of the system unstable.  

 
Figure 6. Behavior of the low-dimensional two-module system with the strong distractor for 

various parameters of the oscillatory input. 1 – stimulus is erased, distractor is memorized; 2 – 

stimulus is erased, distractor is ignored; 3 – stimulus is protected, distractor is ignored; 4 – the 

background regime loses stability, 5 – oscillations erase WM content and prevent stimulus 

loading. To find the regions 1-3, we calculated the average firing rates of the modules (S and D) 

after the termination of the oscillatory input (averaging window: 2000 - 2200 ms; simulation 

timings were the same as in Figure 5). To find the region 4, we performed a simulation without 

stimulus and distractor presentation and checked whether oscillations activated one of the 

modules (oscillatory input: 500 – 5800 ms; firing rates averaging window: 4000 – 6000 ms). To 

find the region 5, we performed a simulation without distractor presentation and calculated the 

average firing rate of the S-module (oscillatory input: 650 – 10000 ms; firing rates averaging 

window: 2000 – 10000 ms). 
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Alpha-band oscillatory input promotes weak distractor access to WM 

Simulations of the low-dimensional two-module system with the weak distractor are 

presented in Figure 7. In the absence of oscillatory input, distractor presentation was ignored 

(Figure 7(a)). The same behavior was observed in the presence of beta-band or gamma-band input 

(Figure 7(c,d)). Alpha-band input destabilized stimulus retention, so the distractor was memorized, 

and the stimulus was erased from WM (Figure 7(b)). 

 
Figure 7. Simulation results for the low-dimensional two-module system with the weak 

distractor. (a) No oscillatory input, (b) alpha-band input, (c) beta-band input, (d) gamma-band 

input. Top subpanels – stimulus-selective module (S), bottom subpanels – distractor-selective 

module (D). Blue curves – excitatory firing rates, red curves – inhibitory firing rates. Intervals of 

stimulus / distractor presentation and of the oscillatory input are represented by horizontal black 

lines. 

Similarly to the previous section, we explored the effect of the oscillation parameters 

( ),osc oscf A  on their ability to promote memorization of the weak distractor. The result is presented 

in Figure 8 (the legend is the same as in Figure 6). For the inputs with frequencies below the beta-

band (including alpha) and with high enough amplitude (0.15 – 0.5 µA/cm2), the distractor was 

memorized, and the stimulus was erased from WM (region 1). Around the region 1, there lies the 

region 2, in which the distractor was not memorized itself, but erased the stimulus from WM. At 

the frequencies roughly above 15 Hz and at low amplitudes (< 0.1 µA/cm2), the distractor was 

ignored, and the stimulus remained in the WM (region 3). As in the strong-distractor case, very 

strong oscillations made the background regime unstable (region 4), while moderate oscillations 

of very low frequency destroyed the active regime (region 5). 
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Figure 8.  Behavior of the low-dimensional two-module system with the weak distractor for 

various parameters of the oscillatory input. 1 – stimulus is erased, distractor is memorized; 2 – 

stimulus is erased, distractor is ignored; 3 – stimulus survives, distractor is ignored; 4 – the 

background regime loses stability, 5 – oscillations erase WM content and prevent stimulus 

loading. To find the regions, we used the same procedure as in Figure 6. The borders between 

the regions 1, 2, and 3 are not smooth because of phase-related effects: simulation result 

depended on the phase of oscillations at the end of the distractor presentation and at the end of 

the oscillatory input itself). 

 

The destabilizing action of the low-frequency input stems from two effects. First, as we 

saw in the single-module system, low-frequency oscillations produce weaker excitation (or 

produce inhibition) in active modules, compared to beta-band oscillations. Consequently, in the 

two-module system with low-frequency input (including alpha), the active S-module receives 

weaker oscillation-induced excitation (compared to beta input) and, thus, exerts weaker 

inhibition on the D-module, allowing for the distractor to initiate firing rate increase when 

presented. The second effect is that the D-module gets entrained in a non-linear manner by the 

input oscillations during the distractor presentation, which produces additional excitation to the 

D-module and promotes memorization of the distractor. 

The described mechanism fits with the results presented in Fig. 7. Thus, in Fig. 7(b), 

alpha oscillations do not increase the mean firing rate of the S-module (upper panel), so the D-

module (lower panel) does not receive additional inhibition, and the distractor presentation is 

able to initiate firing rate increase in the D-module. The distractor itself is too weak to switch the 

state of the system without oscillations (Fig. 7(a), lower panel). However, alpha oscillations 

entrain the D-module during the distractor presentation, providing an additional excitation, 

which is enough to switch the D-module to the active state and the S-module – to the background 

state (Fig. 7(b)). Thus, the alpha-band input promoted the replacement of the stimulus retained in 

WM by the weak distractor. 
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The strong mean excitatory effect of the low-frequency oscillations on the D-module 

during the distractor presentation is also explained by two factors. (1) First, similarly to what 

happens in the upper state, oscillations make the module wander between the basins of 

attractions of the two steady states. During the upward phase of the oscillations, the module 

tends towards the active state; at lower frequencies, this happens for a longer time interval, so the 

mean firing rate gets higher. (2) Second, the D-module is in the background state at the 

beginning of the distractor-related activity, so its excitatory firing rate is initially very low. 

Consequently, the oscillatory input induces a strongly non-linear response due to strict positivity 

of firing rate (Fig. 7(b), lower panel, blue curve), which, in turn, produces a strong positive mean 

drive to the excitatory population. This could be also understood from the fact that the gain 

function of the excitatory population is almost flat to the left of the background state, but rises 

quickly to the right of this state (see the blue curve in Fig. 1(c)). 

Dependence of WM stability on the distractor parameters 

The distractor in our model was represented by a brief pulse delivered both to the excitatory 

and to the inhibitory population of the D-module. It was characterized by two parameters: (1) 

amplitude of the pulse delivered to the excitatory population (distractor strength) and (2) ratio 

between the amplitudes of the pulses delivered to the inhibitory and to the excitatory population 

(I/E ratio). In this section, we explored how these parameters interact with the oscillatory input 

parameters (frequency and amplitude) in defining whether the stimulus would be erased by the 

distractor presentation or protected by the input oscillations. We were specifically interested in the 

question of how fine-tuned the distractor and the oscillatory input parameters should be to provide 

selective stimulus protection by the beta-band oscillations. 

First, we varied the distractor strength and the I/E ratio for several values of oscillations’ 

amplitude and probed the behavior of the system under alpha-, beta-, and gamma-band inputs. The 

results are presented in Figure 9. It is seen that for most of the values of I/E ratio, there exists a 

range of distractor amplitudes (width of the pink region), for which beta-band input selectively 

stabilizes the stimulus retention. This range gets larger with the increasing I/E ratio. However, as 

the I/E ratio gets too high (about 0.2), the stabilizing effect of oscillations becomes irrelevant, since 

the distractor of any amplitude is now unable to switch the state of the system (see the black regions 

in the top parts of the diagrams in Figure 9). In general, it is seen that the parameter region of beta-

selective stabilization (i.e. the pink region) gets larger as the amplitude of oscillations increases 

(compare Figures 9(a), (b), and (c)). 

Second, we varied the distractor amplitude and the frequency of the input oscillations for 

several values of the input oscillations’ amplitude and for two values of the distractor I/E ratio. 

The results are presented in Figure 10. Each curve corresponds to a certain input amplitude value. 

