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Abstract 

Motivation 

Recent advance in next generation sequencing has triggered the rapid accumulation of publicly 

available multi-omics datasets. The application of integrated omics to exploring robust signatures 

for clinical translation is increasingly highlighted, attributed to the clinical success of immune 

checkpoint blockade in diverse malignancies. However, effective tools to comprehensively interpret 

multi-omics data is still warranted to provide increased granularity into intrinsic mechanism of 

oncogenesis and immunotherapeutic sensitivity.  

 

Results 

We developed a computational tool for effective Immuno-Oncology Biological Research (IOBR), 

providing comprehensive investigation of estimation of reported or user-built signatures, TME 

deconvolution and signature construction base on multi-omics data. Notably, IOBR offers batch 

analyses of these signatures and their correlations with clinical phenotypes, lncRNA profiling, 

genomic characteristics and signatures generated from single-cell RNA sequencing data in different 

cancer settings. Additionally, IOBR also integrates multiple existing microenvironmental 

deconvolution methodologies and signature construction tools for convenient comparison and 

selection. Collectively, IOBR is a user-friendly tool, to leverage multi-omics data to facilitate 

immuno-oncology exploration and unveiling of tumor-immune interactions and accelerating 

precision immunotherapy. 

 

Introduction 

Clinical success of immune checkpoint blockade (ICB) has recently witnessed immunotherapy 

revolutionizing the treatment paradigm of advanced cancers. However, the heterogeneous 

immunotherapy outcomes across patients necessitates the investigation into host-tumor interactions, 

especially the immune cell infiltrations within tumor microenvironment (TME), to define robust 

predictive biomarkers for precision therapy. In this regard, increasing TME-relevant gene signatures 

have been reported to estimate immune contexture and predict clinical treatment response. Notably, 

gene expression profiling (GEP)(Cristescu, et al., 2018) and TMEscore(Zeng, et al., 2019) are 

influential pan-cancer predictive signatures for prognosis, ICB response and resistance by decoding 

TME component using transcriptomic data. Gene signatures for chemotherapy response prediction 

are also reported: the 70-gene(van 't Veer, et al., 2002) and 21-gene(Sparano and Paik, 2008) assay 

predict distant recurrence of estrogen receptor positive breast cancer with adjuvant chemotherapy; 

and aforementioned TMEscore are also promising biomarker for chemotherapy sensitivity in late-

stage gastric cancer(Zeng, et al., 2019). Signatures such as PAM50, constructed by integrating 

transcriptomics with other omics (genomics, methylation, proteomics) to define subgroups, provide 

a new lens into tumor plasticity and heterogeneity of breast cancer(Cancer Genome Atlas, 2012). 

The emergence of these promising signatures is attributed greatly to the development of next 

generation sequencing (NGS) and computational deconvolution methodology. Technological 

breakthrough in NGS has driven enormous accumulation of publicly available multi-omics datasets, 

allowing easy accessibility for multi-omics data. Despite the rapid technological progress of single-

cell RNA sequencing (RNA-seq), the lack of large datasets indicates that the validation of signatures 
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still depends heavily on attainable bulk RNA-seq datasets. Additionally, based on transcriptomic 

data, recent development of computational algorithms and tools were utilized to dissect the tumors-

microenvironment interaction. Tools for TME deconvolution is fundamentally classified according 

to four computational principles: machine learning, gene set enrichment analysis (GSEA), linear 

regression and nonlinear programming(Zhang, et al., 2020). Nonlinear programming-based 

principles do not necessarily rely on the information of different cell-type frequencies, whereas the 

other three counterparts require prior knowledge of marker genes of distinct immune cell subsets 

and molecular profiles(Zhang, et al., 2020). Machine learning based principles could evaluate the 

absolute proportion of infiltrating immune cells within TME, while gene set enrichment analysis-

based principles infers the relative proportion(Zhang, et al., 2020).  

Given the merits of above deconvolution methods, further comparison of the results to add accuracy 

and the subsequent downstream analyses are not covered by either of these tools. Competent tools 

to conveniently interpret transcriptomics or integrated omics data is warranted to offer new insight 

into tumorigenesis, immune-tumor interaction and therapeutic sensitivity diversity. Therefore, we 

developed a computational tool for effective Immuno-Oncology biological Research (IOBR), to 

comprehensively explore and visualize the multi-omics interpretation including signature score 

calculation and systematic estimation of its correlations with clinical phenotypes, noncoding RNA 

characteristics, signatures derived from single-cell RNA-seq data, and genomic landscapes in 

multiple cancers, as well as TME deconvolution with diverse algorithms and fast signature 

construction. IOBR is an effective tool and its implementation in immuno-oncology study may aid 

the discovery of novel tumor-immune interactions and accelerating precision immunotherapy. 

