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Abstract 12 

Microbial gene clusters encoding the biosynthesis of primary and secondary 13 

metabolites play key roles in shaping microbial ecosystems and driving microbiome-14 

associated phenotypes. Although effective approaches exist to evaluate the metabolic 15 

potential of such bacteria through identification of metabolic gene clusters in their 16 

genomes, no automated pipelines exist to profile the abundance and expression levels 17 

of such gene clusters in microbiome samples to generate hypotheses about their 18 

functional roles and to find associations with phenotypes of interest. Here, we describe 19 

BiG-MAP, a bioinformatic tool to profile abundance and expression levels of gene 20 

clusters across metagenomic and metatranscriptomic data and evaluate their 21 

differential abundance and expression between different conditions. To illustrate its 22 

usefulness, we analyzed 47 metagenomic samples from healthy and caries-23 

associated human oral microbiome samples and identified 58 gene clusters, including 24 

unreported ones, that were significantly more abundant in either phenotype. Among 25 

them, we found the muc operon, a gene cluster known to be associated to tooth decay. 26 

Additionally, we found a putative reuterin biosynthetic gene cluster from a 27 
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Streptococcus strain to be enriched but not exclusively found in healthy samples; 28 

metabolomic data from the same samples showed masses with fragmentation 29 

patterns consistent with (poly)acrolein, which is known to spontaneously form from the 30 

products of the reuterin pathway and has been previously shown to inhibit pathogenic 31 

Streptococcus mutans strains. Thus, we show how BiG-MAP can be used to generate 32 

new hypotheses on potential drivers of microbiome-associated phenotypes and 33 

prioritize the experimental characterization of relevant gene clusters that may mediate 34 

them. 35 

 36 

Importance 37 

Microbes play an increasingly recognized role in determining host-associated 38 

phenotypes by producing small molecules that interact with other microorganisms or 39 

host cells. The production of these molecules is often encoded in syntenic genomic 40 

regions, also known as gene clusters. With the increasing numbers of (multi-)omics 41 

datasets that can help understanding complex ecosystems at a much deeper level, 42 

there is a need to create tools that can automate the process of analyzing these gene 43 

clusters across omics datasets. The current study presents a new software tool called 44 

BiG-MAP, which allows assessing gene cluster abundance and expression in 45 

microbiome samples using metagenomic and metatranscriptomic data. In this 46 

manuscript, we describe the tool and its functionalities, and how it has been validated 47 

using a mock community. Finally, using an oral microbiome dataset, we show how it 48 

can be used to generate hypotheses regarding the functional roles of gene clusters in 49 

mediating host phenotypes. 50 

 51 

Running title: BiG-MAP: profiling gene clusters across microbiomes 52 
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microbiome-associated phenotype  54 

 55 

Introduction 56 

Bacteria can produce diverse sets of small molecules that interact with other microbes 57 

or with their host. These metabolites include members of both primary and secondary 58 

metabolism and cover a wide chemical diversity1,2. These pathways and metabolites 59 

are often specific to certain strains or species and help them to compete for space and 60 

resources3, e.g. through antimicrobial, nutrient-scavenging or immunomodulatory 61 

activities4. The genes that encode these pathways are often physically clustered and 62 

are also known as Biosynthetic Gene Clusters (BGCs) or Metabolic Gene Clusters 63 

(MGCs)5,6—the latter being a broader definition that also includes catabolic pathways. 64 

Several studies have indicated metabolites produced from such gene clusters to be 65 

the major drivers of specific phenotypic traits; for instance, pseudomonads in the 66 

rhizosphere of sugar beet plants were shown to produce the antifungal non-ribosomal 67 

peptide (NRP) thanamycin, which protects plants from fungal infections7. Another 68 

example from primary metabolism is trimethylamine, a diet derived-molecule that is 69 

processed by bacteria harboring a gene cluster that includes both CutC and CutD, and 70 

has been associated with an increased risk of suffering from cardiovascular disease8. 71 

Therefore, mining genomes for BGCs or MGCs enables moving the field towards a 72 

deeper understanding of function at the molecular level and determine the role a given 73 

microbe plays in the ecosystem9. 74 

 75 

Several tools have been developed to mine genomes for these gene clusters, like 76 

antiSMASH10, gutSMASH 77 
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(https://github.com/victoriapascal/gutsmash/tree/gutsmash/) or DeepBGC11. In 78 

contrast to other tools for functional profiling of microbial communities, such as 79 