In the region above a curve, the distractor presentation switches the system, erasing the previously 

retained stimulus from WM; in the region below the curve, the stimulus retention is spared. One 

could see a stabilizing effect of beta oscillations: for the inputs in the beta band (purple regions), 

a larger distractor amplitude is required to erase the stimulus from WM. A destabilizing effect of 

lower frequencies (below beta) is also seen: for the frequencies from this band (yellow region), a 

smaller distractor amplitude is enough to erase the stimulus from WM. The ranges of the distractor 

amplitudes for which the stabilizing or the destabilizing effects occur are larger for stronger 

oscillations: the green curves in Figure 10 go further upwards in the purple region and further 

downward in the yellow region, compared to the red and the blue curves. These ranges are also 

larger for the higher distractor I/E ratio: the peaks in the purple regions and the troughs in the 

yellow region are more pronounced in Figure 10(b) compared to Figure 10(a). 
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From both analyses, we see that an increase of the distractor I/E ratio reduces the required 

level of fine-tuning for the distractor amplitude; however, this increase itself is limited by the value 

above which the distractor effect becomes too weak. At the same time, an increase of the input 

oscillations’ amplitude reduces the required joint fine-tuning for the distractor amplitude and the 

I/E ratio. The amplitude increase is limited by the level above which oscillations compromise 

bistability (see Figures 6 and 8). In summary, we suggest that there is enough freedom in selection 

of the parameters for the distractor and for the input oscillations. 

 
Figure 9. Selective stabilization of WM trace by beta-band input for various distractor 

parameters. Horizontal axis – distractor amplitude delivered to the excitatory population 

of the D-module; vertical axis – ratio between the distractor amplitudes delivered to the 

inhibitory and to the excitatory populations of the D-module (I/E ratio). (a,b,c) – various 

amplitudes of the input oscillations. Black regions – stimulus is erased by the distractor 

presentation during 10, 25, or 50 Hz input; white regions – stimulus survives the 

distractor presentation during 10, 25, or 50 Hz input; pink regions – stimulus is erased by 

the distractor presentation during 10 or 50 Hz input, but survives it during 25 Hz input 

(i.e. stimulus is selectively protected by beta oscillations). Stimulus survives (black / pink 

regions) when the distractor is weaker and more inhibitory. If the I/E ratio is too high, the 

distractor does not erase the stimulus, regardless of its amplitude (top black parts of the 

figures). The region of the selective beta-band stabilization (pink) is wider for stronger 

oscillatory input: (c) > (b) > (a). The interval of the distractor amplitudes, for which the 

selective beta-band stabilization occurs, is wider when the I/E ratio is higher. 
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Figure 10. Selective stabilization of WM trace by input oscillations for various distractor and 

oscillations parameters. Horizontal axis – frequency of the input oscillations; vertical axis – 

amplitude of the distractor received by the excitatory population of the D-module. (a) and (b) 

correspond to two different ratios between the distractor amplitudes received by the inhibitory 

and by the excitatory populations of the D-module (I/E ratio). Colored curves correspond to 

different amplitudes of the input oscillations. For the parameter combinations above a curve, the 

stimulus is erased from WM by the distractor presentation; for the parameters below a curve – 

the stimulus retention is spared. Beta-band input stabilizes WM, making it harder for the 

distractor to erase the stimulus (purple region); low-frequency input (including the alpha-band) 

destabilizes WM, making the erasure easier (yellow region). Both effects (stabilization and 

destabilization) are more pronounced (observed for a larger range of the distractor amplitudes) 

when the distractor I/E ratio is higher and the amplitude of the oscillations is larger. The results 

were obtained for the stimulus amplitude of 5.5 µA/cm2 and the stimulus I/E ratio of 0.2. 
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 Simulations of equivalent spiking networks confirm the analysis 

We confirmed the results obtained in the previous sections on the low-dimensional models 

by reproducing them in simulations of the equivalent spiking network models. 

Single-module spiking network model simulations are presented in Figure 11. They are 

qualitatively similar to those obtained for the low-dimensional model (Figure 2). Importantly, the 

strongest oscillation-induced shift of the time-averaged firing rate was observed for the beta-band 

input in the active state (Figure 11(f)). 

 

 
Figure 11. Simulation results for the spiking network model of the single-module system. (a,b) 

No oscillatory input; (c,d) alpha-band input; (e,f) beta-band input; (g,h) gamma-band input. 

(a,c,e,g) background state; (b,d,f,h) active state. Blue curves – excitatory firing rates, red curves 

– inhibitory firing rates. Intervals of the stimulus and the oscillatory input presentation are 

marked by horizontal black lines. er  – time-averaged firing rate shift relative to the case 

without oscillatory input. 

The simulation results for the spiking network model of the two-module system are 

presented in Figure 12 for the case of the strong distractor and in Figure 13 for the case of the weak 

distractor. The main observations were confirmed: (1) stimulus retention was selectively protected 

from the strong distractor by the beta-band input (Figure 12(c)) and (2) memorization of the weak 

distractor was selectively promoted by the alpha-band input (13(b)).  

Dependence of the two-module spiking network behavior on the oscillatory input 

parameters is presented in Figure 14. The main findings obtained in the previous sections were 

confirmed. (1) For the strong-distractor case, stimulation in the intermediate amplitude values 

provides WM stabilization with high probability when the frequency of stimulation is in the beta 

band. (2) For the weak-distractor case, memorization of the distractor was promoted with high 
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probability when stimulation amplitude was high enough and its frequency was low (below the 

beta-band, including the alpha band). 

 

 
Figure 12. Simulation results for the spiking network model of the two-module system with the 

strong distractor. (a) No oscillatory input, (b) alpha-band input, (c) beta-band input, (d) gamma-

band input. Top subpanels – stimulus-selective module, bottom subpanels – distractor-selective 

module; blue curves – excitatory firing rates, red curves – inhibitory firing rates. Intervals of 

stimulus / distractor presentation and of the oscillatory input are represented by horizontal black 

lines. 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 15, 2020. ; https://doi.org/10.1101/2020.12.13.422600doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.13.422600
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Figure 13. Simulation results for the spiking network model of the two-module system with the 

weak distractor. (a) No oscillatory input, (b) alpha-band input, (c) beta-band input, (d) gamma-

band input. Top subpanels – stimulus-selective module, bottom subpanels – distractor-selective 

module; blue curves – excitatory firing rates, red curves – inhibitory firing rates. Intervals of 

stimulus / distractor presentation and of the oscillatory input are represented by horizontal black 

lines. 

 

Figure 14. Behavior of the spiking network model of the two-module system for various 

parameters of the oscillatory input. The intensity of the black color represents the percentage of 

simulation runs in which the stimulus-related activity survived the distractor presentation (white 

– 0%, black – 100%; 4 runs were performed in total for the strong distractor simulations and 2 

runs – for the weak distractor simulations). The stimulus-related activity level was assessed as 

the average over 2000 – 2200 ms window (simulation timings were the same as in Figures 12 
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and 13). For the parameter combinations marked by the red color, stability of the background 

regime was destroyed by the oscillations (assessed in a single run). To determine the red region, 

we performed a simulation without stimulus and distractor presentation and checked whether 

oscillations activated one of the modules (oscillatory input: 650 – 1400 ms; firing rates averaging 

window: 1100 – 1400 ms).  

 

Discussion 

In the present study, we showed theoretically that WM stability / robustness to distractors 

can be controlled by externally applied oscillations. We proposed a mechanism for such control 

based on the state-dependent resonance acting in conjunction with the gain function non-

linearities. According to this mechanism, a global beta-band input preferentially entrains WM-

encoding (active) modules and increases their mean firing rate (compared to background 

modules). Inputs of lower frequencies (below beta) provide relatively less excitation to the active 

modules and more excitation to the background modules. To explore the consequences of these 

effects on stimulus-distractor interactions, we considered a system of two competing modules, 

selective for a stimulus and for a distractor, respectively. Using this system, we simulated a task, 

in which a stimulus was loaded into WM, then global oscillatory input was turned on, after 

which a distractor was presented.  We demonstrated that beta-band input protects the WM trace 

from a competing distractor, while alpha-band input could promote replacement of WM content 

by the distracting information. We also demonstrated that input at very low frequency could 

prevent the system from retaining any WM content (similar the results were obtained for alpha 

oscillations in (Dipoppa, Gutkin, 2013) and for beta-gamma input in (Schmidt et al., 2018)). 