 

Results 

To comprehensively leverage the transcriptomic data to detect immune-tumor interplay and its 

promising clinical translation, we introduce IOBR R package, an effective and flexible tool, freely 

available in the GitHub repository (https://github.com/IOBR/IOBR). IOBR consists of four 

functional modules, comprising estimation of signature scores, phenotype related signatures and 

corresponding genes, and signatures generated from single-cell RNA-seq data, along with decoding 

immune contexture (signature and TME deconvolution module); identification of phenotype 

relevant signatures, cell fraction, or signature genes, as well as pertinent batch statistical analyses 

(phenotype module); analysis of signature associated mutations (mutation module) and fast model 

construction (model construction module). The schematic workflow and functional codes are 

illustrated in Figure 1 and Figure 2, respectively. Corresponding figures dynamically generated 

following inputting function-specific parameters of pertinent module. Details of each module are 

described below. 

 

Signature and TME estimation module 

Signature estimation  

To elucidate an increasingly granular view of the tumor microenvironment cellular composition and 

functional status with the goal of cancer-therapy refinement, we construct estimation function for 

user-generated signatures or 255 reported signatures enrolled in IOBR. The extensive signature 

collection is classified into 3 categories: TME-associated, tumor-metabolism, and tumor-intrinsic 

signatures. Additionally, IOBR supports estimation of the signature gene sets derived from GO, 
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KEGG, HALLMARK and REACTOME database. To note, IOBR permits user to generate a 

signature list based on their own biological discovery or expletory requirement, for convenient 

estimation and follow-up systematic exploration. 

Three methodologies were included in the process of signature score evaluation, comprising Single-

sample Gene Set Enrichment Analysis (ssGSEA), Principal component analysis (PCA), and Z-score. 

ssGSEA, is a wildly-adopted tool to calculate separate enrichment scores for each pairing of a 

sample and gene set(Barbie, et al., 2009). Each ssGSEA enrichment score represents the degree to 

which the genes in a particular gene set are coordinately up- or down-regulated within a sample. 

Notably, PCA computes the principal components to perform a change of basis on the exploratory 

data analysis for predictive model construction. Current signatures constructed using PCA 

methodology includes the Pan-F-TBRs(Mariathasan, et al., 2018) and the TMEscore (Zeng, et al., 

2019), two promising biomarkers to predict clinical outcome and therapy sensitivity of malignancies. 

Z-score is a numerical measurement to describe a score's relationship to the mean of a group of 

values. Z-score is measured in terms of standard deviations from the mean. These three methods are 

selectable in IOBR by inputting targeted methods or integration of them, and corresponding 

visualizations are supported. 

 

Signatures derived from single-cell RNA-seq Data 

Technological and computational innovations of single-cell analysis make it a popular alternative 

to determine cell markers and gene signatures for phenotypes. However, the significantly expensive 

cost and high requirement for starting tumor material limits its widespread utility. Therefore, the 

application of large and attainable bulk RNA-seq datasets is still a major source to validate the 

clinical significance of the signatures generated from single-cell analysis. Therefore, IOBR provides 

multiple methodologies to extract cell signature genes from the single-cell RNA-seq data (TPM or 

counts data are available inputs). Remarkedly, the linear support vector regression (SVR) algorithm 

of CIBERSORT or LSEI(Gong and Szustakowski, 2013) algorithm is implemented in IOBR for 

convenient bulk RNA-seq data analysis to verify the clinical value of the targeted cells identified 

by single-cell RNA-seq data. 

 

TME deconvolution 

Clinical investigations have highlighted cell infiltrations in TME as pivotal contributors to the 

complex anti-tumor immunity in malignancies. TME-cell deconvolution is the major technological 

hurdle and the deconvolution algorithms vary in merits and pitfalls. IOBR integrates eight open-

source deconvolution methodologies, including CIBERSORT(Newman, et al., 2015), 

ESTIMATE(Yoshihara, et al., 2013), quanTIseq(Finotello, et al., 2019), TIMER(Li, et al., 2017), 

IPS(Charoentong, et al., 2017), MCPCounter(Becht, et al., 2016), xCell(Aran, et al., 2017) and 

EPIC(Racle, et al., 2017).  