HUMAnN212, MetaPath13, FMAP14 and Metatrans15, these do not depend on pathways 80 

that are present in reference databases like KEGG16 or MetaCyc17, which only include 81 

pathways for which most or all enzymatic steps have been elucidated. In fact, the 82 

majority of gene clusters identified by antiSMASH and many gene clusters predicted 83 

by gutSMASH encode pathways for which the catalytic steps, intermediates, and final 84 

products are yet unknown. However, known pathways that are encoded by gene 85 

clusters can also be reliably detected. The detection of complete gene clusters instead 86 

of individual enzyme-coding genes likely decreases false positive detections of 87 

enzymes that show sequence similarity to reference enzyme sequences but are part 88 

of different functional contexts. For these reasons, identification of gene clusters of 89 

known and unknown function provides a useful basis to look for functional 90 

explanations of microbiome-associated phenotypes of interest. As phenotypes are 91 

often triggered by metabolites at physiologically relevant concentrations, while 92 

samples without the phenotype lack these metabolites or have them at lower 93 

concentrations, assessing gene cluster abundance and expression levels across 94 

samples is crucial to predict associations with the phenotype in question. Another 95 

significant advantage of profiling the community by combining different omics data is 96 

to prioritize the characterization of putative gene clusters that are highly abundant or 97 

expressed in samples of interest and thus, help elucidating novel compounds and their 98 

biosynthetic pathways. 99 

 100 

Here, we present designed BiG-MAP (Biosynthetic Gene cluster Meta’omics 101 

Abundance Profiler), which provides a streamlined and automated process to 102 
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determine BGC/MGC abundance and expression in bacterial communities by 103 

mapping metagenomic and metatranscriptomic reads to gene cluster sequences from 104 

reference genomes or metagenomic assemblies. BiG-MAP uses MinHash-based 105 

redundancy filtering and groups BGCs into families with BiG-SCAPE18 to avoid 106 

ambiguous mapping, and uses these to output and visualize profiles of MGC 107 

abundance or expression levels across samples. Additionally, it calculates differential 108 

abundance or expression using either parametric or nonparametric tests. We validate 109 

the tool using simulated metagenomic data and show how MGC abundance and 110 

expression levels are accurately recapitulated. Finally, to showcase its usefulness, we 111 

applied BiG-MAP on a large publicly available metagenome dataset from the human 112 

oral microbiome and describe how it successfully identified gene clusters related to 113 

bacteria’s specialized primary and secondary metabolism that are (potentially) 114 

relevant for caries development. Among others, this collection includes the previously 115 

reported pdu and cobalamin gene cluster involved in the reuterin synthesis and the 116 

muc operon, gene clusters that were predicted by gutSMASH and antiSMASH, 117 

respectively. Thus, BiG-MAP suggests new lines to explore further the onset and 118 

development of oral cavities.  119 

 120 

Results and discussion 121 

An approach to map metagenomics and metatranscriptomic reads to gene 122 

clusters 123 

BiG-MAP maps shotgun sequencing reads onto gene clusters that have been either 124 

predicted by antiSMASH19 or gutSMASH (manuscript in preparation). It is a Python-125 

based pipeline, which allows downloading datasets from SRA respository, aligning 126 

metagenomic or metatranscriptomic reads to gene clusters detected in reference 127 
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genome collections or in a metagenomic assembly, providing normalized counts 128 

across samples, performing differential analyses, and visualizing the results. The tool 129 

requires three main inputs: (1) a gene cluster collection obtained from running any 130 

“SMASH-based” algorithm, (2) the meta‘omic dataset in FASTQ or FASTA format or, 131 

alternatively, the Sequence Read Archive (SRA) accession numbers to download it, 132 

and (3) a metadata file with sample information to segregate them into groups and 133 

compare their gene cluster content. 134 

 135 

BiG-MAP is composed of four different modules (see Fig. 1): (1) BiG-MAP.family, 136 

which performs redundancy filtering on the input collection of predicted gene clusters 137 

and provides a set of representative gene clusters for the mapping process. (2) BiG-138 

MAP.download, which uses a list of SRA accession ids to download the shotgun data 139 

if present in the SRA database (this step is optional). (3) BiG-MAP.map, which maps 140 

reads from the metagenomic or metatranscriptomic samples onto the set of 141 

representative gene clusters obtained from BiG-MAP.family. (4) BiG-MAP.analyse, 142 

which normalizes the counts for sparsity and sequencing depth, performs differential 143 

abundance/expression analysis and visualizes the output. 144 

The BiG-MAP.family module performs a redundancy analysis on the gene cluster 145 

collection to remove almost identical sequences, in order to reduce the computing time 146 

and avoid ambiguous mapping. To achieve this, the protein sequences of the gene 147 

clusters are used as input for MASH20, a MinHash-based algorithm to estimate 148 

sequence distance. Next, a representative gene cluster is selected using medoids 149 

calculation. The resulting representatives are then clustered into Gene Cluster 150 

Families (GCFs) using BiG-SCAPE18, an algorithm that uses three different distance 151 

metrics to group MGCs into families based on sequence and architectural similarity. 152 
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This step helps to group more distantly related homologous gene clusters that likely 153 

have the same chemical products but that are encoded in more distantly related 154 

organisms. In such cases, BiG-MAP maps reads to the family representatives 155 

separately, but also allows reporting combined abundance or expression levels per 156 

family to find associations with phenotypes at a higher level. In order to set an 157 

expression baseline when using metatranscriptomic data, BiG-MAP screens bacterial 158 

genomes whose gene clusters have been included in the non-redundant 159 

representative set of gene clusters for five house-keeping genes known to have stable 160 

expression levels using HMMer (for details, see Methods section titled BiG-161 

MAP.family: Creating a non-redundant MGC representative collection). Next, the 162 

reads are mapped to the representative gene clusters using the short-read aligner 163 