Importantly, the same oscillatory signal was delivered both to the WM-encoding module and to 

the distractor-selective module. Thus, the oscillations served as a global controller of robustness 

vs. flexibility trade-off, defining the system’s ability to perform WM functions, as well as its 

predisposition towards retaining or updating the current WM content. 

The stabilizing effect of the beta-band input in our model stems from much stronger 

oscillatory entrainment of the stimulus-selective module (which is in the active state after the 

stimulus presentation), compared to the distractor-selective module (which is in the background 

state). Strong entrained oscillations of the stimulus-selective module result in a positive mean 

firing rate shift in its excitatory population. This shift leads to an additional inhibition of the 

distractor-selective module due to the inter-module excitatory-to-inhibitory connections. This 

effectively increases the cross-competition between the two modules. As a result, a distractor 

that is strong enough to disrupt the existing WM trace retention without oscillations, is unable to 

do so in the presence of the beta-band input. 

Low-frequency oscillations (below the beta band) do not produce strong excitation (or 

produce inhibition) in the active stimulus-selective module, so the background distractor-

selective module receives weaker inter-module inhibition. In such conditions, presentation of a 

distractor initiates activity increase in the distractor-selective module, which is additionally 

amplified by non-linear oscillatory entrainment. These effects are explained by (1) oscillation-

induced wandering between the basins of attraction of the two steady states, which causes an 

average inhibitory effect in the active module and an excitatory effect in the background module, 

(2) entrainment of the inhibitory population of the active module, and (3) rectified character of 
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the forced oscillations near the background state due to saturated neural gain functions at low 

firing rates. As a result, WM retention is destabilized, since a distractor becomes able to switch 

the state of the system and replace the stimulus in WM, even if it is too weak to make it without 

oscillatory input. 

In sum total, state-dependent resonance and non-linear properties of the WM modules 

allow a global beta-band input to solidify the WM trace (protecting it from distractors) and a 

similar low-frequency (e.g. alpha-band) input – to make the WM system more flexible and labile 

to newly incoming stimuli. We first modeled and analyzed this oscillatory control using a low-

dimensional firing rate model of two-item discrete working memory and then verified the results 

by direct simulations of an equivalent spiking network model. In addition, we partially explored 

the parameter space and demonstrated that the stabilizing / destabilizing effects do not require 

strong fine-tuning of the parameters. 

 

Relationship to experimental data 

 

Beta oscillations 

Stabilization of WM trace by the beta-band activity in our model is based on two 

principles: (I) state-dependent resonance (i.e. stronger entrainment of active populations by 

the beta oscillations compared to background populations) and (II) oscillation-induced shift of 

the mean firing rate.  

(I) 

State-dependent beta-band resonance could potentially explain several experimental 

findings that concern delay-period beta-band activity. (1) Beta activity increases in a load-

dependent manner at “informative” sites, i.e. at the sites that either have WM-selective neurons 

in the closest vicinity (Lundqvist et al., 2016) or are located contralaterally to the retained stimuli 

(Kornblith et al., 2016). (2) Beta activity itself may contain information about WM content 

(Wimmer et al., 2016). (3) More information could be decoded from spiking activity at the 

specific phases of beta LFP (Siegel et al., 2009). 

The load-dependent beta increase at the “informative” sites could be explained by our 

model in the following way. It is likely that the environment of an “informative” site contains 

many neurons from the populations selective for certain features of possible WM content. When 

a certain object is retained in WM, the populations representing this object are in the active state 

and, according to our hypothesis, they get strongly entrained by the ongoing beta oscillations. 

Consequently, these populations contribute to the beta-band LFP signals recorded at the nearby 

sites. With increasing WM load, more WM-selective populations are in the active state, so the 

overall level of the beta-band activity produced by the state-dependent entrainment also 

increases (which was observed in (Lundqvist et al., 2016; Kornblith et al., 2016)). 

Load-dependent beta increase would be detected at individual sites if populations 

selective for different features are spatially intermingled (in this case, several representations 

could contribute to the LFP signal at the same site). Furthermore, if the surroundings of a site 
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contain non-equal numbers of neurons selective for different objects, then the beta-band LFP 

activity at this site (generated by the beta-entrained active populations) would depend on the 

identity of the retained object. In other words, this beta LFP signal would carry information 

about the WM content, like in the results by Wimmer et al. (2016). 

Our model could also explain the fact that the amount of information about the WM 

content is higher at the specific phase of beta LFP (Siegel). When a stimulus is retained in WM, 

this amount increases with the firing rate difference between the populations that are selective to 

the retained stimulus (which are in the active state) and other populations (which are in the 

background state). Our model predicts that the firing rate of an active population oscillates in the 

beta band with much higher amplitude than the firing rate of a background population. 

Consequently, the firing rate difference between them would also oscillate in the beta band, and 

so will do the amount of information about the WM content. As a result, this amount would be 

the largest at the LFP phase in which the firing rate of the stimulus-selective population reaches 

its maximum. 

 (II) 

Experimental support for our second principle, i.e. oscillation-induced mean firing rate 

shift, is less conclusive. According to our model, beta activity provides an additional excitation 

to the WM-encoding populations, thus increasing the amount of information about the WM 

content present in the system. On the one hand, the temporal profile of the firing rate for the 

delay-selective cells (i.e. the cells that encode the WM content during the delay) is similar to the 

temporal profile of the beta-band LFP activity (Lundqvist et al., 2016). On the other hand, it was 

shown that the beta-band activity occurs as a sequence of brief bursts, and the amounts of 

information about the WM content carried by the spikes inside and outside these bursts 

(calculated on the whole set of recorded neurons) do not differ significantly from each other 

during the delay period (Lundqvist et al., 2018).  

Despite the aforementioned controversy, we predict there should be a subset of the delay 

cells that increase their firing rates in a stimulus-selective manner during beta bursts and thus 

behave in agreement with our model. The existence of these cells does not contradict the absence 

of group-level effect in Lundqvist et al. (2018) since different cells may have opposite relations 

between their firing rate and beta. If such subset of neurons is found, it would be useful to 

explore their possible role in WM stabilization – by analyzing their activity during and after the 

distractor presentation, as well as during the delay period in erroneous trials. We also suggest 

that it would be reasonable to perform such investigation using longer delay periods since the 

effects related to the beta increase in WM tasks (such as the load dependence and the relation to 

behavioral performance) usually manifest at later delay times (Kornblith et al., 2016; Zavala et 

al., 2017). 

Alpha oscillations 

According to our model, we would expect alpha decrease in WM-encoding populations 

during the retention, since the WM content should not be replaced by distracting or irrelevant 

information. We suggest that the existing experimental data partly corresponds to this prediction; 

however, its interpretation is not straightforward. 
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Most of the data concerning alpha activity in WM tasks relates to the posterior brain 

regions. In many WM tasks, posterior alpha changes similarly to the prefrontal beta: it decreases 

during stimulus presentation and increases during the retention interval (Jokisch, Jensen, 2007), 

with this increase being stronger under higher WM load (Lieberg et al., 2006; Jensen et al., 

2002). Furthermore, the posterior alpha activity is stronger before distractors than before to-be-

memorized stimuli (Freunberger et al., 2009; Bonnefond, Jensen, 2012). The common 

interpretation of the posterior alpha increase is that it provides protection of WM content from 

incoming sensory information. The similarity between the prefrontal beta and the posterior alpha 

led to a hypothesis that these oscillations represent the same functional phenomenon with 

varying frequencies across different brain regions (Lundqvist et al., 2020). From this perspective, 

alpha and beta oscillations should have similar effects on the population activity, which conflicts 

with our predictions. 