CIBERSORT is the most well-recognized method to detect 22 immune cells in TME, allowing large-

scale analysis of RNA mixtures for cellular biomarkers and therapeutic targets with promising 

accuracy(Newman, et al., 2015). Notably, IOBR, adopting the linear vector regression principle of 

CIBERSORT, allows users to construct self-defined signature. The availability of its input file was 

extended to cell-subset derived from single-cell sequencing results. ESTEMATE dissects non-

malignant contexture including stromal and immune signatures to determine tumor purity(Yoshihara, 

et al., 2013). The method of quanTIseq enumerates ten immune cell subsets from bulk RNAseq 
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data(Finotello, et al., 2019). TIMER quantifies the abundance of six tumor-infiltrating immune 

compartments and firstly provides 6 major analytic modules to analyzed the immune infiltration 

with other cancer molecular profiles(Li, et al., 2017). IPS estimates 28 TIL subpopulations including 

effector and memory T cells and immunosuppressive cells(Charoentong, et al., 2017). MCP-counter 

conducts robust quantification of the absolute abundance of eight immune and two stromal cell 

populations in heterogeneous tissues from transcriptomic data(Becht, et al., 2016). xCell provides 

comprehensive view of 64 immune cells from RNA-seq data and other cell subsets in bulk tumor 

tissue(Aran, et al., 2017). EPIC refers the proportion of immune and cancer cells from the expression 

of genes and compare it with the gene expression profiles from specific cells to predict the cell 

subpopulation landscape(Racle, et al., 2017). In a nutshell, IOBR allows convenient integration and 

visualization of above deconvolution results or flexible selection of particular methodology of 

interest. 

 

Phenotype module 

To implement above TME deconvolution and signatures calculation to explore potential clinical 

translation, we collect and systematically categorize the signatures into 39 groups. The categories 

involve TME cell populations (classified either by deconvolution methods or cell types), signatures 

of immunophenotype, tumor metabolism, hypoxia, and EMT et al. Furthermore, IOBR supports 

constructing a novel signature group derived from their own immuno-oncological findings to lay 

foundation for subsequent minding latent biological mechanism and potential clinical translation. 

Notably, the “iobr_cor_plot” function is included into IOBR, to dynamically generate statistical 

results and to efficaciously depict the correlation between signatures and targeted phenotype, such 

as therapeutic responses, carcinogenic infection status. Additionally, IOBR is capable of quick 

visualizing the relationships between signature genes and the targeted variable (binary or continuous) 

with identical methods. Likewise, IOBR is also feasible to identify signatures significantly 

correlated with the signature of interest. 

Moreover, the “iobr_cor_plot” function is also effectively available to define the signatures     

correlated with long non-coding RNA (lncRNA) profiling, by extracting targeted gene from the 

lncRNA expression matrix as a phenotype. The subsequent batch correlation analysis procedure is 

similar to priorly described. Additionally, in that pertinent signatures and signature genes could be 

multiple, IOBR enrolled a subset of functions for batch statistical analysis and visualization. It 

comprises the batch survival analysis for either continuous signature scores or categorized 

phenotype subgroups, and aforementioned batch correlation analysis using statistical tests including 

Wilcoxon test and Partial correlation coefficient (PCC) correspondingly. 

Collectively, phenotype module of IOBR R package permits systematic identification of phenotype 

relevant signatures, cell fraction, or signature genes, as well as corresponding batch statistical 

analyses and visualization. 

 

Mutation module 

In addition to systematical signature-phenotype investigation, IOBR expands the transcriptomic 

exploration to the interplay with genome profiles. Genome data with MAF-format(Mayakonda, et 

al., 2018) downloaded from University of California, Santa Cruz (UCSC) website, or user-construct 

mutation matrix is acceptable as an input to dig out mutations related to specific signatures. 