Bowtie221. The obtained raw read counts are then converted to RPKM (Reads Per 164 

Kilobase Million) values, which are averaged over the GCF size (based on BiG-165 

SCAPE clustering). In the last module, RPKM values are then normalized using 166 

Cumulative Sum Scaling22 (CSS) to account for sparsity. Moreover, for each aligned 167 

gene cluster we assess its coverage to control for gene clusters that are only partially 168 

mapped to by meta’omic reads. We report two coverage values in the intermediate 169 

files; one for the whole gene cluster and the other considering only the core genes of 170 

the BGC/MGC; showing both these numbers is often insightful in cases where borders 171 

of gene clusters called by antiSMASH or gutSMASH are imprecise and reads may be 172 

mapped to regions flanking the actual gene cluster. Subsequently, BiG-MAP detects 173 

differentially abundant or expressed gene clusters by using either zero-inflated 174 

gaussian distribution mixture models (ZIG-models) or using a Kruskal-Wallis model. 175 

Finally, all the generated results are displayed into a plot that includes a heatmap for 176 

the gene clusters abundance/expression values, a bar plot for the log fold change, the 177 
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coverage values and finally another heatmap for the housekeeping gene expression 178 

values when analyzing metatranscriptomes (see Suppl. Fig. S2). The output folders 179 

contain different intermediate and final results as for instance the BiG-SCAPE results, 180 

the resulting bedgraphs, the raw and normalized RPKM counts for each sample (in 181 

BIOM format23) and after applying the fitZIG and Kruskal Wallis tests in tab-separated 182 

tables and mapping coverage values for each gene cluster and sample. Altogether, 183 

this tool presents a streamlined method to functionally profile meta’omics data by 184 

mapping reads to known or putative gene clusters. 185 

 186 

Figure 1. BiG-MAP workflow. BiG-MAP is composed of four different modules: (1) 187 

BiG-MAP.family returns a representative set of non-redundant gene clusters based on 188 

sequence similarity, given a set of predicted gene clusters by either gutSMASH or 189 

antiSMASH. This module also looks for the protein sequences of 5 housekeeping 190 
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genes from the bacteria encoding the representative gene clusters when reads from 191 

metatranscriptomic sequences are going to be used. (2) BiG-MAP.download 192 

downloads a set of metagenomes/metatranscriptomes based on their SRA 193 

accessions. (3) BiG-MAP.map aligns omics reads to the representative set of gene 194 

clusters using Bowtie and (4) BiG-MAP.analyse computes normalized read counts, 195 

performs differential abundance/expression analysis of gene clusters across different 196 

conditions, and visualizes the results (see Suppl. Fig S1 and S2 as an example). 197 

 198 

Assessing and validating BiG-MAP performance using simulated data 199 

In order to evaluate the overall performance of BiG-MAP and in particular, all the 200 

default parameters chosen as defaults, such as the Bowtie alignment mode and the 201 

MASH similarity score cut-off, we designed a mock microbial community for 202 

metagenome simulation. From the Culturable Genome Reference (CGR) genome 203 

collection24, we randomly chose 101 CGR genomes to simulate metagenome reads 204 

from and to use as input for gutSMASH. To assess the impact of different sequencing 205 

depths (coverage of 0.5x and 0.05x) and community structure (uniform, linear, power-206 

law and exponential), we simulated eight different metagenomic libraries. Since the 207 

gene cluster content and their abundance levels in simulated data is known (ground 208 

truth), this allowed us to assess the recall and precision of the BiG-MAP assignments 209 

using MASH dissimilarity scores ranging from 10-100 and the eight different alignment 210 

modes available in Bowtie across the eight different simulated data libraries. From 211 

these results we computed the F1-score or harmonic mean of precision and recall (see 212 

Fig. 2), which showed that the community structure slightly affects BiG-MAP results. 213 

Moreover, since the highest F1 scores were obtained when using MASH score cut-off 214 

(similarity) of 0.8 and using “fast” alignment mode (end-to-end), we set these 215 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 15, 2020. ; https://doi.org/10.1101/2020.12.14.422671doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.14.422671
http://creativecommons.org/licenses/by/4.0/


parameters as defaults. Still, the user is able to change them as desired by indicating 216 

it with the appropriate flag when running BiG-MAP.  217 

 218 

 219 

Figure 2. BiG-MAP validation using simulated metagenomes. F1 score heatmap 220 

using simulated metagenomes constructed to assess the best MASH dissimilarity cut-221 

off across four different microbial community structures, two different sequencing 222 

depth values and eight different Bowtie alignment modes. 223 

  224 

Analysis of the oral microbiome: revealing the presence of gene clusters 225 

associated with health and disease 226 

The oral cavity is a natural habitat for many bacteria that reside in or on the gingival 227 

sulcus, tongue, teeth and cheeks, among other surfaces. These bacteria take part in 228 

important processes such as initial digestion of food, but are also associated with 229 

several oral diseases such as caries25 and periodontitis26. It is known that these 230 

bacteria can organize themselves to form biofilms, which can play a causal role in the 231 

development of these diseases27. There are different functional and metabolic 232 

pathway alterations that have been associated with the onset of disease via the 233 

production of small molecules28,29,30,31.For instance, tetramic acid produced by the 234 
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caries-associated bacterium Streptococcus mutans has been linked to tooth decay32. 235 