Despite the similarities, however, there is a notable difference between the prefrontal beta 

and the posterior alpha in WM tasks: the delay-period beta is weaker at the task-irrelevant sites 

compared to the relevant ones (Lundqvist 2016; Kornblith, 2016), while this relation is opposite 

for the alpha (Sauseng et al., 2009; Rösner e al., 2020; Haegens et al., 2010). As an example, the 

delay-period alpha activity contralateral to the memorized items decreased with the number of 

these items, while the alpha activity contralateral to the distractors increased with their number 

(Sauseng et al., 2009). A similar effect was observed in a paradigm with retro-cueing: alpha 

decreased contralaterally and increased ipsilaterally to the hemifield cued as relevant (Rösner et 

al., 2020). From these findings, one could suggest that the posterior alpha serves a protective role 

in WM retention, but it presumably comes, in a large part, not from those circuits that participate 

in WM retention, but from their interfering surroundings. It is possible that the circuits involved 

in a specific WM task constitute a relatively small part of the posterior network (in contrast to 

the PFC, where the circuits are able to flexibly change their tuning in a task-dependent manner); 

this latter assumption may explain the overall posterior alpha increase during the retention. Thus, 

we could speculate that alpha activity in WM-related circuits decreases during the retention, 

although this decrease is masked by a dominating increase of alpha activity in the task-irrelevant 

part of the network.  

Several studies demonstrated an alpha decrease in WM tasks. Some of them (Gevins et 

al., 1997; Scharinger et al., 2017) required cognitive manipulation or did not have a well-defined 

retention period (e.g. if the n-back task was used). The alpha decrease in such studies could be 

attributed to an overall increase in the level of attention and arousal, in parallel to WM retention. 

More importantly, even in the case of the overall posterior alpha increase, different parts of the 

posterior region could demonstrate the opposite load effects: alpha increases with WM load in 

the occipital cortex (lower-level) but decreases with WM load in the medial parietal cortex 

(higher-level; Michels et al., 2010). Furthermore, a careful temporally and spatially resolved 

analysis could reveal multiple cortical regions (including frontal areas) with load-dependent 

alpha decrease (Proskovec et al., 2019). These findings further support the hypothesis that alpha 

decrease may reflect engagement of neural populations in WM retention process. 

Since alpha activity is, in large part, a correlate of neural inhibition (Klimesch, 2012), the 

alpha decrease in WM-related populations could be simply interpreted as functional disinhibition 

of these populations when their activity is required for WM retention. Our model predicts that 

the alpha decrease additionally leads to more robust WM retention in the face of distracting 
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neural activity. This prediction does not contradict the disinhibition hypothesis; however, it still 

requires direct experimental confirmation.  

 

Relationship to other models 

There are multiple modeling studies that consider oscillations in WM tasks (Lisman 

Idiart, 1995; Tegner et al., 2002; Ardid et al., 2010;  Lundqvist et al., 2010; Kopell et al., 2011; 

Lundqvist et al., 2011; Chik, 2013; Dipoppa, Gutkin, 2013; Roxin, Compte, 2016; Fiebig, 

Lansner, 2017; Pina et al., 2018; Schmidt et al., 2018; Sherfey et al., 2020). Among them, there 

are two studies dedicated to external oscillatory control of WM functions that are closely related 

to our work (Dipoppa, Gutkin, 2013; Schmidt et al., 2018).  

The main commonality between our model and the models described in (Dipoppa, 

Gutkin, 2013; Schmidt et al., 2018) is the state-dependent resonance (strong resonant properties 

in the active state, but not in the background state); however, the underlying mechanisms are 

different. The models by (Dipoppa, Gutkin, 2013; Schmidt et al., 2018) contain only excitatory 

populations with neurons being in the supra-threshold regime (i.e. regularly spiking). The 

resonance in these models stems from spike-to-spike synchronization, and the resonant 

properties of each state depend on its mean firing rate. In the lower state, the firing rate is not 

enough to support resonant behavior, while in the active state the resonant frequency is close to 

the mean firing rate. In our model, the resonance stems from the interaction between excitatory 

and inhibitory populations, and the resonant properties of each state depend on the strength of 

synaptic coupling. The model operates in the subthreshold regime, so the neural gain functions 

are concave, and their slope is higher in the active state, which leads to increased effective 

coupling and a prominent resonant peak. The subthreshold spiking regime is in agreement with 

the experimental data, which shows high CV values during WM retention (Compte et al., 2003). 

All three models rely on external oscillatory input. The input is sinusoidal in our model 

and pulse-like in (Dipoppa, Gutkin, 2013; Schmidt et al., 2018). We suggest that sinusoidal input 

is more realistic than pulse-like input since oscillations in PFC were reported to come in narrow-

band bursts during WM tasks (Lundqvist et al., 2016).  

Most importantly, we made a step further from (Dipoppa, Gutkin, 2013; Schmidt et al., 

2018) and explored the ability of oscillations to block or promote distractor loading in a two-

module competitive system during stimulus retention. The aforementioned studies did not pose 

this question directly and were mainly focused on single-module systems. However, we could 

note two underlying effects that are common for our study and the previous ones. 

The first effect is the preferential oscillation-induced excitation of the active state. It is 

based on the state-dependent resonance (strong entrainment in the active state, but not in the 

background state) in conjunction with supra-linear behavior of the system. The latter could be 

related either to spike synchronization (like in Schmidt et al. (2018)) or to neural gain function 

concavity in the subthreshold regime (like in our model). In Schmidt et al. (2018), this effect 

manifested itself as the ability of high gamma-band oscillations to stabilize an initially 

metastable active state without affecting the background state. Our results rely on this effect in a 

more subtle way: the active state in our model is initially stable, but the active module receives 
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additional excitation due to resonant beta-band entrainment, further suppressing the competing 

background module (which does not get entrained and thus does not receive such excitation). 

The second effect is the inhibitory influence of lower-frequency oscillations on the active 

state, which is related to highly non-linear dynamics that involve pushing the system towards the 

background state by oscillations. In (Dipoppa, Gutkin, 2013; Schmidt et al., 2018), this effect 

manifested itself as an oscillation-induced transition to the background state (i.e. erasure of WM 

content). In both studies, the effect was most prominent in the frequency band just below the 

resonance of the active state: alpha-band in (Dipoppa, Gutkin, 2013) and beta / low gamma in 

(Schmidt et al., 2018). In our model, the inhibitory effect of oscillations on the active state is 

much weaker. Thus, alpha-band oscillations (given beta-band resonance of the active state) do 

not cause WM erasure by themselves, but play a role in promoting distractor loading: their 

inhibitory effect on the active state counteracts their excitatory effect discussed above, which 

allows the distractor-related activity to begin. The WM erasure effect is observed in our model 

only at very low frequencies (below 1 Hz).  

As discussed above, the inhibitory influence of near-resonant oscillations on the active 

state played the major role in the previous studies, while in our model the excitatory influence 

dominated. This could be explained by the presence of slow NMDA currents in our model, 

which makes the active state more robust to brief periods of inhibition (cf. (Tegner et al., 2002)). 

Another possible explanation is that entrained oscillations in our model are closer to sinusoidal, 

while in the previous studies they are more pulse-like (due to the rectified input and the supra-

threshold regime prone to spike-to-spike synchronization). The inhibitory effect of oscillations 

seems to depend on the duration of their downward phase, so this effect is presumably stronger 

when the duty cycle of oscillations is small. 