Furthermore, IOBR supports convenient transforming the MAF data into a mutation matrix with 
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distinct variation types comprising insertion–deletion mutations (indel), single-nucleotide 

polymorphism (SNP), frameshift, or an integrate of them all for flexible selection. Wilcoxon rank-

sum test is employed in this module for batch analysis of mutations significantly associated with 

targeted signatures. IOBR also supports batch visualization of the mutation statutes (mutation or 

non-mutation) of interest.  

 

Model construction module 

For effective application of the signatures in clinical interpretation, IOBR provides functions for 

feature selection, robust biomarker identification, and model construction based on priorly identified 

phenotype associated signatures. To our knowledge, the therapeutic response and overall survival is 

the focused endpoints in oncology, and leveraging the corresponding signatures to construct models 

might hold promise in precise and cost-effective prediction of tumor prognosis and treatment 

sensitivity. Moreover, rational utility in other bioscience settings may also shed new light on 

uncovering novel discoveries of interest.  

 

Application 

The detailed the implementation of IOBR was illustrated in the Supplementary Materials by a 

complete analysis pipeline. To note, in a recent published literature with multi-omics data from 

IMvigor210 cohort, we generated immunotherapy associated risk score, determined TME 

infiltration pattern and further located in macrophage as a robust predictive biomarker, subsequently 

unveiled the predominant genomic alterations and significant metabolic characteristics (Zeng, et al., 

2020). Charts derived from IOBR reach quality requirements of publication and can be flexibly 

modified locally.  

 

Discussion 

The complexity and increasing accumulation of multi-omics datasets pose new opportunity for 

integrative analysis of immuno-oncology, and also challenges to simplify the interpretation without 

sacrificing the high accuracy. Our study developed a comprehensive computational tool IOBR to 

dissect host-tumor interaction and signatures for therapeutic sensitivity. Four major analytic 

modules were provided, allowing effective and systematical analysis of tumor immunologic, clinical, 

genomics, and single-cell RNA-seq data.  

With the era of immunotherapy and Big data coming, identifying novel biomarkers and calculating 

signatures to finetune therapy strategies have come to the spotlight of immune-oncology. In addition 

to systematic estimation of published signature score and signature constructed by users, IOBR is 

competent to operate and interpretate the lncRNA profiling, gene alteration landscapes, single-cell 

RNA-seq results. Notably, the validation of signatures generated by single-cell analysis is also 

involved, which relies intensely on large bulk RNA-seq datasets. Additionally, the model 

construction module potentiates the innovative clinical translation of signatures genes into 

prediction of tumor prognosis, therapy response and resistance. Moreover, the tumor 

microenvironment is an essential constituent of tumor immunity, and the correlation between TME 

heterogenicity and clinical phenotype is pivotal for preclinical oncology research. IOBR R package 

offers multiple available deconvolution methodologies which removed the roadblock for decoding 

TME contexture. TIMER is a published web tool integrating six algorithms for inferring immune 
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cell composition from bulk tumor transcriptome profiles(Li, et al., 2020). However, despite the 

convenience of intuitive outputs provided by TIMER2.0, the upload of large dataset is still a 

challenge for website tool, which could be tackled by R package tools to better analyze data with 

larger volume of samples and to convenient acquisition of large data results.  

With the multi-omics data accumulation, we anticipate IOBR to attract broad application in 

immuno-oncology and facilitate accelerate the discovery of latent immune evasion mechanisms and 

novel therapeutic targets. IOBR represents a contribution to the computational toolbox for unveiling 

immune-tumor interactions from multi-omics data, and implementing it in preclinical researches of 

tumor heterogeneity and plasticity may be instrumental to provide impetus for precision 

immunotherapy. 
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Figures 

 

Figure 1 Graphical abstract outlines the workflow of IOBR package. The IOBR R package 

contains corresponding data preparation, multiple deconvolution algorithms to the decode signature 

estimation, TME contexture, batch statistical analyses and visualization, as well as feature selection 

and model construction.  
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Figure 2 Pipeline diagram depicts functions of four analytic modules contained in IOBR. In 

addition to functions for data preprocessing; the function modules comprise (1) analyses of 

signatures pertinent to clinical phenotype, lncRNA, and targeted signatures constructed based on 

bulk RNA-seq or single-cell RNA-seq data and TME deconvolution; (2) identification of phenotype 

relevant signatures, cell fraction, or signature genes, as well as corresponding batch statistical 

analyses and visualization; (3) estimation of specific mutation landscape associated with interested 

signature (4) and model construction following feature selection.  
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