For this reason, in order to functionally profile these oral communities and acquire 236 

further insights into the MGCs that might be involved, we studied a dataset of 47 oral 237 

microbiome samples30 for which paired metagenomics and metabolomics data have 238 

been acquired and further analyzed using BiG-MAP (see Methods Assessing the pdu 239 

operon abundance by surveying different oral metagenomic samples and Evaluating 240 

the presence of the muc operon in caries-associated metagenomes sections). 241 

 242 

To evaluate possible molecular mechanisms underpinning caries formation, we first 243 

analyzed the available MS/MS data together with the metabolite feature abundance 244 

table using Pathway Activity Level Scoring (PALS)33, which uses molecular families 245 

obtained using molecular networking34 to group similar metabolites, and PLAGE35 to 246 

find differentially expressed metabolite groups between two conditions. PALS showed 247 

a very consistent and strong differential abundance between healthy and caries 248 

volunteers of a number of features in a metabolite group that we could annotate with 249 

polymer-like structures based on their C3H4O mass differences. With MASST 250 

searches36 across all public data present in GNPS-MassIVE, we could confirm the 251 

occurrence of these differential features in various microbial, human, and 252 

environmental-related public datasets  (see Methods and Supplementary Methods for 253 

further information on the metabolomics data analysis). Based on the above 254 

information, we concluded that these polymer-like structures might well represent 255 

molecules called polyacroleins (metabolite identification level 3 - annotated compound 256 

class), which are known to spontaneously form from a component of the antimicrobial 257 

set of molecules called reuterin37, and which have a matching mass difference 258 

between different polymer lengths. The formation of (poly)acrolein has been shown to 259 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 15, 2020. ; https://doi.org/10.1101/2020.12.14.422671doi: bioRxiv preprint 

https://doi.org/10.1101/2020.12.14.422671
http://creativecommons.org/licenses/by/4.0/


contribute strongly to the antimicrobial activity of reuterin37. Reuterin is produced by 260 

lactobacilli from a genomic island containing a pdu-like operon together with a 261 

cobalamin biosynthetic gene cluster38. Of note, acrolein is an ubiquitous compound 262 

that can be found in the human body for various reasons, such as the endogenous 263 

production of it, the ingestion of different food sources or due to exposure to different 264 

environmental conditions39. There are various known routes that can converge into 265 

the formation of acrolein, as it can be formed spontaneously from glycerol and 3-266 

hydroxypropionaldehyde37. Furthermore, glycerol metabolism from gut bacteria has 267 

also been found to produce this molecule40. Typically, the acrolein polymerization 268 

occurs under alkaline conditions41, thus, it is more likely to accumulate in saliva from 269 

healthy samples, as caries typically acidifies the oral cavity. Indeed, our results show 270 

that the possible polyacroleins are more abundant in samples of healthy volunteers. 271 

Interestingly, the presence of acrolein has been linked to inhibition of Streptococcus 272 

mutans, a well-known cariogenic bacteria42,43.  273 

 274 

Based on these findings, we were motivated to look for the presence of the pdu operon 275 

in the metagenomics samples, in order to identify candidate MGCs that might be 276 

involved in acrolein formation. To this end, we ran gutSMASH on the 1,440 genomes 277 

from the Human Microbiome Oral Database (HMOD, http://www.homd.org/) available 278 

in April 2020. Interestingly, gutSMASH identified a pdu-like operon in the genome of 279 

Streptococcus sp. F0442 that also includes a cobalamin (vitamin B12) biosynthetic 280 

region and is architecturally similar (cumulative Blast bit score of 13,271) to the 281 

Lactobacillus reuteri one (see Fig. 3A). Therefore, to assess the abundance of the 282 

predicted gene clusters in the oral microbiome we used our gutSMASH run, which 283 

predicted 3,352 gene clusters, as input for the BiG-MAP.family module, to filter out 284 
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redundant MGCs. Next, the reads of the 47 oral metagenomes (24 healthy and 23 285 

caries-related) were mapped onto the 1,544 representative gene clusters using BiG-286 

MAP.map and the counts were further normalized and parsed with BiG-MAP.analyse. 287 

We found that 56 gene clusters predicted by gutSMASH were significantly differentially 288 

abundant between caries-related and healthy samples when using Kruskal Wallis. 289 

Despite the fact that the pdu operon was not among these, we could see that it was 290 

still somewhat more abundant in healthy samples (mean: 5.30 RPKM counts/sample) 291 

when compared to the diseased group (mean: 4.16 RPKM counts/sample). Motivated 292 

by this, we sought to assess its presence in a larger oral microbiome dataset by using 293 

48 paired publicly available paired-end metagenome samples, which also included 294 

metagenomes from samples suffering from periodontitis and plaque formation, all 295 

considered as disease-related samples. These were used in combination with the 296 

already analyzed ones, making a total of 96 samples; 33 caries-related, 34 healthy, 297 