We also note that low frequencies promote a transition from the background to the active 

state both in our model (alpha-band – loading of weak distractors) and in Schmidt et al. (2018) 

(delta-band – the “recall” in a single population and the forced random transitions in a 

competitive noisy multi-population system). However, the underlying effects are different. In 

Schmidt et al. (2018), the input oscillations are strongly rectified, so one “pulse” of low-

frequency oscillations acts as a stimulus presentation, switching a population to the active state. 

The effect is observed at low frequencies presumably because the “pulse” is long enough in this 

case. Oscillations in our model are weaker and sinusoidal, so their switching effect on the 

distractor-selective background module is related to non-linear properties of the system itself and 

requires simultaneous presentation of the distractor (the entrained oscillations ride on top of the 

distractor-related excitation). The effect is observed at low frequencies due to their stronger 

mean excitatory effect on the background module and stronger inhibitory effect on the 

competing active module. Note also that high-amplitude oscillations in our could be enough to 

switch one of the modules to the active state without stimulus presentation (given asymmetry in 

the initial conditions). This effect parallels spontaneous switching between populations induced 

by delta-band input in the presence of noise reported by Schmidt et al. (2018). 

Finally, we should also note that the mechanisms of oscillatory control based on the gain 

function non-linearity and on the spike synchronization are not mutually exclusive. In the 

spiking network version of our model, the entrained oscillations that produced the stabilizing and 

destabilizing effects were much less sinusoidal than in the low-dimensional version. Although 
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we did not analyze this explicitly, we suppose that spike-to-spike synchronization plays a certain 

role in mediating the effects of oscillations on WM stability in the spiking network version of 

our model. We suggest that relations and interactions between the aforementioned mechanisms 

should be explored in more detail in future research. 

 

General perspectives 

 

 Separated WM “storage” and “controllers” 

We suggest that it could be functionally profitable for the brain to have separate 

“representational” circuits for retention / processing of information and “controller” circuits that 

modulate the behavior of the representations. The profit of having a separated controller is 

especially clear for PFC circuits, given its ability for fast and flexible formation of 

representations in a task-dependent manner (Parthasarathy et al., 2017; Bouchacourt, Buschman, 

2019). 

A plausible anatomical substrate for the “representational” circuits is the Layer 2/3 of the 

neocortex. Circuits of the Layer 2/3 demonstrate sparse firing patterns (Barth, Poulet, 2012), i.e. 

their neurons likely represent certain features in a highly selective manner. It is also known that 

the Layer 2/3 networks serve as a basis for WM retention (Goldman-Rakic, 1995). Recently, it 

was demonstrated that spiking activity in the Layer 2/3 of PFC contains more information about 

WM content compared to the deeper cortical layers (Bastos et al., 2018). 

There are several subcortical structures that may potentially act as a “controller” of 

retention stability by providing modulatory beta-band signals to the PFC circuits. The first 

candidate is the basal ganglia (BG), which perform gating function, controlling whether certain 

information should be placed into WM or ignored (McNab, Klingberg, 2008; Nee, Brown, 

2013). It was shown that the temporal profiles of beta activity (with a drop during stimulus 

presentation and a recovery at the retention period) are similar in the PFC and in the subthalamic 

nucleus (STN, part of the BG). Importantly, the beta-band activity in both structures was higher 

during and after distractor presentations compared to presentations of to-be-memorized stimuli 

(Zavala et al., 2017). Furthermore, beta-band coherence between the STN and the PFC was 

increased in the case of distractors, suggesting active interaction between these structures 

(Zavala et al., 2017). Interestingly, the ability to ignore distractors in a WM task is better in 

patients with Parkinsonian disease (Cools et al., 2010), which is usually accompanied by 

pathologically increased beta activity in the BG and the cortex (Brittain, Brown, 2014; Pavlides 

et al., 2015). Another subcortical structure functionally related to the BG and potentially 

involved in the beta-band control of WM retention is the mediodorsal thalamus (MD). It was 

shown that beta-band synchrony between the MD and the PFC (with the MD phase-leading the 

PFC) was increased during WM retention interval and it predicted the accuracy during the task 

learning, while inhibition of the MD disrupted the synchrony and decreased the accuracy 

(Parnaudeau et al., 2013). 

The subcortical systems that provide alpha-band signals for WM control presumably 

involve networks of thalamocortical neurons in associative and relay thalamic nuclei, as well as 
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inhibitory circuits of the reticular thalamic nucleus. These structures are known to generate alpha 

activity in the passive rest condition and participate in shaping top-down attention (Crunelli et 

al., 2018; Fiebelkorn et al., 2019; Halassa et al., 2014).  

It is also likely that the circuits providing oscillatory control of WM are partially located 

in the deep layers of the neocortex. It is known that the deep cortical layers usually demonstrate 

LFP oscillations at predominantly low frequencies (Wang, 2010). Among other findings, it was 

demonstrated that the deep layers during a WM task act as a source of beta activity, which 

entrains circuits in the superficial layers and presumably controls WM retention (Bastos et al., 

2018). Deep cortical layers are tightly interconnected with various subcortical structures, 

forming thalamocortical and cortico-basal ganglia-thalamocortical loops (Sherman, Guillery, 

2018; Shepherd, 2013). Accordingly, deep cortical layers participate in generating beta 

oscillations in concert with the basal ganglia (Kondabolu et al., 2016; Talakoub et al., 2016; 

Zavala et al., 2017) and alpha oscillations in concert with the thalamus (Crunelli et al. 2018; 

Fiebelkorn et al., 2019). 

We should note that we do not imply that the mechanisms generating modulatory 

oscillations are fully non-specific and completely independent of the “representational” circuits’ 

activity. Instead, we assume that the distribution of various oscillations across the cortex 

provides a scaffold for the content-specific activity. This scaffold outlines the current task 

requirements, but it is itself less selective compared to the rate code that represents the WM 

content. This is in line with lower selectivity of deep cortical layers compared to the superficial 

ones (Bastos et al., 2018), as well as with lower representational power of subcortical structures 

compared to the cortex. On the other hand, this oscillatory scaffold is likely refined by feedback 

projections from the superficial to the deep cortical layers and from the deep cortical layers to 

subcortical structures. It is clear that WM content retention and its oscillatory modulation are the 

parts of a unified process, and its self-consistent modeling is an important direction of future 

research. 

Oscillatory modulation of encoding capability 

We could abstract out from the specific task we modeled in our study (WM with 

distractors) and consider our results from a more general perspective. We could think of “WM 

content” as of generic encoded information that is currently being retained or processed by a 

neural circuit. In this context, one could pose a question about potential ways in which non-

specific oscillations (agnostic to the content of the code) could affect the ability of a circuit to 

retain the encoded information.  

In our model, the “code” consists of two binary values: the first value encodes the state of 

the stimulus-selective module (background or active), and the second value encodes the state of 

the distractor-selective module. We demonstrated that beta oscillations stabilize the existing 

code, making it more robust to changes (in agreement with the “beta status quo” hypothesis 

(Engel, Fries, 2010)), while oscillations below the beta band make the code more prone to 

changes. From the perspective of cognitive functions, stabilization is required during operations 

that rely on retention of certain information, such as WM content, task rules, or direction of 

sustained attention. Conversely, destabilization may be profitable in more “fluent” states such as 

active perception or divergent thinking. 
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We also demonstrated that oscillations of very low frequency could erase WM content 

and prevent memorization (similarly to alpha-band input in (Dipoppa, Gutkin, 2013) and beta-

gamma input in (Schmidt et al., 2018)). From the general perspective, such oscillations put the 

system into a non-coding regime, in which it cannot represent any information. Such regime is 

profitable when a population should be excluded from ongoing information processing. From the 

biological perspective, this functionality is similar to the presumable inhibitory role of alpha 

oscillations (Klimesch, 2012); it is also known that widespread low-frequency oscillations are 

typical in the states of deep sleep or anesthesia, in which cortical computations are significantly 

reduced (Akeju, Brown, 2017; Flores et al., 2017). 