10 periodontitis-related and 19 involved in plaque development and all were used as 298 

input for BiG-MAP (see Methods section titled Assessing the pdu operon abundance 299 

by surveying different oral metagenomic samples). From this run, we found 164 gene 300 

clusters differentially abundant between groups (using Kruskal Wallis test), and the 301 

pdu operon was among them. While healthy samples on average have 5.15 RPKM 302 

counts/sample mapping to this gene cluster, diseased ones have 3.05 (p-value= 303 

0.0004 using Kruskal Wallis). We also evaluated the coverage of the read mapping 304 

within the expanded metagenomic datasets and found that within healthy samples, 305 

not all samples contain this gene cluster. For instance, from 34 healthy samples in the 306 

extended dataset, we could find 15 of them that appear not to have the Streptococcus 307 

sp. F0442 pdu operon (coverage below 0.5), while the rest had fairly high coverage 308 

scores with a mean coverage value of 0.79 (selecting the samples with coverage 309 
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values of at least 0.5), implying the presence of this operon or a close homologue of 310 

it (see Fig. 3B). Overall, this MGC constitutes a potential source for polyacrolein 311 

production, and the hypothesis that it could be involved in inhibition of Streptococcus 312 

mutans strains in non-acidic conditions is intriguing. As, logically, expression of the 313 

MGC would be required for conferring a metabolic and potentially disease-suppressive 314 

phenotype, metatranscriptomics analysis of samples where putative polyacrolein 315 

accumulation is observed could be an interesting follow-up analysis in the future to 316 

test the hypothesis of the involvement of this MGC in its production. Additionally, more 317 

detailed chemical analysis of the putative polyacroleins is required to confirm their 318 

structural identity. Nonetheless, this analysis illustrates how BiG-MAP analysis, 319 

especially when combined with complimentary omics data such as metabolomics, can 320 

generate concrete and relevant hypotheses about microbiome-associated phenotypes 321 

that can be tested in the laboratory. 322 

 323 
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Figure 3. Detection of a pdu / cobalamin operon in healthy oral metagenomes. 324 

(A) MultiGeneBlast comparison between the pdu operon found in Streptococcus sp. 325 

F0442 by gutSMASH and the characterized one from Lactobacillus reuteri 326 

(AP007281). (B) Read coverage of five randomly chosen healthy metagenomes along 327 

the gutSMASH-predicted pdu gene cluster. The coverage graphs, which were plotted 328 

using the Sushi R package (version 3.5.1)44, show that some samples (3 and 4) 329 

contain reads that cover the whole gene cluster, while in other samples, reads hardly 330 

cover the cluster (1 and 2) or only part of it (5).  331 

 332 

Another example of a gene cluster that has been found relevant in the oral cavity is 333 

the muc operon, which has been shown to be responsible for the production of tetramic 334 

acid, which is known to inhibit the colonization of commensal bacteria in the oral cavity. 335 

This gene cluster encodes a hybrid  between a polyketide synthase and nonribosomal 336 

peptide synthetase (PKS/NRPS)32. In order to further test this association and assess 337 

the abundance of the muc operon in the oral cavity, a collection of 170 Streptococcus 338 

mutans genomes collected from Tang et al32 and Liu et al45 was run through 339 

antiSMASH10, which predicted a total of 1,849 BGCs. After obtaining 41 representative 340 

gene clusters with BiG-MAP.family module, reads from the 47 oral microbiome 341 

metagenomes were mapped onto the predicted gene clusters and further processed 342 

using BiG-MAP.map and BiG-MAP.analyse subsequently. From the results, two gene 343 

clusters were found to be significantly differentially abundant between healthy and 344 

disease samples when using the fitZIG model: an NRPS from Streptococcus mutans 345 

N29 and the muc operon from Streptococcus mutans 14D. The muc operon from this 346 

strain shows high similarity to the one characterized by Tang et al.32 (Cumulative Blast 347 

bit score of 9,056) (see Fig. 4A). However, the mean read core coverage in both 348 
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groups is low; 0.283 in healthy and 0.372 in caries-associated samples, which imply 349 

the presence of some of the muc operon genes but not the complete gene cluster (see 350 

Fig. 4B). Nonetheless, within both groups we see that some samples have reads 351 

mapping to the complete gene cluster, with coverages values close to 1. When filtering 352 

out samples with coverage values < 0.5; leaving only 6 samples in each group, the 353 

mean coverage rises to 0.803 in healthy and 0.991 in disease. This is because there 354 

are nine healthy samples that have a core coverage value of 0 and also five disease 355 

samples that do not have reads mapping to the core genes of the muc operon. 356 

Interestingly, depending at which stage you check which group is more enriched with 357 

this gene cluster—either before or after normalization and depending on which 358 

differential abundance test you apply—one group or the other seems to have higher 359 

counts. The average abundance of raw RPKM counts in healthy is 16854.08 360 

compared to 12815.69 in disease samples. After being normalized, healthy samples 361 

have on average 11.22 RPKM counts/sample, slightly lower than the disease group 362 

that has 11.28 RPKM counts/sample. When using the two available differential 363 

abundance testing methods, we see that when applying the fitZIG model the difference 364 

in abundance between healthy and disease samples is significant (more abundant in 365 

disease) but not when testing it with Kruskal-Wallis. This is illustrated in the fitZIG BiG-366 

MAP output heatmap (Suppl. Fig. S3), which shows that despite the muc operon is 367 

significantly more abundant in disease samples, the abundance of this gene cluster 368 

across all samples is generally very similar. Therefore, despite finding this operon 369 

being more abundant in caries-prone samples when applying the fitZIG model, 370 

suggesting that indeed the muc operon plays a role in the caries development, the oral 371 

microbiota from healthy donors seem to also harbor this PKS/NRPS. Hence, the 372 

microbiota from healthy samples may have a mechanism to counteract the inhibiting 373 
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effect of tetramic acid, or there might be a difference in expression of the gene cluster 374 

between healthy and diseased subjects. 375 

 376 

 377 

Figure 4. Detection of the muc operon in a subset of caries-associated samples. 378 

(A) MultiGeneBlast comparison between the muc operon characterized from 379 

Streptoccocus mutans strain MT4653.1 and the antiSMASH predicted one from 380 

Streptococcus mutans 14D. (B) Read coverage of five random chosen caries-related 381 

metagenomes along the antiSMASH predicted muc gene cluster. The coverage 382 

graphs, which were plotted using the Sushi R  package (version 3.5.1)44, show that 383 

despite the fact that the muc operon is generally not very highly covered by reads from 384 

the randomly picked examples, some seem to truly contain for this operon, such as 385 

sample 4, where the core biosynthetic genes look to be abundant at sufficient levels. 386 

Full data pertaining all samples can be found in Fig. S3. 387 

 388 
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In addition, we also assessed the presence of the muc operon in the extended dataset 389 

that includes 96 metagenomic samples in total (see Evaluating the presence of the 390 

muc operon in caries-associated metagenomes Methods section). However, neither 391 

the muc nor the other BGCs predicted from the Streptococcus genomes were 392 

significantly more abundant in either group. This could be explained because within 393 

the 96 samples there are not only healthy or caries-associated metagenomes but also 394 

metagenomes from patients suffering from periodontitis and samples from a study that 395 

observes how a biofilm evolves over time; therefore, it might be that the community 396 

structure of all these samples differ quite a lot in terms of BGC content but also 397 

regarding the presence of Streptococcus mutans. All in all, our results suggest that 398 

the abundance of the muc operon is not very predictive for a healthy or disease state 399 

of the microbiome by itself, and other factors likely play (more) important roles. 400 

 401 

Conclusions 402 

Overall, combining different omics datasets is a very useful approach to understand 403 

which microbes are doing what and poses a promising avenue to better understand 404 

complex biological processes. Here, we presented BiG-MAP, a command-line tool that 405 

it is able to profile the abundance and expression of a collection of gene clusters 406 

across metagenomic and metatranscriptomic data. Each of the steps in the BiG-MAP 407 

pipeline is robust, as demonstrated using simulated metagenomes. Indeed, BiG-MAP 408 

can discover interesting and relevant potential associations between genomic regions 409 

and phenotypes, which can guide experimental efforts to test MGC function. It is worth 410 

noting the usefulness of the gene cluster mapping coverage values, since they allow 411 

the user to discern between the real presence of predicted gene clusters of interest 412 

and spurious read mapping. Also, the associations that can be found using BiG-MAP 413 
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strongly depend on the WGS data sequencing depth and sample size, as for instance 414 

in the examples described in our study, we found both gene clusters (pdu-like operon 415 

and muc) only significant in either dataset (reduced or extended one). Moreover, from 416 

the BiG-MAP output folders, which include raw and processed results, it is possible to 417 

extract valuable information, such as the differences within groups, distribution of 418 

reads across a gene cluster, raw and normalized RPKM counts, etc. Overall, we 419 

believe BiG-MAP will help researchers solving biologically complex questions by 420 

integrative multi-omics approaches, to obtain deeper insights into the relationships 421 

between microbial metabolic capacities and microbiome-associated phenotypes.  422 

 423 

Methods 424 

Code availability 425 

BIG-MAP is implemented in Python 3 as a command line package. It consists of four 426 

modules: BiG-MAP.download, BiG-MAP.family, BiG-MAP.map, and BiG-427 

MAP.analyse. The code is available at: https://github.com/medema-group/BiG-MAP 428 

together with documentation on how to install BiG-MAP and its dependencies and a 429 

short tutorial on how to run it. 430 

 431 

BiG-MAP.download: Data collection 432 

This module allows to retrieve sequencing data present in the SRA database using 433 

the SRA toolkit (https://github.com/ncbi/sra-tools). To initially develop, test and 434 

validate this, we used an IBD cohort that contains metagenomic and 435 

metatranscriptomic data from 78 individuals, 21 suffering from UC, 46 individuals with 436 