In summary, our model predicts three distinct functional roles of oscillations in 

multistable neural systems with population rate coding. First, beta oscillations stabilize the 

existing code, i.e. make the existing distribution of neural activities harder to change. Second, 

low-frequency (alpha) oscillations destabilize the code, making it easier to change. Third, 

oscillations of very low frequency clamp the system into a non-coding state. 

 

Methods 

General description of the models 

In this paper, we used two types of models: (1) spiking networks of leaky integrate-and-

fire (LIF) neurons, and (2) low-dimensional population models of Wilson-Cowan type. 

Individual neurons in the spiking version of the network were coupled by current-based synapses 

with exponential kernels and no delay. Excitatory currents contained two components with 

different decay time constants (AMPA and NMDA), while inhibitory currents contained single 

component (GABAA). Gain functions of the neurons used in the low-dimensional models were 

numerically precalculated using single-neuron simulations with various input parameters; the 

precalculated values were then interpolated during network parameter selection and simulations 

of the low-dimensional models. 

We considered both single-module and two-module models. A module always contained 

an excitatory and an inhibitory population of neurons, with sparse connections within and 

between the populations. Each population received a noisy background input (explicitly in the 

spiking models, and implicitly in the low-dimensional models – via an additional term in the 

equations that describe the dynamics of the AMPA current variance). External oscillations were 

added to models explicitly as a zero-mean sinusoidal signal affecting the variable that describes 

the mean AMPA current. 

We selected parameters in such way that a module without oscillations demonstrated 

bistability with realistic firing rates and CV values, as well as beta-band resonance in the active, 

but not in the background state. During parameter selection, we largely relied on the phase-plane 

visualization. Then we added input oscillations and simulated low-dimensional models, 

demonstrating the effects we were interested in. Finally, we confirmed the results by simulating 

the corresponding spiking models. 

Spiking models 

Each neuron in our spiking models was described by the following equations: 
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where ,p q  – module indices, ,a b  – population types ( ,a b e=  for excitatory and ,a b i=  for 

inhibitory populations), ,k m  – indices of neurons within populations (the , ,p a k  indices 

characterize the neuron, for which the above system of equations is written, while the , ,q b m  

indices characterize the inputs of this neuron); 
p

akV  – membrane potential, LaE  – resting potential, 

maC  – membrane capacitance, Lag  – membrane conductance, 
TH

aV  – spike generation threshold, 

R

aV  – reset potential; , , ,, ,p p p

ak AMPA ak NMDA ak GABAAI I I  – synaptic currents, , ,AMPA NMDA GABAA    – synaptic 

time constants, 
, ,

, ,,pq km pq km

ae AMPA ae NMDAJ J  – weights of AMPA and NMDA synaptic connections from the 

m -th neuron of the excitatory population of the module q  to the k -th neuron of the population a  

of the module p , 
,

,

pq km

ai GABAAJ  – weight of GABAA synaptic connections from the m -th neuron of the 

inhibitory population of the module q  to the k -th neuron of the population a  of the module p , 

,qem qimT T – time moments of spike generation by the m -th neuron of the excitatory / inhibitory 

population of the module q , , , ,, ,px px px

ak BG ak STIM ak OSCI I I  – external current to the k -th neuron of the 

population a  of the module p  (BG – background, STIM – representing stimulus presentation, 

OSC – oscillatory), ,

p

ax BG , ,

p

ax BG  – mean and standard deviation of the background input (same 

for all neurons of a population), ( )pak t  – Gaussian white noise with zero mean and unity variance 

(independent for each neurons), ,

p

ax STIM  – mean stimulus current, 
,1 ,2,STIM STIMt t  – time of the 

stimulus start and end, ( )STIMH t  – a function defining the stimulus shape; , ,p

ax OSC OSCA f  – amplitude 

and frequency of the input oscillations, ( )|OSC OSCH t f  – a function defining the shape of the 

oscillations; 
,1 ,2,OSC OSCt t  – time of the oscillatory input start and end.  

Populations of a type a contained aN  neurons, and each of them was connected to abK  

randomly selected neurons from a population of a type b . In order to make activities of neurons 

almost independent, the connectivity was made sparse, i.e. ab bK N . Synaptic weights between 

connected neurons depended only on the populations / modules these neurons belong to: 
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where S=AMPA,NMDA,GABAA. 

 In the single-module system, we used stimulus of the square shape: ( ) 1p

STIMH t = . In the 

two-module system, the stimulus and the distractor had a shape of a square pulse with smoothed 

fronts, given by the following heuristic formula: 
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. (3) 

This was motivated by the fact that the phase of oscillations at the end of the distractor presentation 

could affect the subsequent behavior of the system (the distractor has more chance to be 

memorized if it terminates at the excitatory phase of oscillations). As we were interested in the 

effect of oscillations’ frequency (in its relation to the time-averaged firing rates), and not of their 

phase, we used distractors with smoothed, which allowed us to minimize the phase-dependency 

effects. 

 For the oscillatory input, we used a simple sine wave: 

( ) ( )( ),1| sin 2p p

OSC OSC OSC OSCH t f f t t= − . (4) 

All simulations were performed with the time step 0.1mst = . Instantaneous population firing 

rate was estimated as the number of spikes generated by population neurons during 1 ms interval, 

divided by 1 ms and by the number of neurons in the population. 

  Population models 

The population models were described by the following system of equations: 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 15, 2020. ; https://doi.org/10.1101/2020.12.13.422600doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.13.422600
http://creativecommons.org/licenses/by-nc-nd/4.0/


( ), ,

, , ,

,

, , , , ,

,

, ,

, ,
p

p p R p p pa
ra a a a a AMPA a GABAA

p p p p

a a AMPA a NMDA a GABAA

p

a AMPA p pq q p p p

AMPA a AMPA ae AMPA ae AMPA e ax BG ax STIM ax OSC

q

p

a NMDA p pq q

NMDA a NMDA ae NMDA ae NMDA e

q

dr
r F

dt

d
J K r

dt

d
J K r

dt

   

   


     


  



= − +

= + +

= − + + + +

= − +





( )
( ) ( ) ( )

( )
( ) ( )

( )

,

, ,

2

2 2 2,

, , ,

,

2

2 2,

, ,

,

1

2 2

0

1

2 2

p

a GABAA p pq q

GABAA a GABAA ai GABAA ai GABAA i

q

p

a AMPA p pq q pAMPA
a AMPA ae AMPA ae AMPA e ax BG

q

p

a NMDA

p

a GABAA p pq qGABAA
a GABAA ai GABAA ai GABAA i

q

p

ax STIM

d
J K r

dt

d
J K r

dt

d
J K r

dt

t


 


  




 



= − +

= − + +

=

= − +







( )

( ) ( )

, ,1 ,2

, , ,1 ,2|

p

ax STIM STIM STIM STIM

p p

ax OSC ax OSC OSC OSC OSC OSC

H t t t t

t A H t f t t t































 =      


 =      

 , (5) 

where p

ar  – population frequency (mean number of spikes emitted by a population per unit time, 

divided by the number of neurons in the population), p

a  – mean synaptic input current to 

population neurons, ,

p

a S  – standard deviation of the synaptic input current over the neurons 

(S=AMPA,NMDA,GABAA), R

aF  – gain functions which link input mean and standard deviation 

with output firing rate, ra  – time constants of firing rate dynamics; other notations are the same 

as for the spiking models. We assumed that , 0p

a NMDA = , as NMDA receptors are slow, so NMDA-

current is almost tonic, with small fluctuations.  