CD, and 11 healthy samples46. These samples were retrieved using the SRA 437 
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accession IDs under BioProject PRJNA389280 tool (see Suppl. Fig S1 and S2 438 

generated from this dataset). 439 

 440 

BiG-MAP.family: Creating a non-redundant MGC representative collection 441 

The family module uses as input a directory that contains the gene cluster prediction 442 

outputted by the antiSMASH47 or gutSMASH algorithms 443 

(https://github.com/victoriapascal/gutsmash). The predicted gene clusters are then 444 

subjected to a redundancy filtering step based on their mutual sequence similarity. For 445 

that, the protein sequences of the gene clusters are extracted and used as input for 446 

MASH20 sketch, which creates sketches from the raw sequences. The sketches are 447 

then used to calculate the distances between sequences using MASH dist. The 448 

resulting tab-delimited file with the pairwise distance comparisons is used to group 449 

together gene clusters with above a 0.8 default similarity cut-off (see Figure 2). Next, 450 

to pick the best representative of each group, medoids are computed (see formula 451 

below). For this, a distance matrix is created comparing all distances between pairs of 452 

gene clusters; the one with minimal cumulative distance value is picked as 453 

representative of that group. Additionally, the selected gene clusters are subjected to 454 

another round of clustering using BiG-SCAPE18, to group gene clusters into GCFs at 455 

a 0.3 similarity cut-off (default value), from which a random representative is picked.  456 

 457 

𝑥"#$%&$	 = 	𝑎𝑟𝑔𝑚𝑖𝑛/∈{23,25,…	27} 𝑑(𝑦, 𝑥&)
=

&>?

 458 

 459 

If metatranscriptomes will be used in the BiG-MAP.map module, an additional step is 460 

performed to set an expression baseline. For this, the protein sequences of the 461 
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genomes whose gene clusters form the non-redundant representative gene cluster 462 

collection are scanned using hmmsearch (hmmsearch version 3.1b2) for five 463 

housekeeping-coding proteins: DNA gyrase A (PF00521), DNA gyrase B (PF00204), 464 

Recombinase A (PF00154), DNA directed RNA polymerase A (PF01000), and DNA 465 

directed RNA polymerase B (PF00562). The selection of these Pfam domains was 466 

based on the findings by Rocha et al.48 that these housekeeping genes show highly 467 

stable expression across samples. Next, the gathered protein sequences are also 468 

used as queries in the mapping module to align metatranscriptomic reads to gene 469 

clusters.  470 

 471 

BiG-MAP.map: mapping reads to a non-redundant gene cluster collection 472 

This module relies on Bowtie221 (version 2.3.4.3) to align reads to a given sequence. 473 

From the reference gene cluster sequences selected by the medoid calculation, 474 

Bowtie index files are created. Next, Bowtie2 aligns reads to these index files that by 475 

default uses the fast alignment mode. The resulting alignment is stored in SAM format 476 

and converted to BAM format to later be parsed by SAMtools49 (version 1.9). The 477 

alignments are then sorted by leftmost coordinates, the aligned reads are counted and 478 

corrected by GCF and gene cluster size consecutively. Later, the corrected raw counts 479 

are converted to TPM counts (Transcripts Per Kilobase Million) and consecutively to 480 

RPKM (Reads Per Kilobase Million) counts to account for sequencing depth.  481 

 482 

Another functionality that was added in this module was to compute the read coverage 483 

of each gene cluster using the coordinates in the sorted BAM files. To do so, the sorted 484 

alignment files are converted to bedgraphs using BEDtools50 (v2.28.0), that allow to 485 

estimate the number of covered bases of each cluster (coverage) by subtracting the 486 
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number of non-covered bases (ncb) to the length of each cluster (cl) as indicated in 487 

the formula below. 488 

𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 = 	
𝑐𝑙 − 𝑛𝑐𝑏

𝑐𝑙  489 

 490 

The same procedure is followed to compute the RPKM counts and the coverage of 491 

the core genes within a gene cluster, which strictly considers the core metabolic genes 492 

within each gene cluster. This information is taken from the antiSMASH/gutSMASH 493 

(or any other “SMASH” related algorithm) Genbank output files that flag the key coding 494 

genes that are needed for the synthesis of a given molecule. Once the core genes are 495 

identified, the alignment information concerning them is retrieved using SAMtools. 496 

Next, in the same manner as RPKM are computed for the whole gene clusters, reads 497 

aligned to the core region are pulled out, counted and corrected to finally get the RPKM 498 

counts. To perform the coverage calculation, the locations of the core genes are 499 

extracted from the bedgraph to evaluate the coverage score using the aforementioned 500 

formula. 501 

 502 

BiG-MAP.analyse: Normalization of RPKM counts and finding differentially 503 

expressed/abundant MGCs 504 

In order to account for sparse high-throughput sequencing RPKM are normalized 505 

using Cumulative Sum Scaling (CSS) from the R Bioconductor package 506 

MetagenomeSeq22. BiG-MAP offers two different statistics to account for differentially 507 

abundant/expressed gene clusters, the parametric zero inflated gaussian distribution 508 

mixture model (ZIG-models) that assumes normal distribution of values or the non-509 

parametric Kruskal-Wallis test. Relatively small changes in gene cluster 510 

abundance/expression are expected thus, ZIG-model values are adjusted with log2 511 
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fold-change that ultimately helps fitting the model to a log-normal distribution. 512 