Further in the text, we omit the module indices ,p q  for most of the parameters, since the 

modules in the two-module system are identical. For those parameters that are related to the 

stimulus and the distractor (and, thus, differ between the modules), we use the superscripts “S” 

and “D”, respectively. For the weights of the inter-module connections, we use the superscript 

“CROSS”.  

 We should note that if the low-dimensional system (5) without oscillatory input has steady-

states, they quantitatively match quite well the steady-states of the corresponding spiking network 

(1), given the following conditions: (a) correlation between spike trains of different neurons is low, 

(b) coefficient of variation of interspike interval (CV) is close to 1 for all neurons, (c) total input 

firing rate to each neuron is high. However, their dynamical properties (including the response to 

oscillatory input) could be different, as our low-dimensional model implies fixed time constants 

ra , while, in fact, they depend on the state of a spiking network; furthermore, the low-dimensional 

model does not account for spike-to-spike synchronization. In this work, we do not intend to 

qualitatively match dynamical behavior of the spiking and the low-dimensional models. Instead, 
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our goal here is to demonstrate that the effects we explore could be observed in both types of 

models.  

Precalculation of the gain functions 

In order to determine the gain functions R

aF  used in (5), we simulated a single LIF neuron 

receiving a tonic input and two zero-mean noisy inputs with the time constants AMPA   

and GABAA : 

( )

:

2 ( )

2 ( )

ma La AMPA GABAA

TH R

a a

AMPA
AMPA AMPA AMPA AMPA AMPA

GABAA
GABAA GABAA GABAA GABAA GABAA

dV
C g V I I

dt

if V V V V

dI
I t

dt

dI
I t

dt



   

   


= − + +


= 




= − +



= − +

, (6) 

where   corresponds to the depolarization produced by the mean total input current (AMPA + 

NMDA + GABAA), and ,AMPA GABAA   correspond to the total standard deviations of the AMPA- 

and the GABAA-currents, respectively. We simulated (6) for various combinations 

( ), ,AMPA GABAA    located in the nodes of a rectangular grid and we calculated firing rate and CV 

from the simulated spike trains. Thus, we obtained four 3-D matrices: ,R R

e iF F  (containing the 

firing rates) and ,CV CV

e iF F  (containing CV values); each position in a matrix corresponded to a 

certain combination ( ), ,AMPA GABAA   . 

During parameters selection and simulation of low-dimensional models, we needed to 

evaluate ,R R

a aF F  for arbitrary arguments. We did it by sampling appropriate values from the 

precalculated matrices and applying cubic interpolation to them. 

 

Phase-plane analysis 

 

Here we describe the procedure for visualization of the ( ),e ir r  phase plane of the single-

module low-dimensional model, with the characteristic er - and ir -curves, such that for each point 

on the ar -curve (a=e or i), derivatives of all the variables except of ar  are equal to zero. 

Intersections of the er - and ir -curves give the fixed points of the system. In total, the model has 

12 dynamical variables: ( )( )2

, , ,, , ,a a S a GABAA a Sr    , where ,a e i= , , ,S AMPA NMDA GABAA=  for 

the  -variables, and ,S AMPA GABAA=  for the 2 -variables. We looked at the manifold in the 

phase space parametrized by ( ),e ir r  and defined by the condition that the derivatives of all other 

variables are zero. This condition could be expressed as follows: 
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. (7) 

Total mean currents for the points at the manifold could be expressed as follows: 

( ) ( ) ( ) ( )* * * *

, , ,, , , ,a e i a AMPA e i a NMDA e i e GABAA e ir r r r r r r r   = + + . (8) 

The characteristic er - and ir -curves are defined by the following two conditions, respectively: 

( ) ( ) ( )( )

( ) ( ) ( )( )

* * *

, ,

* * *

, ,

, , , , ,

, , , , ,

R

e e e e i e AMPA e i e NMDA e i

R

i i i e i i AMPA e i i NMDA e i

r F r r r r r r

r F r r r r r r

  

  

 =


=

. (9) 

We probed various ( ),e ir r  combinations from a rectangular grid. For each combination, 

we applied formulas (7) and (8), and plugged the results into (9). We visualized the characteristic 

curves as the contour lines, at which the calculated values of ( )R

e er F−  and ( )R

i ir F−  changed 

the sign. Intersections of these curves gave us the fixed points of (5). At the fixed points, we 

calculated CV values, using a similar interpolation procedure as for the firing rates, but now using 

the precalculated matrices ,CV CV

e iF F . Stability of the fixed points were determined by analyzing 

the eigenvalues of the Jacobian matrix of (5) calculated at these points.  

 

 Parameter selection  

Out parameter selection procedure could be separated into several steps. First, we selected 

the parameters of LIF neurons ( , , , ,TH R

ma La La a aC g E V V ) and the synaptic time constants  

( , ,AMPA NMDA GABAA   ). We chose typical values for these parameters (Table 1) and did not change 

them for the rest of the process. The excitatory and the inhibitory neurons differed only by the 

membrane capacitance maC ; the resulting membrane time constants were: 20msme me LeC g = =  

and 10msmi mi LiC g = = , which corresponds to pyramidal neurons and fast-spiking interneurons, 

respectively. 

Table 1. Single-neuron parameters 

Parameter Value Parameter Value 

meC  2 µF/cm2 AMPA  2 ms 

miC  1 µF/cm2 NMDA  50 ms 

Le Lig g=  100 µS/cm2 GABAA  5 ms 

Le LiE E=  -70 mV   

TH TH

e iV V=  -50 mV   
R R

e iV V=  -60 mV   
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Using the selected parameters, we calculated the matrices ( ), ,R

a AMPA GABAAF     and  

( ), ,CV

a AMPA GABAAF    . This step was time-consuming, as it involved extensive simulations; 

however, it was done only once, since all the parameters it requires were selected a priori. 

Next, we selected parameters that define steady-state behavior of the single-module system 

without input oscillations: , , ,, , ,ab ab S ax BG ax BGK J   . We chose 200ee ieK K= =  and 

50ei iiK K= = . The ratio of inhibitory to excitatory inputs equal to 1:4 is typical; however, the 

numbers of inputs are about an order of magnitude lower that observed in real cortical neurons. 

We used them to achieve high sparseness of ( 10 50K N = ) without the need to simulate very 

large networks. We also introduced new parameters ,ae TOTALJ  and NMDAk  such that: 

( ), ,

, ,

1ae AMPA ae TOTAL NMDA

ae NMDA ae TOTAL NMDA AMPA NMDA

J J k

J J k  

 =  −


=  
. (10) 

This approach is convenient because NMDAk  only affects the dynamic behavior of the system, but 

does not affect its fixed points. Our process of , , , ,, , ,ae TOTAL ai GABAA ax BG ax BGJ J    selection was 

guided by the phase-plane visualization described in the previous section. We aimed to meet the 

following requirements: (1) amplitudes of postsynaptic potentials corresponding to selected 

synaptic weights are in a reasonable range, (2) the system has three fixed points, two of which 

potentially are steady states (the stability check is described below), (3) both potential steady states 

have biologically plausible firing rates and CV about 1. 