Alternatively, Kruskal-Wallis can be run on the normalized RPKM counts, which allows 513 

to assess whether the distribution of ranks for one group significantly differs from the 514 

distribution of ranks for the other group. Additionally, FDR correction is applied to 515 

correct for multiple hypothesis testing. Finally, heatmaps are produced to visualize the 516 

results using the Seaborn python package (https://github.com/mwaskom/seaborn). 517 

 518 

Testing BiG-MAP performance using a mock community 519 

To test BiG-MAP performance, 101 bacterial genomes were randomly chosen from 520 

the CGR collection24. Thus, the gutSMASH-predicted MGCs from each genome were 521 

used as ground truth (https://github.com/victoriapascal/gutsmash, version 0.8, github 522 

commit stamp: 569e860). Next, paired-end reads were generated with a mean read 523 

length of 100 bp from the 101 CGR bacterial genomes using Grinder v0.5.351. Two 524 

different read coverage thresholds were used (0.5x and 0.05x) in combination with 525 

four different community structures: uniform, linear, power-law and exponential. Both 526 

the MGCs and the simulated reads were used as input for BiG-MAP, which was run 527 

ranging the MASH similarity thresholds between 10-100% in intervals of 10% along 528 

the eight different Bowtie2 alignment modes. From each individual run, true positive, 529 

false positive and false negatives rates were calculated to evaluate the precision and 530 

recall, which was ultimately used to compute the harmonic mean of precision and 531 

recall, also known as the F1-score. The results were plotted in a heatmap using the 532 

ComplexHeatmap package in R52. 533 

 534 

Assessing the pdu operon abundance by surveying different oral metagenomic 535 

samples. 536 
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To find possible leads on metabolic perturbances between healthy and caries-related 537 

samples, the processed mass spectra (MGF format) and metabolomics feature tables 538 

from Aleti, G. et al.30 were downloaded from GNPS-MassIVE34 accession ID 539 

MSV000081832 to perform re-analysis. Feature-based Molecular Networks53 were 540 

run using GNPS release version 21 541 

(https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=ef4f64542ab24a7fb0802ceacbcf542 

a071, 543 

https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=9c95754d1fdc42b4a43b16919c3544 

98ecd). The resulting molecular family information together with the metabolite feature 545 

tables and sample information (metadata) were loaded into PALS 546 

(https://pals.glasgowcompbio.org/app/)33, to identify metabolite families differing in 547 

activity between healthy and caries-related samples. From the results, three out of 548 

seven candidate metabolites in one differentially expressed molecular family showing 549 

clear different abundance patterns between healthy and caries samples were further 550 

examined using GNPS MASST (https://masst.ucsd.edu)36, the ChemCalc MF finder54, 551 

and PubChem55, leading to the putative annotation of polyacrolein-related metabolites 552 

in healthy samples, which may be produced from a pdu-like operon that requires the 553 

presence of the cobalamin biosynthetic genes (see Supplementary material for further 554 

information).  555 

 556 

For the analysis of the pdu operon and its presence in the oral microbiome, 1,440 oral 557 

bacteria genomes were downloaded from the HOMD collection 558 

(http://www.homd.org/?name=GenomeList&link=GenomeList&type=all_oral). Next, 559 

these genomes were used as input for gutSMASH (version 0.8). The comparison 560 

between the two pdu operons from Lactobacillus reuteri (AP007281) and 561 
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Streptococcus sp. F0442 (GCA_000314795.2) was done using MultiGeneBlast56. 562 

Next, all predicted gene clusters were used as input for the BiG-MAP family module. 563 

At the same time, the oral metagenomics datasets were downloaded using the BiG-564 

MAP.download module by providing the SRA accession IDs associated to the 565 

PRJNA478018, PRJNA396840, and PRJNA398963 BioProject IDs. Once the 566 

metagenomes were downloaded, BiG-MAP.map was run using the output of the family 567 

module and the metagenomic reads in fastq format. Finally, the RPKM counts were 568 

normalized, processed and visualized using BiG-MAP.analyse.  569 

 570 

Evaluating the presence of the muc operon in caries-associated metagenomes 571 

AntiSMASH was used to predict BGCs from a total of 170 Streptococcus mutans 572 

genomes reported in Tang et al32 and Liu et al45. Within the predicted BGCs, the muc 573 

operon was found and compared to the muc operon characterized by Hao et al.57 574 

using MultiGeneBlast56. The predicted BGCs were then used as input for the BiG-575 

MAP.family module. Both, the representative BGCs and metagenomic reads were 576 

then used as input in the subsequent BiG-MAP.map mapping module using the 577 

metagenomes from the following three BioProjects: PRJNA478018, PRJNA396840, 578 

and PRJNA398963. Finally, the raw mapping counts were normalized and further 579 

processed and visualized using BiG-MAP.analyse.  580 

 581 

Data availability 582 

The supporting information for this article can be found in the Supplementary material 583 

and in the Zenodo repository (https://zenodo.org/) with the following DOI: 584 

10.5281/zenodo.4320501. The metabolomics data used for reanalysis is available 585 

from GNPS-MassIVE accession ID MSV000081832. 586 
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