At the next step, we chose the values of ,re ri  . To do this, we determined the properties 

of the total input (mean, variance of the AMPA-component, variance of the GABAA-component) 

that the excitatory and the inhibitory populations receive in the active state (i.e. in the upper of the 

two steady states that the system has, given the previously selected parameters). For each type of 

neurons (excitatory and inhibitory), we simulated an uncoupled spiking network that consisted of 

1000 LIF neurons receiving an external tonic input equivalent to the total input that the 

corresponding population received in the active state. We delivered a small current step to the 

network and averaged the firing rate responses to this step over 1000 trials. Then we fitted an 

exponential curve to the averaged response for each type of neurons, and the time constants of 

these exponents were chosen as the values of ,re ri  . 

After that, we checked that two of the fixed points are stable by analyzing the Jacobian 

matrix of (5) evaluated at each of the fixed points (given zero stimulus-related and oscillatory 

inputs). Then we selected some intermediate value for ,ex OSCA , and set , 0ix OSCA = . We obtained 

the frequency responses of the resulting low-dimensional system by simulating it for various 

values of OSCf , starting from the background or from the active state. We checked whether the 

system had a prominent beta-band resonance in the active state and weak resonant properties in 

the background state. The latter condition was usually met automatically, as the slope of the gain 

functions ( R

aF   ) is higher in the active state than in the background state (if CV in both states 

is close to 1 or higher), so, effectively, interaction between populations is stronger in the active 

state, which makes the system more resonant. If either the stability condition or the beta-band 
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resonance condition was not satisfied, our first option was to change NMDAk  and to repeat the 

stability and the frequency response analyses. In general, decrease of NMDAk  shifted the resonant 

frequency towards higher values and made the resonance stronger; however, too small NMDAk  lead 

to unstable dynamics with self-generated oscillations (which we wanted to avoid). If changing 

NMDAk  was not enough to obtain the required properties, we changed , , ,, ,ae TOTAL ai GABAA ax BGJ J  , 

guided by the following intuitions: (a) quality of the resonance increases as the system approaches 

Hopf bifurcation, (b) both quality and frequency of the resonance increase with increasing steady-

state firing rate, ,ee TOTALJ , ,ie TOTALJ , and ,ei GABAAJ , (c) both quality and frequency of the 

resonance decrease  with increasing ,ii GABAAJ . After changing , , ,, ,ae TOTAL ai GABAA ax BGJ J  , we 

recalculated ,re ri   and repeated the stability and the frequency response analyses. 

Next, we repeated the frequency response analysis for various ,ex OSCA . Our goal was to 

find ,ex OSCA , for which a beta-band input would selectively produce a prominent shift of the time-

averaged firing rate in the active state, but not in the background state. To achieve a strong shift, 

,ex OSCA  should be high enough so non-linearity of the gain functions plays a significant role. On 

the other hand, we tried to stay close to physiological regime of oscillations and avoid excessively 

synchronized and rectified all-or-none dynamics. If we failed to achieve the required behavior, we 

changed NMDAk  or , , ,, ,ae TOTAL ai GABAA ax BGJ J  , repeated the required steps, and returned to this 

analysis. This was the final step of the low-dimensional single-module system configuration.  

After configuring the low-dimensional model, we used the selected parameters for 

simulating a spiking network of 10000N =  neurons. First, we noted that the firing rates 

corresponding to the active state were higher in the spiking network than in the low-dimensional 

model (probably due to finite-size effects or due to fluctuations of NMDA current, not accounted 

for in the low-dimensional model); thus, we selected slightly smaller ,ex BG  value for the spiking 

model, leaving other parameters unchanged. Second, we found that the spiking model responded 

to a strong oscillatory input by excessive synchronization; this also led to a shift of the resonant 

peak from the beta band towards lower frequencies. To treat this issue, we selected the ratio 

, ,: 0.2ix OSC ex OSCA A =  (instead of , 0ix OSCA =  in the low-dimensional model) and compensated it 

with an increase of ,ex OSCA . 

The two-module system consisted of two identical modules with symmetrical mutual 

inhibition implemented via connections from the excitatory population of each module to the 

inhibitory population of another module. To compensate for this additional inhibition, we slightly 

increased 
,ex BG  (compared to the single-module system) for each of the two modules. The spiking 

version of the model contained 5000N =  neurons in each module. 

Amplitude of the stimulus was chosen to be enough to switch the receiving module to the 

active state, whether the other module is in the background or in the active state. Amplitude of the 

strong distractor was equal to the stimulus amplitude. Amplitude of the weak distractor was 

decreased in such way that the distractor presentation did not change the state of the system.  

Parameters of the single-module system are presented in Table 2. Those parameters of the 

two-module system that differ from the single-module system are presented in Table 3.  
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Table 2. Parameters of the single-module system 

Common parameters 

Parameter Value Parameter Value 

ee ieK K=  
200 ,ee TOTALJ  0.45 µA/cm2 

ei iiK K=  
50 ,ix BG  0.54 µA/cm2 

,ee TOTALJ  
0.45 µA/cm2 ,ex BG  2 µA/cm2 

,ie TOTALJ  
0.11 µA/cm2 ,ix BG  2 µA/cm2 

NMDAk  
0.8 re  4 ms 

,ei GABAAJ  
0.54 µA/cm2 ri  2.4 ms 

,ii GABAAJ  
-0.05 µA/cm2   

Population model Spiking model 

Parameter Value Parameter Value 

,ex BG  1.2 µA/cm2 ,ex BG  1.1 µA/cm2 

simT  2500 ms simT  5000 ms 

,1STIMt  200 ms ,1STIMt  200 ms 

,2STIMt  400 ms ,2STIMt  400 ms 

,ex STIM  1 µA/cm2 ,ex STIM  1 µA/cm2 

,ix STIM  0.2 µA/cm2 ,ix STIM  0.2 µA/cm2 

,ex OSCA  0.4 µA/cm2 ,ex OSCA  0.65 µA/cm2 

,ix OSCA  0 µA/cm2 ,ix OSCA  0.13 µA/cm2 

,1OSCt  700 ms ,1OSCt  700 ms 

,2OSCt  2500 ms ,2OSCt  5000 ms 

  N  10000 

 

Table 3. Parameters of the two-module system 

Population model Spiking model 

Parameter Value Parameter Value 

,ex BG  1.3 µA/cm2 ,ex BG  1.1 µA/cm2 
CROSS

ieJ  0.06 µA/cm2 
CROSS

ieJ  0.1 µA/cm2 
CROSS

NMDAk  1 
CROSS

NMDAk  1 

simT  2200 ms simT  5000 ms 
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,1

S

STIMt  200 ms ,1

S

STIMt  200 ms 

,2

S

STIMt  500 ms ,2

S

STIMt  600 ms 

,1

D

STIMt  1100 ms ,1

D

STIMt  1100 ms 

,2

D

STIMt  1400 ms ,2

D

STIMt  1500 ms 

,

S

ex STIM  5.5 µA/cm2 ,

S

ex STIM  5.5 µA/cm2 

,

S

ix STIM  1.1 µA/cm2 ,

S

ix STIM  0.825 µA/cm2 

,

D

ex STIM  (strong) 5.5 µA/cm2 ,

D

ex STIM  (strong) 5.5 µA/cm2 

,

D

ix STIM  (strong) 1.1 µA/cm2 ,

D

ix STIM  (strong) 0.825 µA/cm2 

,

D

ex STIM  (weak) 4.5 µA/cm2 ,

D

ex STIM  (weak) 4 µA/cm2 

,

D

ix STIM  (weak) 0.9 µA/cm2 ,

D

ix STIM  (weak) 0.6 µA/cm2 

,ex OSSCA  0.4 µA/cm2 ,ex OSCA  1.5 µA/cm2 

,ix OSCA  0 µA/cm2 ,ix OSCA  0.3 µA/cm2 

,1OSCt  650 ms ,1OSCt  650 ms 

,2OSCt  1800 ms ,2OSCt  1800 ms 

  S DN N=  5000 
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